File size: 3,331 Bytes
4ffa3a7 9159674 4ffa3a7 af7bf66 4ffa3a7 af7bf66 4ffa3a7 af7bf66 4ffa3a7 af7bf66 4ffa3a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# coding=utf-8
# Copyright 2021 Artem Ploujnikov
# Lint as: python3
import json
import datasets
_DESCRIPTION = """\
Grapheme-to-Phoneme training, validation and test sets
"""
_BASE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space/resolve/main/dataset"
_HOMEPAGE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space"
_ORIGINS = ["librispeech", "librispeech-lex", "wikipedia-homograph"]
_NA = "N/A"
_SPLIT_TYPES = ["train", "valid", "test"]
_DATA_TYPES = ["lexicon", "sentence", "homograph"]
_SPLITS = [
f"{data_type}_{split_type}"
for data_type in _DATA_TYPES
for split_type in _SPLIT_TYPES]
class GraphemeToPhoneme(datasets.GeneratorBasedBuilder):
def __init__(self, base_url=None, splits=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.base_url = base_url or _BASE_URL
self.splits = splits or _SPLITS
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"origin": datasets.Value("string"),
"char": datasets.Value("string"),
"phn": datasets.Sequence(datasets.Value("string")),
"homograph": datasets.Value("string"),
"homograph_wordid": datasets.Value("string"),
"homograph_char_start": datasets.Value("int32"),
"homograph_char_end": datasets.Value("int32"),
"homograph_phn_start": datasets.Value("int32"),
"homograph_phn_end": datasets.Value("int32"),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
)
def _get_url(self, split):
return f'{self.base_url}/{split}.json'
def _split_generator(self, dl_manager, split):
url = self._get_url(split)
path = dl_manager.download_and_extract(url)
return datasets.SplitGenerator(
name=split,
gen_kwargs={"datapath": path, "datatype": split},
)
def _split_generators(self, dl_manager):
return [
self._split_generator(dl_manager, split)
for split in self.splits
]
def _generate_examples(self, datapath, datatype):
with open(datapath, encoding="utf-8") as f:
data = json.load(f)
breakpoint()
for sentence_counter, (item_id, item) in enumerate(data.items()):
resp = {
"id": item_id,
"speaker_id": str(item.get("speaker_id") or _NA),
"origin": item["origin"],
"char": item["char"],
"phn": item["phn"],
"homograph": item.get("homograph", _NA),
"homograph_wordid": item.get("homograph_wordid", _NA),
"homograph_char_start": item.get("homograph_char_start", 0),
"homograph_char_end": item.get("homograph_char_end", 0),
"homograph_phn_start": item.get("homograph_phn_start", 0),
"homograph_phn_end": item.get("homograph_phn_end", 0)
}
yield sentence_counter, resp
|