"""This script de-duplicates the data provided by the PathVQA authors, creates an "imagefolder" dataset and pushes it to the Hugging Face Hub. """ import re import os import shutil import pickle import datasets import pandas as pd for split in ["train", "val", "test"]: os.makedirs(f"data/{split}/", exist_ok=True) # load the image-question-answer triplets data = pd.DataFrame(pickle.load(open(f"pvqa/qas/{split}/{split}_qa.pkl", "rb"))) # drop the duplicate image-question-answer triplets data = data.drop_duplicates(ignore_index=True) # perform some basic data cleaning/normalization f = lambda x: re.sub(' +', ' ', str(x).lower()).replace(" ?", "?").strip() data["question"] = data["question"].apply(f) data["answer"] = data["answer"].apply(f) # copy the images using unique file names data.insert(0, "file_name", "") for i, row in data.iterrows(): file_name = f"img_{i}.jpg" data["file_name"].iloc[i] = file_name shutil.copyfile(src=f"pvqa/images/{split}/{row['image']}.jpg", dst=f"data/{split}/{file_name}") _ = data.pop("image") # save the metadata data.to_csv(f"data/{split}/metadata.csv", index=False) # push the dataset to the hub dataset = datasets.load_dataset("imagefolder", data_dir="data/") dataset.push_to_hub("flaviagiammarino/path-vqa")