Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 6,780 Bytes
d1894e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443e9e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e920d1
443e9e8
 
 
 
8c77eda
443e9e8
 
982234a
8c77eda
443e9e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: speaker_id
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '"Applause"'
          '1': '"Breathing"'
          '2': '"Chatter"'
          '3': '"Clapping"'
          '4': '"Clicking"'
          '5': '"Conversation"'
          '6': '"Cough"'
          '7': '"Crowd"'
          '8': '"Door"'
          '9': '"Female speech'
          '10': '"Hubbub'
          '11': '"Inside'
          '12': '"Knock"'
          '13': '"Laughter"'
          '14': '"Male speech'
          '15': '"None of the above"'
          '16': '"Pink noise"'
          '17': '"Silence"'
          '18': '"Speech"'
          '19': '"Television"'
          '20': '"Throat clearing"'
          '21': '"Typing"'
          '22': '"Walk'
          '23': '"White noise"'
  - name: start
    dtype: string
  - name: id
    dtype:
      class_label:
        names:
          '0': /m/01b_21
          '1': /m/01h8n0
          '2': /m/01j3sz
          '3': /m/028ght
          '4': /m/028v0c
          '5': /m/02dgv
          '6': /m/02zsn
          '7': /m/0316dw
          '8': /m/03qtwd
          '9': /m/05zppz
          '10': /m/07c52
          '11': /m/07pbtc8
          '12': /m/07qc9xj
          '13': /m/07qfr4h
          '14': /m/07r4wb8
          '15': /m/07rkbfh
          '16': /m/09x0r
          '17': /m/0chx_
          '18': /m/0cj0r
          '19': /m/0dl9sf8
          '20': /m/0l15bq
          '21': /m/0lyf6
          '22': /t/dd00125
          '23': /t/dd00126
          '24': none
  splits:
  - name: train
    num_bytes: 2193371354.8
    num_examples: 70254
  download_size: 2135840263
  dataset_size: 2193371354.8
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: unknown
task_categories:
- audio-classification
size_categories:
- 10K<n<100K
---
# Dataset Card for Ambient Acoustic Context

The Ambient Acoustic Context dataset contains 1-second segments for activities that occur in a workplace setting. Each segment is associated with speaker_id.

## Dataset Details

Using Amazin Mechanical Turk, crowd workers were asked to listen to 1-second segments and choose the right label. To ensure the quality of the annotations, audio segments that did not reach majority agreement among the turkers were excluded.


### Dataset Sources

- **Paper:** https://dl.acm.org/doi/10.1145/3379503.3403535
- **Website** https://www.esense.io/datasets/ambientacousticcontext/index.html

## Uses

In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.

To partition the dataset, do the following. 
1. Install the package.
```bash
pip install flwr-datasets[audio]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import NaturalIdPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/ambient-acoustic-context",
    partitioners={"train": NaturalIdPartitioner(partition_by="speaker_id")}
)
partition = fds.load_partition(partition_id=0)
```

## Dataset Structure

### Data Instances
The first instance of the train split is presented below:
```
{'audio': {'path': 'id_-kyuX8l4VWY_30_40_05.wav',
  'array': array([-0.09686279, -0.00747681, -0.0149231 , ...,  0.12243652,
          0.15652466,  0.0710144 ]),
  'sampling_rate': 16000},
 'speaker_id': 'id_-kyuX8l4VWY_30_40',
 'label': 7,
 'start': '69',
 'id': 8}
```
### Data Split

```
DatasetDict({
    train: Dataset({
        features: ['audio', 'speaker_id', 'label', 'start', 'id'],
        num_rows: 70254
    })
})
```

## Citation

When working with the Ambient Acoustic Context dataset, please cite the original paper. 
If you're using this dataset with Flower Datasets and Flower, cite Flower.

**BibTeX:**

Original paper:
```
@inproceedings{10.1145/3379503.3403535,
author = {Park, Chunjong and Min, Chulhong and Bhattacharya, Sourav and Kawsar, Fahim},
title = {Augmenting Conversational Agents with Ambient Acoustic Contexts},
year = {2020},
isbn = {9781450375160},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3379503.3403535},
doi = {10.1145/3379503.3403535},
abstract = {Conversational agents are rich in content today. However, they are entirely oblivious to users’ situational context, limiting their ability to adapt their response and interaction style. To this end, we explore the design space for a context augmented conversational agent, including analysis of input segment dynamics and computational alternatives. Building on these, we propose a solution that redesigns the input segment intelligently for ambient context recognition, achieved in a two-step inference pipeline. We first separate the non-speech segment from acoustic signals and then use a neural network to infer diverse ambient contexts. To build the network, we curated a public audio dataset through crowdsourcing. Our experimental results demonstrate that the proposed network can distinguish between 9 ambient contexts with an average F1 score of 0.80 with a computational latency of 3 milliseconds. We also build a compressed neural network for on-device processing, optimised for both accuracy and latency. Finally, we present a concrete manifestation of our solution in designing a context-aware conversational agent and demonstrate use cases.},
booktitle = {22nd International Conference on Human-Computer Interaction with Mobile Devices and Services},
articleno = {33},
numpages = {9},
keywords = {Acoustic ambient context, Conversational agents},
location = {Oldenburg, Germany},
series = {MobileHCI '20}
}
````

Flower:

```
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

## Dataset Card Contact

In case of any doubts about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).