diff --git "a/data_analysis.ipynb" "b/data_analysis.ipynb"
new file mode 100644--- /dev/null
+++ "b/data_analysis.ipynb"
@@ -0,0 +1,813 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "175f1599",
+ "metadata": {},
+ "source": [
+ "# **FrodoBots Gaming Dataset**\n",
+ "\n",
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "02a01f1c",
+ "metadata": {},
+ "source": [
+ "## Data Analysis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0bdbda93",
+ "metadata": {},
+ "source": [
+ "Find all control files in \"data_260523\" file, concat all control files into one table and save as \"combined_control.csv\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "2c7cebdb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import pandas as pd\n",
+ "\n",
+ "combined_control_df = pd.DataFrame()\n",
+ "\n",
+ "# Path to data_260523 directory\n",
+ "data_directory = './data/data_260523'\n",
+ "\n",
+ "# Iterate through all directories and subdirectories\n",
+ "for root, dirs, files in os.walk(data_directory):\n",
+ " for file in files:\n",
+ " # Check if the file is a control file\n",
+ " if file.startswith('control'):\n",
+ " # Full file path\n",
+ " file_path = os.path.join(root, file)\n",
+ " # Read the csv file into a dataframe\n",
+ " try:\n",
+ " df = pd.read_csv(file_path, on_bad_lines='skip')\n",
+ " except Exception as e:\n",
+ " print(f\"Error reading file {file_path}: {e}\")\n",
+ " continue\n",
+ " # Parse directory path to get the robot id and session id\n",
+ " path_parts = root.split('/')\n",
+ " robot_id = path_parts[-2]\n",
+ " session_id = path_parts[-1]\n",
+ " # Add robot id and session id to the dataframe\n",
+ " df['Robot_ID'] = robot_id\n",
+ " df['Session'] = session_id\n",
+ " # Concatenate the dataframe with the combined dataframe\n",
+ " combined_control_df = pd.concat([combined_control_df, df])\n",
+ "\n",
+ "# Save the combined dataframe as a csv file\n",
+ "combined_control_df.to_csv('./data/combined_control.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "64e6d8be",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " speed | \n",
+ " angular | \n",
+ " rpm_1 | \n",
+ " rpm_2 | \n",
+ " rpm_3 | \n",
+ " rpm_4 | \n",
+ " timestamp | \n",
+ " Robot_ID | \n",
+ " Session | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.45 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 8468211 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ "
\n",
+ " \n",
+ " 8468212 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ "
\n",
+ " \n",
+ " 8468213 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ "
\n",
+ " \n",
+ " 8468214 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ "
\n",
+ " \n",
+ " 8468215 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
8468216 rows × 9 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " speed angular rpm_1 rpm_2 rpm_3 rpm_4 timestamp \\\n",
+ "0 0.45 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "1 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "2 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "3 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "4 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "8468211 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468212 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468213 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468214 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468215 NaN NaN NaN NaN NaN NaN NaN \n",
+ "\n",
+ " Robot_ID Session \n",
+ "0 frodobot2e6a30 20230404102851 \n",
+ "1 frodobot2e6a30 20230404102851 \n",
+ "2 frodobot2e6a30 20230404102851 \n",
+ "3 frodobot2e6a30 20230404102851 \n",
+ "4 frodobot2e6a30 20230404102851 \n",
+ "... ... ... \n",
+ "8468211 frodobot31cdee 20230519033727 \n",
+ "8468212 frodobot31cdee 20230519033727 \n",
+ "8468213 frodobot31cdee 20230519033727 \n",
+ "8468214 frodobot31cdee 20230519033727 \n",
+ "8468215 frodobot31cdee 20230519033727 \n",
+ "\n",
+ "[8468216 rows x 9 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# read combined_control_df\n",
+ "import pandas as pd\n",
+ "\n",
+ "combined_control_df = pd.read_csv('./data/combined_control.csv')\n",
+ "combined_control_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "45338885",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " speed | \n",
+ " angular | \n",
+ " rpm_1 | \n",
+ " rpm_2 | \n",
+ " rpm_3 | \n",
+ " rpm_4 | \n",
+ " timestamp | \n",
+ " Robot_ID | \n",
+ " Session | \n",
+ " actual_speed | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0.45 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.680601e+09 | \n",
+ " frodobot2e6a30 | \n",
+ " 20230404102851 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 8468211 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 8468212 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 8468213 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 8468214 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ " 1.684464e+09 | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " 8468215 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " frodobot31cdee | \n",
+ " 20230519033727 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
