sha
stringlengths
40
40
text
stringlengths
1
13.4M
id
stringlengths
2
117
tags
listlengths
1
7.91k
created_at
stringlengths
25
25
metadata
stringlengths
2
875k
last_modified
stringlengths
25
25
arxiv
listlengths
0
25
languages
listlengths
0
7.91k
tags_str
stringlengths
17
159k
text_str
stringlengths
1
447k
text_lists
listlengths
0
352
processed_texts
listlengths
1
353
tokens_length
listlengths
1
353
input_texts
listlengths
1
40
embeddings
listlengths
768
768
8eded16b4bca218dc0e5939cce56103ed3800a6a
# Dataset Card for road-traffic ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/road-traffic - **Point of Contact:** [email protected] ### Dataset Summary road-traffic ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/road-traffic ### Citation Information ``` @misc{ road-traffic, title = { road traffic Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/road-traffic } }, url = { https://universe.roboflow.com/object-detection/road-traffic }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/road-traffic
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:11:50+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "road-traffic", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "road-traffic", "1": "bicycles", "2": "buses", "3": "crosswalks", "4": "fire hydrants", "5": "motorcycles", "6": "traffic lights", "7": "vehicles"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:12:18+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for road-traffic The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary road-traffic ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for road-traffic\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nroad-traffic", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for road-traffic\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nroad-traffic", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for road-traffic\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nroad-traffic### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.016094759106636047, 0.15785740315914154, -0.008709542453289032, 0.030856003984808922, 0.11141503602266312, -0.0014727961970493197, 0.05263451486825943, 0.07801557332277298, 0.005188248585909605, 0.1562224179506302, -0.00887035671621561, 0.08263373374938965, 0.12789203226566315, 0.10177541524171829, -0.017481671646237373, -0.16501198709011078, 0.05122064799070358, -0.07055434584617615, 0.07074864953756332, 0.07161945849657059, 0.07005632668733597, -0.13249507546424866, 0.1017298549413681, -0.033411212265491486, -0.048235658556222916, 0.0175235103815794, -0.02617701143026352, -0.04529988765716553, 0.025239374488592148, 0.031215300783514977, 0.03533190116286278, 0.015692245215177536, 0.044072702527046204, -0.19258804619312286, 0.02518484741449356, 0.11350652575492859, 0.013321309350430965, 0.03973030298948288, 0.1312321424484253, -0.08541526645421982, 0.05080403760075569, -0.12083987146615982, 0.027830176055431366, 0.019390225410461426, -0.12428247928619385, -0.09779193252325058, -0.12555332481861115, 0.04871954023838043, 0.11761453747749329, 0.04800762981176376, -0.008877011947333813, 0.06407257914543152, -0.007248062640428543, 0.06353102624416351, 0.12365615367889404, -0.08442492038011551, -0.052079785615205765, 0.0935763567686081, 0.021575193852186203, 0.11389608681201935, -0.1168200671672821, -0.011891462840139866, -0.006043653469532728, -0.028623433783650398, 0.023729678243398666, -0.07248729467391968, -0.04476776346564293, 0.006316301412880421, -0.09818626195192337, -0.12196002155542374, 0.13444334268569946, 0.05015592649579048, -0.04824666306376457, -0.11376021057367325, -0.03908243402838707, 