Add helper scripts
Browse files- convert_images.py +40 -0
- create_dataset.py +4 -0
- create_json.py +31 -0
convert_images.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
input_folder = Path("./original_images/")
|
8 |
+
output_folder = Path("./data/train/")
|
9 |
+
output_folder.mkdir(parents=True, exist_ok=True)
|
10 |
+
folders = os.listdir(input_folder)
|
11 |
+
for folder in folders:
|
12 |
+
folder_path = input_folder.joinpath(folder)
|
13 |
+
images = os.listdir(folder_path)
|
14 |
+
for image in images:
|
15 |
+
output = output_folder.joinpath(f'{folder}')
|
16 |
+
output.mkdir(parents=True, exist_ok=True)
|
17 |
+
|
18 |
+
output = output.joinpath(f'{folder}_{image}')
|
19 |
+
output = str(output.absolute())
|
20 |
+
|
21 |
+
input = folder_path.joinpath(image)
|
22 |
+
input = str(input.absolute())
|
23 |
+
|
24 |
+
if os.path.isfile(input) == False or '.json' in image:
|
25 |
+
continue
|
26 |
+
|
27 |
+
image_input = Image.open(input)
|
28 |
+
|
29 |
+
background_color = (23, 35, 35, 255)
|
30 |
+
new_color = (0, 0, 0, 255)
|
31 |
+
data = np.array(image_input)
|
32 |
+
data[(data == background_color).all(axis=-1)] = new_color
|
33 |
+
image_input = Image.fromarray(data, 'RGBA')
|
34 |
+
|
35 |
+
new_image = Image.new('RGB', image_input.size)
|
36 |
+
new_image.paste(image_input, mask=image_input.split()[3])
|
37 |
+
|
38 |
+
bbox = new_image.getbbox()
|
39 |
+
new_image = new_image.crop(bbox)
|
40 |
+
new_image.save(output)
|
create_dataset.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
|
3 |
+
dataset = load_dataset('.', data_dir='data', split='train')
|
4 |
+
dataset.push_to_hub('frutiemax/rct_dataset')
|
create_json.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas
|
3 |
+
from pathlib import Path
|
4 |
+
import string
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
# read all the folders in data/train
|
8 |
+
data_folder = Path("./data/train")
|
9 |
+
folders = os.listdir(data_folder)
|
10 |
+
|
11 |
+
entries = []
|
12 |
+
|
13 |
+
image_index = 0
|
14 |
+
for folder in folders:
|
15 |
+
images_path = data_folder.joinpath(folder)
|
16 |
+
images = os.listdir(images_path)
|
17 |
+
|
18 |
+
view = 0
|
19 |
+
for image in images:
|
20 |
+
object_description = folder.replace('_', ' ')
|
21 |
+
entry = {'file_name' : image, 'object_type' : 'small_scenery', 'object_description' : object_description, 'view': view, 'color1' : 'none', 'color2' : 'none', 'color3' : 'none'}
|
22 |
+
entries.append(entry)
|
23 |
+
view = view + 1
|
24 |
+
|
25 |
+
#put the entries into the metadata.csv
|
26 |
+
dataframe = pandas.DataFrame(entries)
|
27 |
+
|
28 |
+
# dont overwrite the old metadata.csv
|
29 |
+
if os.path.exists('metadata.csv'):
|
30 |
+
shutil.copyfile('metadata.csv', 'metadata_backup.csv')
|
31 |
+
dataframe.to_csv('metadata.csv')
|