Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- README.md +199 -0
- data/train-00000-of-00001.parquet +3 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: model_type
|
5 |
+
dtype: string
|
6 |
+
- name: namespace
|
7 |
+
dtype: string
|
8 |
+
- name: model_name
|
9 |
+
dtype: string
|
10 |
+
- name: training_method
|
11 |
+
dtype: string
|
12 |
+
- name: model_size
|
13 |
+
dtype: int64
|
14 |
+
- name: trainable_params
|
15 |
+
dtype: int64
|
16 |
+
- name: url
|
17 |
+
dtype: string
|
18 |
+
- name: doi
|
19 |
+
dtype: float64
|
20 |
+
splits:
|
21 |
+
- name: train
|
22 |
+
num_bytes: 6257
|
23 |
+
num_examples: 40
|
24 |
+
download_size: 4879
|
25 |
+
dataset_size: 6257
|
26 |
+
configs:
|
27 |
+
- config_name: default
|
28 |
+
data_files:
|
29 |
+
- split: train
|
30 |
+
path: data/train-*
|
31 |
+
pretty_name: PEFT Unit Test Generation Experiments
|
32 |
+
size_categories:
|
33 |
+
- n<1K
|
34 |
+
---
|
35 |
+
# PEFT Unit Test Generation Experiments
|
36 |
+
|
37 |
+
## Dataset description
|
38 |
+
|
39 |
+
The **PEFT Unit Test Generation Experiments** dataset contains metadata and details about a set of trained models used for generating unit tests with parameter-efficient fine-tuning (PEFT) methods. This dataset includes models from multiple namespaces and various sizes, trained with different tuning methods to provide a comprehensive resource for unit test generation research.
|
40 |
+
|
41 |
+
## Dataset Structure
|
42 |
+
|
43 |
+
### Data Fields
|
44 |
+
|
45 |
+
Each example in the dataset corresponds to a specific trained model variant and includes the following features:
|
46 |
+
|
47 |
+
| Feature Name | Description |
|
48 |
+
|-------------------|-----------------------------------------------------------------------------------------------------|
|
49 |
+
| `model_type` | The type or architecture of the base model (e.g., codegen, starcoder). |
|
50 |
+
| `namespace` | The organization or group that created or published the base model (e.g., Salesforce, meta-llama). |
|
51 |
+
| `model_name` | The specific name or identifier of the model. |
|
52 |
+
| `training_method` | The parameter-efficient fine-tuning method used for training (e.g., full fine-tuning, LoRA, IA³). |
|
53 |
+
| `model_size` | The size of the model, typically measured in number of parameters (e.g., 350M, 7B). |
|
54 |
+
| `trainable_params`| The number of trainable parameters for the specific tuning method and [hyperparameters](#training-hyperparameters). |
|
55 |
+
| `url` | A direct link to the model repository. |
|
56 |
+
| `doi` | The digital object identifier associated with the trained model. |
|
57 |
+
|
58 |
+
## Dataset Details
|
59 |
+
|
60 |
+
### Dataset Description
|
61 |
+
|
62 |
+
<!-- Provide a longer summary of what this dataset is. -->
|
63 |
+
|
64 |
+
### Training Hyperparameters
|
65 |
+
|
66 |
+
#### Model-agnostic Hyperparameters
|
67 |
+
<table>
|
68 |
+
<thead>
|
69 |
+
<tr>
|
70 |
+
<th>Hyperparameter</th>
|
71 |
+
<th>Method</th>
|
72 |
+
<th>Value</th>
|
73 |
+
</tr>
|
74 |
+
</thead>
|
75 |
+
<tbody>
|
76 |
+
<tr style="font-weight: bold;">
|
77 |
+
<td colspan="3">Common</td>
|
78 |
+
</tr>
|
79 |
+
<tr>
|
80 |
+
<td>Optimizer</td>
|
81 |
+
<td>-</td>
|
82 |
+
<td>AdamW</td>
|
83 |
+
</tr>
|
84 |
+
<tr>
|
85 |
+
<td>LR schedule</td>
|
86 |
+
<td>-</td>
|
87 |
+
<td>Linear</td>
|
88 |
+
</tr>
|
89 |
+
<tr>
|
90 |
+
<td>LR warmup ratio</td>
|
91 |
+
<td>-</td>
|
92 |
+
<td>0.1</td>
|
93 |
+
</tr>
|
94 |
+
<tr>
|
95 |
+
<td>Batch size</td>
|
96 |
+
<td>-</td>
|
97 |
+
<td>1</td>
|
98 |
+
</tr>
|
99 |