0.047554861754179, -0.025742648169398308, -0.02052965946495533, 0.04775886610150337, 0.0045407917350530624, 0.0681978315114975, -0.06558707356452942, -0.10393033921718597, 0.04372474551200867, -0.004709932953119278, 0.0267411507666111, -0.031277354806661606, 0.04568180441856384, 0.008882938884198666, 0.08284790068864822, -0.01683839224278927, -0.11832074075937271, -0.030343635007739067, -0.04569699987769127, -0.06708569824695587, -0.03807269036769867, 0.07294207066297531, -0.12081310898065567, 0.06272074580192566, 0.048085324466228485, -0.06981661915779114, 0.038957417011260986, -0.12916997075080872, 0.018823396414518356, 0.09526579082012177, 0.18885353207588196, -0.07705565541982651, -0.09878594428300858, -0.007780901622027159, 0.024799063801765442, 0.023925574496388435, -0.038807474076747894, -0.03642752394080162, -0.011147086508572102, 0.028680378571152687, 0.04012953117489815, 0.10519759356975555, 0.03059479407966137, -0.06500644236803055, -0.05050310119986534, 0.11123311519622803, -0.10336484014987946, 0.06296967715024948, 0.043862905353307724, -0.03151998296380043, 0.07339111715555191, 0.02000420354306698, 0.0147838294506073, -0.10250577330589294, 0.08539891242980957, -0.042610831558704376, 0.025795523077249527, -0.09436621516942978, -0.0843384861946106, 0.04438391327857971, -0.09223735332489014, -0.09293583035469055, -0.08918313682079315, -0.06490921229124069, -0.08640396595001221, 0.03947589918971062, -0.043036140501499176, 0.03250692039728165, 0.012968204915523529, -0.04342275485396385, 0.002485391916707158, 0.006754776928573847, 0.03231588006019592, -0.05102446302771568, 0.040797341614961624, -0.10442467033863068, 0.03479308262467384, 0.0904935896396637, 0.03353224694728851, -0.07626033574342728, 0.0560530386865139, -0.1980983167886734, 0.12412228435277939, -0.033389829099178314, 0.038247860968112946, -0.13990560173988342, 0.0240815207362175, -0.03530118986964226, -0.04181520640850067, 0.0004991587484255433, 0.1369009017944336, -0.1030714139342308, 0.01612326130270958, 0.0877099260687828, -0.04869047552347183, -0.04836307466030121, 0.04206500202417374, -0.04411841183900833, 0.024834059178829193, 0.08390888571739197, 0.09941785782575607, -0.014181678183376789, -0.12300316989421844, -0.10357920825481415, -0.0429333932697773, -0.05704234167933464, 0.13349837064743042, 0.053921084851026535, -0.04630124568939209, 0.07456333190202713, -0.010463782586157322, -0.019679758697748184, -0.024808866903185844, 0.016500478610396385, -0.03289360553026199, 0.013104110956192017, 0.0063013192266225815, -0.06469711661338806, 0.015125634148716927, -0.10317739099264145, 0.011762273497879505, -0.08418016880750656, -0.04910082742571831, 0.005266883410513401, -0.012796968221664429, 0.02693496271967888, -0.03249423950910568, 0.08473293483257294, -0.11057768017053604, -0.005856489762663841, -0.1454000473022461, -0.09034790098667145, 0.061449240893125534, 0.015233476646244526, 0.04348066449165344, -0.07926320284605026, 0.001323802163824439, 0.012963489629328251, 0.032111793756484985, -0.016906458884477615, 0.05276034027338028, -0.025526151061058044, -0.036625348031520844, -0.13493075966835022, -0.00794120505452156, -0.0219566710293293, 0.08622703701257706, -0.1171872466802597, -0.02512599714100361, 0.15772543847560883, 0.11310679465532303, 0.05093706026673317, -0.044105563312768936, 0.055891890078783035, -0.021420646458864212, -0.0340425968170166, -0.07363581657409668, -0.012396443635225296, -0.012827284634113312, 0.03394034132361412, 0.09500064700841904, -0.19241058826446533, -0.10989624261856079, 0.08376562595367432, -0.0020807357504963875, -0.08432693779468536, -0.054097674787044525, -0.03996332734823227, -0.013078180141746998, -0.09738071262836456, -0.04786158353090286, 