Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 11,351 Bytes
2f848b3
e2ee5fd
2f848b3
3155702
 
 
 
 
 
 
 
f50f4d3
 
3155702
f50f4d3
3155702
 
bb31bba
83df923
 
bb31bba
8e70ecf
 
 
 
 
 
 
 
700286c
8e70ecf
 
700286c
8e70ecf
 
700286c
 
 
 
a92d43a
 
 
 
 
 
 
 
06cfa01
a92d43a
 
06cfa01
a92d43a
 
06cfa01
 
 
 
1f7569e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8dd61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f1f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0d6002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db37cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ad65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d4e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f848b3
 
 
f17975c
 
2f848b3
7d5c73d
d863dde
 
7d5c73d
d863dde
7d5c73d
 
d863dde
 
 
 
2f848b3
3155702
 
 
 
 
 
 
 
8e70ecf
 
 
 
 
 
 
 
a92d43a
 
 
 
 
 
 
 
1f7569e
 
 
 
 
 
 
 
3d8dd61
 
 
 
 
 
 
 
34f1f0f
 
 
 
 
 
 
 
e0d6002
 
 
 
 
 
 
 
db37cfd
 
 
 
 
 
 
 
14ad65d
 
 
 
 
 
 
 
19d4e4f
 
 
 
 
 
 
 
2f848b3
 
7d5c73d
 
 
 
 
 
e2ee5fd
 
 
2f848b3
84fef18
7f2f107
84fef18
e2ee5fd
 
84fef18
7f2f107
84fef18
aba52f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd0f46
 
 
 
 
 
 
 
 
 
 
 
 
aba52f7
5ba58f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2f107
 
 
 
84fef18
7f2f107
 
 
 
 
 
 
 
 
 
 
 
 
 
84fef18
7f2f107
84fef18
7f2f107
 
84fef18
7f2f107
 
 
84fef18
7f2f107
 
 
 
84fef18
 
7f2f107
84fef18
7f2f107
 
 
 
 
 
 
 
 
 
 
 
42f9ff9
84fef18
 
 
 
 
 
