New semantic masks
Browse filesSigned-off-by: Jiri Podivin <[email protected]>
- .gitattributes +1 -0
- masks.tar.00 +0 -3
- masks.tar.01 +0 -3
- metadata_semantic_test.csv +0 -3
- metadata_semantic_train.csv +0 -3
- semantic_masks.tar.01 +0 -3
- semantic_masks.tar.00 → semantic_masks.tar.gz +2 -2
- semantic_metadata.csv +0 -0
- utils/convert_masks.py +202 -0
.gitattributes
CHANGED
@@ -64,3 +64,4 @@ metadata filter=lfs diff=lfs merge=lfs -text
|
|
64 |
metadata_semantic_test.csv filter=lfs diff=lfs merge=lfs -text
|
65 |
metadata_semantic_train.csv filter=lfs diff=lfs merge=lfs -text
|
66 |
metadata_test.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
64 |
metadata_semantic_test.csv filter=lfs diff=lfs merge=lfs -text
|
65 |
metadata_semantic_train.csv filter=lfs diff=lfs merge=lfs -text
|
66 |
metadata_test.csv filter=lfs diff=lfs merge=lfs -text
|
67 |
+
semantic_masks.tar.gz filter=lfs diff=lfs merge=lfs -text
|
masks.tar.00
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1b4875906c4fc60c1646b37b301d2b4aca7b64436b27bfe06d5683f7c98efe9e
|
3 |
-
size 2662328320
|
|
|
|
|
|
|
|
masks.tar.01
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cf7f6a6db277892459bfb4f709fe621fd1c5a851b256ee05e0b38d7e06de8edd
|
3 |
-
size 2402375680
|
|
|
|
|
|
|
|
metadata_semantic_test.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a0f94ce4ddaefe6cd6881698ae9b375907a9a44ee26ee6e8b226f7fc4843e0ac
|
3 |
-
size 9839152
|
|
|
|
|
|
|
|
metadata_semantic_train.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dce5995456cc88209702d3e324299c99121db8f0d6819919aee8d600b5e4d47c
|
3 |
-
size 22904232
|
|
|
|
|
|
|
|
semantic_masks.tar.01
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a027e3447f65c326b972ce1c1eeec102338f411a78e5d261d7f9fce405013515
|
3 |
-
size 512757760
|
|
|
|
|
|
|
|
semantic_masks.tar.00 → semantic_masks.tar.gz
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67d089fdb940fae15dc5d9cae0af139a007888221d8821b6cd33ab4d49ee571a
|
3 |
+
size 287311415
|
semantic_metadata.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
utils/convert_masks.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from multiprocessing import Pool, cpu_count
|
9 |
+
from urllib.parse import unquote
|
10 |
+
from datetime import datetime
|
11 |
+
import pandas as pd
|
12 |
+
import os
|
13 |
+
import tempfile
|
14 |
+
import argparse
|
15 |
+
import glob
|
16 |
+
|
17 |
+
class InputStream:
|
18 |
+
def __init__(self, data):
|
19 |
+
self.data = data
|
20 |
+
self.i = 0
|
21 |
+
|
22 |
+
def read(self, size):
|
23 |
+
out = self.data[self.i : self.i + size]
|
24 |
+
self.i += size
|
25 |
+
return int(out, 2)
|
26 |
+
|
27 |
+
|
28 |
+
def access_bit(data, num):
|
29 |
+
"""from bytes array to bits by num position"""
|
30 |
+
base = int(num // 8)
|
31 |
+
shift = 7 - int(num % 8)
|
32 |
+
return (data[base] & (1 << shift)) >> shift
|
33 |
+
|
34 |
+
|
35 |
+
def bytes2bit(data):
|
36 |
+
"""get bit string from bytes data"""
|
37 |
+
return ''.join([str(access_bit(data, i)) for i in range(len(data) * 8)])
|
38 |
+
|
39 |
+
|
40 |
+
def decode_rle(rle, print_params: bool = False):
|
41 |
+
