odinsynth_dataset / odinsynth_dataset.py
enoriega's picture
Added a column with the token interval of the matches for each spec sentence
bda8295
raw
history blame
5.73 kB
import csv
import json
import os
from collections import defaultdict
import datasets
from tqdm import tqdm
_DESCRIPTION = """\
Supervised training data for odinsynth
"""
class OdinsynthDatasetBuilder(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"rule_id": datasets.Value("int32"),
"parent": datasets.Value("string"),
"child": datasets.Value("string"),
"negative_child": datasets.Value("string"),
"spec": datasets.Sequence(datasets.Value("string")),
"matches": datasets.Sequence(datasets.Sequence(datasets.Value("int16"))),
"step": datasets.Value("int8"),
"length": datasets.Value("int8")
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
# homepage=_HOMEPAGE,
# # License for the dataset if available
# license=_LICENSE,
# # Citation for the dataset
# citation=_CITATION,
)
def _build_specs(self, path:str):
id_to_rule = {}
specs = defaultdict(list)
matches = defaultdict(list)
with open(path) as f:
for l in tqdm(f, desc="Pre-computing specs"):
try:
instance = json.loads(l)
if instance['match']:
rule_id = int(instance['id'])
rule = instance['question']
sent = instance['context']
if sent not in specs[rule]:
specs[rule].append(sent)
matches[rule].append([instance['match_start'], instance['match_end']])
id_to_rule[rule_id] = rule
except:
# TODO log
pass
return {rule_id:(specs[rule], matches[rule]) for rule_id, rule in id_to_rule.items()}
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
JSON_PATH = dl_manager.download_and_extract('merged_train_split_train.jsonl.gz')
TRAIN_ARCHIVE_PATH = dl_manager.download('train.tar.bz2')
VAL_ARCHIVE_PATH = dl_manager.download('val.tar.bz2')
TEST_ARCHIVE_PATH = dl_manager.download('test.tar.bz2')
specs = self._build_specs(JSON_PATH)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"archive_iter": dl_manager.iter_archive(TRAIN_ARCHIVE_PATH),
"specs": specs,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"archive_iter": dl_manager.iter_archive(TEST_ARCHIVE_PATH),
"specs": specs,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"archive_iter": dl_manager.iter_archive(VAL_ARCHIVE_PATH),
"specs": specs,
"split": "val",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, archive_iter, specs, split):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
key = 0
for tsv_path, file in archive_iter:
if tsv_path.endswith(".tsv"):
# Read the lines
reader = csv.reader((l.decode() for l in file), delimiter='\t')
for row in reader:
rule_id = int(row[0])
if rule_id in specs:
spec, matches = specs[rule_id]
assert len(spec) == len(matches), f"Rule id {id} has different number of sentences and matches"
yield key, {
"rule_id": rule_id,
"parent": row[1],
"child": row[2],
"negative_child": row[3],
"spec": spec,
"matches": matches,
"step": int(row[4]),
"length": int(row[5]),
}
# Increase the key after yielding the instacne
key += 1
if __name__ == "__main__":
ds = OdinsynthDatasetBuilder()
ds.download_and_prepare()
print(ds.cache_dir)