 
7f2f107
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
---
pretty_name: J
dataset_info:
- config_name: Github_easy
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 1208636
    num_examples: 1170
  - name: val
    num_bytes: 182688
    num_examples: 191
  - name: test
    num_bytes: 539656.0
    num_examples: 577
  download_size: 540610
  dataset_size: 1930980.0
- config_name: Github_hard
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 12816152
    num_examples: 746
  - name: val
    num_bytes: 1607525
    num_examples: 122
  - name: test
    num_bytes: 5754647.483870967
    num_examples: 368
  download_size: 3562146
  dataset_size: 20178324.48387097
- config_name: Github_medium
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 4990832
    num_examples: 1189
  - name: val
    num_bytes: 557390
    num_examples: 194
  - name: test
    num_bytes: 2417201.5784148397
    num_examples: 586
  download_size: 1580336
  dataset_size: 7965423.57841484
- config_name: Github_trivial
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 467333.24324324325
    num_examples: 266
  - name: val
    num_bytes: 77303.24324324324
    num_examples: 44
  - name: test
    num_bytes: 235423.51351351352
    num_examples: 134
  download_size: 158044
  dataset_size: 780060.0
- config_name: Github_ultra
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 7311744.743902439
    num_examples: 98
  - name: val
    num_bytes: 1193754.243902439
    num_examples: 16
  - name: test
    num_bytes: 3730482.012195122
    num_examples: 50
  download_size: 2221455
  dataset_size: 12235981.0
- config_name: Glaiveai2K
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 865943.3989455184
    num_examples: 1026
  - name: val
    num_bytes: 141791.9015817223
    num_examples: 168
  - name: test
    num_bytes: 432971.6994727592
    num_examples: 513
  download_size: 284264
  dataset_size: 1440707.0
- config_name: JsonSchemaStore
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 13308367.977642277
    num_examples: 295
  - name: val
    num_bytes: 2210542.4776422763
    num_examples: 49
  - name: test
    num_bytes: 6676740.544715447
    num_examples: 148
  download_size: 4019966
  dataset_size: 22195651.0
- config_name: Kubernetes
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 15388503.69924812
    num_examples: 639
  - name: val
    num_bytes: 2528627.3684210526
    num_examples: 105
  - name: test
    num_bytes: 7706292.932330827
    num_examples: 320
  download_size: 6819424
  dataset_size: 25623424.0
- config_name: Snowplow
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 969083.2952853598
    num_examples: 242
  - name: val
    num_bytes: 160179.0570719603
    num_examples: 40
  - name: test
    num_bytes: 484541.6476426799
    num_examples: 121
  download_size: 298277
  dataset_size: 1613804.0
- config_name: WashingtonPost
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 1604526.016
    num_examples: 74
  - name: val
    num_bytes: 281876.192
    num_examples: 13
  - name: test
    num_bytes: 823945.792
    num_examples: 38
  download_size: 565170
  dataset_size: 2710348.0
- config_name: default
  features:
  - name: json_schema
    dtype: string
  - name: unique_id
    dtype: string
  splits:
  - name: train
    num_bytes: 54520620
    num_examples: 5754
  - name: val
    num_bytes: 15255546
    num_examples: 937
  - name: test
    num_bytes: 27031812.394351464
    num_examples: 2867
  download_size: 20765998
  dataset_size: 96807978.39435147
configs:
- config_name: Github_easy
  data_files:
  - split: train
    path: Github_easy/train-*
  - split: val
    path: Github_easy/val-*
  - split: test
    path: Github_easy/test-*
- config_name: Github_hard
  data_files:
  - split: train
    path: Github_hard/train-*
  - split: val
    path: Github_hard/val-*
  - split: test
    path: Github_hard/test-*
- config_name: Github_medium
  data_files:
  - split: train
    path: Github_medium/train-*
  - split: val
    path: Github_medium/val-*
  - split: test
    path: Github_medium/test-*
- config_name: Github_trivial
  data_files:
  - split: train
    path: Github_trivial/train-*
  - split: val
    path: Github_trivial/val-*
  - split: test
    path: Github_trivial/test-*
- config_name: Github_ultra
  data_files:
  - split: train
    path: Github_ultra/train-*
  - split: val
    path: Github_ultra/val-*
  - split: test
    path: Github_ultra/test-*
- config_name: Glaiveai2K
  data_files:
  - split: train
    path: Glaiveai2K/train-*
  - split: val
    path: Glaiveai2K/val-*
  - split: test
    path: Glaiveai2K/test-*
- config_name: JsonSchemaStore
  data_files:
  - split: train
    path: JsonSchemaStore/train-*
  - split: val
    path: JsonSchemaStore/val-*
  - split: test
    path: JsonSchemaStore/test-*
- config_name: Kubernetes
  data_files:
  - split: train
    path: Kubernetes/train-*
  - split: val
    path: Kubernetes/val-*
  - split: test
    path: Kubernetes/test-*
- config_name: Snowplow
  data_files:
  - split: train
    path: Snowplow/train-*
  - split: val
    path: Snowplow/val-*
  - split: test
    path: Snowplow/test-*
- config_name: WashingtonPost
  data_files:
  - split: train
    path: WashingtonPost/train-*
  - split: val
    path: WashingtonPost/val-*
  - split: test
    path: WashingtonPost/test-*
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: val
    path: data/val-*
  - split: test
    path: data/test-*
license: mit
task_categories:
- text-generation
---

# JSONSchemaBench

[![Paper](https://img.shields.io/badge/Paper-arXiv-blue)](https://arxiv.org/abs/2501.10868)
[![GitHub](https://img.shields.io/badge/Code-GitHub-blue)](https://github.com/guidance-ai/jsonschemabench)