0.045698992908000946, 0.05548357591032982, 0.08830880373716354, -0.06211872026324272, -0.03651624545454979, 0.023423153907060623, -0.014951368793845177, -0.07576362788677216, 0.039813701063394547, 0.05815470963716507, -0.10315307229757309, 0.09955119341611862, 0.02606966905295849, 0.044662393629550934, 0.12292680144309998, 0.03753465786576271, -0.09672050923109055, -0.01693475991487503, 0.07194548100233078, 0.02751249447464943, 0.09832341969013214, -0.03325923904776573, 0.003696262137964368, 0.07169418781995773, 0.007327375467866659, -0.03309907391667366, -0.09345484524965286, 0.08393949270248413, 0.03186669200658798, -0.03400979936122894, 0.058153655380010605, -0.025396760553121567, 0.07354441285133362, 0.10384587198495865, 0.04628828540444374, 0.08687540143728256, -0.04923522099852562, -0.05831876024603844, -0.09401202201843262, 0.1208958774805069, -0.04915333166718483, -0.2434118390083313, -0.09196574240922928, -0.0779285803437233, -0.05115671455860138, 0.0029945920687168837, 0.02836727164685726, -0.0015739926602691412, -0.07994392514228821, -0.08247155696153641, 0.058894649147987366, 0.07126011699438095, -0.0946509838104248, -0.10629992932081223, 0.022292328998446465, -0.007275528274476528, -0.08209932595491409, -0.007135259918868542, 0.02560659870505333, -0.07197292149066925, 0.011988802812993526, 0.04064025357365608, 0.134914368391037, 0.07942361384630203, -0.0213516466319561, 0.01030566357076168, -0.014118252322077751, 0.17057274281978607, -0.15254172682762146, 0.14196345210075378, 0.16021300852298737, 0.016925811767578125, 0.09431129693984985, 0.21062393486499786, -0.01072622463107109, 0.0007551487069576979, 0.017212364822626114, 0.065383680164814, -0.061984527856111526, -0.1944906860589981, -0.03958725929260254, -0.057742416858673096, 0.0194475706666708, 0.10619809478521347, 0.04616405814886093, 0.04330836981534958, 0.08817540109157562, -0.09393511712551117, 0.018833402544260025, 0.04358331486582756, 0.1008731946349144, 0.04400450363755226, 0.028409134596586227, 0.054620422422885895, -0.04461358115077019, -0.03311823308467865, 0.1029241606593132, 0.1340203583240509, 0.12785954773426056, -0.08979674428701401, 0.10495547950267792, 0.028610173612833023, 0.02475610189139843, -0.040429577231407166, 0.0013869564281776547, -0.02538101188838482, 0.057111795991659164, -0.009938368573784828, -0.09315890073776245, -0.003351682797074318, 0.080876424908638, 0.12452542781829834, 0.002687738509848714, 0.024399010464549065, -0.005703924689441919, 0.09743440896272659, 0.20760048925876617, 0.021632295101881027, -0.18175017833709717, 0.035523153841495514, 0.03287731483578682, 0.016875620931386948, -0.13242550194263458, -0.02752903662621975, 0.10611560195684433, -0.16585738956928253, 0.05727513134479523, -0.047349825501441956, 0.11072336137294769, -0.1300671100616455, -0.031666409224271774, 0.04114873334765434, 0.04616070166230202, -0.03447761759161949, 0.0680069625377655, -0.12309559434652328, 0.09779361635446548, 0.043572571128606796, 0.03637027367949486, -0.07998248189687729, 0.04560955613851547, 0.020271919667720795, 0.0013097893679514527, 0.14295555651187897, -0.007204659283161163, -0.03580506145954132, -0.12649911642074585, -0.09856276214122772, -0.019501592963933945, 0.06536825001239777, -0.06090749055147171, 0.10197975486516953, 0.0015637398464605212, -0.038919903337955475, -0.06402567028999329, -0.046223461627960205, -0.05980553850531578, -0.1747226119041443, 0.04029221832752228, -0.0024010466877371073, 0.012611506506800652, -0.017277425155043602, 0.034354712814092636, 0.008203280158340931, 0.08343293517827988, -0.08162929862737656, -0.07948722690343857, -0.15178677439689636, 