"""from LS RLE to numpy uint8 3d image [width, height, channel]
|
42 |
+
|
43 |
+
Args:
|
44 |
+
print_params (bool, optional): If true, a RLE parameters print statement is suppressed
|
45 |
+
"""
|
46 |
+
input = InputStream(bytes2bit(rle))
|
47 |
+
num = input.read(32)
|
48 |
+
word_size = input.read(5) + 1
|
49 |
+
rle_sizes = [input.read(4) + 1 for _ in range(4)]
|
50 |
+
|
51 |
+
if print_params:
|
52 |
+
print(
|
53 |
+
'RLE params:', num, 'values', word_size, 'word_size', rle_sizes, 'rle_sizes'
|
54 |
+
)
|
55 |
+
|
56 |
+
i = 0
|
57 |
+
out = np.zeros(num, dtype=np.uint8)
|
58 |
+
while i < num:
|
59 |
+
x = input.read(1)
|
60 |
+
j = i + 1 + input.read(rle_sizes[input.read(2)])
|
61 |
+
if x:
|
62 |
+
val = input.read(word_size)
|
63 |
+
out[i:j] = val
|
64 |
+
i = j
|
65 |
+
else:
|
66 |
+
while i < j:
|
67 |
+
val = input.read(word_size)
|
68 |
+
out[i] = val
|
69 |
+
i += 1
|
70 |
+
return out
|
71 |
+
|
72 |
+
def log(message):
|
73 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
74 |
+
print(f"[{timestamp}] {message}")
|
75 |
+
|
76 |
+
def save_image(mask_image: Image.Image, save_path: str):
|
77 |
+
mask_image.save(save_path, format='PNG')
|
78 |
+
log(f'Saved mask: {save_path}')
|
79 |
+
|
80 |
+
def process_files_in_parallel(files_to_process, masks_save_directory, source_files):
|
81 |
+
with Pool(processes=cpu_count()//2) as pool:
|
82 |
+
results = pool.starmap(process_file, [(file, masks_save_directory, source_files) for file in files_to_process])
|
83 |
+
|
84 |
+
return [e for r in results for e in r]
|
85 |
+
|
86 |
+
|
87 |
+
def process_file(file_path, masks_save_directory, source_files):
|
88 |
+
log(f"Opening file: {file_path}")
|
89 |
+
total_metadata = []
|
90 |
+
try:
|
91 |
+
with open(file_path, 'r') as file:
|
92 |
+
data = json.load(file)
|
93 |
+
except Exception as e:
|
94 |
+
log(f'Error reading file {file_path}: {e}')
|
95 |
+
return total_metadata
|
96 |
+
|
97 |
+
image_name = data['task']['data']['image'].split('/')[-1]
|
98 |
+
|
99 |
+
if image_name not in source_files:
|
100 |
+
log(f"Requested file {image_name} does not exist in source data!")
|
101 |
+
return total_metadata
|
102 |
+
|
103 |
+
image_name_prefix = unquote(image_name.rsplit('.', 1)[0])
|
104 |
+
log(f"Processing image: {image_name_prefix}")
|
105 |
+
label_counts = {}
|
106 |
+
|
107 |
+
for result in data['result']:
|
108 |
+
if 'rle' not in result['value']:
|
109 |
+
log(f"No 'rle' key found in result: {result.get('id', 'Unknown ID')}")
|
110 |
+
continue
|
111 |
+
|
112 |
+
rle_data = result['value']['rle']
|
113 |
+
rle_bytes = bytes.fromhex(''.join(format(x, '02x') for x in rle_data))
|
114 |
+
mask = decode_rle(rle_bytes)
|
115 |
+
|
116 |
+
original_height = result['original_height']
|
117 |
+
original_width = result['original_width']
|
118 |
+
mask = mask.reshape((original_height, original_width, 4))
|
119 |
+
|
120 |
+
alpha_channel = mask[:, :, 3]
|
121 |
+
mask_image = np.zeros((original_height, original_width, 3), dtype=np.uint8)
|
122 |
+
mask_image[alpha_channel == 255] = [255, 255, 255]
|
123 |
+
|
124 |
+
if 'brushlabels' in result['value']:
|
125 |
+
for label in result['value']['brushlabels']:
|
126 |
+
|
