Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,779 Bytes
34cfc38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a391e37
 
 
 
 
34cfc38
a391e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
          '2': '2'
          '3': '3'
          '4': '4'
          '5': '5'
          '6': '6'
          '7': '7'
          '8': '8'
          '9': '9'
  splits:
  - name: train
    num_bytes: 2194749.625
    num_examples: 7291
  - name: test
    num_bytes: 609594.125
    num_examples: 2007
  download_size: 2559509
  dataset_size: 2804343.75
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: unknown
task_categories:
- image-classification
size_categories:
- 1K<n<10K
---

# Dataset Card for USPS

USPS is a digit dataset automatically scanned from envelopes by the U.S. Postal Service containing a total of 9,298 16×16 pixel grayscale samples.

## Dataset Details

The images are centered and normalized. They show a broad range of font styles.


### Dataset Sources

- **Repository:** train set https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2, test set: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2
- **Paper:** https://ieeexplore.ieee.org/abstract/document/291440

## Uses

In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.

To partition the dataset, do the following. 
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import IidPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/usps",
    partitioners={"train": IidPartitioner(num_partitions=10)}
)
partition = fds.load_partition(partition_id=0)
```

## Dataset Structure

### Data Instances
The first instance of the train split is presented below:
```
{
  'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=16x16 at 0x133B4BA90>,
  'label': 6
}
```
### Data Split

```
DatasetDict({
    train: Dataset({
        features: ['image', 'label'],
        num_rows: 7291
    })
    test: Dataset({
        features: ['image', 'label'],
        num_rows: 2007
    })
})
```

## Citation

When working with the USPS dataset, please cite the original paper. 
If you're using this dataset with Flower Datasets and Flower, cite Flower.

**BibTeX:**

Original paper:
```
@article{hull1994database,
  title={A database for handwritten text recognition research},
  journal={IEEE Transactions on pattern analysis and machine intelligence},
  volume={16},
  number={5},
  pages={550--554},
  year={1994},
  publisher={IEEE}
}
````

Flower:

```
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

## Dataset Card Contact

In case of any doubts about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).