florentianayuwono
commited on
Commit
·
082fe19
1
Parent(s):
b12fa7d
Add transformer use cases
Browse files- training.ipynb +945 -0
training.ipynb
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# 1. Transformer Models"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 20,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"import transformers"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"attachments": {},
|
22 |
+
"cell_type": "markdown",
|
23 |
+
"metadata": {},
|
24 |
+
"source": [
|
25 |
+
"## Transformers, what can they do?"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 7,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stderr",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"No model was supplied, defaulted to distilbert-base-uncased-finetuned-sst-2-english and revision af0f99b (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english).\n",
|
38 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"data": {
|
43 |
+
"text/plain": [
|
44 |
+
"[{'label': 'POSITIVE', 'score': 0.6012226343154907}]"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"execution_count": 7,
|
48 |
+
"metadata": {},
|
49 |
+
"output_type": "execute_result"
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"source": [
|
53 |
+
"from transformers import pipeline\n",
|
54 |
+
"\n",
|
55 |
+
"classifier = pipeline(\"sentiment-analysis\")\n",
|
56 |
+
"classifier(\"OMG this is my first time trying this!\")"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 6,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"text/plain": [
|
67 |
+
"[{'label': 'POSITIVE', 'score': 0.9998352527618408},\n",
|
68 |
+
" {'label': 'NEGATIVE', 'score': 0.9995977282524109}]"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
"execution_count": 6,
|
72 |
+
"metadata": {},
|
73 |
+
"output_type": "execute_result"
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"classifier(\n",
|
78 |
+
" [\"I really like this a lot!\", \"I hate it like this.\"]\n",
|
79 |
+
")"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": 12,
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [
|
87 |
+
{
|
88 |
+
"name": "stderr",
|
89 |
+
"output_type": "stream",
|
90 |
+
"text": [
|
91 |
+
"No model was supplied, defaulted to facebook/bart-large-mnli and revision c626438 (https://huggingface.co/facebook/bart-large-mnli).\n",
|
92 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"data": {
|
97 |
+
"text/plain": [
|
98 |
+
"{'sequence': 'How to differentiate sun and cloud?',\n",
|
99 |
+
" 'labels': ['education', 'business', 'politics'],\n",
|
100 |
+
" 'scores': [0.7144545316696167, 0.19746531546115875, 0.08808010816574097]}"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
"execution_count": 12,
|
104 |
+
"metadata": {},
|
105 |
+
"output_type": "execute_result"
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"classifier = pipeline(\"zero-shot-classification\")\n",
|
110 |
+
"classifier(\n",
|
111 |
+
" \"How to differentiate sun and cloud?\",\n",
|
112 |
+
" candidate_labels = [\"education\", \"politics\", \"business\"]\n",
|
113 |
+
")"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": 13,
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [
|
121 |
+
{
|
122 |
+
"name": "stderr",
|
123 |
+
"output_type": "stream",
|
124 |
+
"text": [
|
125 |
+
"No model was supplied, defaulted to gpt2 and revision 6c0e608 (https://huggingface.co/gpt2).\n",
|
126 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"data": {
|
131 |
+
"application/vnd.jupyter.widget-view+json": {
|
132 |
+
"model_id": "f065452c7f924df7a5666b71186fd6d5",
|
133 |
+
"version_major": 2,
|
134 |
+
"version_minor": 0
|
135 |
+
},
|
136 |
+
"text/plain": [
|
137 |
+
"Downloading: 0%| | 0.00/665 [00:00<?, ?B/s]"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
"metadata": {},
|
141 |
+
"output_type": "display_data"
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"data": {
|
145 |
+
"application/vnd.jupyter.widget-view+json": {
|
146 |
+
"model_id": "f261021fbdc5427abc2c54914de96ed2",
|
147 |
+
"version_major": 2,
|
148 |
+
"version_minor": 0
|
149 |
+
},
|
150 |
+
"text/plain": [
|
151 |
+
"Downloading: 0%| | 0.00/548M [00:00<?, ?B/s]"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
