Datasets:

Languages:
English
ArXiv:
License:
File size: 5,436 Bytes
14110dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""FEVEROUS dataset."""

import json
import textwrap

import datasets


class FeverousConfig(datasets.BuilderConfig):
    """BuilderConfig for FEVER."""

    def __init__(self, homepage: str = None, citation: str = None, base_url: str = None, urls: dict = None, **kwargs):
        """BuilderConfig for FEVEROUS.

        Args:
            homepage (`str`): Homepage.
            citation (`str`): Citation reference.
            base_url (`str`): Data base URL that precedes all data URLs.
            urls (`dict`): Data URLs (each URL will pe preceded by `base_url`).
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)
        self.homepage = homepage
        self.citation = citation
        self.base_url = base_url
        self.urls = {key: f"{base_url}/{url}" for key, url in urls.items()}


class FeverOUS(datasets.GeneratorBasedBuilder):
    """FEVEROUS dataset."""

    BUILDER_CONFIGS = [
        FeverousConfig(
            version=datasets.Version("1.0.0"),
            description=textwrap.dedent(
                "FEVEROUS:\n"
                "FEVEROUS (Fact Extraction and VERification Over Unstructured and Structured information) is a fact "
                "verification dataset which consists of 87,026 verified claims. Each claim is annotated with evidence "
                "in the form of sentences and/or cells from tables in Wikipedia, as well as a label indicating whether "
                "this evidence supports, refutes, or does not provide enough information to reach a verdict. The "
                "dataset also contains annotation metadata such as annotator actions (query keywords, clicks on page, "
                "time signatures), and the type of challenge each claim poses."
            ),
            homepage="https://fever.ai/dataset/feverous.html",
            citation=textwrap.dedent(
                """\
                @inproceedings{Aly21Feverous,
                    author = {Aly, Rami and Guo, Zhijiang and Schlichtkrull, Michael Sejr and Thorne, James and Vlachos, Andreas and Christodoulopoulos, Christos and Cocarascu, Oana and Mittal, Arpit},
                    title = {{FEVEROUS}: Fact Extraction and {VERification} Over Unstructured and Structured information},
                    eprint={2106.05707},
                    archivePrefix={arXiv},
                    primaryClass={cs.CL},
                    year = {2021}
                }"""
            ),
            base_url="https://fever.ai/download/feverous",
            urls={
                datasets.Split.TRAIN: "feverous_train_challenges.jsonl",
                datasets.Split.VALIDATION: "feverous_dev_challenges.jsonl",
                datasets.Split.TEST: "feverous_test_unlabeled.jsonl",
            },
        ),
    ]

    def _info(self):
        features = {
            "id": datasets.Value("int32"),
            "label": datasets.ClassLabel(names=["SUPPORTS", "REFUTES", "NOT ENOUGH INFO"]),
            "claim": datasets.Value("string"),
            "evidence": [
                {
                    "content": [datasets.Value("string")],
                    "context": [[datasets.Value("string")]],
                }
            ],
            "annotator_operations": [
                {
                    "operation": datasets.Value("string"),
                    "value": datasets.Value("string"),
                    "time": datasets.Value("float"),
                }
            ],
            "expected_challenge": datasets.Value("string"),
            "challenge": datasets.Value("string"),
        }
        return datasets.DatasetInfo(
            description=self.config.description,
            features=datasets.Features(features),
            homepage=self.config.homepage,
            citation=self.config.citation,
        )

    def _split_generators(self, dl_manager):
        dl_paths = dl_manager.download_and_extract(self.config.urls)
        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "filepath": dl_paths[split],
                },
            )
            for split in dl_paths.keys()
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                # First item in "train" has all values equal to empty strings
                if [value for value in data.values() if value]:
                    evidence = data.get("evidence", [])
                    if evidence:
                        for evidence_set in evidence:
                            # Transform "context" from dict to list (analogue to "content")
                            evidence_set["context"] = [
                                evidence_set["context"][element_id] for element_id in evidence_set["content"]
                            ]
                    yield id_, {
                        "id": data.get("id"),
                        "label": data.get("label", -1),
                        "claim": data.get("claim", ""),
                        "evidence": evidence,
                        "annotator_operations": data.get("annotator_operations", []),
                        "expected_challenge": data.get("expected_challenge", ""),
                        "challenge": data.get("challenge", ""),
                    }