0.018104905262589455, 0.0515204481780529, -0.03635934740304947, -0.021998904645442963, -0.09191287308931351, 0.1650441735982895, -0.03044549748301506, -0.06194624677300453, 0.041083190590143204, -0.05019715428352356, -0.0961037129163742, -0.07956913858652115, 0.11506827175617218, 0.03133655712008476, -0.011136469431221485, 0.0016479153418913484, 0.059834714978933334, 0.001503277919255197, -0.05958118662238121, 0.04724184051156044, 0.11743564158678055, 0.1105981320142746, 0.14470674097537994, 0.016901548951864243, -0.1564146876335144, -0.10983826965093613, 0.009369155392050743, 0.04439130052924156, 0.07996786385774612, -0.08705588430166245, 0.10484063625335693, 0.03996644541621208, -0.10576651990413666, -0.2390756607055664, 0.08551854640245438, 0.056064825505018234, -0.012580995447933674, -0.007927514612674713, -0.1389324814081192, 0.12635529041290283, 0.04827481135725975, -0.0037320100236684084, 0.07199740409851074, -0.24986624717712402, -0.07112421095371246, -0.02602086402475834, 0.04678162932395935, -0.16355663537979126, -0.15815941989421844, -0.04291433095932007, -0.03567035496234894, -0.177176833152771, 0.0503331758081913, -0.018970245495438576, 0.037652235478162766, 0.04275451973080635, 0.05234411731362343, 0.059722527861595154, -0.04394126310944557, 0.1084107831120491, 0.018321266397833824, 0.05126028507947922, -0.07830335199832916, -0.08770070225000381, 0.06992746889591217, -0.1052372083067894, 0.1203351840376854, 0.042438942939043045, 0.016822021454572678, -0.05067647993564606, -0.016955720260739326, -0.03939502686262131, 0.07750728726387024, -0.03359430655837059, -0.05237260088324547, -0.0803007259964943, 0.03167126327753067, 0.12323972582817078, 0.01250994298607111, 0.07668227702379227, -0.044970620423555374, -0.013660503551363945, 0.17628391087055206, 0.11096730083227158, -0.014920741319656372, -0.13085854053497314, -0.043267954140901566, 0.003310323692858219, 0.03498859703540802, -0.12902405858039856, 0.055758487433195114, 0.08738004416227341, 0.01459436770528555, 0.10364421457052231, -0.0061386218294501305, -0.0987679585814476, 0.007016205694526434, 0.05963841453194618, -0.09332086890935898, -0.15265926718711853, -0.0017403364181518555, 0.07685135304927826, -0.10122517496347427, -0.09674808382987976, 0.12605968117713928, 0.004808227531611919, -0.008111516945064068, 0.01060575246810913, 0.08042995631694794, 0.05498795956373215, 0.04906481131911278, 0.016952764242887497, 0.03173644840717316, -0.06173081323504448, 0.11154800653457642, 0.14414119720458984, -0.11234910786151886, -0.0032321528997272253, 0.1265287697315216, -0.04760461300611496, -0.017046784982085228, -0.03848832845687866, 0.07167495042085648, -0.033482059836387634, -0.0331382192671299, 0.0360555537045002, -0.06594385951757431, 0.023761166259646416, 0.1165209636092186, -0.011529100127518177, 0.055304285138845444, 0.025531815364956856, -0.01096593402326107, -0.12296383082866669, 0.14278644323349, -0.002133903792127967, 0.058613382279872894, -0.10731552541255951, 0.023311994969844818, 0.015310333110392094, 0.022102929651737213, 0.005873488262295723, -0.0719994530081749, -0.07068108022212982, -0.0003603686345741153, -0.0562896654009819, 0.09715733677148819, -0.08622178435325623, -0.014562365598976612, -0.011065734550356865, 0.012758495286107063, -0.01986180804669857, 0.028904134407639503, -0.043845195323228836, -0.06323907524347305, -0.04074500873684883, 0.12871648371219635, -0.14231692254543304, -0.023584768176078796, 0.06032172963023186, -0.08122619241476059, 0.0691182017326355, -0.0029752522241324186, -0.040077656507492065, -0.06561203300952911, -0.17786644399166107, -0.025607269257307053, 