"metadata": {},
|
155 |
+
"output_type": "display_data"
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"data": {
|
159 |
+
"application/vnd.jupyter.widget-view+json": {
|
160 |
+
"model_id": "b3dbab5273b64fb09e75ced6c5380c1c",
|
161 |
+
"version_major": 2,
|
162 |
+
"version_minor": 0
|
163 |
+
},
|
164 |
+
"text/plain": [
|
165 |
+
"Downloading: 0%| | 0.00/124 [00:00<?, ?B/s]"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
"metadata": {},
|
169 |
+
"output_type": "display_data"
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"data": {
|
173 |
+
"application/vnd.jupyter.widget-view+json": {
|
174 |
+
"model_id": "85df61ca152e4e9dabccb090df5b195e",
|
175 |
+
"version_major": 2,
|
176 |
+
"version_minor": 0
|
177 |
+
},
|
178 |
+
"text/plain": [
|
179 |
+
"Downloading: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
"metadata": {},
|
183 |
+
"output_type": "display_data"
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"data": {
|
187 |
+
"application/vnd.jupyter.widget-view+json": {
|
188 |
+
"model_id": "3a371f13013f4e90890b17b0d56fa7d6",
|
189 |
+
"version_major": 2,
|
190 |
+
"version_minor": 0
|
191 |
+
},
|
192 |
+
"text/plain": [
|
193 |
+
"Downloading: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
"metadata": {},
|
197 |
+
"output_type": "display_data"
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"data": {
|
201 |
+
"application/vnd.jupyter.widget-view+json": {
|
202 |
+
"model_id": "389ab29d60d64fd7bc9c7745599cf713",
|
203 |
+
"version_major": 2,
|
204 |
+
"version_minor": 0
|
205 |
+
},
|
206 |
+
"text/plain": [
|
207 |
+
"Downloading: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
"metadata": {},
|
211 |
+
"output_type": "display_data"
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"name": "stderr",
|
215 |
+
"output_type": "stream",
|
216 |
+
"text": [
|
217 |
+
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n",
|
218 |
+
"/Users/florentiana.yuwono/anaconda3/lib/python3.10/site-packages/transformers/generation/utils.py:1353: UserWarning: Using `max_length`'s default (50) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
|
219 |
+
" warnings.warn(\n"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"data": {
|
224 |
+
"text/plain": [
|
225 |
+
"[{'generated_text': \"In this class, I will speak about something I've been thinking about for quite some time and it won't even come up for a while.\\n\\nLet's be honest and tell you; it has to be so simple. You do not need\"}]"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
"execution_count": 13,
|
229 |
+
"metadata": {},
|
230 |
+
"output_type": "execute_result"
|
231 |
+
}
|
232 |
+
],
|
233 |
+
"source": [
|
234 |
+
"generator = pipeline(\"text-generation\")\n",
|
235 |
+
"generator(\"In this class, I will speak\")"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": 14,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [
|
243 |
+
{
|
244 |
+
"data": {
|
245 |
+
"application/vnd.jupyter.widget-view+json": {
|
246 |
+
"model_id": "d893dfa6d45e4dce8f8f548ce903c330",
|
247 |
+
"version_major": 2,
|
248 |
+
"version_minor": 0
|
249 |
+
},
|
250 |
+
"text/plain": [
|
251 |
+
"Downloading: 0%| | 0.00/762 [00:00<?, ?B/s]"
|
252 |
+
]
|
253 |
+
},
|
254 |
+
"metadata": {},
|
255 |
+
"output_type": "display_data"
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"data": {
|
259 |
+
"application/vnd.jupyter.widget-view+json": {
|
260 |
+
"model_id": "5e0cafc878e94597872168c19bcfbe00",
|
261 |
+
"version_major": 2,
|
262 |
+
"version_minor": 0
|
263 |
+
},
|
264 |
+
"text/plain": [
|
265 |
+
"Downloading: 0%| | 0.00/353M [00:00<?, ?B/s]"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
"metadata": {},
|
269 |
+
"output_type": "display_data"
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"data": {
|
273 |
+
"application/vnd.jupyter.widget-view+json": {
|
274 |
+
"model_id": "a374402e1a4748f4b3b8b964589f6868",
|
275 |
+
"version_major": 2,
|
276 |
+
"version_minor": 0
|
277 |
+
},
|
278 |
+
"text/plain": [
|
279 |
+
"Downloading: 0%| | 0.00/124 [00:00<?, ?B/s]"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
"metadata": {},
|
283 |
+
"output_type": "display_data"
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"data": {
|