8468216 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " speed angular rpm_1 rpm_2 rpm_3 rpm_4 timestamp \\\n",
+ "0 0.45 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "1 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "2 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "3 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "4 0.00 0.0 0.0 0.0 0.0 0.0 1.680601e+09 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "8468211 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468212 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468213 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468214 0.00 0.0 0.0 0.0 0.0 0.0 1.684464e+09 \n",
+ "8468215 NaN NaN NaN NaN NaN NaN NaN \n",
+ "\n",
+ " Robot_ID Session actual_speed \n",
+ "0 frodobot2e6a30 20230404102851 0.0 \n",
+ "1 frodobot2e6a30 20230404102851 0.0 \n",
+ "2 frodobot2e6a30 20230404102851 0.0 \n",
+ "3 frodobot2e6a30 20230404102851 0.0 \n",
+ "4 frodobot2e6a30 20230404102851 0.0 \n",
+ "... ... ... ... \n",
+ "8468211 frodobot31cdee 20230519033727 0.0 \n",
+ "8468212 frodobot31cdee 20230519033727 0.0 \n",
+ "8468213 frodobot31cdee 20230519033727 0.0 \n",
+ "8468214 frodobot31cdee 20230519033727 0.0 \n",
+ "8468215 frodobot31cdee 20230519033727 NaN \n",
+ "\n",
+ "[8468216 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Calculate \"actual_speed\" and add to \"combined_control_df\"\n",
+ "combined_control_df['actual_speed'] = (combined_control_df['rpm_1'] + combined_control_df['rpm_2'] + combined_control_df['rpm_3'] + combined_control_df['rpm_4']) / 4 * 3.14 * 0.125 * 60.0 / 1000.0\n",
+ "combined_control_df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3ccd0427",
+ "metadata": {},
+ "source": [
+ "#### Total Duration for Each City"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "28c756dd",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array(['London', 'Bern', 'Liu Zhou Shi', 'California', 'Madrid',\n",
+ " 'Stockholm', 'Vienna', 'Berlin', 'Wuhan', 'Taipei', 'Singapore',\n",
+ " 'Belgium', 'San Diego', 'Bobigny', 'Paris'], dtype=object)"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# location data\n",
+ "location_df = pd.read_csv('./data/location.csv')\n",
+ "location_df['city'].unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "64fef66e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAJpCAYAAACn7APdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmpklEQVR4nO3deXxM9+L/8fdklSCxRCTRiFhLbVUtpZXEHmptq73ai1raqlqjxe1VdEHrUlqly23tLdrSUr21BCFFbbXVUksUlVBbQhCRnN8f/ZlvRyw5TJyZeD0fj3lcc86Zk/dMXck7n3M+H5thGIYAAAAAALnmYXUAAAAAAHA3FCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAHACm82Wq8fKlStveq6RI0fq22+/ve08w4cPN5Xb09NTRYsWVY0aNfTCCy9o3bp1t5XBGX744Yfrvo8yZcqoS5cudzTPFfHx8apdu7YKFiwom8122/+9XFGXLl1UqFCh2zpHdna2ZsyYocaNGysoKEje3t4KDg7WY489poULFyo7O1uSdPDgQdlsNk2dOtX+2jVr1mj48OE6c+bMbWUAgLziZXUAAMgP1q5d6/D8zTff1IoVK7R8+XKH7VWqVLnpuUaOHKknnnhCbdu2dWbE63riiScUFxcnwzCUlpamHTt2aPr06frkk0/Up08fTZgw4Y7kuJYffvhBH3744TXL1Pz58xUQEHDHMxmGoQ4dOqhixYpasGCBChYsqEqVKt3xHK7u4sWLatu2rZYsWaKnn35akydPVkhIiP7880/9+OOPevLJJzVnzhy1adNGoaGhWrt2rcqVK2d//Zo1azRixAh16dJFRYoUse6NAMB1UKQAwAnq1q3r8LxEiRLy8PDIsd0VlSxZ0iFns2bN1K9fPz3//PN6//33de+996pnz55O+Vrnz5+Xv7+/U851//33O+U8Zh09elSnTp1Su3bt1KhRI6ec88KFCypQoIBsNptTzucKBgwYoMWLF2vatGnq1KmTw7727dvrlVde0YULFyRJvr6+bvH/FQD4Oy7tA4A75NSpU3rppZdUqlQp+fj4qGzZsnrttdeUkZFhP8Zmsyk9PV3Tpk2zX3IXHR0tSfrzzz/10ksvqUqVKipUqJCCg4PVsGFDrV692ulZPT09NXHiRAUFBWnMmDH27VOnTpXNZtPBgwcdjl+5cmWOSxejo6NVtWpVrVq1SvXq1ZO/v7+6du0qSZozZ46aNm2q0NBQ+fn5qXLlyho8eLDS09Ptr+/SpYs+/PBD++dy5XHla1/r0r5Dhw7p2WefVXBwsHx9fVW5cmWNHTvWfgmZ9H+Xkf3nP//RuHHjFBkZqUKFCunhhx++6eWMw4cP1z333CNJGjRokGw2m8qUKWPfn5iYqEaNGqlw4cLy9/dXvXr1tGjRIodzXPkMlyxZoq5du6pEiRLy9/d3+HtwtbS0NA0cOFCRkZHy8fFRqVKl1K9fP4fPS5I+/PBDNWjQQMHBwSpYsKCqVaumd999V5mZmTnO+eOPP6pRo0YKDAyUv7+/KleurFGjRuU4bt++fWrRooUKFSqk8PBwxcXF3TCrJKWkpOi///2vmjVrlqNEXVGhQgVVr15dUs5L+4YPH65XXnlFkhQZGelwaWy3bt1UrFgxnT9/Psc5GzZsqPvuu++G2QDAWRiRAoA74OLFi4qJidH+/fs1YsQIVa9eXatXr9aoUaO0ZcsW+w/ba9euVcOGDRUTE6OhQ4dKkv3ytVOnTkmShg0bppCQEJ07d07z589XdHS04uPj7YXLWfz8/NS4cWPNnj1bR44csRcIM5KTk/Xss8/q1Vdf1ciRI+Xh8dfv7/bu3asWLVqoX79+KliwoHbv3q133nlH69evt18OOXToUKWnp+vrr792uHQyNDT0ml/rzz//VL169XTp0iW9+eabKlOmjL7//nsNHDhQ+/fv16RJkxyO//DDD3Xvvfdq/Pjx9q/XokULJSUlKTAw8Jpfo3v37qpRo4bat2+v3r17q2PHjvL19ZUkJSQkqEmTJqpevbo+++wz+fr6atKkSWrVqpW+/PJLPfXUUw7n6tq1q1q2bKkZM2YoPT1d3t7e1/ya58+fV1RUlI4cOaJ//etfql69un799Ve9/vrr2r59u5YtW2Yfydq/f786duxoL1xbt27V22+/rd27d+vzzz+3n/Ozzz5Tjx49FBUVpY8++kjBwcH67bfftGPHDoevnZmZqdatW6tbt26Ki4vTqlWr9OabbyowMFCvv/76NfNK0ooVK5SZmXnLl6d2795dp06d0gcffKB58+bZ/5tXqVJFxYoV0+eff64vvvhC3bt3t79m586dWrFihb18A0CeMwAATte5c2ejYMGC9ucfffSRIcmYO3euw3HvvPOOIclYsmSJfVvBggWNzp073/RrXL582cjMzDQaNWpktGvXzmGfJGPYsGE3PYcko1evXtfdP2jQIEOS8fPPPxuGYRhTpkwxJBlJSUkOx61YscKQZKxYscK+LSoqypBkxMfH3zBDdna2kZmZaSQkJBiSjK1bt9r39erVy7jet6qIiAiHz2nw4MEOWa/o2bOnYbPZjD179hiGYRhJSUmGJKNatWrG5cuX7cetX7/ekGR8+eWXN8x75fVjxoxx2F63bl0jODjYOHv2rH3b5cuXjapVqxr33HOPkZ2dbRjG/32GnTp1uuHXuWLUqFGGh4eHsWHDBoftX3/9tSHJ+OGHH675uqysLCMzM9OYPn264enpaZw6dcowDMM4e/asERAQYDzyyCP2TNfSuXPna/6dbdGihVGpUqUbZh49erQhyfjxxx9z8xbtn+