albertvillanova HF staff commited on
Commit
83c9b79
·
verified ·
1 Parent(s): 38f5f71

Delete loading script

Browse files
Files changed (1) hide show
  1. emotone_ar.py +0 -79
emotone_ar.py DELETED
@@ -1,79 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text """
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
- from datasets.tasks import TextClassification
22
-
23
-
24
- _CITATION = """\
25
- @inbook{inbook,
26
- author = {Al-Khatib, Amr and El-Beltagy, Samhaa},
27
- year = {2018},
28
- month = {01},
29
- pages = {105-114},
30
- title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II},
31
- isbn = {978-3-319-77115-1},
32
- doi = {10.1007/978-3-319-77116-8_8}
33
- }
34
- """
35
-
36
-
37
- _DESCRIPTION = """\
38
- Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text"""
39
-
40
-
41
- _HOMEPAGE = "https://github.com/AmrMehasseb/Emotional-Tone"
42
-
43
-
44
- _DOWNLOAD_URL = "https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv"
45
-
46
-
47
- class EmotoneAr(datasets.GeneratorBasedBuilder):
48
- """Dataset of 10065 tweets in Arabic for Emotions detection in Arabic text"""
49
-
50
- def _info(self):
51
- return datasets.DatasetInfo(
52
- description=_DESCRIPTION,
53
- features=datasets.Features(
54
- {
55
- "tweet": datasets.Value("string"),
56
- "label": datasets.features.ClassLabel(
57
- names=["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"]
58
- ),
59
- }
60
- ),
61
- homepage=_HOMEPAGE,
62
- citation=_CITATION,
63
- task_templates=[TextClassification(text_column="tweet", label_column="label")],
64
- )
65
-
66
- def _split_generators(self, dl_manager):
67
- """Returns SplitGenerators."""
68
- data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL)
69
- return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir})]
70
-
71
- def _generate_examples(self, filepath):
72
- """Generate labeled arabic tweets examples for emoptions detection."""
73
- with open(filepath, encoding="utf-8", mode="r") as csv_file:
74
- next(csv_file) # skip header
75
- csv_reader = csv.reader(csv_file, quotechar='"', delimiter=",")
76
-
77
- for id_, row in enumerate(csv_reader):
78
- _, tweet, label = row
79
- yield id_, {"tweet": tweet, "label": label}