287 |
+
"application/vnd.jupyter.widget-view+json": {
|
288 |
+
"model_id": "8476884d2c114598904427a1891a6beb",
|
289 |
+
"version_major": 2,
|
290 |
+
"version_minor": 0
|
291 |
+
},
|
292 |
+
"text/plain": [
|
293 |
+
"Downloading: 0%| | 0.00/1.04M [00:00<?, ?B/s]"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
"metadata": {},
|
297 |
+
"output_type": "display_data"
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"data": {
|
301 |
+
"application/vnd.jupyter.widget-view+json": {
|
302 |
+
"model_id": "4730d96e505a4cf0b9f2761a1201822b",
|
303 |
+
"version_major": 2,
|
304 |
+
"version_minor": 0
|
305 |
+
},
|
306 |
+
"text/plain": [
|
307 |
+
"Downloading: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
"metadata": {},
|
311 |
+
"output_type": "display_data"
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"application/vnd.jupyter.widget-view+json": {
|
316 |
+
"model_id": "ca8e61625c024428963339dfca8ecb67",
|
317 |
+
"version_major": 2,
|
318 |
+
"version_minor": 0
|
319 |
+
},
|
320 |
+
"text/plain": [
|
321 |
+
"Downloading: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "display_data"
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"name": "stderr",
|
329 |
+
"output_type": "stream",
|
330 |
+
"text": [
|
331 |
+
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"data": {
|
336 |
+
"text/plain": [
|
337 |
+
"[{'generated_text': 'In this class, I will speak as a lecturer to the students on social media (for those of you who are interested).\\nThere are many classes'},\n",
|
338 |
+
" {'generated_text': 'In this class, I will speak for a particular type of group of writers that I want to talk about, like us writers like us writers, people'}]"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
"execution_count": 14,
|
342 |
+
"metadata": {},
|
343 |
+
"output_type": "execute_result"
|
344 |
+
}
|
345 |
+
],
|
346 |
+
"source": [
|
347 |
+
"generator = pipeline(\"text-generation\", model=\"distilgpt2\")\n",
|
348 |
+
"generator(\n",
|
349 |
+
" \"In this class, I will speak\",\n",
|
350 |
+
" max_length=30,\n",
|
351 |
+
" num_return_sequences=2\n",
|
352 |
+
")"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": 15,
|
358 |
+
"metadata": {},
|
359 |
+
"outputs": [
|
360 |
+
{
|
361 |
+
"name": "stderr",
|
362 |
+
"output_type": "stream",
|
363 |
+
"text": [
|
364 |
+
"No model was supplied, defaulted to distilroberta-base and revision ec58a5b (https://huggingface.co/distilroberta-base).\n",
|
365 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"data": {
|
370 |
+
"application/vnd.jupyter.widget-view+json": {
|
371 |
+
"model_id": "cf08df8aa5a444649e21d7c0d7e64039",
|
372 |
+
"version_major": 2,
|
373 |
+
"version_minor": 0
|
374 |
+
},
|
375 |
+
"text/plain": [
|
376 |
+
"Downloading: 0%| | 0.00/480 [00:00<?, ?B/s]"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
"metadata": {},
|
380 |
+
"output_type": "display_data"
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"data": {
|
384 |
+
"application/vnd.jupyter.widget-view+json": {
|
385 |
+
"model_id": "8b5e4348c7904d0890da6b768461c5af",
|
386 |
+
"version_major": 2,
|
387 |
+
"version_minor": 0
|
388 |
+
},
|
389 |
+
"text/plain": [
|
390 |
+
"Downloading: 0%| | 0.00/331M [00:00<?, ?B/s]"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
"metadata": {},
|
394 |
+
"output_type": "display_data"
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"data": {
|
398 |
+
"application/vnd.jupyter.widget-view+json": {
|
399 |
+
"model_id": "100d8fbb75b14bea92bb635b116c1d08",
|
400 |
+
"version_major": 2,
|
401 |
+
"version_minor": 0
|
402 |
+
},
|
403 |
+
"text/plain": [
|
404 |
+
"Downloading: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
405 |
+
]
|
406 |
+
},
|
407 |
+
"metadata": {},
|
408 |
+
"output_type": "display_data"
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"data": {
|
412 |
+
"application/vnd.jupyter.widget-view+json": {
|
413 |
+
"model_id": "a4cdc5db6d7541918624369df29642ed",
|
414 |
+
"version_major": 2,
|
415 |
+
"version_minor": 0
|
416 |
+
},
|
417 |
+
"text/plain": [
|
418 |
+
"Downloading: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
"metadata": {},
|
422 |
+
"output_type": "display_data"
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"data": {
