# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" import logging import datasets _CITATION = """\ @inproceedings{tjong-kim-sang-de-meulder-2003-introduction, title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition", author = "Tjong Kim Sang, Erik F. and De Meulder, Fien", booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003", year = "2003", url = "https://www.aclweb.org/anthology/W03-0419", pages = "142--147", } """ _DESCRIPTION = """\ The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on a separate line and there is an empty line after each sentence. The first item on each line is a word, the second a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2 tagging scheme, whereas the original dataset uses IOB1. For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419 """ _URL = "https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/" _TRAINING_FILE = "train.txt" _DEV_FILE = "valid.txt" _TEST_FILE = "test.txt" class Conll2003Config(datasets.BuilderConfig): """BuilderConfig for Conll2003""" def __init__(self, **kwargs): """BuilderConfig forConll2003. Args: **kwargs: keyword arguments forwarded to super. """ super(Conll2003Config, self).__init__(**kwargs) class Conll2003(datasets.GeneratorBasedBuilder): """Conll2003 dataset.""" BUILDER_CONFIGS = [ Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "words": datasets.Sequence(datasets.Value("string")), "pos": datasets.Sequence(datasets.Value("string")), "chunk": datasets.Sequence(datasets.Value("string")), "ner": datasets.Sequence(datasets.Value("string")), } ), supervised_keys=None, homepage="https://www.aclweb.org/anthology/W03-0419/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): logging.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 words = [] pos = [] chunk = [] ner = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: yield guid, {"id": str(guid), "words": words, "pos": pos, "chunk": chunk, "ner": ner} guid += 1 words = [] pos = [] chunk = [] ner = [] else: # conll2003 tokens are space separated splits = line.split(" ") words.append(splits[0]) pos.append(splits[1]) chunk.append(splits[2]) ner.append(splits[3].rstrip()) # last example yield guid, {"id": str(guid), "words": words, "pos": pos, "chunk": chunk, "ner": ner}