import os import glob import datasets _LANGUAGES = sorted( [ "en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr", "sk", "sl", "et", "lt", "pt", "bg", "el", "lv", "mt", "sv", "da" ] ) _LANGUAGES_V2 = [f"{x}_v2" for x in _LANGUAGES] _YEARS = list(range(2009, 2020 + 1)) _CONFIG_TO_LANGS = { "400k": _LANGUAGES, "100k": _LANGUAGES, "10k": _LANGUAGES, } _CONFIG_TO_YEARS = { "400k": _YEARS + [f"{y}_2" for y in _YEARS], "100k": _YEARS, "10k": [2019, 2020], # "asr": _YEARS } for lang in _LANGUAGES: _CONFIG_TO_YEARS[lang] = _YEARS _BASE_URL = "https://dl.fbaipublicfiles.com/voxpopuli/" _DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar" _META_URL = _BASE_URL + "https://dl.fbaipublicfiles.com/voxpopuli/annotations/unlabelled_v2.tsv.gz" class Voxpopuli(datasets.GeneratorBasedBuilder): """The Voxpopuli dataset.""" VERSION = datasets.Version("1.0.0") # TODO ?? BUILDER_CONFIGS = [ datasets.BuilderConfig( name=name, # version=VERSION, description="", # TODO ) for name in _LANGUAGES + ["10k", "100k", "400k"] ] # DEFAULT_CONFIG_NAME = "400k" # DEFAULT_WRITER_BATCH_SIZE = 1 def _info(self): features = datasets.Features( { "path": datasets.Value("string"), "language": datasets.ClassLabel(names=_LANGUAGES), "year": datasets.Value("int16"), "audio": datasets.Audio(sampling_rate=16_000), } ) return datasets.DatasetInfo( # description=_DESCRIPTION, features=features, # homepage=_HOMEPAGE, # license=_LICENSE, # citation=_CITATION, ) def _split_generators(self, dl_manager): # dl_manager.download_config.num_proc = len(_VOXPOPULI_AUDIO_URLS) # TODO # metadata_path = dl_manager.download_and_extract(_META_URL) languages = [self.config.name] if self.config.name in _LANGUAGES else _LANGUAGES years = _CONFIG_TO_YEARS[self.config.name] # urls = [_DATA_URL.format(lang=language, year=year) for language in ["hr", "et"] for year in [2020]] urls = [_DATA_URL.format(lang=language, year=year) for language in languages for year in years] langs_data_dirs = dl_manager.download_and_extract(urls) print(langs_data_dirs) print(glob.glob(f"{langs_data_dirs[0]}/**/*.ogg", recursive=True)) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dirs": langs_data_dirs, } ), ] def _generate_examples(self, data_dirs): for data_dir in data_dirs: for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True): path_components = file.split(os.sep) language, year = path_components[-3:-1] with open(file) as f: yield file, { "path": file, "language": language, "year": year, "audio": {"path": file} }