--- dataset_info: features: - name: model_type dtype: string - name: namespace dtype: string - name: model_name dtype: string - name: training_method dtype: string - name: model_size dtype: int64 - name: trainable_params dtype: int64 - name: url dtype: string - name: doi dtype: float64 splits: - name: train num_bytes: 6257 num_examples: 40 download_size: 4879 dataset_size: 6257 configs: - config_name: default data_files: - split: train path: data/train-* pretty_name: PEFT Unit Test Generation Experiments size_categories: - n<1K --- # PEFT Unit Test Generation Experiments ## Dataset description The **PEFT Unit Test Generation Experiments** dataset contains metadata and details about a set of trained models used for generating unit tests with parameter-efficient fine-tuning (PEFT) methods. This dataset includes models from multiple namespaces and various sizes, trained with different tuning methods to provide a comprehensive resource for unit test generation research. ## Dataset Structure ### Data Fields Each example in the dataset corresponds to a specific trained model variant and includes the following features: | Feature Name | Description | |-------------------|-----------------------------------------------------------------------------------------------------| | `model_type` | The type or architecture of the base model (e.g., codegen, starcoder). | | `namespace` | The organization or group that created or published the base model (e.g., Salesforce, meta-llama). | | `model_name` | The specific name or identifier of the model. | | `training_method` | The parameter-efficient fine-tuning method used for training (e.g., full fine-tuning, LoRA, IA³). | | `model_size` | The size of the model, typically measured in number of parameters (e.g., 350M, 7B). | | `trainable_params`| The number of trainable parameters for the specific tuning method and [hyperparameters](#training-hyperparameters). | | `url` | A direct link to the model repository. | | `doi` | The digital object identifier associated with the trained model. | ## Dataset Details ### Dataset Description ### Training Hyperparameters #### Model-agnostic Hyperparameters
Hyperparameter Method Value
Common
Optimizer - AdamW
LR schedule - Linear
LR warmup ratio - 0.1
Batch size - 1
Gradient accumulation steps - 8
# Epochs - 3
Precision - Mixed
Learning rate Full fine-tuning 5E-5
LoRA 3E-4
(IA)3 3E-4
Prompt tuning 3E-3
Method specific
Alpha LoRA 32
Dropout LoRA 0.1
Rank LoRA 16
Virtual tokens Prompt tuning 20
#### Model-specific Hyperparameters
Hyperparameter Method Model Value
Targeted attention modules LoRA, (IA)3 codegen-350M-multi qkv_proj
Salesforce/codegen2-1B_Pqkv_proj
Salesforce/codegen2-3_7B_Pqkv_proj
Salesforce/codegen2-7B_Pqkv_proj
Salesforce/codegen2-16B_Pqkv_proj
meta-llama/CodeLlama-7b-hfq_proj, v_proj
bigcode/starcoderbasec_attn
bigcode/starcoder2-3bq_proj, v_proj
bigcode/starcoder2-7bq_proj, v_proj
bigcode/starcoder2-15bq_proj, v_proj
Targeted feedforward modules (IA)3 codegen-350M-multi fc_out
Salesforce/codegen2-1B_Pfc_out
Salesforce/codegen2-3_7B_Pfc_out
Salesforce/codegen2-7B_Pfc_out
Salesforce/codegen2-16B_Pfc_out
meta-llama/CodeLlama-7b-hfdown_proj
bigcode/starcoderbasemlp.c_proj
bigcode/starcoder2-3bq_proj, c_proj
bigcode/starcoder2-7bq_proj, c_proj
bigcode/starcoder2-15bq_proj, c_proj
## Training Runs ![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/full-fine-tuning-train-loss-log.png) ![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/lora-train-loss-log.png) ![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/ia3-train-loss-log.png) ![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/prompt-tuning-train-loss-log.png)