flexthink
Change "id" to "sample_id", to avoid conflict with SpeechBrain's DynamicItemDataset
95b81be
# coding=utf-8 | |
# Copyright 2021 Artem Ploujnikov | |
# Lint as: python3 | |
import json | |
import datasets | |
_DESCRIPTION = """\ | |
Grapheme-to-Phoneme training, validation and test sets | |
""" | |
_BASE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space/resolve/main/dataset" | |
_HOMEPAGE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space" | |
_ORIGINS = ["librispeech", "librispeech-lex", "wikipedia-homograph"] | |
_NA = "N/A" | |
_SPLIT_TYPES = ["train", "valid", "test"] | |
_DATA_TYPES = ["lexicon", "sentence", "homograph"] | |
_SPLITS = [ | |
f"{data_type}_{split_type}" | |
for data_type in _DATA_TYPES | |
for split_type in _SPLIT_TYPES] | |
class GraphemeToPhoneme(datasets.GeneratorBasedBuilder): | |
def __init__(self, base_url=None, splits=None, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.base_url = base_url or _BASE_URL | |
self.splits = splits or _SPLITS | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sample_id": datasets.Value("string"), | |
"speaker_id": datasets.Value("string"), | |
"origin": datasets.Value("string"), | |
"char": datasets.Value("string"), | |
"phn": datasets.Sequence(datasets.Value("string")), | |
"homograph": datasets.Value("string"), | |
"homograph_wordid": datasets.Value("string"), | |
"homograph_char_start": datasets.Value("int32"), | |
"homograph_char_end": datasets.Value("int32"), | |
"homograph_phn_start": datasets.Value("int32"), | |
"homograph_phn_end": datasets.Value("int32"), | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE_URL, | |
) | |
def _get_url(self, split): | |
return f'{self.base_url}/{split}.json' | |
def _split_generator(self, dl_manager, split): | |
url = self._get_url(split) | |
path = dl_manager.download_and_extract(url) | |
return datasets.SplitGenerator( | |
name=split, | |
gen_kwargs={"datapath": path, "datatype": split}, | |
) | |
def _split_generators(self, dl_manager): | |
return [ | |
self._split_generator(dl_manager, split) | |
for split in self.splits | |
] | |
def _generate_examples(self, datapath, datatype): | |
with open(datapath, encoding="utf-8") as f: | |
data = json.load(f) | |
for sentence_counter, (sample_id, item) in enumerate(data.items()): | |
resp = { | |
"sample_id": sample_id, | |
"speaker_id": str(item.get("speaker_id") or _NA), | |
"origin": item["origin"], | |
"char": item["char"], | |
"phn": item["phn"], | |
"homograph": item.get("homograph", _NA), | |
"homograph_wordid": item.get("homograph_wordid", _NA), | |
"homograph_char_start": item.get("homograph_char_start", 0), | |
"homograph_char_end": item.get("homograph_char_end", 0), | |
"homograph_phn_start": item.get("homograph_phn_start", 0), | |
"homograph_phn_end": item.get("homograph_phn_end", 0) | |
} | |
yield sentence_counter, resp | |