JSONSchemaBench is a benchmark of **real-world JSON schemas** designed to evaluate **structured output generation** for Large Language Models (LLMs). It contains approximately **10,000 JSON schemas**, capturing diverse constraints and complexities.


```python
import datasets
from datasets import load_dataset

def main():
    # Inspect the available subsets of the dataset
    all_subsets = datasets.get_dataset_config_names("epfl-dlab/JSONSchemaBench")
    print("Available subsets:", all_subsets)
    # Example output: ['Github_easy', 'Github_hard', 'Github_medium', 'Github_trivial', 'Github_ultra', 'Glaiveai2K', 'JsonSchemaStore', 'Kubernetes', 'Snowplow', 'WashingtonPost', 'default']

    # Access a specific subset of the dataset
    subset_name = "Github_easy"
    github_easy = load_dataset("epfl-dlab/JSONSchemaBench", subset_name)
    print(f"Loaded subset '{subset_name}':", github_easy)

    # Load the entire dataset as a whole
    entire_dataset = load_dataset("epfl-dlab/JSONSchemaBench", "default")
    print("Loaded entire dataset:", entire_dataset)

if __name__ == "__main__":
    main()
```

## Update (March 31st, 2025)

To improve inference efficiency and streamline data collation, we’ve decided to drop a small number of exceptionally long samples from the dataset.

We’re using the `meta-llama/Llama-3.2-1B-instruct` tokenizer, and the filtering criteria are as follows:
- Github_easy: Samples longer than 1024 tokens β€” 5 out of 582 removed
- Github_medium: Samples longer than 2048 tokens β€” 7 out of 593 removed
- Github_hard: Samples longer than 8192 tokens β€” 4 out of 372 removed
- Other subsets are not touched

Since the number of discarded samples is minimal, this change is expected to have at most a 1% impact on results.


## ⚠️ Important Update (March 10th, 2025)

We have restructured the dataset to include train/val/test splits. If you downloaded the dataset before this date, you might encounter errors like `KeyError: 'Github_easy'`.

To fix this issue, please follow one of the options below:

1. Update How Subsets Are Accessed:
If you previously used:

```python
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset

subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench")
subset["Github_easy"]
```
You can update it to:

```python
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset

subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench", name="Github_easy")
subset: Dataset = concatenate_datasets([subset["train"], subset["val"], subset["test"]])
```

2. Load the Dataset in the Old Structure:
If you need the previous structure, you can use a specific revision:

```python
dataset = load_dataset("epfl-dlab/JSONSchemaBench", revision="e2ee5fdba65657c60d3a24b321172eb7141f8d73")
```

We apologize for the inconvenience and appreciate your understanding! 😊

## πŸ“Œ Dataset Overview
- **Purpose:** Evaluate the **efficiency** and **coverage** of structured output generation.
- **Sources:** GitHub, Kubernetes, API specifications, curated collections.
- **Schemas:** Categorized based on complexity and domain.

### πŸ“Š Dataset Breakdown
| Dataset         | Category            | Count |
| --------------- | ------------------- | ----- |
| GlaiveAI-2K     | Function Call       | 1707  |
| Github-Trivial  | Misc                | 444   |
| Github-Easy     | Misc                | 1943  |
| Snowplow        | Operational API     | 403   |
| Github-Medium   | Misc                | 1976  |
| Kubernetes      | Kubernetes API      | 1064  |
| Washington Post | Resource Access API | 125   |
| Github-Hard     | Misc                | 1240  |
| JSONSchemaStore | Misc                | 492   |
| Github-Ultra    | Misc                | 164   |
| **Total**       |                     | 9558  |

## πŸ“₯ Loading the Dataset

```python
from datasets import load_dataset

dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)
```

## πŸ” Data Structure
Each dataset split contains:
- `"json_schema"`: The schema definition.
- `"unique_id"`: A unique identifier for the schema.


πŸš€ **For more details, check out the [paper](https://arxiv.org/abs/2501.10868).**

## πŸ“š Citation
```bibtex
@misc{geng2025jsonschemabench,
      title={Generating Structured Outputs from Language Models: Benchmark and Studies},
      author={Saibo Geng et al.},
      year={2025},
      eprint={2501.10868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.10868}
}
```


## License

This dataset is provided under the [MIT License](https://opensource.org/licenses/MIT). Please ensure that you comply with the license terms when using or distributing this dataset.

## Acknowledgements

We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.