Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
medical
License:
File size: 4,290 Bytes
a238e15 8d87412 7745354 8d87412 85ccf33 a97487c 960c87d 85ccf33 a97487c 960c87d 85ccf33 a97487c 960c87d a97487c 9b54659 c6cf20a 6ccbafa 034e40e 9279579 5d83468 6ccbafa ad512fd 9279579 af5099f 9279579 fdcdd3e af5099f 9279579 59fab7e 9279579 fdcdd3e 68167c7 8f8814f 034e40e 4ecd15c 034e40e 21341ba cf69efe 21341ba 034e40e 4ecd15c 7e3d0aa a8687a2 4ecd15c 99c39ee 21341ba a933f30 21341ba 28901ab 73d8cd4 960c87d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: mit
task_categories:
- visual-question-answering
language:
- en
tags:
- medical
pretty_name: PathVQA
paperswithcode_id: pathvqa
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: image
dtype: image
- name: question
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 3171303616.326
num_examples: 19654
- name: test
num_bytes: 1113474813.05
num_examples: 6719
- name: validation
num_bytes: 1191658832.096
num_examples: 6259
download_size: 785414952
dataset_size: 5476437261.472
---
# Dataset Card for PathVQA
## Dataset Description
PathVQA is a dataset of question-answer pairs on pathology images. The dataset is intended to be used for training and testing
Medical Visual Question Answering (VQA) systems. The dataset includes both open-ended questions and binary "yes/no" questions.
The dataset is built from two publicly-available pathology textbooks: "Textbook of Pathology" and "Basic Pathology", and a
publicly-available digital library: "Pathology Education Informational Resource" (PEIR). The copyrights of images and captions
belong to the publishers and authors of these two books, and the owners of the PEIR digital library.<br>
**Repository:** [PathVQA Official GitHub Repository](https://github.com/UCSD-AI4H/PathVQA)<br>
**Paper:** [PathVQA: 30000+ Questions for Medical Visual Question Answering](https://arxiv.org/abs/2003.10286)<br>
**Leaderboard:** [Papers with Code Leaderboard](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa)
### Dataset Summary
The dataset was obtained from the updated Google Drive link shared by the authors on Feb 15, 2023,
see the [commit](https://github.com/UCSD-AI4H/PathVQA/commit/117e7f4ef88a0e65b0e7f37b98a73d6237a3ceab)
in the GitHub repository. This version of the dataset contains a total of 5,004 images and 32,795 question-answer pairs.
Out of the 5,004 images, 4,289 images are referenced by a question-answer pair, while 715 images are not used.
There are a few image-question-answer triplets which occur more than once in the same split (training, validation, test).
After dropping the duplicate image-question-answer triplets, the dataset contains 32,632 question-answer pairs on 4,289 images.
#### Supported Tasks and Leaderboards
The PathVQA dataset has an active leaderboard on [Papers with Code](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa)
where models are ranked based on three metrics: "Yes/No Accuracy", "Free-form accuracy" and "Overall accuracy". "Yes/No Accuracy" is
the accuracy of a model's generated answers for the subset of binary "yes/no" questions. "Free-form accuracy" is the accuracy
of a model's generated answers for the subset of open-ended questions. "Overall accuracy" is the accuracy of a model's generated
answers across all questions.
#### Languages
The question-answer pairs are in English.
## Dataset Structure
### Data Instances
Each instance consists of an image-question-answer triplet.
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=CMYK size=309x272>,
'question': 'where are liver stem cells (oval cells) located?',
'answer': 'in the canals of hering'
}
```
### Data Fields
- `'image'`: the image referenced by the question-answer pair.
- `'question'`: the question about the image.
- `'answer'`: the expected answer.
### Data Splits
The dataset is split into training, validation and test. The split is provided directly by the authors.
| | Training Set | Validation Set | Test Set |
|-------------------------|:------------:|:--------------:|:--------:|
| QAs |19,654 |6,259 |6,719 |
| Images |2,599 |832 |858 |
## Additional Information
### Licensing Information
The authors have released the dataset under the [MIT License](https://github.com/UCSD-AI4H/PathVQA/blob/master/LICENSE).
### Citation Information
```
@article{he2020pathvqa,
title={PathVQA: 30000+ Questions for Medical Visual Question Answering},
author={He, Xuehai and Zhang, Yichen and Mou, Luntian and Xing, Eric and Xie, Pengtao},
journal={arXiv preprint arXiv:2003.10286},
year={2020}
}
``` |