0.028280925005674362, 0.0549527183175087, 0.050325147807598114, -0.07996920496225357, 0.05652257800102234, -0.017284704372286797, -0.09150107949972153, -0.020821373909711838, -0.00681260833516717, -0.10875619202852249, 0.0660296082496643, -0.07827222347259521, -0.03748055920004845, -0.0457736998796463, 0.1377454251050949, 0.04149399697780609, 0.003335401648655534, 0.06684942543506622, -0.049183741211891174, 0.09060823917388916, -0.15053054690361023, -0.03359284624457359, -0.0031106271781027317, -0.039645444601774216, -0.06490733474493027, -0.021192627027630806, 0.07001353055238724, -0.03209687024354935, 0.10324389487504959, 0.1339321881532669, 0.03979654982686043, 0.03664335235953331, -0.02814302407205105, 0.03690124675631523, 0.04647015780210495, -0.02735377661883831, -0.015053220093250275, -0.026933886110782623, 0.0668959766626358, 0.016831310465931892, 0.019986094906926155, 0.09779825806617737, 0.08339432626962662, 0.21939663589000702, 0.1497623175382614, 0.02614239603281021, 0.050361789762973785, -0.0804736539721489, -0.08388965576887131, 0.07831914722919464, -0.0706171840429306, 0.0631524994969368, -0.10263833403587341, -0.0004777529393322766, 0.11835452169179916, -0.16491179168224335, 0.060708895325660706, -0.01281809899955988, -0.012441574595868587, -0.039512209594249725, -0.12429998815059662, -0.05910881236195564, -0.03690939396619797, -0.005561710800975561, -0.10873489826917648, 0.07563264667987823, 0.11065825819969177, -0.005726940929889679, 0.01358702965080738, 0.08934817463159561, -0.08625669032335281, -0.0695853903889656, 0.08970733731985092, 0.02288893796503544, 0.08285234868526459, 0.042542461305856705, 0.03919922932982445, 0.059266772121191025, -0.005582577083259821, 0.08806212991476059, 0.08412270992994308, 0.10892106592655182, 0.04022005945444107, -0.0779242068529129, -0.06910587102174759, 0.03734256699681282, -0.010880125686526299, -0.0344681590795517, 0.14486515522003174, 0.07406783849000931, 0.013374164700508118, -0.013938212767243385, 0.17820152640342712, -0.027286984026432037, -0.023681022226810455, -0.14776873588562012, 0.04766055569052696, -0.024360936135053635, 0.0029295263811945915, -0.020061040297150612, -0.15491421520709991, 0.0026334517169743776, 0.12376817315816879, 0.0758478119969368, -0.044135648757219315, -0.006795351393520832, -0.014603924006223679, 0.01217702217400074, 0.0027118916623294353, 0.05145309120416641, 0.02200557105243206, 0.22553765773773193, -0.051386211067438126, 0.009268341585993767, -0.028418907895684242, -0.02162167616188526, -0.06738384813070297, 0.0877416580915451, -0.01944335550069809, 0.003194487188011408, -0.06982018798589706, 0.10663706809282303, 0.008432386443018913, -0.18160203099250793, 0.06463705003261566, -0.10675479471683502, -0.08587868511676788, 0.012588567100465298, 0.010408498346805573, 0.002206905512139201, 0.017989642918109894, 0.01526893861591816, -0.0625954121351242, 0.11127893626689911, 0.026200944557785988, -0.0698971375823021, -0.007629143074154854, 0.0023305134382098913, -0.11991162598133087, 0.2720165550708771, -0.0260591022670269, 0.006661597639322281, 0.10398125648498535, -0.019262123852968216, -0.13842996954917908, -0.01133416872471571, 0.07256107777357101, -0.05193520337343216, -0.0013729945058003068, 0.11481603980064392, -0.0005299641052260995, 0.1370355486869812, 0.08952328562736511, -0.07454166561365128, 0.047019656747579575, -0.026061194017529488, 0.01183804776519537, -0.11075091361999512, 0.01668201945722103, -0.08506454527378082, 0.10462735593318939, 0.146432027220726, 0.005133035127073526, -0.0005847346037626266, -0.04033821076154709, -0.018139183521270752, 0.007695028092712164, 0.1057550460100174, -0.003641559975221753, -0.04087599739432335, 0.012638479471206665, -0.09957493841648102, 0.08117368072271347, -0.10639513283967972, -0.068210169672966, 0.03273748233914375, -0.01115945354104042, -0.02538042701780796, 0.09277664124965668, 0.052592791616916656, 0.019383611157536507, -0.05079861730337143, -0.11492395401000977, 0.019103066995739937, 0.17405332624912262, -0.015094760805368423, -0.02198616974055767 ]