127 |
+
label_counts[label] = label_counts.get(label, 0) + 1
|
128 |
+
save_path = os.path.join(masks_save_directory, f"{image_name_prefix}-{label}-{label_counts[label]}.png")
|
129 |
+
save_image(Image.fromarray(mask_image).convert('L'), save_path)
|
130 |
+
metadata = {
|
131 |
+
"original_height": result['original_height'],
|
132 |
+
"original_width": result['original_width'],
|
133 |
+
"image": os.path.join('sourcedata/labeled/', os.path.basename(data['task']['data']['image'])),
|
134 |
+
"score": result['score'] if 'score' in result.keys() else 0,
|
135 |
+
"mask": save_path,
|
136 |
+
"class": label,
|
137 |
+
}
|
138 |
+
total_metadata.append(metadata)
|
139 |
+
|
140 |
+
return total_metadata
|
141 |
+
|
142 |
+
def merge_file_masks(mask_info, target_mask_dir, label2id, img):
|
143 |
+
final_mask = np.zeros(
|
144 |
+
np.asarray(Image.open(mask_info['mask'].iloc[0])).shape, dtype=np.uint8)
|
145 |
+
for i, r in mask_info.iterrows():
|
146 |
+
mask = np.asarray(Image.open(r['mask']))
|
147 |
+
final_mask = np.where(mask == 0, final_mask, label2id[r['class']])
|
148 |
+
|
149 |
+
mask_path = os.path.join(target_mask_dir, f"{os.path.basename(img).split('.')[0]}_mask.png")
|
150 |
+
Image.fromarray(final_mask).convert('L').save(mask_path, format='PNG')
|
151 |
+
return {
|
152 |
+
'mask': mask_path,
|
153 |
+
'image': img,
|
154 |
+
'original_height': r['original_height'],
|
155 |
+
'original_width': r['original_width']
|
156 |
+
}
|
157 |
+
|
158 |
+
def merge_masks(mask_metadata, target_mask_dir, label2id):
|
159 |
+
new_metadata = []
|
160 |
+
imgs = [
|
161 |
+
(
|
162 |
+
mask_metadata[mask_metadata['image'] == img],
|
163 |
+
target_mask_dir,
|
164 |
+
label2id,
|
165 |
+
img
|
166 |
+
) for img in mask_metadata['image'].unique()]
|
167 |
+
|
168 |
+
|
169 |
+
with Pool(processes=cpu_count()//2) as pool:
|
170 |
+
new_metadata = pool.starmap(merge_file_masks, imgs)
|
171 |
+
|
172 |
+
return new_metadata
|
173 |
+
|
174 |
+
|
175 |
+
def main():
|
176 |
+
parser = argparse.ArgumentParser('maskconvert')
|
177 |
+
parser.add_argument('dataset_root')
|
178 |
+
|
179 |
+
arguments = parser.parse_args()
|
180 |
+
annotations_folder_path = os.path.join(arguments.dataset_root, 'labels_raw')
|
181 |
+
tmp_mask_path = tempfile.mkdtemp('masks')
|
182 |
+
|
183 |
+
files_to_process = glob.glob(f"{annotations_folder_path}/*")
|
184 |
+
|
185 |
+
# For sanity check
|
186 |
+
source_files = [os.path.basename(name) for name in glob.glob(f"sourcedata/**/*.jpg")]
|
187 |
+
|
188 |
+
metadata = pd.DataFrame(process_files_in_parallel(files_to_process, tmp_mask_path, source_files))
|
189 |
+
|
190 |
+
id2label = {int(k): v for k, v in enumerate(['void', 'Fruit', 'Leaf', 'Flower', 'Stem'])}
|
191 |
+
|
192 |
+
label2id = {v: k for k, v in id2label.items()}
|
193 |
+
|
194 |
+
result = merge_masks(metadata, os.path.join(arguments.dataset_root, 'semantic_masks'), label2id)
|
195 |
+
result = pd.DataFrame(result).drop_duplicates()
|
196 |
+
result.to_csv(
|
197 |
+
os.path.join(arguments.dataset_root, 'semantic_metadata.csv'),
|
198 |
+
index=False)
|
199 |
+
|
200 |
+
|
201 |
+
if __name__ == '__main__':
|
202 |
+
main()
|