|
426 |
+
"application/vnd.jupyter.widget-view+json": {
|
427 |
+
"model_id": "d808f036abef4c62bea2dd62601502e8",
|
428 |
+
"version_major": 2,
|
429 |
+
"version_minor": 0
|
430 |
+
},
|
431 |
+
"text/plain": [
|
432 |
+
"Downloading: 0%| | 0.00/1.36M [00:00<?, ?B/s]"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
"metadata": {},
|
436 |
+
"output_type": "display_data"
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"data": {
|
440 |
+
"text/plain": [
|
441 |
+
"[{'score': 0.06216174364089966,\n",
|
442 |
+
" 'token': 42,\n",
|
443 |
+
" 'token_str': ' this',\n",
|
444 |
+
" 'sequence': 'The sky is blue and bright, I wonder what this is about.'},\n",
|
445 |
+
" {'score': 0.040428631007671356,\n",
|
446 |
+
" 'token': 24,\n",
|
447 |
+
" 'token_str': ' it',\n",
|
448 |
+
" 'sequence': 'The sky is blue and bright, I wonder what it is about.'},\n",
|
449 |
+
" {'score': 0.023530298843979836,\n",
|
450 |
+
" 'token': 14,\n",
|
451 |
+
" 'token_str': ' that',\n",
|
452 |
+
" 'sequence': 'The sky is blue and bright, I wonder what that is about.'}]"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
"execution_count": 15,
|
456 |
+
"metadata": {},
|
457 |
+
"output_type": "execute_result"
|
458 |
+
}
|
459 |
+
],
|
460 |
+
"source": [
|
461 |
+
"unmasker = pipeline(\"fill-mask\")\n",
|
462 |
+
"unmasker(\"The sky is blue and bright, I wonder what <mask> is about.\", top_k=3)"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": 16,
|
468 |
+
"metadata": {},
|
469 |
+
"outputs": [
|
470 |
+
{
|
471 |
+
"name": "stderr",
|
472 |
+
"output_type": "stream",
|
473 |
+
"text": [
|
474 |
+
"No model was supplied, defaulted to dbmdz/bert-large-cased-finetuned-conll03-english and revision f2482bf (https://huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english).\n",
|
475 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
476 |
+
]
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"data": {
|
480 |
+
"application/vnd.jupyter.widget-view+json": {
|
481 |
+
"model_id": "d1a918d701ee46ccb54ab2989305585f",
|
482 |
+
"version_major": 2,
|
483 |
+
"version_minor": 0
|
484 |
+
},
|
485 |
+
"text/plain": [
|
486 |
+
"Downloading: 0%| | 0.00/998 [00:00<?, ?B/s]"
|
487 |
+
]
|
488 |
+
},
|
489 |
+
"metadata": {},
|
490 |
+
"output_type": "display_data"
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"data": {
|
494 |
+
"application/vnd.jupyter.widget-view+json": {
|
495 |
+
"model_id": "a95eff2616b64dcfba172bc43dfe23be",
|
496 |
+
"version_major": 2,
|
497 |
+
"version_minor": 0
|
498 |
+
},
|
499 |
+
"text/plain": [
|
500 |
+
"Downloading: 0%| | 0.00/1.33G [00:00<?, ?B/s]"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
"metadata": {},
|
504 |
+
"output_type": "display_data"
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"data": {
|
508 |
+
"application/vnd.jupyter.widget-view+json": {
|
509 |
+
"model_id": "63c9f30a9542417aabc57971b9d9b44f",
|
510 |
+
"version_major": 2,
|
511 |
+
"version_minor": 0
|
512 |
+
},
|
513 |
+
"text/plain": [
|
514 |
+
"Downloading: 0%| | 0.00/60.0 [00:00<?, ?B/s]"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
"metadata": {},
|
518 |
+
"output_type": "display_data"
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"data": {
|
522 |
+
"application/vnd.jupyter.widget-view+json": {
|
523 |
+
"model_id": "e61894113e164c1eb5a66ad300971bfe",
|
524 |
+
"version_major": 2,
|
525 |
+
"version_minor": 0
|
526 |
+
},
|
527 |
+
"text/plain": [
|
528 |
+
"Downloading: 0%| | 0.00/213k [00:00<?, ?B/s]"
|
529 |
+
]
|
530 |
+
},
|
531 |
+
"metadata": {},
|
532 |
+
"output_type": "display_data"
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"name": "stderr",
|
536 |
+
"output_type": "stream",
|
537 |
+
"text": [
|
538 |
+
"/Users/florentiana.yuwono/anaconda3/lib/python3.10/site-packages/transformers/pipelines/token_classification.py:169: UserWarning: `grouped_entities` is deprecated and will be removed in version v5.0.0, defaulted to `aggregation_strategy=\"simple\"` instead.\n",
|
539 |
+
" warnings.warn(\n"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"data": {
|
544 |
+
"text/plain": [
|
545 |
+
"[{'entity_group': 'LOC',\n",
|
546 |
+
" 'score': 0.86960346,\n",
|
547 |
+
