nehulagrawal commited on
Commit
2eae4d5
·
1 Parent(s): 8125602

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -110
README.md CHANGED
@@ -1,133 +1,61 @@
1
  ---
2
- language:
3
- - en
4
  task_categories:
5
  - object-detection
6
  tags:
7
- - finance
8
  - table
9
- - structured table
10
- - unstructured table
11
- - documents
12
- pretty_name: TableBorderNet
13
- size_categories:
14
- - 1K<n<10K
15
  ---
 
 
 
16
 
17
- ```
18
- # Dataset Card for Table Detection Dataset
19
-
20
- ## Table of Contents
21
- - [Dataset Description](#dataset-description)
22
- - [Dataset Summary](#dataset-summary)
23
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
24
- - [Languages](#languages)
25
- - [Dataset Structure](#dataset-structure)
26
- - [Data Instances](#data-instances)
27
- - [Data Fields](#data-fields)
28
- - [Data Splits](#data-splits)
29
- - [Dataset Creation](#dataset-creation)
30
- - [Curation Rationale](#curation-rationale)
31
- - [Source Data](#source-data)
32
- - [Annotations](#annotations)
33
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
34
- - [Considerations for Using the Data](#considerations-for-using-the-data)
35
- - [Social Impact of Dataset](#social-impact-of-dataset)
36
- - [Discussion of Biases](#discussion-of-biases)
37
- - [Other Known Limitations](#other-known-limitations)
38
- - [Additional Information](#additional-information)
39
- - [Dataset Curators](#dataset-curators)
40
- - [Licensing Information](#licensing-information)
41
- - [Citation Information](#citation-information)
42
- - [Contributions](#contributions)
43
-
44
- ## Dataset Description
45
-
46
- ### Dataset Summary
47
-
48
- The Table Detection Dataset contains images of tables, categorized into 'bordered' and 'borderless' classes. The dataset is provided in YOLO format and aims to support research and development in table detection.
49
-
50
- ### Supported Tasks and Leaderboards
51
-
52
- The dataset is intended for the task of table detection, specifically distinguishing between tables with borders ('bordered') and tables without borders ('borderless').
53
-
54
- ### Languages
55
-
56
- The dataset primarily contains images with associated annotations in YOLO format.
57
-
58
- ## Dataset Structure
59
-
60
- ### Data Instances
61
-
62
- The dataset includes various instances of images containing tables, each labeled with class annotations.
63
-
64
- ### Data Fields
65
-
66
- The data fields in each annotation include class label ('bordered' or 'borderless') along with bounding box coordinates.
67
-
68
- ### Data Splits
69
-
70
- The dataset is provided as a unified collection without predefined data splits.
71
-
72
- ## Dataset Creation
73
-
74
- ### Curation Rationale
75
-
76
- The dataset was created to address the need for a comprehensive table detection dataset with a focus on border classification.
77
 
78
- ### Source Data
79
-
80
- #### Initial Data Collection and Normalization
81
-
82
- The source data was collected and normalized to create a diverse collection of table images.
83
-
84
- #### Who are the source language producers?
85
-
86
- The dataset was curated by FODUU AI.
87
-
88
- ### Annotations
89
-
90
- #### Annotation process
91
-
92
- Annotations were created using YOLO format, providing class labels and bounding box information.
93
-
94
- #### Who are the annotators?
95
-
96
- Annotations were carried out by experts at FODUU AI.
97
-
98
- ### Personal and Sensitive Information
99
-
100
- The dataset does not contain personal or sensitive information.
101
-
102
- ## Considerations for Using the Data
103
 
104
- ### Social Impact of Dataset
105
 
106
- The dataset's usage can contribute to advancements in table detection technology, benefiting fields such as document analysis, data extraction, and more.
107
 
108
- ### Discussion of Biases
 
 
109
 
110
- No specific biases have been identified in the dataset.
111
 
112
- ### Other Known Limitations
113
 
114
- The dataset may have limitations in terms of the diversity of table designs and backgrounds.
115
 
116
- ## Additional Information
 
 
117
 
118
- ### Dataset Curators
119
 
120
- Curated by FODUU AI.
 
 
 
 
121
 
122
- ### Licensing Information
 
123
 
124
- [More Information Needed]
125
 
126
- ### Citation Information
127
 
128
- [More Information Needed]
 
 
 
 
129
 
130
- ### Contributions
131
 
132
- Thanks to [FODUU AI](https://www.foduu.com/) for providing this dataset.
133
- ```
 
1
  ---
 
 
2
  task_categories:
3
  - object-detection
4
  tags:
5
+ - foduuai
6
  - table
7
+ - Documents
8
+ - bordered table
9
+ - borderless table
10
+ - unstructured document
 
 
11
  ---
12
+ <div align="center">
13
+ <img width="640" alt="keremberke/table-extraction" src="https://huggingface.co/datasets/keremberke/table-extraction/resolve/main/thumbnail.jpg">
14
+ </div>
15
 
16
+ ### Dataset Labels
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ ```
19
+ ['bordered', 'borderless']
20
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
 
22
 
23
+ ### Number of Images
24
 
25
+ ```json
26
+ {'test': 34, 'train': 238, 'valid': 70}
27
+ ```
28
 
 
29
 
30
+ ### How to Use
31
 
32
+ - Install [datasets](https://pypi.org/project/datasets/):
33
 
34
+ ```bash
35
+ pip install datasets
36
+ ```
37
 
38
+ - Load the dataset:
39
 
40
+ ```python
41
+ from datasets import load_dataset
42
+ ds = load_dataset("foduucom/table-detection-yolo", name="full")
43
+ example = ds['train'][0]
44
+ ```
45
 
46
+ ### Dataset Summary
47
+ Certainly! Here's a dataset summary for your dataset of images containing tables that are categorized as border and borderless, provided in YOLO format:
48
 
49
+ ## Dataset Summary
50
 
51
+ The **Table Detection Dataset** is a curated collection of images, each depicting tables that are classified as either 'bordered' or 'borderless'. The dataset is provided in YOLO format, featuring annotations for accurate object detection and classification. It serves as a valuable resource for researchers, developers, and practitioners working on table detection tasks, with a specific focus on distinguishing between tables with distinct visual characteristics.
52
 
53
+ **Key Features:**
54
+ - **Image Variety:** The dataset encompasses a diverse range of images, capturing tables from various real-world scenarios and environments.
55
+ - **Annotation Precision:** Each image is meticulously annotated with bounding box coordinates and class labels, indicating whether the table is 'bordered' or 'borderless'.
56
+ - **YOLO Format:** Annotations follow the YOLO format, making it suitable for training and evaluating object detection models.
57
+ - **Research and Development:** The dataset is designed to facilitate advancements in table detection algorithms and technologies, enabling the development of models capable of accurately identifying and classifying different types of tables.
58
 
59
+ Whether you are working on document analysis, data extraction, or image-based content recognition, the Table Detection Dataset provides an essential foundation for enhancing the capabilities of object detection models in identifying tables with varying visual attributes. By offering a comprehensive collection of border and borderless tables, this dataset empowers the AI community to tackle challenges in table detection across a wide range of applications.
60
 
61
+ For more details and access to the dataset, please refer to info@foduu.com .