Datasets:

Languages:
English
Size:
n<1K
DOI:
Libraries:
License:
evanlohn commited on
Commit
1dc7ce1
·
1 Parent(s): 9caccca

correct file context

Browse files
Files changed (2) hide show
  1. README.md +3 -1
  2. baseline.py +2 -2
README.md CHANGED
@@ -2,11 +2,13 @@
2
  license: apache-2.0
3
  ---
4
  First install [Lean 4](https://leanprover-community.github.io/get_started.html). Then clone this repo:
 
5
  `git clone --recurse-submodules https://huggingface.co/datasets/elohn/miniCodeProps`
 
6
  The outer LeanSrc folder is a [Lean Project](https://leanprover-community.github.io/install/project.html). You can open that folder directly in VSCode and check that the proofs in `LeanSrc/Sorts.lean` type check after following the instructions for working on an existing lean project in the Lean 4 documentation.
7
  The main miniCodeProps folder handles extracting the benchmark and calculating baselines. If anything fails when building Lean or running `lake exe cache get` from LeanSrc, the [Zulip Chat](https://leanprover.zulipchat.com/) is the best resource for troubleshooting.
8
 
9
- After cloning the repo, you will need to install [Lean REPL](https://github.com/leanprover-community/repl). By default, our scripts expect the `repl` folder to be directly inside the miniCodeProps folder. run `lake build` from within the `repl` folder.
10
 
11
  The `extract.py` script is used only to create the json-formatted benchmark.
12
 
 
2
  license: apache-2.0
3
  ---
4
  First install [Lean 4](https://leanprover-community.github.io/get_started.html). Then clone this repo:
5
+
6
  `git clone --recurse-submodules https://huggingface.co/datasets/elohn/miniCodeProps`
7
+
8
  The outer LeanSrc folder is a [Lean Project](https://leanprover-community.github.io/install/project.html). You can open that folder directly in VSCode and check that the proofs in `LeanSrc/Sorts.lean` type check after following the instructions for working on an existing lean project in the Lean 4 documentation.
9
  The main miniCodeProps folder handles extracting the benchmark and calculating baselines. If anything fails when building Lean or running `lake exe cache get` from LeanSrc, the [Zulip Chat](https://leanprover.zulipchat.com/) is the best resource for troubleshooting.
10
 
11
+ After cloning the repo, you will need to install [Lean REPL](https://github.com/leanprover-community/repl). By default, our scripts expect the `repl` folder to be directly inside the miniCodeProps folder. run `lake build` from within the `repl` folder.
12
 
13
  The `extract.py` script is used only to create the json-formatted benchmark.
14
 
baseline.py CHANGED
@@ -76,7 +76,7 @@ def benchmark_nextstep(pwd, get_tactics, send_command, search_depth=3, repl_type
76
  if search_lvl > 0:
77
  print(f'search at level {search_lvl}')
78
  for (curr_goal, ps, tac_seq) in old_ps:
79
- next_tactics = get_tactics(curr_goal, prev_lines)
80
  for next_tactic, _scr in sorted(next_tactics, key=lambda p: -p[1])[:3]:
81
  print('\n'.join(tac_seq + [next_tactic]))
82
  outp, new_proofState = send_tactic(lean_repl, next_tactic, ps)
@@ -340,7 +340,7 @@ if __name__ == '__main__':
340
 
341
  #benchmark_nextstep(pwd, get_tactics_interactive, send_command, repl_type=repl_type) # get_tactics_interactive for testing
342
 
343
- pwd = parse_benchmark_input('codeprops_bench_lemmas.jsonl')
344
 
345
  if bench_type == 'nextstep':
346
  benchmark_nextstep(pwd, get_tactics_llmstep, send_command, repl_type=repl_type) # get_tactics_llmstep for benchmarking
 
76
  if search_lvl > 0:
77
  print(f'search at level {search_lvl}')
78
  for (curr_goal, ps, tac_seq) in old_ps:
79
+ next_tactics = get_tactics(curr_goal, prev_lines + '\n'.join(tac_seq))
80
  for next_tactic, _scr in sorted(next_tactics, key=lambda p: -p[1])[:3]:
81
  print('\n'.join(tac_seq + [next_tactic]))
82
  outp, new_proofState = send_tactic(lean_repl, next_tactic, ps)
 
340
 
341
  #benchmark_nextstep(pwd, get_tactics_interactive, send_command, repl_type=repl_type) # get_tactics_interactive for testing
342
 
343
+ pwd = parse_benchmark_input('codeprops_bench_sorts.jsonl')
344
 
345
  if bench_type == 'nextstep':
346
  benchmark_nextstep(pwd, get_tactics_llmstep, send_command, repl_type=repl_type) # get_tactics_llmstep for benchmarking