" 'word': 'Owl City',\n",
|
548 |
+
" 'start': 56,\n",
|
549 |
+
" 'end': 64}]"
|
550 |
+
]
|
551 |
+
},
|
552 |
+
"execution_count": 16,
|
553 |
+
"metadata": {},
|
554 |
+
"output_type": "execute_result"
|
555 |
+
}
|
556 |
+
],
|
557 |
+
"source": [
|
558 |
+
"ner = pipeline(\"ner\", grouped_entities=True)\n",
|
559 |
+
"\n",
|
560 |
+
"ner(\"Mine is Hilarious, usually spotted at united nations in Owl City.\")"
|
561 |
+
]
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"cell_type": "code",
|
565 |
+
"execution_count": 17,
|
566 |
+
"metadata": {},
|
567 |
+
"outputs": [
|
568 |
+
{
|
569 |
+
"name": "stderr",
|
570 |
+
"output_type": "stream",
|
571 |
+
"text": [
|
572 |
+
"No model was supplied, defaulted to distilbert-base-cased-distilled-squad and revision 626af31 (https://huggingface.co/distilbert-base-cased-distilled-squad).\n",
|
573 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"data": {
|
578 |
+
"application/vnd.jupyter.widget-view+json": {
|
579 |
+
"model_id": "95136a50322745ea8715e36e9e2a4b50",
|
580 |
+
"version_major": 2,
|
581 |
+
"version_minor": 0
|
582 |
+
},
|
583 |
+
"text/plain": [
|
584 |
+
"Downloading: 0%| | 0.00/473 [00:00<?, ?B/s]"
|
585 |
+
]
|
586 |
+
},
|
587 |
+
"metadata": {},
|
588 |
+
"output_type": "display_data"
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"data": {
|
592 |
+
"application/vnd.jupyter.widget-view+json": {
|
593 |
+
"model_id": "a1440abd06884310b97a38e669641a21",
|
594 |
+
"version_major": 2,
|
595 |
+
"version_minor": 0
|
596 |
+
},
|
597 |
+
"text/plain": [
|
598 |
+
"Downloading: 0%| | 0.00/261M [00:00<?, ?B/s]"
|
599 |
+
]
|
600 |
+
},
|
601 |
+
"metadata": {},
|
602 |
+
"output_type": "display_data"
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"data": {
|
606 |
+
"application/vnd.jupyter.widget-view+json": {
|
607 |
+
"model_id": "3359a992135d47a48b29f5e0f939eb44",
|
608 |
+
"version_major": 2,
|
609 |
+
"version_minor": 0
|
610 |
+
},
|
611 |
+
"text/plain": [
|
612 |
+
"Downloading: 0%| | 0.00/29.0 [00:00<?, ?B/s]"
|
613 |
+
]
|
614 |
+
},
|
615 |
+
"metadata": {},
|
616 |
+
"output_type": "display_data"
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"data": {
|
620 |
+
"application/vnd.jupyter.widget-view+json": {
|
621 |
+
"model_id": "bd5f68624b5c4b62b4c87d8e046b69f4",
|
622 |
+
"version_major": 2,
|
623 |
+
"version_minor": 0
|
624 |
+
},
|
625 |
+
"text/plain": [
|
626 |
+
"Downloading: 0%| | 0.00/213k [00:00<?, ?B/s]"
|
627 |
+
]
|
628 |
+
},
|
629 |
+
"metadata": {},
|
630 |
+
"output_type": "display_data"
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"data": {
|
634 |
+
"application/vnd.jupyter.widget-view+json": {
|
635 |
+
"model_id": "7160d2a6f8a942d7b298453684e9ee49",
|
636 |
+
"version_major": 2,
|
637 |
+
"version_minor": 0
|
638 |
+
},
|
639 |
+
"text/plain": [
|
640 |
+
"Downloading: 0%| | 0.00/436k [00:00<?, ?B/s]"
|
641 |
+
]
|
642 |
+
},
|
643 |
+
"metadata": {},
|
644 |
+
"output_type": "display_data"
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"data": {
|
648 |
+
"text/plain": [
|
649 |
+
"{'score': 0.4208132028579712,\n",
|
650 |
+
" 'start': 0,\n",
|
651 |
+
" 'end': 44,\n",
|
652 |
+
" 'answer': 'Mine is Hilarious, usually grab from library'}"
|
653 |
+
]
|
654 |
+
},
|
655 |
+
"execution_count": 17,
|
656 |
+
"metadata": {},
|
657 |
+
"output_type": "execute_result"
|
658 |
+
}
|
659 |
+
],
|
660 |
+
"source": [
|
661 |
+
"qa = pipeline(\"question-answering\")\n",
|
662 |
+
"qa(\n",
|
663 |
+
" question=\"Where is it?\",\n",
|
664 |
+
" context=\"Mine is Hilarious, usually grab from library though.\"\n",
|
665 |
+
")"
|
666 |
+
]
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"cell_type": "code",
|
670 |
+
"execution_count": 18,
|
671 |
+
"metadata": {},
|
672 |
+
"outputs": [
|
673 |
+
{
|
674 |
+
"name": "stderr",
|
675 |
+
"output_type": "stream",
|
676 |
+
"text": [
|
677 |
+
"No model was supplied, defaulted to sshleifer/distilbart-cnn-12-6 and revision a4f8f3e (https://huggingface.co/sshleifer/distilbart-cnn-12-6).\n",
|
678 |
+
"Using a pipeline without specifying a model name and revision in production is not recommended.\n"
|
679 |
+
]
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"data": {
|
683 |
+
"application/vnd.jupyter.widget-view+json": {
|
684 |
+
"model_id": "201842ea28eb45b9838d9ad77e90b528",
|
685 |
+
"version_major": 2,
|
686 |
+
"version_minor": 0
|
687 |
+
},
|
688 |
+
"text/plain": [
|
689 |
+
"Downloading: 0%| | 0.00/1.80k [00:00<?, ?B/s]"
|
690 |
+
]
|
691 |
+
},
|
692 |
+
"metadata": {},
|
693 |
+
"output_type": "display_data"
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"data": {
|
697 |
+
"application/vnd.jupyter.widget-view+json": {
|
698 |
+
"model_id": "848fa320643340798fc4e3c6119b567e",
|
699 |
+
"version_major": 2,
|
700 |
+
"version_minor": 0
|
701 |
+
},
|
702 |
+
"text/plain": [
|
703 |
+
"Downloading: 0%| | 0.00/1.22G [00:00<?, ?B/s]"
|
704 |
+
]
|
705 |
+
},
|
706 |
+
"metadata": {},
|
707 |
+
"output_type": "display_data"
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"data": {
|
711 |
+
"application/vnd.jupyter.widget-view+json": {
|
712 |
+
"model_id": "bf8110edeb18471fa048308bb782b089",
|
713 |
+
"version_major": 2,
|
714 |
+
"version_minor": 0
|
715 |
+
},
|
716 |
+
"text/plain": [
|
717 |
+
"Downloading: 0%| | 0.00/26.0 [00:00<?, ?B/s]"
|
718 |
+
]
|
719 |
+
},
|
720 |
+
"metadata": {},
|
721 |
+
"output_type": "display_data"
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"data": {
|
725 |
+
"application/vnd.jupyter.widget-view+json": {
|
726 |
+
"model_id": "b05eb6e6ada44e1ea88342739fc0f215",
|
727 |
+
"version_major": 2,
|
728 |
+
"version_minor": 0
|
729 |
+
},
|
730 |
+
"text/plain": [
|
731 |
+
"Downloading: 0%| | 0.00/899k [00:00<?, ?B/s]"
|
732 |
+
]
|
733 |
+
},
|
734 |
+
"metadata": {},
|
735 |
+
"output_type": "display_data"
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"data": {
|
739 |
+
"application/vnd.jupyter.widget-view+json": {
|
740 |
+
"model_id": "992d67bdfdb64d2387f4029d4edb8d4f",
|
741 |
+
"version_major": 2,
|
742 |
+
"version_minor": 0
|
743 |
+
},
|
744 |
+
"text/plain": [
|
745 |
+
"Downloading: 0%| | 0.00/456k [00:00<?, ?B/s]"
|
746 |
+
]
|
747 |
+
},
|
748 |
+
"metadata": {},
|
749 |
+
"output_type": "display_data"
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"data": {
|
753 |
+
"text/plain": [
|
754 |
+
"[{'summary_text': ' America has changed dramatically during recent years . The number of engineering graduates in the U.S. has declined in traditional engineering disciplines such as mechanical, civil, electrical, chemical, and aeronautical engineering . Rapidly developing economies such as China and India, as well as other industrial countries in Europe and Asia, continue to encourage and advance engineering .'}]"
|
755 |
+
]
|
756 |
+
},
|
757 |
+
"execution_count": 18,
|
758 |
+
"metadata": {},
|
759 |
+
"output_type": "execute_result"
|
760 |
+
}
|
761 |
+
],
|
762 |
+
"source": [
|
763 |
+
"summarizer = pipeline(\"summarization\")\n",
|
764 |
+
"summarizer(\n",
|
765 |
+
" \"\"\"\n",
|
766 |
+
" America has changed dramatically during recent years. Not only has the number of \n",
|
767 |
+
" graduates in traditional engineering disciplines such as mechanical, civil, \n",
|
768 |
+
" electrical, chemical, and aeronautical engineering declined, but in most of \n",
|
769 |
+
" the premier American universities engineering curricula now concentrate on \n",
|
770 |
+
" and encourage largely the study of engineering science. As a result, there \n",
|
771 |
+
" are declining offerings in engineering subjects dealing with infrastructure, \n",
|
772 |
+
" the environment, and related issues, and greater concentration on high \n",
|
773 |
+
" technology subjects, largely supporting increasingly complex scientific \n",
|
774 |
+
" developments. While the latter is important, it should not be at the expense \n",
|
775 |
+
" of more traditional engineering.\n",
|
776 |
+
"\n",
|
777 |
+
" Rapidly developing economies such as China and India, as well as other \n",
|
778 |
+
" industrial countries in Europe and Asia, continue to encourage and advance \n",
|
779 |
+
" the teaching of engineering. Both China and India, respectively, graduate \n",
|
780 |
+
" six and eight times as many traditional engineers as does the United States. \n",
|
781 |
+
" Other industrial countries at minimum maintain their output, while America \n",
|
782 |
+
" suffers an increasingly serious decline in the number of engineering graduates \n",
