--- language: - de dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 170912314562.13522 num_examples: 30558837 download_size: 104029383895 dataset_size: 170912314562.13522 configs: - config_name: default data_files: - split: train path: data/train-* --- ```python import os import datasets import torch from transformers import ModernBertForSequenceClassification, pipeline _GPU_ID = os.getenv("CUDA_VISIBLE_DEVICES", "0") def load_model(gpu_index=0): model = ModernBertForSequenceClassification.from_pretrained( "flozi00/GermanEduScorer-ModernBERT-base", reference_compile=False, attn_implementation="sdpa", ).to(torch.bfloat16) model = torch.compile(model, dynamic=True, mode="max-autotune") pipe = pipeline( "text-classification", model=model, tokenizer="flozi00/GermanEduScorer-ModernBERT-base", device=gpu_index, torch_dtype=torch.bfloat16, ) return pipe pipe0 = load_model(0) tokenizer_kwargs = {"truncation": True} BAD_WORDS = [ "Sofort lieferbar", ] def process_chunk(pipe, texts): if not texts: return [] return [ int(x["label"]) for x in pipe( texts, batch_size=256, truncation=True, max_length=1024, ) ] def classification_wrapper(text_list: list): return process_chunk(pipe0, text_list) def map_edu(example): example["content"] = example["text"] example["label"] = classification_wrapper(example["text"]) return example for SET_ID in ["0", "1", "2", "3"]: base_url = "https://huggingface.co/datasets/HuggingFaceFW/fineweb-2/resolve/main/data/deu_Latn/train/" data_files = { "train": [base_url + f"00{SET_ID}_0000{i}.parquet" for i in range(10)] + [base_url + f"00{SET_ID}_000{i}.parquet" for i in range(10, 38)] } fineweb = datasets.load_dataset( "parquet", data_files=data_files, split="train", num_proc=4, cache_dir=f"./cache_fineweb_{SET_ID}", ) chunk_size = 100_000 part_size = len(fineweb) // 4 total_samples = part_size * (int(_GPU_ID) + 1) output_path = f"fineweb2_edu_4up_german_split_{int(SET_ID)+1}-of-4" for i in range(part_size * int(_GPU_ID), total_samples, chunk_size): end_idx = min(i + chunk_size, total_samples) checkpoint_path = f"chunks/{output_path}_chunk_{i}" # Try to load existing chunk try: dset = datasets.load_from_disk(checkpoint_path) print(f"Chunk {i} to {end_idx} already processed, skipping...") continue except Exception: print(f"Processing chunk {i} to {end_idx} of {total_samples}") chunk = fineweb.select(range(i, end_idx)) processed_chunk = chunk.map( map_edu, remove_columns=chunk.column_names, batch_size=1024, batched=True, ).filter(lambda x: x["label"] >= 4, num_proc=8) processed_chunk = processed_chunk.rename_column("content", "text") processed_chunk.save_to_disk(checkpoint_path) print(f"Saved checkpoint to {checkpoint_path}") if i % 1_000_000 == 0 and _GPU_ID == "0" and i > 0: sets_to_push = [] # list all folders in the chunks directory for folder in os.listdir("chunks"): # load the dataset sets_to_push.append(datasets.load_from_disk(f"chunks/{folder}")) state_ds = datasets.concatenate_datasets(sets_to_push) for bad_word in BAD_WORDS: state_ds = state_ds.filter( lambda x: bad_word not in x["text"], num_proc=8 ) state_ds = state_ds.filter( lambda x: len(x["text"]) > 1024 and len(x["text"]) <= 100_000, num_proc=8, ) state_ds.push_to_hub("Fineweb2-German-Eduscore-4andMore") ```