Datasets:
File size: 7,776 Bytes
28cc287 9f6d2ae 28cc287 9f6d2ae 58b647c 9f6d2ae 3476ae7 9f6d2ae 58b647c 9f6d2ae 28cc287 3476ae7 58b647c 3476ae7 9f6d2ae 3476ae7 9f6d2ae 8ac1acc 9f6d2ae 58b647c 28cc287 8ac1acc 58b647c 8ac1acc 9f6d2ae 58b647c 9f6d2ae 58b647c 9f6d2ae 28cc287 9f6d2ae 58b647c 9f6d2ae 8ac1acc 9f6d2ae 58b647c 9f6d2ae 3f69367 9f6d2ae 28cc287 9f6d2ae 58b647c 9f6d2ae 58b647c 9f6d2ae 58b647c 3f69367 28cc287 9f6d2ae 28cc287 3f69367 9f6d2ae 28cc287 58b647c 28cc287 58b647c 9f6d2ae 8ac1acc 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 7f5e50e 28cc287 9f6d2ae 858a490 9f6d2ae 28cc287 3f69367 28cc287 3f69367 28cc287 9f6d2ae 28cc287 9f6d2ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from collections import defaultdict
import os
import glob
import csv
from tqdm.auto import tqdm
import datasets
_DESCRIPTION = """
A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation.
"""
_CITATION = """
@inproceedings{wang-etal-2021-voxpopuli,
title = "{V}ox{P}opuli: A Large-Scale Multilingual Speech Corpus for Representation Learning,
Semi-Supervised Learning and Interpretation",
author = "Wang, Changhan and
Riviere, Morgane and
Lee, Ann and
Wu, Anne and
Talnikar, Chaitanya and
Haziza, Daniel and
Williamson, Mary and
Pino, Juan and
Dupoux, Emmanuel",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.80",
doi = "10.18653/v1/2021.acl-long.80",
pages = "993--1003",
}
"""
_HOMEPAGE = "https://github.com/facebookresearch/voxpopuli"
_LICENSE = "CC0, also see https://www.europarl.europa.eu/legal-notice/en/"
_LANGUAGES = sorted(
[
"en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr",
"sk", "sl", "et", "lt", "pt", "bg", "el", "lv", "mt", "sv", "da"
]
)
_LANGUAGES_V2 = [f"{x}_v2" for x in _LANGUAGES]
_ASR_LANGUAGES = [
"en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr",
"sk", "sl", "et", "lt"
]
_ASR_ACCENTED_LANGUAGES = [
"en_accented"
]
_YEARS = list(range(2009, 2020 + 1))
# unnecessary
_CONFIG_TO_LANGS = {
"400k": _LANGUAGES,
"100k": _LANGUAGES,
"10k": _LANGUAGES,
"asr": _ASR_LANGUAGES, # + _ASR_ACCENTED_LANGUAGES
}
_CONFIG_TO_YEARS = {
"400k": _YEARS + [f"{y}_2" for y in _YEARS],
"100k": _YEARS,
"10k": [2019, 2020],
"asr": _YEARS,
}
for lang in _LANGUAGES:
_CONFIG_TO_YEARS[lang] = _YEARS
# _CONFIG_TO_YEARS[lang] = [2020]
for lang in _LANGUAGES_V2:
_CONFIG_TO_YEARS[lang] = _YEARS + [f"{y}_2" for y in _YEARS]
_BASE_URL = "https://dl.fbaipublicfiles.com/voxpopuli/"
_DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar"
_ASR_DATA_URL = _BASE_URL + "audios/original_{year}.tar"
_UNLABELLED_META_URL = _BASE_URL + "annotations/unlabelled_v2.tsv.gz"
_ASR_META_URL = _BASE_URL + "annotations/asr/asr_{lang}.tsv.gz"
class VoxpopuliConfig(datasets.BuilderConfig):
"""BuilderConfig for VoxPopuli."""
def __init__(self, name, **kwargs):
"""
Args:
name: `string`, name of dataset config
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(name=name, **kwargs)
name = name.split("_")[0]
self.languages = [name] if name in _LANGUAGES else _CONFIG_TO_LANGS[name]
self.years = _CONFIG_TO_YEARS[name]
class Voxpopuli(datasets.GeneratorBasedBuilder):
"""The VoxPopuli dataset."""