mUKVPs28aMGXPNv2uG8dffrZo1azps69mzpxEQEODw+QNAXuLSPgC4A5YvX66CBQvqiSeecNh+5dK0+Pj4XJ3no48+Uq1atVSgQAF5eXnJ29tb8fHx2rVrl7MjS/prYoXbUbRoUTVs2DDH9gMHDqhjx44KCQmRp6envL29FRUVJUm3/F6WL1+uKlWq6KGHHnLY3qVLFxmGkWPij5YtW8rT09P+/MplZr///rvpr52enq6ff/5ZTzzxhMNMd56envrnP/+pI0eOaM+ePQ6vefzxx3N17u+//15Vq1ZVzZo1dfnyZfujWbNmOS6n/OWXX9S6dWsVL17c/rl26tRJWVlZ+u233yT9NYlDWlqaXnrppZvek2Wz2dSqVSuHbdWrV7+lz8iZ+vbtqy1btuinn36S9NeljzNmzFDnzp1ve6ZBAMgtihQA3AEnT55USEhIjh9cg4OD5eXlpZMnT970HOPGjVPPnj1Vp04dffPNN1q3bp02bNig5s2b22/ad7YrPzCHhYXd0uuvdRneuXPn9Oijj+rnn3/WW2+9pZUrV2rDhg2aN2+eJN3yezl58uQ1v96V7Fd/xsWLF3d4fuUSvVv5+qdPn5ZhGKa+/vUuUbzasWPHtG3bNnl7ezs8ChcuLMMwdOLECUl/3R/26KOP6o8//tCECRO0evVqbdiwwX6p25X39eeff0pSri7V9Pf3V4ECBRy2+fr66uLFizd8XenSpSVJSUlJuXqPZrVp00ZlypSxv7epU6cqPT1dvXr1ypOvBwDXwj1SAHAHFC9eXD///LMMw3AoU8ePH9fly5cVFBR003PMnDlT0dHRmjx5ssP2s2fPOj2v9NcP3suWLVO5cuXsP3Rf+aH66skGrvwwf7VrjXgsX75cR48e1cqVK+2jUJJue72g4sWLKzk5Ocf2o0ePSlKuPuNbVbRoUXl4eJj6+rmdoS8oKEh+fn4O9zhdvV+Svv32W6Wnp2vevHmKiIiw79+yZYvD8SVKlJAkHTlyJFdf/1bExMTI29tb3377rV588UWnn9/Dw0O9evXSv/71L40dO1aTJk1So0aNmIYewB3FiBQA3AGNGjXSuXPncizcOn36dPv+K3x9fa85KmKz2eyjJlds27YtxxpWzpCVlaWXX35ZJ0+e1KBBg+zbr8xQt23bNofjFyxYkOtzXykQV7+Xjz/+OMexZkaJGjVqpJ07d2rz5s0O26dPny6bzaaYmJhcZzSrYMGCqlOnjubNm+eQNTs7WzNnztQ999yjihUr3tK5H3vsMe3fv1/FixdX7dq1czyu/De51udqGIY+/fRTh/PVq1dPgYGB+uijj2770s3rCQkJUffu3bV48WL73/Gr7d+/P8ffo7+72X/77t27y8fHR88884z27Nmjl19++faDA4AJjEgBwB3QqVMnffjhh+rcubMOHjyoatWqKTExUSNHjlSLFi3UuHFj+7HVqlXTypUrtXDhQoWGhqpw4cKqVKmSHnvsMb355psaNmyYoqKitGfPHr3xxhuKjIzU5cuXbznbsWPHtG7dOhmGobNnz9oX5N26dav69++vHj162I998MEHValSJQ0cOFCXL19W0aJFNX/+fCUmJub669WrV09FixbViy++qGHDhsnb21uzZs3S1q1bcxxbrVo1SdI777yj2NhYeXp6qnr16vLx8clxbP/+/TV9+nS1bNlSb7zxhiIiIrRo0SJNmjRJPXv2vOUik1ujRo1SkyZNFBMTo4EDB8rHx0eTJk3Sjh079OWXX97yGlH9+vXTN998owYNGqh///6qXr26srOzdejQIS1ZskRxcXGqU6eOmjRpIh8fH/3jH//Qq6++qosXL2ry5Mk6ffq0w/kKFSqksWPHqnv37mrcuLF69OihkiVLat++fdq6dasmTpzojI9D48aN04EDB9SlSxctXrxY7dq1U8mSJXXixAktXbpUU6ZM0ezZs+33pl3tyn/7CRMmqHPnzvL29lalSpVUuHBhSVKRIkXUqVMnTZ48WRERETnu5QKAPGfdPBcAkH9dPWufYRjGyZMnjRdffNEIDQ01vLy8jIiICGPIkCHGxYsXHY7bsmWLUb9+fcPf39+QZERFRRmGYRgZGRnGwIEDjVKlShkFChQwatWqZXz77bdG586djYiICIdzyMSsfVceHh4eRkBAgFGtWjXj+eefN9auXXvN1/z2229G06ZNjYCAAKNEiRJG7969jUWLFl1z1r777rvvmudYs2aN8fDDDxv+/v5GiRIljO7duxubN2/OMXNbRkaG0b17d6NEiRKGzWZzmMXt6ln7DMMwfv/9d6Njx45G8eLFDW9vb6NSpUrGmDFjjKysLPsx15t1L7ef241ev3r1aqNhw4ZGwYIFDT8/P6Nu3brGwoULHY65Mmvf1bPw3ci5c+eMf//730alSpUMHx8fIzAw0KhWrZrRv39/IyUlxX7cwoULjRo1ahgFChQwSpUqZbzyyivG//73vxz/bQzDMH744QcjKirKKFiwoOHv729UqVLFeOedd+z7r/V32DAMY9iwYdedSfFqly9fNqZNm2Y0bNjQKFasmOHl5WWUKFHCiI2NNb744gv7f5drzdpnGIYxZMgQIywszPDw8Ljme1i5cqUhyRg9enSu8gCAM9kMI4/G9QEAAPJQXFycJk+erMOHD+eYPAQA8hqX9gEAALeybt06/fbbb5o0aZJeeOEFShQASzAiBQAA3IrNZpO/v79atGihKVOmsHYUAEswIgUAANwKvwMG4AqY/hwAAAAATKJIAQAAAIBJFCkAAAAAMIl7pPTXyvNHjx5V4cKFb3nBRAAAAADuz/j/C9SHhYXJw+P6404UKUlHjx5VeHi41TEAAAAAuIjDhw/rnnvuue5+ipSkwoULS/rrwwoICLA4DQAAAACrpKWlKTw83N4RrociJdkv5wsICKBIAQAAALjpLT9MNgEAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACY5GV1gPyszOBFVkfItYOjW1odAQAAAHAbjEgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADDJ0iI1atQoPfjggypcuLCCg4PVtm1b7dmzx+EYwzA0fPhwhYWFyc/PT9HR0fr1118djsnIyFDv3r0VFBSkggULqnXr1jpy5MidfCsAAAAA7iKWFqmEhAT16tVL69at09KlS3X58mU1bdpU6enp9mPeffddjRs3ThMnTtSGDRsUEhKiJk2a6OzZs/Zj+vXrp/nz52v27NlKTEzUuXPn9NhjjykrK8uKtwUAAAAgn7MZhmFYHeKKP//8U8HBwUpISFCDBg1kGIbCwsLUr18/DRo0SNJfo08lS5bUO++8oxdeeEGpqakqUaKEZsyYoaeeekqSdPToUYWHh+uHH35Qs2bNcnydjIwMZWRk2J+npaUpPDxcqampCggIcNr7KTN4kdPOldcOjm5pdQQAAADAcmlpaQoMDLxpN3Cpe6RSU1MlScWKFZMkJSUlKSUlRU2bNrUf4+vrq6ioKK1Zs0aStGnTJmVmZjocExYWpqpVq9qPudqoUaMUGBhof4SHh+fVWwIAAACQD7lMkTIMQwMGDNAjjzyiqlWrSpJSUlIkSSVLlnQ4tmTJkvZ9KSkp8vHxUdGiRa97zNWGDBmi1NRU++Pw4cPOfjsAAAAA8jEvqwNc8fLLL2vbtm1KTEzMsc9mszk8Nwwjx7ar3egYX19f+fr63npYAAAAAHc1lxiR6t27txYsWKAVK1bonnvusW8PCQmRpBwjS8ePH7ePUoWEhOjSpUs6ffr0dY8BAAAAAGeytEgZhqGXX35Z8+bN0/LlyxUZGemwPzIyUiEhIVq6dKl926VLl5SQkKB69epJkh544AF5e3s7HJOcnKwdO3bYjwEAAAAAZ7L00r5evXrpiy++0HfffafChQvbR54CAwPl5+cnm82mfv36aeTIkapQoYIqVKigkSNHyt/fXx07drQf261bN8XFxal48eIqVqyYBg4cqGrVqqlx48ZWvj0AAAAA+ZSlRWry5MmSpOjoaIftU6ZMUZcuXSRJr776qi5cuKCXXnpJp0+fVp06dbRkyRIVLlzYfvx7770nLy8vdejQQRcuXFCjRo00depUeXp63qm3AgAAAOAu4lLrSFklt3PFm8U6UgAAAIB7cct1pAAAAADAHVCkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmWVqkVq1apVatWiksLEw2m03ffvutw36bzXbNx5gxY+zHREdH59j/9NNP3+F3AgAAAOBuYmmRSk9PV40aNTRx4sRr7k9OTnZ4fP7557LZbHr88ccdjuvRo4fDcR9//PGdiA8AAADgLuVl5RePjY1VbGzsdfeHhIQ4PP/uu+8UExOjsmXLOmz39/fPcSwAAAAA5BW3uUfq2LFjWrRokbp165Zj36xZsxQUFKT77rtPAwcO1NmzZ294royMDKWlpTk8AAAAACC3LB2RMmPatGkqXLiw2rdv77D9mWeeUWRkpEJCQrRjxw4NGTJEW7du1dKlS697rlGjRmnEiBF5HRkAAABAPuU2Rerzzz/XM888owIFCjhs79Gjh/3PVatWVYUKFVS7dm1t3rxZtWrVuua5hgwZogEDBtifp6WlKTw8PG+CAwAAAMh33KJIrV69Wnv27NGcOXNuemytWrXk7e2tvXv3XrdI+fr6ytfX19kxAQAAANwl3OIeqc8++0wPPPCAatSocdNjf/31V2VmZio0NPQOJAMAAABwN7J0ROrcuXPat2+f/XlSUpK2bNmiYsWKqXTp0pL+uuzuq6++0tixY3O8fv/+/Zo1a5ZatGihoKAg7dy5U3Fxcbr//vtVv379O/Y+AAAAANxdLC1SGzduVExMjP35lfuWOnfurKlTp0qSZs+eLcMw9I9//CPH6318fBQfH68JEybo3LlzCg8PV8uWLTVs2DB5enrekfcAAAAA4O5jMwzDsDqE1dLS0hQYGKjU1FQFBAQ47bxlBi9y2rny2sHRLa2OAAAAAFgut93ALe6RAgAAAABXQpECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhkaZFatWqVWrVqpbCwMNlsNn377bcO+7t06SKbzebwqFu3rsMxGRkZ6t27t4KCglSwYEG1bt1aR44cuYPvAgAAAMDdxtIilZ6erho1amjixInXPaZ58+ZKTk62P3744QeH/f369dP8+fM1e/ZsJSYm6ty5c3rssceUlZWV1/EBAAAA3KW8rPzisbGxio2NveExvr6+CgkJuea+1NRUffbZZ5oxY4YaN24sSZo5c6bCw8O1bNkyNWvWzOmZAQAAAMDl75FauXKlgoODVbFiRfXo0UPHjx+379u0aZMyMzPVtGlT+7awsDBVrVpVa9asue45MzIylJaW5vAAAAAAgNxy6SIVGxurWbNmafny5Ro7dqw2bNighg0bKiMjQ5KUkpIiHx8fFS1a1OF1JUuWVEpKynXPO2rUKAUGBtof4eHhefo+AAAAAOQvll7adzNPPfWU/c9Vq1ZV7dq1FRERoUWLFql9+/bXfZ1hGLLZbNfdP2TIEA0YMMD+PC0tjTIFAAAAINdcekTqaqGhoYqIiNDevXslSSEhIbp06ZJOnz7tcNzx48dVsmTJ657H19dXAQEBDg8AAAAAyC23KlInT57U4cOHFRoaKkl64IEH5O3traVLl9qPSU5O1o4dO1SvXj2rYgIAAADI5yy9tO/cuXPat2+f/XlSUpK2bNmiYsWKqVixYho+fLgef/xxhYaG6uDBg/rXv/6loKAgtWvXTpIUGBiobt26KS4uTsWLF1exYsU0cOBAVatWzT6LHwAAAAA4m6VFauPGjYqJibE/v3LfUufOnTV58mRt375d06dP15kzZxQaGqqYmBjNmTNHhQsXtr/mvffek5eXlzp06KALFy6oUaNGmjp1qjw9Pe/4+wEAAABwd7AZhmFYHcJqaWlpCgwMVGpqqlPvlyozeJHTzpXXDo5uaXUEAAAAwHK57QZudY8UAAAAALgC05f2HTx4UKtXr9bBgwd1/vx5lShRQvfff78efvhhFShQIC8yAgAAAIBLyXWR+uKLL/T+++9r/fr1Cg4OVqlSpeTn56dTp05p//79KlCggJ555hkNGjRIEREReZkZAAAAACyVqyJVq1YteXh4qEuXLpo7d65Kly7tsD8jI0Nr167V7NmzVbt2bU2aNElPPvlkngQGAAAAAKvlqki9+eabatny+pMR+Pr6Kjo6WtHR0XrrrbeUlJTktIAAAAAA4GpyVaRuVKKuFhQUpKCgoFsOBAAAAACuzvSsfZs3b9b27dvtz7/77ju1bdtW//rXv3Tp0iWnhgMAAAAAV2S6SL3wwgv67bffJEkHDhzQ008/LX9/f3311Vd69dVXnR4QAAAAAFyN6SL122+/qWbNmpKkr776Sg0aNNAXX3yhqVOn6ptvvnF2PgAAAABwOaaLlGEYys7OliQtW7ZMLVq0kCSFh4frxIkTzk0HAAAAAC7IdJGqXbu23nrrLc2YMUMJCQn2iSiSkpJUsmRJpwcEAAAAAFdjukiNHz9emzdv1ssvv6zXXntN5cuXlyR9/fXXqlevntMDAgAAAICrydX051dkZWXp9OnTSkhIULFixRz2jRkzRp6enk4NBwAAAACuyNSIlKenp5o1a6bU1NQc+woUKCBvb2+nBQMAAAAAV2X60r5q1arpwIEDeZEFAAAAANyC6SL19ttva+DAgfr++++VnJystLQ0hwcAAAAA5Hem7pGSpObNm0uSWrduLZvNZt9uGIZsNpuysrKclw4AAAAAXJDpIrVixYq8yAEAAAAAbsN0kYqKisqLHAAAAADgNkwXqVWrVt1wf4MGDW45DAAAAAC4A9NFKjo6Ose2v98rxT1SAAAAAPI707P2nT592uFx/Phx/fjjj3rwwQe1ZMmSvMgIAAAAAC7F9IhUYGBgjm1NmjSRr6+v+vfvr02bNjklGAAAAAC4KtMjUtdTokQJ7dmzx1mnAwAAAACXZXpEatu2bQ7PDcNQcnKyRo8erRo1ajgtGAAAAAC4KtNFqmbNmrLZbDIMw2F73bp19fnnnzstGAAAAAC4KtNFKikpyeG5h4eHSpQooQIFCjgtFAAAAAC4MtNFKiIiIi9yAAAAAIDbuKXJJhISEtSqVSuVL19eFSpUUOvWrbV69WpnZwMAAAAAl2S6SM2cOVONGzeWv7+/+vTpo5dffll+fn5q1KiRvvjii7zICAAAAAAuxWZcPWvETVSuXFnPP/+8+vfv77B93Lhx+vTTT7Vr1y6nBrwT0tLSFBgYqNTUVAUEBDjtvGUGL3LaufLawdEtrY4AAAAAWC633cD0iNSBAwfUqlWrHNtbt26dYyIKAAAAAMiPTBep8PBwxcfH59geHx+v8PBwp4QCAAAAAFdmeta+uLg49enTR1u2bFG9evVks9mUmJioqVOnasKECXmREQAAAABciuki1bNnT4WEhGjs2LGaO3eupL/um5ozZ47atGnj9IAAAAAA4GpMFylJateundq1a+fsLAAAAADgFm6pSEnSpUuXdPz4cWVnZztsL1269G2HAgAAAABXZrpI7d27V127dtWaNWscthuGIZvNpqysLKeFAwAAAABXZLpIdenSRV5eXvr+++8VGhoqm82WF7kAAAAAwGWZLlJbtmzRpk2bdO+99+ZFHgAAAABweabXkapSpYpOnDiRF1kAAAAAwC3kqkilpaXZH++8845effVVrVy5UidPnnTYl5aWZuqLr1q1Sq1atVJYWJhsNpu+/fZb+77MzEwNGjRI1apVU8GCBRUWFqZOnTrp6NGjDueIjo6WzWZzeDz99NOmcgAAAACAGbm6tK9IkSIO90IZhqFGjRo5HHMrk02kp6erRo0aeu655/T444877Dt//rw2b96soUOHqkaNGjp9+rT69eun1q1ba+PGjQ7H9ujRQ2+88Yb9uZ+fX64zAAAAAIBZuSpSK1asyJMvHhsbq9jY2GvuCwwM1NKlSx22ffDBB3rooYd06NAhh2nW/f39FRISkicZAQAAAOBquSpSUVFReZ0jV1JTU2Wz2VSkSBGH7bNmzdLMmTNVsmRJxcbGatiwYSpcuPB1z5ORkaGMjAz7c7OXJAIAAAC4u+XqHqlDhw6ZOukff/xxS2Fu5OLFixo8eLA6duyogIAA+/ZnnnlGX375pVauXKmhQ4fqm2++Ufv27W94rlGjRikwMND+CA8Pd3peAAAAAPlXrorUgw8+qB49emj9+vXXPSY1NVWffvqpqlatqnnz5jktoPTXxBNPP/20srOzNWnSJId9PXr0UOPGjVW1alU9/fTT+vrrr7Vs2TJt3rz5uucbMmSIUlNT7Y/Dhw87NS8AAACA/C1Xl/bt2rVLI0eOVPPmzeXt7a3atWsrLCxMBQoU0OnTp7Vz5079+uuvql27tsaMGXPd+55uRWZmpjp06KCkpCQtX77cYTTqWmrVqiVvb2/t3btXtWrVuuYxvr6+8vX1dVpGAAAAAHeXXI1IFStWTP/5z3909OhRTZ48WRUrVtSJEye0d+9eSX9dXrdp0yb99NNPeVKi9u7dq2XLlql48eI3fc2vv/6qzMxMhYaGOi0HAAAAAPxdrkakrihQoIDat29/03uQcuvcuXPat2+f/XlSUpK2bNmiYsWKKSwsTE888YQ2b96s77//XllZWUpJSZH0V7Hz8fHR/v37NWvWLLVo0UJBQUHauXOn4uLidP/996t+/fpOyQgAAAAAVzNVpJxt48aNiomJsT8fMGCAJKlz584aPny4FixYIEmqWbOmw+tWrFih6Oho+fj4KD4+XhMmTNC5c+cUHh6uli1batiwYfL09Lxj7wMAAADA3cXSIhUdHS3DMK67/0b7JCk8PFwJCQnOjgUAAAAAN5Sre6QAAAAAAP+HIgUAAAAAJlGkAAAAAMCkW7pH6rffftPKlSt1/PhxZWdnO+x7/fXXnRIMAAAAAFyV6SL16aefqmfPngoKClJISIhsNpt9n81mo0gBAAAAyPdMF6m33npLb7/9tgYNGpQXeQAAAADA5Zm+R+r06dN68skn8yILAAAAALgF00XqySef1JIlS/IiCwAAAAC4BdOX9pUvX15Dhw7VunXrVK1aNXl7ezvs79Onj9PCAQAAAIArshmGYZh5QWRk5PVPZrPpwIEDtx3qTktLS1NgYKBSU1MVEBDgtPOWGbzIaefKawdHt7Q6AgAAAGC53HYD0yNSSUlJtxUMAAAAANzdbS3IaxiGTA5oAQAAAIDbu6UiNX36dFWrVk1+fn7y8/NT9erVNWPGDGdnAwAAAACXZPrSvnHjxmno0KF6+eWXVb9+fRmGoZ9++kkvvviiTpw4of79++dFTgAAAABwGaaL1AcffKDJkyerU6dO9m1t2rTRfffdp+HDh1OkAAAAAOR7pi/tS05OVr169XJsr1evnpKTk50SCgAAAABcmekiVb58ec2dOzfH9jlz5qhChQpOCQUAAAAArsz0pX0jRozQU089pVWrVql+/fqy2WxKTExUfHz8NQsWAAAAAOQ3pkekHn/8cf38888KCgrSt99+q3nz5ikoKEjr169Xu3bt8iIjAAAAALgU0yNSkvTAAw9o5syZzs4CAAAAAG4hV0UqLS1NAQEB9j/fyJXjAAAAACC/ylWRKlq0qJKTkxUcHKwiRYrIZrPlOMYwDNlsNmVlZTk9JAAAAAC4klwVqeXLl6tYsWKSpBUrVuRpIAAAAABwdbkqUlFRUfY/R0ZGKjw8PMeolGEYOnz4sHPTAQAAAIALMj1rX2RkpP78888c20+dOqXIyEinhAIAAAAAV2a6SF25F+pq586dU4ECBZwSCgAAAABcWa6nPx8wYIAkyWazaejQofL397fvy8rK0s8//6yaNWs6PSAAAAAAuJpcF6lffvlF0l8jUtu3b5ePj499n4+Pj2rUqKGBAwc6PyEAAAAAuJhcF6krs/U999xzmjBhAutFAQAAALhr5bpIXTFlypS8yAEAAAAAbsN0kZKkDRs26KuvvtKhQ4d06dIlh33z5s1zSjAAAAAAcFWmZ+2bPXu26tevr507d2r+/PnKzMzUzp07tXz5cgUGBuZFRgAAAABwKaaL1MiRI/Xee+/p+++/l4+PjyZMmKBdu3apQ4cOKl26dF5kBAAAAACXYrpI7d+/Xy1btpQk+fr6Kj09XTabTf3799cnn3zi9IAAAAAA4GpMF6lixYrp7NmzkqRSpUppx44dkqQzZ87o/Pnzzk0HAAAAAC7I9GQTjz76qJYuXapq1aqpQ4cO6tu3r5YvX66lS5eqUaNGeZERAAAAAFyK6SI1ceJEXbx4UZI0ZMgQeXt7KzExUe3bt9fQoUOdHhAAAAAAXI2pInX58mUtXLhQzZo1kyR5eHjo1Vdf1auvvpon4QAAAADAFZm6R8rLy0s9e/ZURkZGXuUBAAAAAJdnerKJOnXq6JdffsmLLAAAAADgFkzfI/XSSy8pLi5OR44c0QMPPKCCBQs67K9evbrTwgEAAACAKzI9IvXUU08pKSlJffr0Uf369VWzZk3df//99v81Y9WqVWrVqpXCwsJks9n07bffOuw3DEPDhw9XWFiY/Pz8FB0drV9//dXhmIyMDPXu3VtBQUEqWLCgWrdurSNHjph9WwAAAACQa6aLVFJSUo7HgQMH7P9rRnp6umrUqKGJEydec/+7776rcePGaeLEidqwYYNCQkLUpEkT+zpWktSvXz/Nnz9fs2fPVmJios6dO6fHHntMWVlZZt8aAAAAAOSK6Uv7IiIinPbFY2NjFRsbe819hmFo/Pjxeu2119S+fXtJ0rRp01SyZEl98cUXeuGFF5SamqrPPvtMM2bMUOPGjSVJM2fOVHh4uJYtW2afXRAAAAAAnMl0kZo+ffoN93fq1OmWw/xdUlKSUlJS1LRpU/s2X19fRUVFac2aNXrhhRe0adMmZWZmOhwTFhamqlWras2aNdctUhkZGQ4zD6alpTklMwAAAIC7g+ki1bdvX4fnmZmZOn/+vHx8fOTv7++0IpWSkiJJKlmypMP2kiVL6vfff7cf4+Pjo6JFi+Y45srrr2XUqFEaMWKEU3ICAAAAuPuYvkfq9OnTDo9z585pz549euSRR/Tll186PaDNZnN4bhhGjm1Xu9kxQ4YMUWpqqv1x+PBhp2QFAAAAcHcwXaSupUKFCho9enSO0arbERISIkk5RpaOHz9uH6UKCQnRpUuXdPr06esecy2+vr4KCAhweAAAAABAbjmlSEmSp6enjh496qzTKTIyUiEhIVq6dKl926VLl5SQkKB69epJkh544AF5e3s7HJOcnKwdO3bYjwEAAAAAZzN9j9SCBQscnhuGoeTkZE2cOFH169c3da5z585p37599udJSUnasmWLihUrptKlS6tfv34aOXKkKlSooAoVKmjkyJHy9/dXx44dJUmBgYHq1q2b4uLiVLx4cRUrVkwDBw5UtWrV7LP4AQAAAICzmS5Sbdu2dXhus9lUokQJNWzYUGPHjjV1ro0bNyomJsb+fMCAAZKkzp07a+rUqXr11Vd14cIFvfTSSzp9+rTq1KmjJUuWqHDhwvbXvPfee/Ly8lKHDh104cIFNWrUSFOnTpWnp6fZtwYAAAAAuWIzDMOwOoTV0tLSFBgYqNTUVKfeL1Vm8CKnnSuvHRzd0uoIAAAAgOVy2w2cdo8UAAAAANwtTBWp9PR0vf7666pataoKFSqkwoULq3r16nrjjTd0/vz5vMoIAAAAAC4l1/dIXbp0SVFRUdqxY4diY2PVqlUrGYahXbt26e2339b//vc/rVq1St7e3nmZFwAAAAAsl+siNXnyZB05ckRbt25VpUqVHPbt3r1b0dHR+uijj9S7d2+nhwQAAAAAV5LrS/vmzZunoUOH5ihRknTvvffqtdde09dff+3UcAAAAADginJdpHbu3Kno6Ojr7o+JidHOnTudkQkAAAAAXFqui9SZM2dUvHjx6+4vXry4UlNTnRIKAAAAAFxZrotUdnb2DRe59fDwUFZWllNCAQAAAIAry/VkE4ZhqFGjRvLyuvZLLl++7LRQAAAAAODKcl2khg0bdtNjHn/88dsKAwAAAADuwKlFCgAAAADuBrm+RwoAAAAA8BeKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEzK1ax977//fq5P2KdPn1sOAwAAAADuIFdF6r333svVyWw2G0UKAAAAQL6XqyKVlJSU1zkAAAAAwG1wjxQAAAAAmJSrEamrHTlyRAsWLNChQ4d06dIlh33jxo1zSjAAAAAAcFWmi1R8fLxat26tyMhI7dmzR1WrVtXBgwdlGIZq1aqVFxkBAAAAwKWYvrRvyJAhiouL044dO1SgQAF98803Onz4sKKiovTkk0/mRUYAAAAAcCmmi9SuXbvUuXNnSZKXl5cuXLigQoUK6Y033tA777zj9IAAAAAA4GpMF6mCBQsqIyNDkhQWFqb9+/fb9504ccJ5yQAAAADARZm+R6pu3br66aefVKVKFbVs2VJxcXHavn275s2bp7p16+ZFRgAAAABwKaaL1Lhx43Tu3DlJ0vDhw3Xu3DnNmTNH5cuXz/XCvQAAAADgzkwXqbJly9r/7O/vr0mTJjk1EAAAAAC4OtP3SJUtW1YnT57Msf3MmTMOJQsAAAAA8ivTRergwYPKysrKsT0jI0N//PGHU0IBAAAAgCvL9aV9CxYssP958eLFCgwMtD/PyspSfHy8ypQp49RwAAAAAOCKcl2k2rZtK0my2Wz2daSu8Pb2VpkyZTR27FinhgMAAAAAV5TrIpWdnS1JioyM1IYNGxQUFJRnoQAAAADAlZmetS8pKSkvcgAAAACA2zA92YQkJSQkqFWrVipfvrwqVKig1q1ba/Xq1c7OBgAAAAAuyXSRmjlzpho3bix/f3/16dNHL7/8svz8/NSoUSN98cUXeZERAAAAAFyKzTAMw8wLKleurOeff179+/d32D5u3Dh9+umn2rVrl1MD3glpaWkKDAxUamqqAgICnHbeMoMXOe1cee3g6JZWRwAAAAAsl9tuYHpE6sCBA2rVqlWO7a1bt+b+KQAAAAB3BdNFKjw8XPHx8Tm2x8fHKzw83CmhAAAAAMCV5XrWvq5du2rChAmKi4tTnz59tGXLFtWrV082m02JiYmaOnWqJkyYkJdZAQAAAMAl5LpITZs2TaNHj1bPnj0VEhKisWPHau7cuZL+um9qzpw5atOmTZ4FBQAAAABXketL+/4+J0W7du2UmJiokydP6uTJk0pMTMyzElWmTBnZbLYcj169ekmSunTpkmNf3bp18yQLAAAAAEgmF+S12Wx5leO6NmzYoKysLPvzHTt2qEmTJnryySft25o3b64pU6bYn/v4+NzRjAAAAADuLqaKVMWKFW9apk6dOnVbga5WokQJh+ejR49WuXLlFBUVZd/m6+urkJAQp35dAAAAALgeU0VqxIgRCgwMzKssN3Xp0iXNnDlTAwYMcCh0K1euVHBwsIoUKaKoqCi9/fbbCg4Ovu55MjIylJGRYX+elpaWp7kBAAAA5C+mitTTTz99w4KS17799ludOXNGXbp0sW+LjY3Vk08+qYiICCUlJWno0KFq2LChNm3aJF9f32ueZ9SoURoxYsQdSg0AAAAgv7EZf59F4gY8PT2VnJxsaZFq1qyZfHx8tHDhwusek5ycrIiICM2ePVvt27e/5jHXGpEKDw+/6erFZpUZvMhp58prB0e3tDoCAAAAYLm0tDQFBgbetBvkekQql30rz/z+++9atmyZ5s2bd8PjQkNDFRERob179173GF9f3+uOVgEAAADAzeS6SGVnZ+dljpuaMmWKgoOD1bLljUdOTp48qcOHDys0NPQOJQMAAABwt8n1OlJWys7O1pQpU9S5c2d5ef1f9zt37pwGDhyotWvX6uDBg1q5cqVatWqloKAgtWvXzsLEAAAAAPIzU5NNWGXZsmU6dOiQunbt6rDd09NT27dv1/Tp03XmzBmFhoYqJiZGc+bMUeHChS1KCwAAACC/c4si1bRp02veo+Xn56fFixdbkAgAAADA3cwtLu0DAAAAAFdCkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTXLpIDR8+XDabzeEREhJi328YhoYPH66wsDD5+fkpOjpav/76q4WJAQAAANwNXLpISdJ9992n5ORk+2P79u32fe+++67GjRuniRMnasOGDQoJCVGTJk109uxZCxMDAAAAyO+8rA5wM15eXg6jUFcYhqHx48frtddeU/v27SVJ06ZNU8mSJfXFF1/ohRdeuO45MzIylJGRYX+elpbm/OAAAAAA8i2XH5Hau3evwsLCFBkZqaeffloHDhyQJCUlJSklJUVNmza1H+vr66uoqCitWbPmhuccNWqUAgMD7Y/w8PA8fQ8AAAAA8heXLlJ16tTR9OnTtXjxYn366adKSUlRvXr1dPLkSaWkpEiSSpYs6fCakiVL2vddz5AhQ5Sammp/HD58OM/eAwAAAID8x6Uv7YuNjbX/uVq1anr44YdVrlw5TZs2TXXr1pUk2Ww2h9cYhpFj29V8fX3l6+vr/MAAAAAA7gouPSJ1tYIFC6patWrau3ev/b6pq0efjh8/nmOUCgAAAACcya2KVEZGhnbt2qXQ0FBFRkYqJCRES5cute+/dOmSEhISVK9ePQtTAgAAAMjvXPrSvoEDB6pVq1YqXbq0jh8/rrfeektpaWnq3LmzbDab+vXrp5EjR6pChQqqUKGCRo4cKX9/f3Xs2NHq6MhjZQYvsjpCrh0c3dLqCAAAAHAyly5SR44c0T/+8Q+dOHFCJUqUUN26dbVu3TpFRERIkl599VVduHBBL730kk6fPq06depoyZIlKly4sMXJAQAAAORnLl2kZs+efcP9NptNw4cP1/Dhw+9MIAAAAACQm90jBQAAAACugCIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADCJIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCSKFAAAAACYRJECAAAAAJMoUgAAAABgEkUKAAAAAEyiSAEAAACASRQpAAAAADDJpYvUqFGj9OCDD6pw4cIKDg5W27ZttWfPHodjunTpIpvN5vCoW7euRYkBAAAA3A1cukglJCSoV69eWrdunZYuXarLly+radOmSk9PdziuefPmSk5Otj9++OEHixIDAAAAuBt4WR3gRn788UeH51OmTFFwcLA2bdqkBg0a2Lf7+voqJCTkTscD8p0ygxdZHSHXDo5uaXUEAABwF3PpEamrpaamSpKKFSvmsH3lypUKDg5WxYoV1aNHDx0/fvyG58nIyFBaWprDAwAAAAByy22KlGEYGjBggB555BFVrVrVvj02NlazZs3S8uXLNXbsWG3YsEENGzZURkbGdc81atQoBQYG2h/h4eF34i0AAAAAyCdc+tK+v3v55Ze1bds2JSYmOmx/6qmn7H+uWrWqateurYiICC1atEjt27e/5rmGDBmiAQMG2J+npaVRpgAAAADkmlsUqd69e2vBggVatWqV7rnnnhseGxoaqoiICO3du/e6x/j6+srX19fZMQEAAADcJVy6SBmGod69e2v+/PlauXKlIiMjb/qakydP6vDhwwoNDb0DCQEAAADcjVz6HqlevXpp5syZ+uKLL1S4cGGlpKQoJSVFFy5ckCSdO3dOAwcO1Nq1a3Xw4EGtXLlSrVq1UlBQkNq1a2dxegAAAAD5lUuPSE2ePFmSFB0d7bB9ypQp6tKlizw9PbV9+3ZNnz5dZ86cUWhoqGJiYjRnzhwVLlzYgsQAAAAA7gYuXaQMw7jhfj8/Py1evPgOpQEAAACAv7j0pX0AAAAA4IooUgAAAABgEkUKAAAAAExy6XukACA/KDN4kdURcu3g6JZWRwAAwC0wIgUAAAAAJlGkAAAAAMAkihQAAAAAmESRAgAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAk7ysDgAAwK0oM3iR1RFy7eDollZHAAA4GSNSAAAAAGASI1IAAMCOkT4AyB1GpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAmUaQAAAAAwCQvqwMAAADkd2UGL7I6Qq4dHN3S6giAW2BECgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAAAAAGASRQoAAAAATPKyOgAAAABwK8oMXmR1hFw7OLql1RHgZIxIAQAAAIBJjEgBAAAAsGOkL3fyzYjUpEmTFBkZqQIFCuiBBx7Q6tWrrY4EAAAAIJ/KF0Vqzpw56tevn1577TX98ssvevTRRxUbG6tDhw5ZHQ0AAABAPpQvitS4cePUrVs3de/eXZUrV9b48eMVHh6uyZMnWx0NAAAAQD7k9vdIXbp0SZs2bdLgwYMdtjdt2lRr1qy55msyMjKUkZFhf56amipJSktLc2q27IzzTj1fXnL2e89rfLZ5g881b/C55g0+17zB55o3+FzzBp9r3rjbP9cr5zQM44bH2YybHeHijh49qlKlSumnn35SvXr17NtHjhypadOmac+ePTleM3z4cI0YMeJOxgQAAADgRg4fPqx77rnnuvvdfkTqCpvN5vDcMIwc264YMmSIBgwYYH+enZ2tU6dOqXjx4td9jatIS0tTeHi4Dh8+rICAAKvj5Bt8rnmDzzVv8LnmDT7XvMNnmzf4XPMGn2vecKfP1TAMnT17VmFhYTc8zu2LVFBQkDw9PZWSkuKw/fjx4ypZsuQ1X+Pr6ytfX1+HbUWKFMmriHkiICDA5f8SuiM+17zB55o3+FzzBp9r3uGzzRt8rnmDzzVvuMvnGhgYeNNj3H6yCR8fHz3wwANaunSpw/alS5c6XOoHAAAAAM7i9iNSkjRgwAD985//VO3atfXwww/rk08+0aFDh/Tiiy9aHQ0AAABAPpQvitRTTz2lkydP6o033lBycrKqVq2qH374QREREVZHczpfX18NGzYsx6WJuD18rnmDzzVv8LnmDT7XvMNnmzf4XPMGn2veyI+fq9vP2gcAAAAAd5rb3yMFAAAAAHcaRQoAAAAATKJIAQAAAIBJFCkAAAAAMIkiBQAAAAAm5Yvpz/Ob9u3ba+rUqQoICFD79u1veOy8efPuUCoAAOAqLly4oMzMTIdtAQEBFqUB7k4UKRcUGBgom81m/zPyRnp6uhISEnTo0CFdunTJYV+fPn0sSpV/ZGdna9++fTp+/Liys7Md9jVo0MCiVADuhJMnT+r111/XihUrrvlvwKlTpyxK5t7Onz+vV199VXPnztXJkydz7M/KyrIgVf7B9y3nOnbsmAYOHKj4+HgdP35cV6+4lB/+vrKOFO5Kv/zyi1q0aKHz588rPT1dxYoV04kTJ+Tv76/g4GAdOHDA6ohubd26derYsaN+//33HP9w2my2fPGPpxWysrI0depU+zelq7/RL1++3KJk7udmo/1/x8i/ebGxsdq/f7+6deumkiVL2n85eEXnzp0tSubeevXqpRUrVuiNN95Qp06d9OGHH+qPP/7Qxx9/rNGjR+uZZ56xOqLb4vuW88XGxurQoUN6+eWXFRoamuPfgTZt2liUzHkYkcJdqX///mrVqpUmT56sIkWKaN26dfL29tazzz6rvn37Wh3P7b344ouqXbu2Fi1adM1/PHFr+vbtq6lTp6ply5aqWrUqn+tt+Ptov2EYmj9/vgIDA1W7dm1J0qZNm3TmzBlThQv/JzExUYmJiapRo4bVUfKVhQsXavr06YqOjlbXrl316KOPqnz58oqIiNCsWbMoUreB71vOl5iYqNWrV6tmzZpWR8kzFCkXdzcMi1phy5Yt+vjjj+Xp6SlPT09lZGSobNmyevfdd9W5c2d+eLpNe/fu1ddff63y5ctbHSVfmT17tubOnasWLVpYHcXtTZkyxf7nQYMGqUOHDvroo4/k6ekp6a9/W1966SXuOblF9957ry5cuGB1jHzn1KlTioyMlPTX/VBXLpF85JFH1LNnTyujuT2+bzlfeHh4jp9b8xuKlIvr0qWLDh06pKFDh/IbEify9va2f5YlS5bUoUOHVLlyZQUGBurQoUMWp3N/derU0b59+/iG5GQ+Pj58pnng888/V2Jior1ESZKnp6cGDBigevXqacyYMRamc0+TJk3S4MGD9frrr6tq1ary9vZ22E9BvTVly5bVwYMHFRERoSpVqmju3Ll66KGHtHDhQhUpUsTqeG6N71vON378eA0ePFgff/yxypQpY3WcPEGRcnF3w7CoFe6//35t3LhRFStWVExMjF5//XWdOHFCM2bMULVq1ayO5/Z69+6tuLg4paSkqFq1ajl+iKpevbpFydxbXFycJkyYoIkTJ/JLFSe6fPmydu3apUqVKjls37VrV4770JA7RYoUUWpqqho2bOiw3TAM7je5Dc8995y2bt2qqKgoDRkyRC1bttQHH3ygy5cva9y4cVbHc2t833K+p556SufPn1e5cuXk7++f4zPND5POMNmEi6tSpYpmzZql+++/3+oo+crGjRt19uxZxcTE6M8//1Tnzp2VmJio8uXLa8qUKVzXf5s8PHIuUWez2fgh6ja1a9dOK1asULFixXTffffl+KbEpAi3ZsCAAZo6dar+9a9/qW7dupL+uvF89OjR6tSpEz+g3oKHHnpIXl5e6tu37zUnm4iKirIoWf5y6NAhbdy4UeXKleP71m3i+5bzTZs27Yb788OkMxQpF7dkyRKNHTs2Xw+LIv/5/fffb7g/IiLiDiXJX5577rkb7v/7fT/IvezsbP3nP//RhAkTlJycLEkKDQ1V3759FRcX53DJH3LH399fv/zyS45RPsBV8X0Lt4Ii5YKKFi3q8Nu79PR0Xb58Od8OiwKAq0hLS5PEPTy3q0GDBnr99dfVuHFjq6O4vffff1/PP/+8ChQooPfff/+Gx7IG4q3JzMxUpUqV9P3336tKlSpWx8mX8usC0hQpF3SzodC/yw/DolZgNkTnW7BggWJjY+Xt7a0FCxbc8NjWrVvfoVT5059//qk9e/bIZrOpYsWKKlGihNWRAAdfffWVhg8frldeeYX7TW5TZGSkNm7cqOLFi9tn7LsWm83GGoi3oVSpUlq2bJkqV65sdZR8Iz09XYMGDcrXC0hTpHBXuhsWibvTPDw8lJKSouDg4Gtea34F15rfuvT0dPXu3VvTp0+3T4Lg6empTp066YMPPpC/v7/FCd1HrVq1FB8fr6JFi+r++++/4eQdmzdvvoPJ8gfuN4G7GT16tHbv3q3//ve/8vJiLjZnuBsWkOZviovKzs5Wdna2w/+Zjx07po8++kjp6elq3bq1HnnkEQsTujdmQ3S+v89uxkxneWPAgAFKSEjQwoULVb9+fUl//V3u06eP4uLiNHnyZIsTuo82bdrI19dXktS2bVtrw+RDSUlJVkcATPn5558VHx+vJUuWqFq1aipYsKDDfibzMe9uWECaESkX9dxzz8nb21uffPKJJOns2bO67777dPHiRYWGhmrnzp367rvvWJjzFjEbItxRUFCQvv76a0VHRztsX7FihTp06KA///zTmmBuLCsrS4mJiapevbqKFi1qdRzghrKysjR16lT7ZelX/9Jq+fLlFiVzf0zm43yFChXSr7/+qoiICN1zzz2aN2+eHnroISUlJalatWo6d+6c1RFvGyNSLuqnn37SxIkT7c+nT5+uy5cva+/evQoMDNSgQYM0ZswYitQtuhsWibvTbnYT9N9xQ/StOX/+vEqWLJlje3BwsM6fP29BIvfn6empZs2aadeuXRSp23SzeyP/jvskb03fvn01depUtWzZUlWrVmU9OSeiKDnf3bCANCNSLqpgwYLasWOH/cbS9u3bq1SpUvrggw8kSTt37lR0dLSOHz9uZUy3VbRoUZ0/f57ZEJ3oRjdB/x03RN+6Ro0aqXjx4po+fboKFCgg6a+ZkDp37qxTp05p2bJlFid0Tw8++KBGjx6tRo0aWR3Frd3o3si/4x6pWxcUFKTp06fzS9Q8cvnyZa1cuVL79+9Xx44dVbhwYR09elQBAQEqVKiQ1fHcznvvvSdPT0/16dNHK1asUMuWLZWVlWVfQLpv375WR7xtjEi5qAIFCujChQv25+vWrdOYMWMc9ueHIVGrjB8/3uoI+Q73ROS9CRMmqHnz5rrnnntUo0YN2Ww2bdmyRQUKFNDixYutjue23n77bQ0cOFBvvvmmHnjggRz3RuSHKXrvBO6NzHs+Pj4qX7681THypd9//13NmzfXoUOHlJGRoSZNmqhw4cJ69913dfHiRX300UdWR3Q7/fv3t/85JiZGu3fvzncLSDMi5aIaNmyoOnXqaNSoUVq9erWio6N15MgRhYaGSpKWLl2qnj17at++fRYnBRyxHkfeunDhgmbOnKndu3fLMAxVqVJFzzzzjPz8/KyO5rb+PpLy90ulmGEOrmbs2LE6cOCAJk6cyGV9Tta2bVsVLlxYn332mYoXL66tW7eqbNmySkhIUPfu3bV3716rI8IFMSLlooYOHaoWLVpo7ty5Sk5OVpcuXewlSpLmz59vn7ULtyY7O1v79u275g27DRo0sCiV+/P29lZGRgbf5POIn5+fevToYXWMfGXFihVWR8iXEhIS9J///Ee7du2SzWZT5cqV9corr+jRRx+1OprbSkxM1IoVK/S///1P9913X47L0plZ7tYlJibqp59+ko+Pj8P2iIgI/fHHHxalcn/x8fHXnRzl888/tyiV81CkXFRMTIw2bdqkpUuXKiQkRE8++aTD/po1a+qhhx6yKJ37W7dunTp27Kjff/89x2K8/Ab69vXu3VvvvPMO63E4ATfw572oqCirI+Q7M2fO1HPPPaf27durT58+MgxDa9asUaNGjTR16lR17NjR6ohuqUiRImrXrp3VMfKl7Ozsa37vP3LkiAoXLmxBIvc3YsQIvfHGG6pdu/Y11+zMD7i0D3elmjVrqmLFihoxYsQ1/88dGBhoUbL8oV27doqPj1ehQoVYj+M2XX0D/5VFTa/eJuWPVeLvlG3btuX62OrVq+dhkvypcuXKev755x3ukZCkcePG6dNPP9WuXbssSua+Ll++rFmzZqlZs2YKCQmxOk6+89RTTykwMFCffPKJChcurG3btqlEiRJq06aNSpcuzax+tyA0NFTvvvuu/vnPf1odJc9QpHBXKliwoLZu3cpNu3mE9TjyxrJlyzRo0CCNHDlSDz/8sGw2m9asWaN///vfGjlypJo0aWJ1RLfh4eFhL6U3+y0pBdU8X19f/frrrzn+jd23b5+qVq2qixcvWpTMvfn7+2vXrl2KiIiwOkq+c/ToUcXExMjT01N79+5V7dq1tXfvXhUvXlyrV69WcHCw1RHdTvHixbV+/XqVK1fO6ih5hmtucFeqU6eO9u3bR5HKIxSlvNGvXz999NFHeuSRR+zbmjVrJn9/fz3//PP8lt+Ev88y+csvv2jgwIF65ZVX9PDDD0uS1q5dq7Fjx+rdd9+1KqJbCw8PV3x8fI5/Y+Pj4xUeHm5RKvdXp04d/fLLLxSpPBAWFqYtW7boyy+/1ObNm5Wdna1u3boxmc9t6N69u7744gsNHTrU6ih5hiKFu1Lv3r0VFxenlJQUVatWLccNu1zKc/tYj8P59u/ff83LTgMDA3Xw4ME7H8iN/f0H0SeffFLvv/++w9o81atXV3h4uIYOHaq2bdtakNC9xcXFqU+fPtqyZYvq1asnm82mxMRETZ06VRMmTLA6ntt66aWXFBcXpyNHjlxzqn6+d926kydPqnjx4uratasaN26s//73v9qzZ482btzIBCkmDBgwwP7n7OxsffLJJ1q2bJmqV6+e42etcePG3el4TselfbgrXWvhyL9f5sOlPLfn6vU4fvvtN5UtW1b9+vVjPY7b0KBBA3l7e2vmzJn2WTxTUlL0z3/+U5cuXVJCQoLFCd2Tn5+fNm/erMqVKzts37Vrl2rVquWwph9yb/78+Ro7dqx9pPTKrH1t2rSxOJn74nuX823fvl2tWrXS4cOHVaFCBc2ePVvNmzdXenq6PDw8lJ6erq+//ppfqORSTExMro6z2Wxavnx5HqfJexQp3JV+//33G+7nsonbw3oceWPfvn1q166d9uzZo9KlS0uSDh06pIoVK+rbb7/lUtVbVKtWLVWuXFmfffaZChQoIEnKyMhQ165dtWvXLm3evNnihMBf+N7lfLGxsfLy8tKgQYM0c+ZMff/992ratKn++9//SvrrCpZNmzZp3bp1FieFK6JIubgrN0RfD799gisKCgrSTz/9pEqVKqlw4cL2InXw4EFVqVJF58+ftzqi2zIMQ0uXLnVYkLdx48b5clrZO2X9+vVq1aqVsrOzVaNGDUnS1q1bZbPZ9P3337PUxG24dOnSNdePufKLAMBqQUFBWr58uapXr65z584pICBA69evV+3atSVJu3fvVt26dXXmzBlrg8IlcY+Ui5s/f77D88zMTP3yyy+aNm2aRowYYVGq/GHGjBn66KOPlJSUpLVr1yoiIkLjx49XZGQkl57cJtbjyDs2m01NmzZV06ZNrY6Sbzz00ENKSkrSzJkz7QX1qaeeUseOHXPcg4Lc2bt3r7p27ao1a9Y4bOcStNu3f/9+jR8/3mGh4759++brmdHy0qlTp+zTyRcqVEgFCxZUsWLF7PuLFi2qs2fPWhXPrcXExNzwl3z54dI+ipSLu9YP9E888YTuu+8+zZkzR926dbMglfubPHmyXn/9dfXr109vv/22/Zt6kSJFNH78eIrUbWrSpInGjx+vTz75RNJfP/yfO3dOw4YNc7ihH+bl91XirXJl5kM4R5cuXeTl5aXvv/8+3y7EaYXFixerdevWqlmzpurXr29f6Pi+++7TwoULWQLhFl3995O/r85Rs2ZNh+eZmZnasmWLduzYoc6dO1sTysm4tM9N7d+/X9WrV1d6errVUdxSlSpVNHLkSPu9PFcuPduxY4eio6N14sQJqyO6NdbjyBs3WyX+6hFsmLNz504dOnRIly5dctjeunVrixK5r4IFC2rTpk269957rY6Sr9x///1q1qyZRo8e7bB98ODBWrJkCffz3QIPDw/FxsbK19dXkrRw4UI1bNjQPhqdkZGhH3/8kVFUJxo+fLjOnTun//znP1ZHuW0UKTd04cIFDRkyRP/73/+0Z88eq+O4JT8/P+3evVsREREORWrv3r2qXr06s3Q5wYULFxzW46hVqxbrcdymu2GVeCscOHBA7dq10/bt2+0zoEn/91tpfoAy78EHH9R7773nsOYZbl+BAgW0fft2VahQwWH7b7/9purVq7PQ8S242QLyV7A+ovPs27dPDz30kE6dOmV1lNvGpX0urmjRog6/dTYMQ2fPnpW/v79mzpxpYTL3FhkZqS1btuSY4eh///ufqlSpYlGq/IP1OPLGpUuXVK9ePatj5Dt9+/ZVZGSkli1bprJly2r9+vU6efKk4uLi8sVvTO+UtLQ0+5/feecdvfrqqxo5cuQ11+oLCAi40/HyhRIlSmjLli05itSWLVsY6b9FFKQ7b+3atfYZUt0dRcrFjR8/3uG5h4eHSpQooTp16qho0aLWhMoHXnnlFfXq1UsXL16UYRhav369vvzyS40aNco+5SnMu9l6HO+99x7rcdyGu2GVeCusXbtWy5cvV4kSJeTh4SEPDw898sgjGjVqlPr06aNffvnF6ohuoUiRIjl+8deoUSOHY5hs4vb06NFDzz//vA4cOOCw0PE777yjuLg4q+MBDtq1a5fj34Tk5GRt3Lgx33wf49I+3LU+/fRTvfXWWzp8+LAkqVSpUho+fDgTeNwG1uPIW3379tX06dNVvXr1fLtKvBWKFi2qTZs2qWzZsipXrpz++9//KiYmRvv371e1atWYrj+XzCwIHRUVlYdJ8i/DMDR+/HiNHTtWR48elSSFhYXplVdeUZ8+fZgkAS5h3759Kl++fI7LJq8MBjRs2DDfzDxLkXIDZ86c0WeffWaf6rRKlSrq2rWrAgMDrY6WL5w4cULZ2dlcFuEErMeRt260Ynx+WSXeCo8++qji4uLUtm1bdezYUadPn9a///1vffLJJ9q0aZN27NhhdUS3c+nSJfn4+Fxz34kTJxQUFHSHE7mvBQsWKDY2NscvTq5Myc2SEnA1Hh4eKlWqlGJiYuyPMmXKWB0rT1CkXNzGjRvVrFkz+fn56aGHHpJhGNq4caMuXLigJUuWqFatWlZHBOw8PDyUkpJiL6V/n8hDko4dO6awsDAu64FLWbx4sdLT09W+fXsdOHBAjz32mHbv3q3ixYtr9uzZOS5Pw821bdtW8+bNk4eHh8P2Y8eOqVGjRpRTEzw9PZWSkqISJUrI09NTycnJ/OIPLm316tVKSEjQypUrtXbtWl28eFGlS5dWw4YN1bBhQ0VHR6tUqVJWx3QKipSLe/TRR1W+fHl9+umn8vL665a2y5cvq3v37jpw4IBWrVplcUL3UatWLcXHx6to0aK6//77b3gJBFPI3hoPDw8dO3ZMJUqUkPRXkdq2bZsiIyMlUaSc6ciRI7LZbPnmm5GrOXXqVI7JfpB7derUUZUqVRxu5E9OTlbDhg1133336euvv7YwnXsJCQnRp59+qlatWuX4NxZwdZmZmVq7dq1WrlyplStXat26dcrIyFD58uXzxczTTDbh4jZu3OhQoiTJy8tLr776qv1yKeROmzZttHPnTtWvX5/JDvJQly5d7OtxXLx4US+++KLDehy4ddnZ2Xrrrbc0duxYnTt3TtJfZTUuLk6vvfZajt/+48a6du2aq+NY6Ni8H374QQ0aNFD//v313nvv6Y8//lDDhg1Vo0YNzZ492+p4buXFF19UmzZtZLPZZLPZFBISct1j+SUVXI23t7caNGigBx98UA8//LAWL16sTz/9VPv27bM6mlNQpFxcQECADh06lGNRw8OHD3NdtEnDhg2Th4eH7r//fnXr1k3PPPMM95k52dUrlT/77LM5junUqdOdipPvvPbaa/rss880evRo1a9fX4Zh6KefftLw4cN18eJFvf3221ZHdCtTp05VRESE7r//fnFxhnMVL15cixcvtq8jtWjRItWqVUuzZs2i8Js0fPhwPf3009q3b59at26tKVOmqEiRIlbHAm7o4sWLWrNmjVasWKGVK1dqw4YNioyMVFRUlCZPnpxvJpzh0j4X16dPH82fP1//+c9/HKY6feWVV/T444/nmB4dN7Z27Vp9/vnnmjt3rjIzM/X444+ra9euN7yJH3AVYWFh+uijj9S6dWuH7d99951eeukl/fHHHxYlc08vvfSSZs+erdKlS6tr16569tlnVaxYMatj5St79+7VI488oiZNmmjGjBlcKnmbRowYoVdeeUX+/v5WRwGuKyoqShs2bFC5cuXUoEEDRUVFKSoqSiVLlrQ6mtNRpFzcpUuX9Morr+ijjz7S5cuXJf01