|
783 |
+
" and a lack of well-educated engineers.\n",
|
784 |
+
" \"\"\"\n",
|
785 |
+
")"
|
786 |
+
]
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"cell_type": "code",
|
790 |
+
"execution_count": 24,
|
791 |
+
"metadata": {},
|
792 |
+
"outputs": [
|
793 |
+
{
|
794 |
+
"ename": "ValueError",
|
795 |
+
"evalue": "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed in order to use this tokenizer.",
|
796 |
+
"output_type": "error",
|
797 |
+
"traceback": [
|
798 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
799 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
800 |
+
"Cell \u001b[0;32mIn[24], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m translator \u001b[39m=\u001b[39m pipeline(\u001b[39m\"\u001b[39;49m\u001b[39mtranslation\u001b[39;49m\u001b[39m\"\u001b[39;49m, model\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mHelsinki-NLP/opus-mt-fr-en\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n\u001b[1;32m 2\u001b[0m translator(\u001b[39m\"\u001b[39m\u001b[39mCe cours est produit par.\u001b[39m\u001b[39m\"\u001b[39m)\n",
|
801 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/pipelines/__init__.py:885\u001b[0m, in \u001b[0;36mpipeline\u001b[0;34m(task, model, config, tokenizer, feature_extractor, image_processor, framework, revision, use_fast, use_auth_token, device, device_map, torch_dtype, trust_remote_code, model_kwargs, pipeline_class, **kwargs)\u001b[0m\n\u001b[1;32m 882\u001b[0m tokenizer_kwargs \u001b[39m=\u001b[39m model_kwargs\u001b[39m.\u001b[39mcopy()\n\u001b[1;32m 883\u001b[0m tokenizer_kwargs\u001b[39m.\u001b[39mpop(\u001b[39m\"\u001b[39m\u001b[39mtorch_dtype\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mNone\u001b[39;00m)\n\u001b[0;32m--> 885\u001b[0m tokenizer \u001b[39m=\u001b[39m AutoTokenizer\u001b[39m.\u001b[39;49mfrom_pretrained(\n\u001b[1;32m 886\u001b[0m tokenizer_identifier, use_fast\u001b[39m=\u001b[39;49muse_fast, _from_pipeline\u001b[39m=\u001b[39;49mtask, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mhub_kwargs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mtokenizer_kwargs\n\u001b[1;32m 887\u001b[0m )\n\u001b[1;32m 889\u001b[0m \u001b[39mif\u001b[39;00m load_image_processor:\n\u001b[1;32m 890\u001b[0m \u001b[39m# Try to infer image processor from model or config name (if provided as str)\u001b[39;00m\n\u001b[1;32m 891\u001b[0m \u001b[39mif\u001b[39;00m image_processor \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n",
|
802 |
+
"File \u001b[0;32m~/anaconda3/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:714\u001b[0m, in \u001b[0;36mAutoTokenizer.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *inputs, **kwargs)\u001b[0m\n\u001b[1;32m 712\u001b[0m \u001b[39mreturn\u001b[39;00m tokenizer_class_py\u001b[39m.\u001b[39mfrom_pretrained(pretrained_model_name_or_path, \u001b[39m*\u001b[39minputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m 713\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 714\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 715\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mThis tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 716\u001b[0m \u001b[39m\"\u001b[39m\u001b[39min order to use this tokenizer.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 717\u001b[0m )\n\u001b[1;32m 719\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[1;32m 720\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mUnrecognized configuration class \u001b[39m\u001b[39m{\u001b[39;00mconfig\u001b[39m.\u001b[39m\u001b[39m__class__\u001b[39m\u001b[39m}\u001b[39;00m\u001b[39m to build an AutoTokenizer.\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[1;32m 721\u001b[0m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mModel type should be one of \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\u001b[39m.\u001b[39mjoin(c\u001b[39m.\u001b[39m\u001b[39m__name__\u001b[39m \u001b[39mfor\u001b[39;00m c \u001b[39min\u001b[39;00m TOKENIZER_MAPPING\u001b[39m.\u001b[39mkeys())\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 722\u001b[0m )\n",
|
803 |
+
"\u001b[0;31mValueError\u001b[0m: This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed in order to use this tokenizer."
