File size: 4,558 Bytes
b7c1a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import collections
import json
import os

import datasets



_CATEGORIES = ['bordered', 'borderless']
_ANNOTATION_FILENAME = "_annotations.coco.json"


class TABLEEXTRACTIONConfig(datasets.BuilderConfig):
    """Builder Config for table-extraction"""

    def __init__(self, data_urls, **kwargs):
        """
        BuilderConfig for table-extraction.
        Args:
          data_urls: `dict`, name to url to download the zip file from.
          **kwargs: keyword arguments forwarded to super.
        """
        super(TABLEEXTRACTIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_urls = data_urls


class TABLEEXTRACTION(datasets.GeneratorBasedBuilder):
    """table-extraction object detection dataset"""

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        TABLEEXTRACTIONConfig(
            name="full",
            description="Full version of table-extraction dataset.",
            data_urls={
                "train": "https://huggingface.co/datasets/foduucom/table-detection-yolo/resolve/main/data/train.zip",
                "validation": "https://huggingface.co/datasets/foduucom/table-detection-yolo/resolve/main/data/valid.zip",
                "test": "https://huggingface.co/datasets/foduucom/table-detection-yolo/resolve/main/data/test.zip",
            },
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "image_id": datasets.Value("int64"),
                "image": datasets.Image(),
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
                "objects": datasets.Sequence(
                    {
                        "id": datasets.Value("int64"),
                        "area": datasets.Value("int64"),
                        "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                        "category": datasets.ClassLabel(names=_CATEGORIES),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            features=features
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(self.config.data_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "folder_dir": data_files["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "folder_dir": data_files["validation"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "folder_dir": data_files["test"],
                },
            ),
]

    def _generate_examples(self, folder_dir):
        def process_annot(annot, category_id_to_category):
            return {
                "id": annot["id"],
                "area": annot["area"],
                "bbox": annot["bbox"],
                "category": category_id_to_category[annot["category_id"]],
            }

        image_id_to_image = {}
        idx = 0

        annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
        with open(annotation_filepath, "r") as f:
            annotations = json.load(f)
        category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
        image_id_to_annotations = collections.defaultdict(list)
        for annot in annotations["annotations"]:
            image_id_to_annotations[annot["image_id"]].append(annot)
        filename_to_image = {image["file_name"]: image for image in annotations["images"]}

        for filename in os.listdir(folder_dir):
            filepath = os.path.join(folder_dir, filename)
            if filename in filename_to_image:
                image = filename_to_image[filename]
                objects = [
                    process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
                ]
                with open(filepath, "rb") as f:
                    image_bytes = f.read()
                yield idx, {
                    "image_id": image["id"],
                    "image": {"path": filepath, "bytes": image_bytes},
                    "width": image["width"],
                    "height": image["height"],
                    "objects": objects,
                }
                idx += 1