File size: 4,290 Bytes
a238e15
 
8d87412
 
 
 
 
 
 
7745354
8d87412
 
85ccf33
 
 
 
 
 
 
 
 
 
a97487c
960c87d
85ccf33
a97487c
960c87d
85ccf33
a97487c
960c87d
a97487c
 
9b54659
c6cf20a
6ccbafa
034e40e
9279579
 
5d83468
 
 
 
6ccbafa
ad512fd
9279579
af5099f
 
9279579
fdcdd3e
af5099f
 
 
9279579
59fab7e
9279579
 
fdcdd3e
68167c7
8f8814f
 
 
034e40e
 
 
 
 
 
 
4ecd15c
 
034e40e
21341ba
cf69efe
21341ba
034e40e
 
4ecd15c
7e3d0aa
a8687a2
 
4ecd15c
 
99c39ee
21341ba
 
a933f30
 
21341ba
28901ab
73d8cd4
 
 
 
 
 
 
 
 
 
 
 
 
960c87d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: mit
task_categories:
- visual-question-answering
language:
- en
tags:
- medical
pretty_name: PathVQA
paperswithcode_id: pathvqa
size_categories:
- 10K<n<100K
dataset_info:
  features:
  - name: image
    dtype: image
  - name: question
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: train
    num_bytes: 3171303616.326
    num_examples: 19654
  - name: test
    num_bytes: 1113474813.05
    num_examples: 6719
  - name: validation
    num_bytes: 1191658832.096
    num_examples: 6259
  download_size: 785414952
  dataset_size: 5476437261.472
---

# Dataset Card for PathVQA

## Dataset Description
PathVQA is a dataset of question-answer pairs on pathology images. The dataset is intended to be used for training and testing 
Medical Visual Question Answering (VQA) systems. The dataset includes both open-ended questions and binary "yes/no" questions. 
The dataset is built from two publicly-available pathology textbooks: "Textbook of Pathology" and "Basic Pathology", and a 
publicly-available digital library: "Pathology Education Informational Resource" (PEIR). The copyrights of images and captions 
belong to the publishers and authors of these two books, and the owners of the PEIR digital library.<br> 

**Repository:** [PathVQA Official GitHub Repository](https://github.com/UCSD-AI4H/PathVQA)<br>
**Paper:** [PathVQA: 30000+ Questions for Medical Visual Question Answering](https://arxiv.org/abs/2003.10286)<br>
**Leaderboard:** [Papers with Code Leaderboard](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa)

### Dataset Summary
The dataset was obtained from the updated Google Drive link shared by the authors on Feb 15, 2023, 
see the [commit](https://github.com/UCSD-AI4H/PathVQA/commit/117e7f4ef88a0e65b0e7f37b98a73d6237a3ceab)
in the GitHub repository. This version of the dataset contains a total of 5,004 images and 32,795 question-answer pairs. 
Out of the 5,004 images, 4,289 images are referenced by a question-answer pair, while 715 images are not used.
There are a few image-question-answer triplets which occur more than once in the same split (training, validation, test). 
After dropping the duplicate image-question-answer triplets, the dataset contains 32,632 question-answer pairs on 4,289 images.

#### Supported Tasks and Leaderboards
The PathVQA dataset has an active leaderboard on [Papers with Code](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa) 
where models are ranked based on three metrics: "Yes/No Accuracy", "Free-form accuracy" and "Overall accuracy". "Yes/No Accuracy" is
the accuracy of a model's generated answers for the subset of binary "yes/no" questions. "Free-form accuracy" is the accuracy 
of a model's generated answers for the subset of open-ended questions. "Overall accuracy" is the accuracy of a model's generated 
answers across all questions.

#### Languages
The question-answer pairs are in English.

## Dataset Structure

### Data Instances
Each instance consists of an image-question-answer triplet.
```
{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=CMYK size=309x272>,
  'question': 'where are liver stem cells (oval cells) located?',
  'answer': 'in the canals of hering'
}
```
### Data Fields
- `'image'`: the image referenced by the question-answer pair. 
- `'question'`: the question about the image.
- `'answer'`: the expected answer.

### Data Splits
The dataset is split into training, validation and test. The split is provided directly by the authors.

|                         | Training Set | Validation Set | Test Set |
|-------------------------|:------------:|:--------------:|:--------:|
| QAs                     |19,654        |6,259           |6,719     |
| Images                  |2,599         |832             |858       |
  
## Additional Information

### Licensing Information
The authors have released the dataset under the [MIT License](https://github.com/UCSD-AI4H/PathVQA/blob/master/LICENSE).

### Citation Information
```
@article{he2020pathvqa,
    title={PathVQA: 30000+ Questions for Medical Visual Question Answering},
    author={He, Xuehai and Zhang, Yichen and Mou, Luntian and Xing, Eric and Xie, Pengtao},
    journal={arXiv preprint arXiv:2003.10286},
    year={2020}
}
```