Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
10K - 100K
License:
Update files from the datasets library (from 1.8.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.8.0
- dataset_infos.json +1 -1
- emotone_ar.py +2 -0
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text", "citation": "@inbook{inbook,\nauthor = {Al-Khatib, Amr and El-Beltagy, Samhaa},\nyear = {2018},\nmonth = {01},\npages = {105-114},\ntitle = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17\u201323, 2017, Revised Selected Papers, Part II},\nisbn = {978-3-319-77115-1},\ndoi = {10.1007/978-3-319-77116-8_8}\n}\n", "homepage": "https://github.com/AmrMehasseb/Emotional-Tone", "license": "", "features": {"tweet": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 8, "names": ["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "emotone_ar", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1541746, "num_examples": 10065, "dataset_name": "emotone_ar"}}, "download_checksums": {"https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv": {"num_bytes": 1563138, "checksum": "f799c5ee86ea407de33609f1bbf607369fc7610551fa073b9fc59cd211098715"}}, "download_size": 1563138, "post_processing_size": null, "dataset_size": 1541746, "size_in_bytes": 3104884}}
|
|
|
1 |
+
{"default": {"description": "Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text", "citation": "@inbook{inbook,\nauthor = {Al-Khatib, Amr and El-Beltagy, Samhaa},\nyear = {2018},\nmonth = {01},\npages = {105-114},\ntitle = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17\u201323, 2017, Revised Selected Papers, Part II},\nisbn = {978-3-319-77115-1},\ndoi = {10.1007/978-3-319-77116-8_8}\n}\n", "homepage": "https://github.com/AmrMehasseb/Emotional-Tone", "license": "", "features": {"tweet": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 8, "names": ["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "tweet", "label_column": "label", "labels": ["anger", "fear", "joy", "love", "none", "sadness", "surprise", "sympathy"]}], "builder_name": "emotone_ar", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1541746, "num_examples": 10065, "dataset_name": "emotone_ar"}}, "download_checksums": {"https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv": {"num_bytes": 1563138, "checksum": "f799c5ee86ea407de33609f1bbf607369fc7610551fa073b9fc59cd211098715"}}, "download_size": 1563138, "post_processing_size": null, "dataset_size": 1541746, "size_in_bytes": 3104884}}
|
emotone_ar.py
CHANGED
@@ -18,6 +18,7 @@
|
|
18 |
import csv
|
19 |
|
20 |
import datasets
|
|
|
21 |
|
22 |
|
23 |
_CITATION = """\
|
@@ -59,6 +60,7 @@ class EmotoneAr(datasets.GeneratorBasedBuilder):
|
|
59 |
),
|
60 |
homepage=_HOMEPAGE,
|
61 |
citation=_CITATION,
|
|
|
62 |
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
|
|
18 |
import csv
|
19 |
|
20 |
import datasets
|
21 |
+
from datasets.tasks import TextClassification
|
22 |
|
23 |
|
24 |
_CITATION = """\
|
|
|
60 |
),
|
61 |
homepage=_HOMEPAGE,
|
62 |
citation=_CITATION,
|
63 |
+
task_templates=[TextClassification(text_column="tweet", label_column="label")],
|
64 |
)
|
65 |
|
66 |
def _split_generators(self, dl_manager):
|