Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
10K - 100K
License:
Commit
·
a6b5dca
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +165 -0
- dataset_infos.json +1 -0
- dummy/0.0.0/dummy_data.zip +3 -0
- emotone_ar.py +78 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- found
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- ar
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1k<n<10k
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text_classification
|
18 |
+
task_ids:
|
19 |
+
- emotion-classification
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for MetRec
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Discussion of Social Impact and Biases](#discussion-of-social-impact-and-biases)
|
40 |
+
- [Other Known Limitations](#other-known-limitations)
|
41 |
+
- [Additional Information](#additional-information)
|
42 |
+
- [Dataset Curators](#dataset-curators)
|
43 |
+
- [Licensing Information](#licensing-information)
|
44 |
+
- [Citation Information](#citation-information)
|
45 |
+
|
46 |
+
## Dataset Description
|
47 |
+
|
48 |
+
- **Homepage:** [Homepage](https://github.com/AmrMehasseb/Emotional-Tone)
|
49 |
+
- **Repository:** [Repository](https://github.com/AmrMehasseb/Emotional-Tone)
|
50 |
+
- **Paper:** [Emotional Tone Detection in Arabic Tweets](https://www.researchgate.net/publication/328164296_Emotional_Tone_Detection_in_Arabic_Tweets_18th_International_Conference_CICLing_2017_Budapest_Hungary_April_17-23_2017_Revised_Selected_Papers_Part_II)
|
51 |
+
- **Point of Contact:** [Amr Al-Khatib](https://github.com/AmrMehasseb)
|
52 |
+
|
53 |
+
### Dataset Summary
|
54 |
+
|
55 |
+
Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text
|
56 |
+
|
57 |
+
### Supported Tasks and Leaderboards
|
58 |
+
|
59 |
+
[More Information Needed]
|
60 |
+
|
61 |
+
### Languages
|
62 |
+
|
63 |
+
The dataset is based on Arabic.
|
64 |
+
|
65 |
+
## Dataset Structure
|
66 |
+
|
67 |
+
### Data Instances
|
68 |
+
|
69 |
+
example:
|
70 |
+
```
|
71 |
+
>>> {'label': 0, 'tweet': 'الاوليمبياد الجايه هكون لسه ف الكليه ..'}
|
72 |
+
```
|
73 |
+
|
74 |
+
### Data Fields
|
75 |
+
|
76 |
+
- "tweet": plain text tweet in Arabic
|
77 |
+
|
78 |
+
- "label": emotion class label
|
79 |
+
|
80 |
+
the dataset distribution and balance for each class looks like the following
|
81 |
+
|
82 |
+
|label||Label description | Count |
|
83 |
+
|---------|---------| ------- |
|
84 |
+
|0 |none | 1550 |
|
85 |
+
|1 |anger | 1444 |
|
86 |
+
|2 |joy | 1281 |
|
87 |
+
|3 |sadness | 1256 |
|
88 |
+
|4 |love | 1220 |
|
89 |
+
|5 |sympathy | 1062 |
|
90 |
+
|6 |surprise | 1045 |
|
91 |
+
|7 |fear | 1207 |
|
92 |
+
|
93 |
+
### Data Splits
|
94 |
+
|
95 |
+
The dataset is not split.
|
96 |
+
|
97 |
+
| | Tain |
|
98 |
+
|---------- | ------ |
|
99 |
+
|no split | 10,065 |
|
100 |
+
|
101 |
+
## Dataset Creation
|
102 |
+
|
103 |
+
### Curation Rationale
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
### Source Data
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
#### Initial Data Collection and Normalization
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Who are the source language producers?
