---
dataset_info:
features:
- name: model_type
dtype: string
- name: namespace
dtype: string
- name: model_name
dtype: string
- name: training_method
dtype: string
- name: model_size
dtype: int64
- name: trainable_params
dtype: int64
- name: url
dtype: string
- name: doi
dtype: float64
splits:
- name: train
num_bytes: 6257
num_examples: 40
download_size: 4879
dataset_size: 6257
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
pretty_name: PEFT Unit Test Generation Experiments
size_categories:
- n<1K
---
# PEFT Unit Test Generation Experiments
## Dataset description
The **PEFT Unit Test Generation Experiments** dataset contains metadata and details about a set of trained models used for generating unit tests with parameter-efficient fine-tuning (PEFT) methods. This dataset includes models from multiple namespaces and various sizes, trained with different tuning methods to provide a comprehensive resource for unit test generation research.
## Dataset Structure
### Data Fields
Each example in the dataset corresponds to a specific trained model variant and includes the following features:
| Feature Name | Description |
|-------------------|-----------------------------------------------------------------------------------------------------|
| `model_type` | The type or architecture of the base model (e.g., codegen, starcoder). |
| `namespace` | The organization or group that created or published the base model (e.g., Salesforce, meta-llama). |
| `model_name` | The specific name or identifier of the model. |
| `training_method` | The parameter-efficient fine-tuning method used for training (e.g., full fine-tuning, LoRA, IA³). |
| `model_size` | The size of the model, typically measured in number of parameters (e.g., 350M, 7B). |
| `trainable_params`| The number of trainable parameters for the specific tuning method and [hyperparameters](#training-hyperparameters). |
| `url` | A direct link to the model repository. |
| `doi` | The digital object identifier associated with the trained model. |
## Dataset Details
### Dataset Description
### Training Hyperparameters
#### Model-agnostic Hyperparameters
Hyperparameter |
Method |
Value |
Common |
Optimizer |
- |
AdamW |
LR schedule |
- |
Linear |
LR warmup ratio |
- |
0.1 |
Batch size |
- |
1 |
Gradient accumulation steps |
- |
8 |
# Epochs |
- |
3 |
Precision |
- |
Mixed |
Learning rate |
Full fine-tuning |
5E-5 |
LoRA |
3E-4 |
(IA)3 |
3E-4 |
Prompt tuning |
3E-3 |
Method specific |
Alpha |
LoRA |
32 |
Dropout |
LoRA |
0.1 |
Rank |
LoRA |
16 |
Virtual tokens |
Prompt tuning |
20 |
#### Model-specific Hyperparameters
Hyperparameter |
Method |
Model |
Value |
Targeted attention modules |
LoRA, (IA)3 |
codegen-350M-multi |
qkv_proj |
Salesforce/codegen2-1B_P | qkv_proj |
Salesforce/codegen2-3_7B_P | qkv_proj |
Salesforce/codegen2-7B_P | qkv_proj |
Salesforce/codegen2-16B_P | qkv_proj |
meta-llama/CodeLlama-7b-hf | q_proj, v_proj |
bigcode/starcoderbase | c_attn |
bigcode/starcoder2-3b | q_proj, v_proj |
bigcode/starcoder2-7b | q_proj, v_proj |
bigcode/starcoder2-15b | q_proj, v_proj |
Targeted feedforward modules |
(IA)3 |
codegen-350M-multi |
fc_out |
Salesforce/codegen2-1B_P | fc_out |
Salesforce/codegen2-3_7B_P | fc_out |
Salesforce/codegen2-7B_P | fc_out |
Salesforce/codegen2-16B_P | fc_out |
meta-llama/CodeLlama-7b-hf | down_proj |
bigcode/starcoderbase | mlp.c_proj |
bigcode/starcoder2-3b | q_proj, c_proj |
bigcode/starcoder2-7b | q_proj, c_proj |
bigcode/starcoder2-15b | q_proj, c_proj |
## Training Runs