VERSION = datasets.Version("1.3.0") # not sure
BUILDER_CONFIGS = [
VoxpopuliConfig(
name=name,
version=datasets.Version("1.3.0"),
)
for name in _LANGUAGES + _LANGUAGES_V2 + ["10k", "100k", "400k"]
]
# DEFAULT_CONFIG_NAME = "400k"
DEFAULT_WRITER_BATCH_SIZE = 256 # SET THIS TO A LOWER VALUE IF IT USES TOO MUCH RAM SPACE
def _info(self):
try:
import torch
import torchaudio
except ImportError as e:
raise ValueError(
f"{str(e)}.\n" +
"Loading voxpopuli requires `torchaudio` to be installed."
"You can install torchaudio with `pip install torchaudio`."
)
global torchaudio
features = datasets.Features(
{
"path": datasets.Value("string"),
"language": datasets.ClassLabel(names=_LANGUAGES),
"year": datasets.Value("int16"),
"audio": datasets.Audio(sampling_rate=16_000),
"segment_id": datasets.Value("int16"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _read_metadata_unlabelled(self, metadata_path):
# from https://github.com/facebookresearch/voxpopuli/blob/main/voxpopuli/get_unlabelled_data.py#L34
def predicate(id_):
is_plenary = id_.find("PLENARY") > -1
if self.config.name == "10k": # in {"10k", "10k_sd"}
return is_plenary and 20190101 <= int(id_[:8]) < 20200801
elif self.config.name == "100k":
return is_plenary
elif self.config.name in _LANGUAGES:
return is_plenary and id_.endswith(self.config.name)
elif self.config.name in _LANGUAGES_V2:
return id_.endswith(self.config.name.split("_")[0])
return True
metadata = defaultdict(list)
with open(metadata_path, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter="\t")
for i, row in tqdm(enumerate(csv_reader)):
if i == 0:
continue
event_id, segment_id, start, end = row
_, lang = event_id.rsplit("_", 1)[-2:]
if lang in self.config.languages and predicate(event_id):
metadata[event_id].append((float(start), float(end)))
return metadata
def _read_metadata_asr(self, metadata_paths):
pass
def _split_generators(self, dl_manager):
metadata_path = dl_manager.download_and_extract(_UNLABELLED_META_URL)
urls = [_DATA_URL.format(lang=language, year=year) for language in self.config.languages for year in self.config.years]
dl_manager.download_config.num_proc = len(urls)
data_dirs = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dirs": data_dirs,
"metadata_path": metadata_path,
}
),
]
def _generate_examples(self, data_dirs, metadata_path):
metadata = self._read_metadata_unlabelled(metadata_path)
for data_dir in data_dirs:
for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True):
path_components = file.split(os.sep)
language, year, audio_filename = path_components[-3:]
audio_id, _ = os.path.splitext(audio_filename)
if audio_id not in metadata:
continue
timestamps = metadata[audio_id]
waveform, sr = torchaudio.load(file)
duration = waveform.size(1)
# split audio on the fly and yield segments as arrays - they will be converted to bytes by Audio feature
for segment_id, (start, stop) in enumerate(timestamps):
segment = waveform[:, int(start * sr): min(int(stop * sr), duration)]
yield f"{audio_filename}_{segment_id}", {
"path": file,
"language": language,
"year": year,
"audio": {
"array": segment[0], # segment is a 2-dim array
"sampling_rate": 16_000
},
"segment_id": segment_id,
}
|