Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,557 Bytes
17c5d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec6286
 
 
 
 
17c5d3e
3ec6286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': accordion
          '1': airplanes
          '2': anchor
          '3': ant
          '4': barrel
          '5': bass
          '6': beaver
          '7': binocular
          '8': bonsai
          '9': brain
          '10': brontosaurus
          '11': buddha
          '12': butterfly
          '13': camera
          '14': cannon
          '15': car_side
          '16': ceiling_fan
          '17': cellphone
          '18': chair
          '19': chandelier
          '20': cougar_body
          '21': cougar_face
          '22': crab
          '23': crayfish
          '24': crocodile
          '25': crocodile_head
          '26': cup
          '27': dalmatian
          '28': dollar_bill
          '29': dolphin
          '30': dragonfly
          '31': electric_guitar
          '32': elephant
          '33': emu
          '34': euphonium
          '35': ewer
          '36': faces
          '37': faces_easy
          '38': ferry
          '39': flamingo
          '40': flamingo_head
          '41': garfield
          '42': gerenuk
          '43': gramophone
          '44': grand_piano
          '45': hawksbill
          '46': headphone
          '47': hedgehog
          '48': helicopter
          '49': ibis
          '50': inline_skate
          '51': joshua_tree
          '52': kangaroo
          '53': ketch
          '54': lamp
          '55': laptop
          '56': leopards
          '57': llama
          '58': lobster
          '59': lotus
          '60': mandolin
          '61': mayfly
          '62': menorah
          '63': metronome
          '64': minaret
          '65': motorbikes
          '66': nautilus
          '67': octopus
          '68': okapi
          '69': pagoda
          '70': panda
          '71': pigeon
          '72': pizza
          '73': platypus
          '74': pyramid
          '75': revolver
          '76': rhino
          '77': rooster
          '78': saxophone
          '79': schooner
          '80': scissors
          '81': scorpion
          '82': sea_horse
          '83': snoopy
          '84': soccer_ball
          '85': stapler
          '86': starfish
          '87': stegosaurus
          '88': stop_sign
          '89': strawberry
          '90': sunflower
          '91': tick
          '92': trilobite
          '93': umbrella
          '94': watch
          '95': water_lilly
          '96': wheelchair
          '97': wild_cat
          '98': windsor_chair
          '99': wrench
          '100': yin_yang
  splits:
  - name: train
    num_bytes: 121007587.037
    num_examples: 8677
  download_size: 121217709
  dataset_size: 121007587.037
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
license: unknown
task_categories:
- image-classification
size_categories:
- 1K<n<10K
---
# Dataset Card for Caltech 101

This dataset contains images of objects from 101 distinct categories, with each category comprising approximately 40 to 800 images. The majority of categories include around 50 images each. The images were collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc’Aurelio Ranzato. Each image has an approximate resolution of 300 x 200 pixels.

### Dataset Sources

- **Website:** https://data.caltech.edu/records/mzrjq-6wc02

## Use in FL

In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.

To partition the dataset, do the following. 
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/caltech101",
    partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)
```

## Dataset Structure

### Data Instances

The first instance of the train split is presented below:
```
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=397x150>,
 'label': 1
}
```
### Data Split

```
DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 8677
    })
})
```

## Implementation details

Note that in this implementation, the string labels are first transformed into lowercase and then sorted alphabetically before providing the integer mapping. This methodology can vary across implementations. 

## Citation

When working with the Office-Home dataset, please cite the original paper. 
If you're using this dataset with Flower Datasets and Flower, cite Flower.

**BibTeX:**

Dataset Bibtex:

```
@misc{li2022caltech,
  title        = {Caltech 101},
  author       = {Li, Fei-Fei and Andreeto, Marco and Ranzato, Marc'Aurelio and Perona, Pietro},
  year         = {2022},
  month        = {Apr},
  publisher    = {CaltechDATA},
  doi          = {10.22002/D1.20086},
  abstract     = {Pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a MATLAB script to view the annotations, 'show_annotations.m'.}
}
````

Flower:

```
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

## Dataset Card Contact

If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).