Datasets:
Tasks:
Sentence Similarity
Modalities:
Text
Formats:
json
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 5,271 Bytes
69f7f8b e38757d 9865dce 6ac4694 9865dce 69f7f8b e38757d c51ee02 e38757d 2cb43bd 801e9af d8c38cd e38757d d8c38cd e38757d d8c38cd e38757d d8c38cd e38757d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
language:
- en
license: mit
task_categories:
- sentence-similarity
task_ids:
- semantic-similarity-classification
paperswithcode_id: embedding-data/coco_captions
pretty_name: coco_captions
tags:
- paraphrase-mining
---
# Dataset Card for "coco_captions"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://cocodataset.org/#home](https://cocodataset.org/#home)
- **Repository:** [https://github.com/cocodataset/cocodataset.github.io](https://github.com/cocodataset/cocodataset.github.io)
- **Paper:** [More Information Needed](https://arxiv.org/abs/1405.0312)
- **Point of Contact:** [[email protected]]([email protected])
- **Size of downloaded dataset files:**
- **Size of the generated dataset:**
- **Total amount of disk used:** 6.32 MB
### Dataset Summary
COCO is a large-scale object detection, segmentation, and captioning dataset. This repo contains five captions per image; useful for sentence similarity tasks.
Disclaimer: The team releasing COCO did not upload the dataset to the Hub and did not write a dataset card.
These steps were done by the Hugging Face team.
### Supported Tasks
- [Sentence Transformers](https://huggingface.co/sentence-transformers) training; useful for semantic search and sentence similarity.
### Languages
- English.
## Dataset Structure
Each example in the dataset contains quintets of similar sentences and is formatted as a dictionary with the key "set" and a list with the sentences as "value":
```
{"set": [sentence_1, sentence_2, sentence3, sentence4, sentence5]}
{"set": [sentence_1, sentence_2, sentence3, sentence4, sentence5]}
...
{"set": [sentence_1, sentence_2, sentence3, sentence4, sentence5]}
```
This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using similar pairs of sentences.
### Usage Example
Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:
```python
from datasets import load_dataset
dataset = load_dataset("embedding-data/coco_captions")
```
The dataset is loaded as a `DatasetDict` and has the format:
```python
DatasetDict({
train: Dataset({
features: ['set'],
num_rows: 82783
})
})
```
Review an example `i` with:
```python
dataset["train"][i]["set"]
```
### Data Instances
[More Information Needed](https://cocodataset.org/#format-data)
### Data Splits
[More Information Needed](https://cocodataset.org/#format-data)
## Dataset Creation
### Curation Rationale
[More Information Needed](https://cocodataset.org/#home)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://cocodataset.org/#home)
#### Who are the source language producers?
[More Information Needed](https://cocodataset.org/#home)
### Annotations
#### Annotation process
[More Information Needed](https://cocodataset.org/#home)
#### Who are the annotators?
[More Information Needed](https://cocodataset.org/#home)
### Personal and Sensitive Information
[More Information Needed](https://cocodataset.org/#home)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://cocodataset.org/#home)
### Discussion of Biases
[More Information Needed](https://cocodataset.org/#home)
### Other Known Limitations
[More Information Needed](https://cocodataset.org/#home)
## Additional Information
### Dataset Curators
[More Information Needed](https://cocodataset.org/#home)
### Licensing Information
The annotations in this dataset along with this website belong to the COCO Consortium
and are licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode)
### Citation Information
[More Information Needed](https://cocodataset.org/#home)
### Contributions
Thanks to:
- Tsung-Yi Lin - Google Brain
- Genevieve Patterson - MSR, Trash TV
- Matteo R. - Ronchi Caltech
- Yin Cui - Google
- Michael Maire - TTI-Chicago
- Serge Belongie - Cornell Tech
- Lubomir Bourdev - WaveOne, Inc.
- Ross Girshick - FAIR
- James Hays - Georgia Tech
- Pietro Perona - Caltech
- Deva Ramanan - CMU
- Larry Zitnick - FAIR
- Piotr Dollár - FAIR
for adding this dataset.
|