--- dataset_info: features: - name: image dtype: image - name: center dtype: int64 - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' splits: - name: train num_bytes: 100322881.119 num_examples: 18597 - name: test num_bytes: 25524081.6 num_examples: 4650 download_size: 143843380 dataset_size: 125846962.71900001 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* license: cc-by-nc-4.0 task_categories: - image-classification size_categories: - 10K, 'center': 0, 'label': 2 } ``` ### Data Split ``` DatasetDict({ train: Dataset({ features: ['image', 'center', 'label'], num_rows: 18597 }) test: Dataset({ features: ['image', 'center', 'label'], num_rows: 4650 }) }) ``` ## Citation When working with the Fed-ISIC-2019 dataset, please cite the original paper. If you're using this dataset with Flower Datasets and Flower, cite Flower. **BibTeX:** FLamby: ``` @inproceedings{NEURIPS2022_232eee8e, author = {Ogier du Terrail, Jean and Ayed, Samy-Safwan and Cyffers, Edwige and Grimberg, Felix and He, Chaoyang and Loeb, Regis and Mangold, Paul and Marchand, Tanguy and Marfoq, Othmane and Mushtaq, Erum and Muzellec, Boris and Philippenko, Constantin and Silva, Santiago and Tele\'{n}czuk, Maria and Albarqouni, Shadi and Avestimehr, Salman and Bellet, Aur\'{e}lien and Dieuleveut, Aymeric and Jaggi, Martin and Karimireddy, Sai Praneeth and Lorenzi, Marco and Neglia, Giovanni and Tommasi, Marc and Andreux, Mathieu}, booktitle = {Advances in Neural Information Processing Systems}, editor = {S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh}, pages = {5315--5334}, publisher = {Curran Associates, Inc.}, title = {FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings}, url = {https://proceedings.neurips.cc/paper_files/paper/2022/file/232eee8ef411a0a316efa298d7be3c2b-Paper-Datasets_and_Benchmarks.pdf}, volume = {35}, year = {2022} } ```` Flower: ``` @article{DBLP:journals/corr/abs-2007-14390, author = {Daniel J. Beutel and Taner Topal and Akhil Mathur and Xinchi Qiu and Titouan Parcollet and Nicholas D. Lane}, title = {Flower: {A} Friendly Federated Learning Research Framework}, journal = {CoRR}, volume = {abs/2007.14390}, year = {2020}, url = {https://arxiv.org/abs/2007.14390}, eprinttype = {arXiv}, eprint = {2007.14390}, timestamp = {Mon, 03 Aug 2020 14:32:13 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ## Other References The "ISIC 2019: Training" is the aggregate of the following datasets: BCN_20000 Dataset: (c) Department of Dermatology, Hospital Clínic de Barcelona HAM10000 Dataset: (c) by ViDIR Group, Department of Dermatology, Medical University of Vienna; HAM10000 dataset MSK Dataset: (c) Anonymous; challenge 2017; challenge 2018 See below the full citations: [1] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi.10.1038/sdata.2018.161 (2018). [2] Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W. Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, Allan Halpern: “Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC)”, 2017; arXiv:1710.05006. [3] Marc Combalia, Noel C. F. Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer Reiter, Allan C. Halpern, Susana Puig, Josep Malvehy: “BCN20000: Dermoscopic Lesions in the Wild”, 2019; arXiv:1908.02288. ## Dataset Card Contact If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).