# coding=utf-8 # Copyright 2022 Artem Ploujnikov (HuggingFace adaptation only) # # If you use this dataset, please cite the following article: # @ARTICLE{becker2018interpreting, # author = {Becker, S\"oren and Ackermann, Marcel and Lapuschkin, Sebastian and M\"uller, Klaus-Robert and Samek, Wojciech}, # title = {Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals}, # journal = {CoRR}, # volume = {abs/1807.03418}, # year = {2018}, # archivePrefix = {arXiv}, # eprint = {1807.03418}, # } # Lint as: python3 import json import logging import re import os import datasets logger = logging.getLogger(__name__) _DESCRIPTION = """\ AudioMNIST, a research baseline dataset """ _BASE_URL = "https://huggingface.co/datasets/flexthink/audiomnist/resolve/main/" _HOMEPAGE_URL = "https://huggingface.co/datasets/flexthink/audiomnist" _SPLITS = ["train", "valid", "test"] _GENDERS = ["female", "male"] _ACCENTS = [ "Arabic", "Brasilian", "Chinese", "Danish", "English", "French", "German", "Italian", "Levant", "Madras", "South African", "South Korean", "Spanish", "Tamil", ] _SAMPLING_RATE = 48000 _ACCENT_MAP = { "german": "German", "Egyptian_American?": "Arabic", "German/Spanish": "German", } _META_FILE = "audioMNIST_meta.json" _RE_FILE_NAME = re.compile("(?P\d+)_(?P\d+)_(?P\d+).wav") class GraphemeToPhoneme(datasets.GeneratorBasedBuilder): def __init__(self, base_url=None, splits=None, *args, **kwargs): super().__init__(*args, **kwargs) self.base_url = base_url or _BASE_URL self.splits = splits or _SPLITS def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file_name": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=_SAMPLING_RATE), "speaker_id": datasets.Value("string"), "age": datasets.Value("int8"), "gender": datasets.ClassLabel(names=_GENDERS), "accent": datasets.ClassLabel(names=_ACCENTS), "native_speaker": datasets.Value("bool"), "origin": datasets.Value("string"), "digit": datasets.Value("int8"), }, ), supervised_keys=None, homepage=_HOMEPAGE_URL, ) def _get_url(self, split): return f"{self.base_url}/dataset/{split}.tar.gz" def _get_meta_url(self): return f"{self.base_url}/meta/{_META_FILE}" def _split_generator(self, dl_manager, split): archive_url = self._get_url(split) archive_path = dl_manager.download_and_extract(archive_url) archive = dl_manager.iter_archive(archive_url) meta_url = self._get_meta_url() meta_file = dl_manager.download(meta_url) speaker_map = self._get_speaker_map(meta_file) return datasets.SplitGenerator( name=split, gen_kwargs={ "archive": archive, "archive_path": archive_path, "speaker_map": speaker_map, }, ) def _get_speaker_map(self, file_name): with open(file_name) as speaker_file: result = json.load(speaker_file) for entry in result.values(): entry["accent"] = _ACCENT_MAP.get( entry["accent"], entry["accent"]) return result def _split_generators(self, dl_manager): return [self._split_generator(dl_manager, split) for split in self.splits] def _map_speaker_info(self, speaker_info): result = dict(speaker_info) result["native_speaker"] = speaker_info["native speaker"] == "yes" del result["native speaker"] del result["recordingdate"] del result["recordingroom"] return result def _generate_examples(self, archive, archive_path, speaker_map): for path, sample_file in archive: match = _RE_FILE_NAME.search(path) if not match: logger.warn( f"File {path} does not match the naming convention" ) continue digit, speaker_id = [ match.group(key) for key in ["digit", "speaker_id"] ] sample = { "digit": digit, "speaker_id": speaker_id, "file_name": os.path.join(archive_path, path), "audio": {"path": path, "bytes": sample_file.read()}, } if speaker_id not in speaker_map: logger.warn(f"Speaker {speaker_id} not found") speaker_info = speaker_map[speaker_id] sample.update(self._map_speaker_info(speaker_info)) yield path, sample