TNqzZ0+NHj3afgkVzLlw4YLmzp2rKVOmaPXq1SpTpoy6du2qzp0765577rE6HnBNBQoU0LZt21SxYkWH7Xv27FHNmjV14cIFi5K5r4yMDM2bN0+ff/651qxZo5YtW6pbt25q2rQpP/SbdL17ys6fPy9fX195enrat506depORgNwB3l7eys0NFRt27ZVdHS0GjRokG9n6qRIuYnz589r//79MgxD5cuX57dRTrR//35NmTJF06dPV3Jyspo0aaIffvjB6lhADnXq1FGdOnX0/vvvO2zv3bu31q9fr59//tmiZPnD77//rqlTp2r69OnKzMzUzp07VahQIatjuY1p06bl+tirLwPG9TFREtxNenq6Vq9erZUrV2rFihXasmWLKlasqKioKEVHRysqKirfTJjCPVJuwt/fX9WqVbM6Rr5Urlw5DR48WOHh4frXv/6lxYsXWx0JuKZ3331XLVu21LJly/Twww/LZrNpzZo1Onz4MOXfCa7czG8YhrKzs62O43YoR3mjTZs29qtPmCgJ7qBgwYJq3ry5mjdvLumvNc8SExO1YsUKvfvuu3rmmWdUoUKFfLEMAiNSLi49PV2jR49WfHy8jh8/nuOb+4EDByxKlj8kJCTo888/1zfffCNPT0916NBB3bp1U926da2OBlzT0aNH9eGHH2r37t0yDENVqlTR888/r+HDhzO73C34+6V9iYmJeuyxx/Tcc8+pefPmTIpwG3744Qd5enqqWbNmDtuXLFmirKwsxcbGWpQMwJ2WnZ2tDRs2aMWKFVqxYoUSExN18eLFfDHLJEXKxf3jH/9QQkKC/vnPfyo0NDTHkH7fvn0tSua+Dh8+rKlTp2rq1KlKSkpSvXr11K1bN3Xo0ME+TTfgTrZu3apatWrli29Kd9LfJ5t47rnn9Oyzz6p48eJWx8oXqlevrtGjR6tFixYO23/88UcNGjRIW7dutSgZgLyWnZ2tjRs32i/t++mnn5Senq5SpUopJibG/oiIiLA66m2jSLm4IkWKaNGiRapfv77VUfKFJk2aaMWKFSpRooQ6deqkrl27qlKlSlbHAm4LRerWeHh4qHTp0je972TevHl3MFX+4Ofnp127dqlMmTIO2w8ePKj77rtP6enp1gRzQ2YWhmYSD7iCgIAApaenKzQ0VNHR0YqOjlZMTIzKlStndTSn4x4pF1e0aFGm43UiPz8/ffPNN3rsscccZpACcPfp1KkTM/PlkcDAQB04cCBHkdq3bx8j/yaxzAnczZgxYxQTE5Njhtn8iBEpFzdz5kx99913mjZtGjP1AbgmRqTgap5//nmtW7dO8+fPt/8Wet++fXr88cf14IMP6r///a/FCQHg9lGkXNDVl5ns27dPhmGoTJky8vb2djiWqU6B/K99+/Y33H/mzBklJCRQpOAyUlNT1bx5c23cuNG+Nt+RI0f06KOPat68eSpSpIi1AfOBCxcuKDMz02FbQECARWmAuxOX9rkgpjcF8HeBgYE33d+pU6c7lAa4ucDAQK1Zs0ZLly7V1q1b5efnp+rVq6tBgwZWR3Nr6enpGjRokObOnauTJ0/m2M8vU4A7ixEpAAAAN9CrVy+tWLFCb7zxhjp16qQPP/xQf/zxhz7++GONHj1azzzzjNURgbsKi2S4qDfffPOGa0SlpaWpa9eudzARAAC5l5CQoFatWql8+fKqUKGCWrdurdWrV1sdy60tXLhQkyZN0hNPPCEvLy89+uij+ve//62RI0dq1qxZVscD7joUKRc1bNgwPfjgg1q2bNk191+4cEHTpk27w6kAALi5mTNnqnHjxvL391efPn308ssvy8/PT40aNdIXX3xhdTy3derUKUVGRkr6636oK9OdP/LII1q1apWV0YC7EkXKhbVp00YtWrTQe++9Z3UUAABy7e2339a7776rOXPmqE+fPurbt6/mzJmj0aNH680337Q6ntsqW7asDh48KEmqUqWK5s6dK+mvkSom8ADuPO6RclGenp5KTk7W0qVL9fzzz+uJJ57Qp59+Kh8fH0nSsWPHFBYWxo2lAACX4+vrq19//VXly5d32L5v3z5VrVpVFy9etCiZe3vvvffk6empPn36aMWKFWrZsqWysrKUmZmp9957T3379rU6InBXYdY+F3Wl3z7zzDO699571b59ezVo0EDz589XaGioxekAALi+8PBwxcfH5yhS8fHxCg8PtyiV++vfv7/9zzExMdq9e7c2btyo8uXLq3r16hYmA+5OXNrnBh544AFt2LBBPj4+euCBB/Tzzz9bHQkAgOuKi4tTnz591LNnT82YMUMzZ87Uiy++qL59+2rgwIFWx3M7y5cvV5UqVZSWluawvXTp0mrUqJH+8Y9/MJEHYAFGpFzU3xfklaTg4GAtX75cvXv3VnR0tF5//XWLkgEAcGM9e/ZUSEiIxo4da7+Pp3LlypozZ47atGljcTr3M378ePXo0eOaC+4GBgbqhRde0Lhx4/Too49akA64e3GPlIvy8PBQSkqKgoODc+z75JNP1KdPH2VmZnKPFAAA+VxERIR+/PFHVa5c+Zr7d+/eraZNm+rQoUN3OBlwd+PSPhc1bNgwFSpU6Jr7nn/+ecXHx6tz5853OBUAADdXtmxZnTx5Msf2M2fOqGzZshYkcm/Hjh2Tt7f3dfd7eXnpzz//vIOJAEhc2ueyhg0bdsP99evXV/369e9QGgAAcu/gwYPXvGIiIyNDf/zxhwWJ3FupUqW0ffv2HJN3XLFt2zYmogIsQJECAABOsWDBAvufFy9erMDAQPvzrKwsxcfHq0yZMhYkc28tWrTQ66+/rtjYWBUoUMBh34ULFzRs2DA99thjFqUD7l7cIwUAAJzCw+OvOwZsNpuu/vHC29tbZcqU0dixY/mh36Rjx46pVq1a8vT01Msvv6xKlSrJZrNp165d+vDDD5WVlaXNmzerZMmSVkcF7ioUKQAA4FSRkZHasGGDgoKCrI6Sb/z+++/q2bOnFi9ebC+pNptNzZo106RJkxjpAyxAkQIAAE7x888/69SpU4qNjbVvmz59uoYNG6b09HS1bdtWH3zwgXx9fS1M6d5Onz6tffv2yTAMVahQQUWLFrU6EnDXoki5uJtNZVq6dOk7lAQAgBtr3ry5YmJiNGjQIEnS9u3bVatWLXXp0kWVK1fWmDFj9MILL2j48OHWBgUAJ6BIuTgPD48ci/P+HetIAQBcRWhoqBYuXKjatWtLkl577TUlJCQoMTFRkvTVV19p2LBh2rlzp5UxAcApmLXPxf3yyy8OzzMzM/XLL79o3Lhxevvtty1KBQBATqdPn3aY8CAhIUHNmze3P3/wwQd1+PBhK6IBgNNRpFxcjRo1cmyrXbu2wsLCNGbMGLVv396CVAAA5FSyZEklJSUpPDxcly5d0ubNmzVixAj7/rNnz95wYVkAcCceVgfAralYsaI2bNhgdQwAAOyaN2+uwYMHa/Xq1RoyZIj8/f316KOP2vdv27ZN5cqVszAhADgPI1IuLi0tzeG5YRhKTk7W8OHDVaFCBYtSAQCQ01tvvaX27dsrKipKhQoV0rRp0+Tj42Pf//nnn6tp06YWJgQA52GyCRd3rckmDMNQeHi4Zs+erYcfftiiZAAAXFtqaqoKFSokT09Ph+2nTp1SoUKFHMoVALgripSLS0hIcHju4eGhEiVKqHz58vLyYkARAAAAsAJFCgAAAABMYkjDBS1YsECxsbHy9vbWggULbnhs69at71AqAAAAAFcwIuWCPDw8lJKSouDgYHl4XH9iRZvNxoK8AAAAgAUoUgAAAABgEutIuanDhw+ra9euVscAAAAA7kqMSLmprVu3qlatWlzaBwAAAFiAESkAAAAAMIkiBQAAAAAmUaQAAAAAwCTWkXJR7du3v+H+M2fO3JkgAAAAAHKgSLmowMDAm+7v1KnTHUoDAAAA4O+YtQ8AAAAATOIeKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJhEkQIAAAAAkyhSAIC7ms1m07fffmt1DACAm6FIAQDytZSUFPXu3Vtly5aVr6+vwsPD1apVK8XHx0uSkpOTFRsbK0k6ePCgbDabtmzZYmFiAIA7YEFeAEC+dfDgQdWvX19FihTRu+++q+rVqyszM1OLFy9Wr169tHv3boWEhFgdEwDghliQFwCQb7Vo0ULbtm3Tnj17VLBgQYd9Z86cUZEiRWSz2TR//ny1bdtWNpvN4ZioqCi98cYbatSokQ4fPuxQuuLi4rRhwwatWrXqjrwXAIBr4dI+AEC+dOrUKf3444/q1atXjhIlSUWKFMmxbf369ZKkZcuWKTk5WfPmzVODBg1UtmxZzZgxw37c5cuXNXPmTD333HN5lh8A4NooUgCAfGnfvn0yDEP33ntvrl9TokQJSVLx4sUVEhKiYsWKSZK6deumKVOm2I9btGiRzp8/rw4dOjg3NADAbVCkAAD50pUr16++XO9WdOnSRfv27dO6deskSZ9//rk6dOhwzZEuAMDdgSIFAMiXKlSoIJvNpl27dt32uYKDg9WqVStNmTJFx48f1w8//KCuXbs6ISUAwF1RpAAA+VKxYsXUrFkzffjhh0pPT8+x/8yZMzm2+fj4SJKysrJy7Ovevbtmz56tjz/+WOXKlVP9+vWdnhkA4D4oUgCAfGvSpEnKysrSQw89pG+++UZ79+7Vrl279P777+vhhx/OcXxwcLD8/Pz0448/6tixY0pNTbXva9asmQIDA/XWW28xyQQAgCIFAMi/IiMjtXnzZsXExCguLk5Vq1ZVkyZNFB8fr8mTJ+c43svLS++//74+/vhjhYWFqU2bNvZ9Hh4e6tKli7KystSpU6c7+TYAAC6IdaQAAMilHj166NixY1qwYIHVUQAAFvOyOgAAAK4uNTVVGzZs0KxZs/Tdd99ZHQcA4AIoUgAA3ESbNm20fv16vfDCC2rSpInVcQAALoBL+wAAAADAJCabAAAAAACTKFIAAAAAYBJFCgAAAABMokgBAAAAgEkUKQAAAAAwiSIFAAAAACZRpAAAAADAJIoUAAAAAJj0/wDlpNgXWnIxfAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "