--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': accordion '1': airplanes '2': anchor '3': ant '4': barrel '5': bass '6': beaver '7': binocular '8': bonsai '9': brain '10': brontosaurus '11': buddha '12': butterfly '13': camera '14': cannon '15': car_side '16': ceiling_fan '17': cellphone '18': chair '19': chandelier '20': cougar_body '21': cougar_face '22': crab '23': crayfish '24': crocodile '25': crocodile_head '26': cup '27': dalmatian '28': dollar_bill '29': dolphin '30': dragonfly '31': electric_guitar '32': elephant '33': emu '34': euphonium '35': ewer '36': faces '37': faces_easy '38': ferry '39': flamingo '40': flamingo_head '41': garfield '42': gerenuk '43': gramophone '44': grand_piano '45': hawksbill '46': headphone '47': hedgehog '48': helicopter '49': ibis '50': inline_skate '51': joshua_tree '52': kangaroo '53': ketch '54': lamp '55': laptop '56': leopards '57': llama '58': lobster '59': lotus '60': mandolin '61': mayfly '62': menorah '63': metronome '64': minaret '65': motorbikes '66': nautilus '67': octopus '68': okapi '69': pagoda '70': panda '71': pigeon '72': pizza '73': platypus '74': pyramid '75': revolver '76': rhino '77': rooster '78': saxophone '79': schooner '80': scissors '81': scorpion '82': sea_horse '83': snoopy '84': soccer_ball '85': stapler '86': starfish '87': stegosaurus '88': stop_sign '89': strawberry '90': sunflower '91': tick '92': trilobite '93': umbrella '94': watch '95': water_lilly '96': wheelchair '97': wild_cat '98': windsor_chair '99': wrench '100': yin_yang splits: - name: train num_bytes: 121007587.037 num_examples: 8677 download_size: 121217709 dataset_size: 121007587.037 configs: - config_name: default data_files: - split: train path: data/train-* license: unknown task_categories: - image-classification size_categories: - 1K, 'label': 1 } ``` ### Data Split ``` DatasetDict({ train: Dataset({ features: ['image', 'label'], num_rows: 8677 }) }) ``` ## Implementation details Note that in this implementation, the string labels are first transformed into lowercase and then sorted alphabetically before providing the integer mapping. This methodology can vary across implementations. ## Citation When working with the Caltech-101 dataset, please cite the original paper. If you're using this dataset with Flower Datasets and Flower, cite Flower. **BibTeX:** Dataset Bibtex: ``` @misc{li2022caltech, title = {Caltech 101}, author = {Li, Fei-Fei and Andreeto, Marco and Ranzato, Marc'Aurelio and Perona, Pietro}, year = {2022}, month = {Apr}, publisher = {CaltechDATA}, doi = {10.22002/D1.20086}, abstract = {Pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a MATLAB script to view the annotations, 'show_annotations.m'.} } ```` Flower: ``` @article{DBLP:journals/corr/abs-2007-14390, author = {Daniel J. Beutel and Taner Topal and Akhil Mathur and Xinchi Qiu and Titouan Parcollet and Nicholas D. Lane}, title = {Flower: {A} Friendly Federated Learning Research Framework}, journal = {CoRR}, volume = {abs/2007.14390}, year = {2020}, url = {https://arxiv.org/abs/2007.14390}, eprinttype = {arXiv}, eprint = {2007.14390}, timestamp = {Mon, 03 Aug 2020 14:32:13 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ## Dataset Card Contact If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).