Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
topic-classification
Languages:
English
Size:
100K - 1M
License:
Delete loading script
Browse files- ag_news.py +0 -94
ag_news.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""AG News topic classification dataset."""
|
18 |
-
|
19 |
-
|
20 |
-
import csv
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
from datasets.tasks import TextClassification
|
24 |
-
|
25 |
-
|
26 |
-
_DESCRIPTION = """\
|
27 |
-
AG is a collection of more than 1 million news articles. News articles have been
|
28 |
-
gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of
|
29 |
-
activity. ComeToMyHead is an academic news search engine which has been running
|
30 |
-
since July, 2004. The dataset is provided by the academic comunity for research
|
31 |
-
purposes in data mining (clustering, classification, etc), information retrieval
|
32 |
-
(ranking, search, etc), xml, data compression, data streaming, and any other
|
33 |
-
non-commercial activity. For more information, please refer to the link
|
34 |
-
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
|
35 |
-
|
36 |
-
The AG's news topic classification dataset is constructed by Xiang Zhang
|
37 |
-
([email protected]) from the dataset above. It is used as a text
|
38 |
-
classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann
|
39 |
-
LeCun. Character-level Convolutional Networks for Text Classification. Advances
|
40 |
-
in Neural Information Processing Systems 28 (NIPS 2015).
|
41 |
-
"""
|
42 |
-
|
43 |
-
_CITATION = """\
|
44 |
-
@inproceedings{Zhang2015CharacterlevelCN,
|
45 |
-
title={Character-level Convolutional Networks for Text Classification},
|
46 |
-
author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},
|
47 |
-
booktitle={NIPS},
|
48 |
-
year={2015}
|
49 |
-
}
|
50 |
-
"""
|
51 |
-
|
52 |
-
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv"
|
53 |
-
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv"
|
54 |
-
|
55 |
-
|
56 |
-
class AGNews(datasets.GeneratorBasedBuilder):
|
57 |
-
"""AG News topic classification dataset."""
|
58 |
-
|
59 |
-
def _info(self):
|
60 |
-
return datasets.DatasetInfo(
|
61 |
-
description=_DESCRIPTION,
|
62 |
-
features=datasets.Features(
|
63 |
-
{
|
64 |
-
"text": datasets.Value("string"),
|
65 |
-
"label": datasets.features.ClassLabel(names=["World", "Sports", "Business", "Sci/Tech"]),
|
66 |
-
}
|
67 |
-
),
|
68 |
-
homepage="http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html",
|
69 |
-
citation=_CITATION,
|
70 |
-
task_templates=[TextClassification(text_column="text", label_column="label")],
|
71 |
-
)
|
72 |
-
|
73 |
-
def _split_generators(self, dl_manager):
|
74 |
-
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
75 |
-
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
76 |
-
return [
|
77 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
78 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
79 |
-
]
|
80 |
-
|
81 |
-
def _generate_examples(self, filepath):
|
82 |
-
"""Generate AG News examples."""
|
83 |
-
with open(filepath, encoding="utf-8") as csv_file:
|
84 |
-
csv_reader = csv.reader(
|
85 |
-
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
|
86 |
-
)
|
87 |
-
for id_, row in enumerate(csv_reader):
|
88 |
-
label, title, description = row
|
89 |
-
# Original labels are [1, 2, 3, 4] ->
|
90 |
-
# ['World', 'Sports', 'Business', 'Sci/Tech']
|
91 |
-
# Re-map to [0, 1, 2, 3].
|
92 |
-
label = int(label) - 1
|
93 |
-
text = " ".join((title, description))
|
94 |
-
yield id_, {"text": text, "label": label}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|