Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,271 Bytes
69f7f8b
e38757d
 
9865dce
6ac4694
 
 
 
9865dce
 
 
 
69f7f8b
e38757d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c51ee02
e38757d
2cb43bd
801e9af
 
d8c38cd
e38757d
d8c38cd
e38757d
 
 
d8c38cd
e38757d
 
 
d8c38cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38757d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
- en
license: mit
task_categories:
- sentence-similarity
task_ids:
- semantic-similarity-classification
paperswithcode_id: embedding-data/coco_captions
pretty_name: coco_captions
tags:
- paraphrase-mining
---

# Dataset Card for "coco_captions"

## Table of Contents

- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)
  
## Dataset Description
- **Homepage:** [https://cocodataset.org/#home](https://cocodataset.org/#home)
- **Repository:** [https://github.com/cocodataset/cocodataset.github.io](https://github.com/cocodataset/cocodataset.github.io)
- **Paper:** [More Information Needed](https://arxiv.org/abs/1405.0312)
- **Point of Contact:** [[email protected]]([email protected])
- **Size of downloaded dataset files:** 
- **Size of the generated dataset:** 
- **Total amount of disk used:** 6.32 MB

### Dataset Summary

COCO is a large-scale object detection, segmentation, and captioning dataset. This repo contains five captions per image; useful for sentence similarity tasks.

Disclaimer: The team releasing COCO did not upload the dataset to the Hub and did not write a dataset card. 
These steps were done by the Hugging Face team.

### Supported Tasks

- [Sentence Transformers](https://huggingface.co/sentence-transformers) training; useful for semantic search and sentence similarity. 

### Languages

- English.

## Dataset Structure

Each example in the dataset contains quintets of similar sentences and is formatted as a dictionary with the key "set" and a list with the sentences as "value":

```
{"set": [sentence_1, sentence_2, sentence3, sentence4, sentence5]}
{"set": [sentence_1, sentence_2, sentence3, sentence4, sentence5]}
...
{"set": [sentence_1, sentence_2, sentence3, sentence4, sentence5]}
```

This dataset is useful for training Sentence Transformers models. Refer to the following post on how to train models using similar pairs of sentences.

### Usage Example

Install the 🤗 Datasets library with `pip install datasets` and load the dataset from the Hub with:

```python
from datasets import load_dataset
dataset = load_dataset("embedding-data/coco_captions")
```
The dataset is loaded as a `DatasetDict` and has the format:

```python
DatasetDict({
    train: Dataset({
        features: ['set'],
        num_rows: 82783
    })
})
```

Review an example `i` with:

```python
dataset["train"][i]["set"]
```


### Data Instances

[More Information Needed](https://cocodataset.org/#format-data)

### Data Splits

[More Information Needed](https://cocodataset.org/#format-data)

## Dataset Creation

### Curation Rationale

[More Information Needed](https://cocodataset.org/#home)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://cocodataset.org/#home)

#### Who are the source language producers?

[More Information Needed](https://cocodataset.org/#home)

### Annotations

#### Annotation process

[More Information Needed](https://cocodataset.org/#home)

#### Who are the annotators?

[More Information Needed](https://cocodataset.org/#home)

### Personal and Sensitive Information

[More Information Needed](https://cocodataset.org/#home)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://cocodataset.org/#home)

### Discussion of Biases

[More Information Needed](https://cocodataset.org/#home)

### Other Known Limitations

[More Information Needed](https://cocodataset.org/#home)

## Additional Information

### Dataset Curators

[More Information Needed](https://cocodataset.org/#home)

### Licensing Information

The annotations in this dataset along with this website belong to the COCO Consortium 
and are licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/legalcode)

### Citation Information

[More Information Needed](https://cocodataset.org/#home)

### Contributions

Thanks to:

- Tsung-Yi Lin - Google Brain
- Genevieve Patterson - MSR, Trash TV
- Matteo R. - Ronchi Caltech
- Yin Cui - Google
- Michael Maire - TTI-Chicago
- Serge Belongie - Cornell Tech
- Lubomir Bourdev - WaveOne, Inc.
- Ross Girshick - FAIR
- James Hays - Georgia Tech
- Pietro Perona - Caltech
- Deva Ramanan - CMU
- Larry Zitnick - FAIR
- Piotr Dollár - FAIR

for adding this dataset.