+
<tr>
|
100 |
+
<td>Gradient accumulation steps</td>
|
101 |
+
<td>-</td>
|
102 |
+
<td>8</td>
|
103 |
+
</tr>
|
104 |
+
<tr>
|
105 |
+
<td># Epochs</td>
|
106 |
+
<td>-</td>
|
107 |
+
<td>3</td>
|
108 |
+
</tr>
|
109 |
+
<tr>
|
110 |
+
<td>Precision</td>
|
111 |
+
<td>-</td>
|
112 |
+
<td>Mixed</td>
|
113 |
+
</tr>
|
114 |
+
<tr>
|
115 |
+
<td style="vertical-align: middle;" rowspan="4">Learning rate</td>
|
116 |
+
<td>Full fine-tuning</td>
|
117 |
+
<td>5E-5</td>
|
118 |
+
</tr>
|
119 |
+
<tr>
|
120 |
+
<td>LoRA</td>
|
121 |
+
<td>3E-4</td>
|
122 |
+
</tr>
|
123 |
+
<tr>
|
124 |
+
<td>(IA)<sup>3</sup></td>
|
125 |
+
<td>3E-4</td>
|
126 |
+
</tr>
|
127 |
+
<tr>
|
128 |
+
<td>Prompt tuning</td>
|
129 |
+
<td>3E-3</td>
|
130 |
+
</tr>
|
131 |
+
<tr style="font-weight: bold;">
|
132 |
+
<td colspan="3">Method specific</td>
|
133 |
+
</tr>
|
134 |
+
<tr>
|
135 |
+
<td>Alpha</td>
|
136 |
+
<td>LoRA</td>
|
137 |
+
<td>32</td>
|
138 |
+
</tr>
|
139 |
+
<tr>
|
140 |
+
<td>Dropout</td>
|
141 |
+
<td>LoRA</td>
|
142 |
+
<td>0.1</td>
|
143 |
+
</tr>
|
144 |
+
<tr>
|
145 |
+
<td>Rank</td>
|
146 |
+
<td>LoRA</td>
|
147 |
+
<td>16</td>
|
148 |
+
</tr>
|
149 |
+
<tr>
|
150 |
+
<td>Virtual tokens</td>
|
151 |
+
<td>Prompt tuning</td>
|
152 |
+
<td>20</td>
|
153 |
+
</tr>
|
154 |
+
</tbody>
|
155 |
+
</table>
|
156 |
+
|
157 |
+
#### Model-specific Hyperparameters
|
158 |
+
<table>
|
159 |
+
<thead>
|
160 |
+
<tr>
|
161 |
+
<th>Hyperparameter</th>
|
162 |
+
<th>Method</th>
|
163 |
+
<th>Model</th>
|
164 |
+
<th>Value</th>
|
165 |
+
</tr>
|
166 |
+
</thead>
|
167 |
+
<tbody>
|
168 |
+
<tr>
|
169 |
+
<td rowspan="10" style="vertical-align: middle;">Targeted attention modules</td>
|
170 |
+
<td rowspan="10" style="vertical-align: middle;">LoRA, (IA)<sup>3</sup></td>
|
171 |
+
<td>codegen-350M-multi</td>
|
172 |
+
<td>qkv_proj</td>
|
173 |
+
</tr>
|
174 |
+
<tr><td>Salesforce/codegen2-1B_P</td><td>qkv_proj</td></tr>
|
175 |
+
<tr><td>Salesforce/codegen2-3_7B_P</td><td>qkv_proj</td></tr>
|
176 |
+
<tr><td>Salesforce/codegen2-7B_P</td><td>qkv_proj</td></tr>
|
177 |
+
<tr><td>Salesforce/codegen2-16B_P</td><td>qkv_proj</td></tr>
|
178 |
+
<tr><td>meta-llama/CodeLlama-7b-hf</td><td>q_proj, v_proj</td></tr>
|
179 |
+
<tr><td>bigcode/starcoderbase</td><td>c_attn</td></tr>
|
180 |
+
<tr><td>bigcode/starcoder2-3b</td><td>q_proj, v_proj</td></tr>
|
181 |
+
<tr><td>bigcode/starcoder2-7b</td><td>q_proj, v_proj</td></tr>
|
182 |
+
<tr><td>bigcode/starcoder2-15b</td><td>q_proj, v_proj</td></tr>
|
183 |
+
<tr>
|
184 |
+
<td rowspan="10" style="vertical-align: middle;">Targeted feedforward modules</td>
|
185 |
+
<td rowspan="10" style="vertical-align: middle;">(IA)<sup>3</sup></td>
|
186 |
+
<td>codegen-350M-multi</td>
|
187 |
+
<td>fc_out</td>
|
188 |
+
</tr>
|
189 |
+
<tr><td>Salesforce/codegen2-1B_P</td><td>fc_out</td></tr>
|
190 |
+
<tr><td>Salesforce/codegen2-3_7B_P</td><td>fc_out</td></tr>
|
191 |
+
<tr><td>Salesforce/codegen2-7B_P</td><td>fc_out</td></tr>
|
192 |
+
<tr><td>Salesforce/codegen2-16B_P</td><td>fc_out</td></tr>
|
193 |
+
<tr><td>meta-llama/CodeLlama-7b-hf</td><td>down_proj</td></tr>
|
194 |
+
<tr><td>bigcode/starcoderbase</td><td>mlp.c_proj</td></tr>
|
195 |
+
<tr><td>bigcode/starcoder2-3b</td><td>q_proj, c_proj</td></tr>
|
196 |
+
<tr><td>bigcode/starcoder2-7b</td><td>q_proj, c_proj</td></tr>
|
197 |
+
<tr><td>bigcode/starcoder2-15b</td><td>q_proj, c_proj</td></tr>
|
198 |
+
</tbody>
|
199 |
+
</table>
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de72c805eb3507a15f594519c48abd6190a1341ce9bd82e252e605b3d85bc5d1
|
3 |
+
size 6357
|