|
116 |
+
|
117 |
+
[More Information Needed]
|
118 |
+
|
119 |
+
### Annotations
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
#### Annotation process
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
#### Who are the annotators?
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
### Personal and Sensitive Information
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
## Considerations for Using the Data
|
136 |
+
|
137 |
+
### Discussion of Social Impact and Biases
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
### Other Known Limitations
|
142 |
+
|
143 |
+
[More Information Needed]
|
144 |
+
|
145 |
+
## Additional Information
|
146 |
+
|
147 |
+
### Dataset Curators
|
148 |
+
|
149 |
+
[More Information Needed]
|
150 |
+
|
151 |
+
### Licensing Information
|
152 |
+
|
153 |
+
[More Information Needed]
|
154 |
+
|
155 |
+
### Citation Information
|
156 |
+
|
157 |
+
@inbook{inbook,
|
158 |
+
author = {Al-Khatib, Amr and El-Beltagy, Samhaa},
|
159 |
+
year = {2018},
|
160 |
+
month = {01},
|
161 |
+
pages = {105-114},
|
162 |
+
title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II},
|
163 |
+
isbn = {978-3-319-77115-1},
|
164 |
+
doi = {10.1007/978-3-319-77116-8_8}
|
165 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text", "citation": "@inbook{inbook,\nauthor = {Al-Khatib, Amr and El-Beltagy, Samhaa},\nyear = {2018},\nmonth = {01},\npages = {105-114},\ntitle = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17\u201323, 2017, Revised Selected Papers, Part II},\nisbn = {978-3-319-77115-1},\ndoi = {10.1007/978-3-319-77116-8_8}\n}\n", "homepage": "https://github.com/AmrMehasseb/Emotional-Tone", "license": "", "features": {"tweet": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 8, "names": ["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "emotone_ar", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1541746, "num_examples": 10065, "dataset_name": "emotone_ar"}}, "download_checksums": {"https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv": {"num_bytes": 1563138, "checksum": "f799c5ee86ea407de33609f1bbf607369fc7610551fa073b9fc59cd211098715"}}, "download_size": 1563138, "post_processing_size": null, "dataset_size": 1541746, "size_in_bytes": 3104884}}
|
dummy/0.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d9d07709203c482fd89834c8b5df75def0e339a2727976af4a0ab2634dfd058
|
3 |
+
size 551
|
emotone_ar.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text """
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import csv
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@inbook{inbook,
|
26 |
+
author = {Al-Khatib, Amr and El-Beltagy, Samhaa},
|
27 |
+
year = {2018},
|
28 |
+
month = {01},
|
29 |
+
pages = {105-114},
|
30 |
+
title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II},
|
31 |
+
isbn = {978-3-319-77115-1},
|
32 |
+
doi = {10.1007/978-3-319-77116-8_8}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
_DESCRIPTION = """\
|
38 |
+
Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text"""
|
39 |
+
|
40 |
+
|
41 |
+
_HOMEPAGE = "https://github.com/AmrMehasseb/Emotional-Tone"
|
42 |
+
|
43 |
+
|
44 |
+
_DOWNLOAD_URL = "https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv"
|
45 |
+
|
46 |
+
|
47 |
+
class EmotoneAr(datasets.GeneratorBasedBuilder):
|
48 |
+
"""Dataset of 10065 tweets in Arabic for Emotions detection in Arabic text"""
|
49 |
+
|
50 |
+
def _info(self):
|
51 |
+
return datasets.DatasetInfo(
|
52 |
+
description=_DESCRIPTION,
|
53 |
+
features=datasets.Features(
|
54 |
+
{
|
55 |
+
"tweet": datasets.Value("string"),
|
56 |
+
"label": datasets.features.ClassLabel(
|
57 |
+
names=["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"]
|
58 |
+
),
|
59 |
+
}
|
60 |
+
),
|
61 |
+
homepage=_HOMEPAGE,
|
62 |
+
citation=_CITATION,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _split_generators(self, dl_manager):
|
66 |
+
"""Returns SplitGenerators."""
|
67 |
+
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
68 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir})]
|
69 |
+
|
70 |
+
def _generate_examples(self, filepath):
|
71 |
+
"""Generate labeled arabic tweets examples for emoptions detection."""
|
72 |
+
with open(filepath, encoding="utf-8", mode="r") as csv_file:
|
73 |
+
next(csv_file) # skip header
|
74 |
+
csv_reader = csv.reader(csv_file, quotechar='"', delimiter=",")
|
75 |
+
|
76 |
+
for id_, row in enumerate(csv_reader):
|
77 |
+
_, tweet, label = row
|
78 |
+
yield id_, {"tweet": tweet, "label": label}
|