Datasets:

Languages:
English
ArXiv:
License:
File size: 10,205 Bytes
0814fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca521b1
0814fb9
 
 
 
ca521b1
0814fb9
 
 
 
ca521b1
0814fb9
 
 
 
ca521b1
0814fb9
 
 
 
 
 
 
 
ca521b1
 
0814fb9
 
 
 
 
 
ca521b1
 
0814fb9
 
 
 
 
ca521b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0814fb9
 
 
ca521b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0814fb9
 
ca521b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Movie Dialog Dataset."""

import datasets


_CITATION = """\
@misc{dodge2016evaluating,
      title={Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems},
      author={Jesse Dodge and Andreea Gane and Xiang Zhang and Antoine Bordes and Sumit Chopra and Alexander Miller and Arthur Szlam and Jason Weston},
      year={2016},
      eprint={1511.06931},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""


_DESCRIPTION = """\
The Movie Dialog dataset (MDD) is designed to measure how well
models can perform at goal and non-goal orientated dialog
centered around the topic of movies (question answering,
recommendation and discussion).

"""

_HOMEPAGE = "https://research.fb.com/downloads/babi/"

_LICENSE = """Creative Commons Attribution 3.0 License"""

ZIP_URL = "http://www.thespermwhale.com/jaseweston/babi/movie_dialog_dataset.tgz"
REDDIT_URL = "http://tinyurl.com/p6tyohj"
dir = "movie_dialog_dataset/"
dir2 = ""
paths = {
    "task1_qa": {
        "train": dir + "task1_qa/task1_qa_train.txt",
        "dev": dir + "task1_qa/task1_qa_dev.txt",
        "test": dir + "task1_qa/task1_qa_test.txt",
    },
    "task2_recs": {
        "train": dir + "task2_recs/task2_recs_train.txt",
        "dev": dir + "task2_recs/task2_recs_dev.txt",
        "test": dir + "task2_recs/task2_recs_test.txt",
    },
    "task3_qarecs": {
        "train": dir + "task3_qarecs/task3_qarecs_train.txt",
        "dev": dir + "task3_qarecs/task3_qarecs_dev.txt",
        "test": dir + "task3_qarecs/task3_qarecs_test.txt",
    },
    "task4_reddit": {
        "train": "task4_reddit/task4_reddit_train.txt",
        "dev": "task4_reddit/task4_reddit_dev.txt",
        "test": "task4_reddit/task4_reddit_test.txt",
        "cand_valid": "task4_reddit/task4_reddit_cand-valid.txt",
        "cand_test": "task4_reddit/task4_reddit_cand-test.txt",
    },
}


class Mdd(datasets.GeneratorBasedBuilder):
    """The Movie Dialog Dataset"""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="task1_qa", version=VERSION, description="This part of my dataset covers task1_qa part of the dataset"
        ),
        datasets.BuilderConfig(
            name="task2_recs",
            version=VERSION,
            description="This part of my dataset covers task2_recs part of the dataset",
        ),
        datasets.BuilderConfig(
            name="task3_qarecs",
            version=VERSION,
            description="This part of my dataset covers task3_qarecs part of the dataset",
        ),
        datasets.BuilderConfig(
            name="task4_reddit",
            version=VERSION,
            description="This part of my dataset covers task4_reddit part of the dataset",
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "dialogue_turns": datasets.Sequence(
                    {
                        "speaker": datasets.Value("int32"),
                        "utterance": datasets.Value("string"),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        if self.config.name != "task4_reddit":
            my_urls = ZIP_URL  # Cannot download just one single type as it is a compressed file.
        else:
            my_urls = REDDIT_URL
        archive = dl_manager.download(my_urls)
        splits = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": paths[self.config.name]["train"], "files": dl_manager.iter_archive(archive)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": paths[self.config.name]["test"], "files": dl_manager.iter_archive(archive)},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": paths[self.config.name]["dev"], "files": dl_manager.iter_archive(archive)},
            ),
        ]
        if self.config.name == "task4_reddit":
            splits += [
                datasets.SplitGenerator(
                    name=datasets.Split("cand_valid"),
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": paths[self.config.name]["cand_valid"],
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split("cand_test"),
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": paths[self.config.name]["cand_test"],
                        "files": dl_manager.iter_archive(archive),
                    },
                ),
            ]
        return splits

    def _generate_examples(self, filepath, files):
        for path, f in files:
            if path == filepath:
                if "cand" not in filepath:
                    dialogue_turns = []
                    example_idx = 0
                    for idx, line in enumerate(f):
                        line = line.decode("utf-8")
                        if line.strip() == "":
                            if dialogue_turns != []:
                                yield example_idx, {"dialogue_turns": dialogue_turns}
                                example_idx += 1
                                dialogue_turns = []
                        elif line.strip().split()[0] == "1":  # New convo
                            if dialogue_turns != []:  # Already some convo, flush it out
                                yield example_idx, {"dialogue_turns": dialogue_turns}
                                example_idx += 1
                                dialogue_turns = []
                            exchange = line[len(line.split()[0]) :].strip().split("\t")  # Skip the number in the front
                            sp1 = exchange[0]
                            sp2 = exchange[-1]  # Might contain multiple tabs in between.
                            dialogue_turns.append({"speaker": 0, "utterance": sp1})
                            dialogue_turns.append({"speaker": 1, "utterance": sp2})
                        else:
                            exchange = line[len(line.split()[0]) :].strip().split("\t")  # Skip the number in the front
                            sp1 = exchange[0]
                            sp2 = exchange[-1]  # Might contain multiple tabs in between.
                            dialogue_turns.append({"speaker": 0, "utterance": sp1})
                            dialogue_turns.append({"speaker": 1, "utterance": sp2})
                    else:
                        if dialogue_turns != []:
                            yield example_idx, {"dialogue_turns": dialogue_turns}
                else:
                    dialogue_turns = []
                    example_idx = 0
                    for idx, line in enumerate(f):
                        line = line.decode("utf-8")
                        if line.strip() == "":
                            if dialogue_turns != []:
                                yield example_idx, {"dialogue_turns": dialogue_turns}
                                example_idx += 1
                                dialogue_turns = []
                        elif line.strip().split()[0] == "1":  # New convo
                            if dialogue_turns != []:  # Already some convo, flush it out
                                yield example_idx, {"dialogue_turns": dialogue_turns}
                                example_idx += 1
                                dialogue_turns = []
                            exchange = line[len(line.split()[0]) :].strip()  # Skip the number in the front
                            sp1 = exchange
                            dialogue_turns.append({"speaker": 0, "utterance": sp1})
                        else:
                            exchange = line[len(line.split()[0]) :].strip()  # Skip the number in the front
                            sp1 = exchange
                            dialogue_turns.append({"speaker": 0, "utterance": sp1})
                    else:  # Last line, new example
                        if dialogue_turns != []:
                            yield example_idx, {"dialogue_turns": dialogue_turns}
                break