|
804 |
+
]
|
805 |
+
}
|
806 |
+
],
|
807 |
+
"source": [
|
808 |
+
"translator = pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-fr-en\")\n",
|
809 |
+
"translator(\"Ce cours est produit par.\")"
|
810 |
+
]
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"attachments": {},
|
814 |
+
"cell_type": "markdown",
|
815 |
+
"metadata": {},
|
816 |
+
"source": [
|
817 |
+
"## Bias and limitations"
|
818 |
+
]
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"cell_type": "code",
|
822 |
+
"execution_count": 26,
|
823 |
+
"metadata": {},
|
824 |
+
"outputs": [
|
825 |
+
{
|
826 |
+
"data": {
|
827 |
+
"application/vnd.jupyter.widget-view+json": {
|
828 |
+
"model_id": "e7aa993970d14ab986e0a7ea1e60087a",
|
829 |
+
"version_major": 2,
|
830 |
+
"version_minor": 0
|
831 |
+
},
|
832 |
+
"text/plain": [
|
833 |
+
"Downloading: 0%| | 0.00/570 [00:00<?, ?B/s]"
|
834 |
+
]
|
835 |
+
},
|
836 |
+
"metadata": {},
|
837 |
+
"output_type": "display_data"
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"data": {
|
841 |
+
"application/vnd.jupyter.widget-view+json": {
|
842 |
+
"model_id": "67fc2d322c01448b97219733efdaed9e",
|
843 |
+
"version_major": 2,
|
844 |
+
"version_minor": 0
|
845 |
+
},
|
846 |
+
"text/plain": [
|
847 |
+
"Downloading: 0%| | 0.00/440M [00:00<?, ?B/s]"
|
848 |
+
]
|
849 |
+
},
|
850 |
+
"metadata": {},
|
851 |
+
"output_type": "display_data"
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"name": "stderr",
|
855 |
+
"output_type": "stream",
|
856 |
+
"text": [
|
857 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['cls.seq_relationship.weight', 'cls.seq_relationship.bias']\n",
|
858 |
+
"- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
859 |
+
"- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
|
860 |
+
]
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"data": {
|
864 |
+
"application/vnd.jupyter.widget-view+json": {
|
865 |
+
"model_id": "0621be2286144ee296194d349ae8dd5d",
|
866 |
+
"version_major": 2,
|
867 |
+
"version_minor": 0
|
868 |
+
},
|
869 |
+
"text/plain": [
|
870 |
+
"Downloading: 0%| | 0.00/28.0 [00:00<?, ?B/s]"
|
871 |
+
]
|
872 |
+
},
|
873 |
+
"metadata": {},
|
874 |
+
"output_type": "display_data"
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"data": {
|
878 |
+
"application/vnd.jupyter.widget-view+json": {
|
879 |
+
"model_id": "674c967d777243819fc3dc85915a1764",
|
880 |
+
"version_major": 2,
|
881 |
+
"version_minor": 0
|
882 |
+
},
|
883 |
+
"text/plain": [
|
884 |
+
"Downloading: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
885 |
+
]
|
886 |
+
},
|
887 |
+
"metadata": {},
|
888 |
+
"output_type": "display_data"
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"data": {
|
892 |
+
"application/vnd.jupyter.widget-view+json": {
|
893 |
+
"model_id": "d27abdd37df84243b85e16dea5d6d65e",
|
894 |
+
"version_major": 2,
|
895 |
+
"version_minor": 0
|
896 |
+
},
|
897 |
+
"text/plain": [
|
898 |
+
"Downloading: 0%| | 0.00/466k [00:00<?, ?B/s]"
|
899 |
+
]
|
900 |
+
},
|
901 |
+
"metadata": {},
|
902 |
+
"output_type": "display_data"
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"name": "stdout",
|
906 |
+
"output_type": "stream",
|
907 |
+
"text": [
|
908 |
+
"['carpenter', 'lawyer', 'farmer', 'businessman', 'doctor']\n",
|
909 |
+
"['nurse', 'maid', 'teacher', 'waitress', 'prostitute']\n"
|
910 |
+
]
|
911 |
+
}
|
912 |
+
],
|
913 |
+
"source": [
|
914 |
+
"unmasker = pipeline(\"fill-mask\", model=\"bert-base-uncased\")\n",
|
915 |
+
"result = unmasker(\"This man works as a [MASK].\")\n",
|
916 |
+
"print([r[\"token_str\"] for r in result])\n",
|
917 |
+
"\n",
|
918 |
+
"result = unmasker(\"This woman works as a [MASK].\")\n",
|
919 |
+
"print([r[\"token_str\"] for r in result])"
|
920 |
+
]
|
921 |
+
}
|
922 |
+
],
|
923 |
+
"metadata": {
|
924 |
+
"kernelspec": {
|
925 |
+
"display_name": "datascience",
|
926 |
+
"language": "python",
|
927 |
+
"name": "python3"
|
928 |
+
},
|
929 |
+
"language_info": {
|
930 |
+
"codemirror_mode": {
|
931 |
+
"name": "ipython",
|
932 |
+
"version": 3
|
933 |
+
},
|
934 |
+
"file_extension": ".py",
|
935 |
+
"mimetype": "text/x-python",
|
936 |
+
"name": "python",
|
937 |
+
"nbconvert_exporter": "python",
|
938 |
+
"pygments_lexer": "ipython3",
|
939 |
+
"version": "3.10.9"
|
940 |
+
},
|
941 |
+
"orig_nbformat": 4
|
942 |
+
},
|
943 |
+
"nbformat": 4,
|
944 |
+
"nbformat_minor": 2
|
945 |
+
}
|