Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,553 Bytes
44c23ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: cc-by-4.0
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': airplane
          '1': automobile
          '2': bird
          '3': cat
          '4': deer
          '5': dog
          '6': frog
          '7': horse
          '8': ship
          '9': truck
  splits:
  - name: train
    num_bytes: 178662714
    num_examples: 90000
  - name: validation
    num_bytes: 180126542
    num_examples: 90000
  - name: test
    num_bytes: 178913694
    num_examples: 90000
  download_size: 771149160
  dataset_size: 537702950
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
task_categories:
- image-classification
size_categories:
- 100K<n<1M
---
# Dataset Card for CINIC-10

CINIC-10 has a total of 270,000 images equally split amongst three subsets: train, validate, and test. This means that CINIC-10 has 4.5 times as many samples than CIFAR-10. 

## Dataset Details

In each subset (90,000 images), there are ten classes (identical to [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) classes). There are 9000 images per class per subset. Using the suggested data split (an equal three-way split), CINIC-10 has 1.8 times as many training samples as in CIFAR-10. CINIC-10 is designed to be directly swappable with CIFAR-10. 
To understand the motivation behind the dataset creation please visit the [GitHub repository](https://github.com/BayesWatch/cinic-10 ).

### Dataset Sources

- **Repository:** https://github.com/BayesWatch/cinic-10 
- **Paper:** https://arxiv.org/abs/1810.03505
- **Dataset:** http://dx.doi.org/10.7488/ds/2448
- **Benchmarking, Papers with code:** https://paperswithcode.com/sota/image-classification-on-cinic-10

## Use in FL

In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.

To partition the dataset, do the following. 
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/cinic10",
    partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)
```

## Dataset Structure

### Data Instances
The first instance of the train split is presented below:
```
{
  'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32>,
  'label': 0
}
```
### Data Split

```
DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 90000
    })
    validation: Dataset({
        features: ['image', 'label'],
        num_rows: 90000
    })
    test: Dataset({
        features: ['image', 'label'],
        num_rows: 90000
    })
})
```

## Citation

When working with the CINIC-10 dataset, please cite the original paper. 
If you're using this dataset with Flower Datasets and Flower, cite Flower.

**BibTeX:**

Original paper:
```
@misc{darlow2018cinic10imagenetcifar10,
      title={CINIC-10 is not ImageNet or CIFAR-10}, 
      author={Luke N. Darlow and Elliot J. Crowley and Antreas Antoniou and Amos J. Storkey},
      year={2018},
      eprint={1810.03505},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/1810.03505}, 
}
````

Flower:

```
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

## Dataset Card Contact

If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).