989f5749f40823b3865aa4185f8d44ce69371784
# Dataset Card for bees-jt5in ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/bees-jt5in - **Point of Contact:** [email protected] ### Dataset Summary bees-jt5in ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/bees-jt5in ### Citation Information ``` @misc{ bees-jt5in, title = { bees jt5in Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/bees-jt5in } }, url = { https://universe.roboflow.com/object-detection/bees-jt5in }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/bees-jt5in
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:11:51+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bees-jt5in", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bees-0", "1": "bees"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:14:39+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for bees-jt5in The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary bees-jt5in ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for bees-jt5in\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbees-jt5in", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for bees-jt5in\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbees-jt5in", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for bees-jt5in\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nbees-jt5in### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.016631200909614563, 0.1536448895931244, -0.007755086291581392, 0.025421708822250366, 0.09139490872621536, -0.0020897500216960907, 0.049833059310913086, 0.08784711360931396, 0.00946814939379692, 0.17481836676597595, -0.0024109440855681896, 0.09177938103675842, 0.11653406172990799, 0.08923862874507904, -0.022860782220959663, -0.15146633982658386, 0.06010589748620987, -0.05523083359003067, 0.06078578531742096, 0.0757589191198349, 0.077916219830513, -0.1354406476020813, 0.0869719460606575, -0.03411373123526573, -0.033118296414613724, 0.020887233316898346, -0.05654381588101387, -0.04549851268529892, 0.011593293398618698, 0.0403565987944603, 0.015841012820601463, 0.03262782469391823, 0.03401857614517212, -0.19128714501857758, 0.01862948015332222, 0.10624299198389053, 0.041552457958459854, 0.028133738785982132, 0.15617534518241882, -0.07693410664796829, 0.03682336211204529, -0.14064021408557892, 0.0351179875433445, 0.015231991186738014, -0.11961410194635391, -0.12012512981891632, -0.11869721114635468, 0.04934774711728096, 0.12094158679246902, 0.04114292562007904, -0.01657295413315296, 0.08822096884250641, -0.014634343795478344, 0.061778392642736435, 0.11403864622116089, -0.069132961332798, -0.03778097406029701, 0.06727875769138336, 0.032165639102458954, 0.09944894164800644, -0.11279526352882385, -0.021214231848716736, 0.0027412644121795893, -0.021726906299591064, 0.01398406084626913, -0.06422402709722519, -0.06311199814081192, -0.011998782865703106, -0.10043168067932129, -0.14431016147136688, 0.15410593152046204, 0.054393261671066284, -0.050825655460357666, -0.14193131029605865, -0.00894029438495636, 0.06957661360502243, -0.036674655973911285, -0.009488296695053577, 0.04512079432606697, -0.0060417833738029, 0.06591637432575226, -0.06443382799625397, -0.10135361552238464, 0.05145249515771866, 0.04570305719971657, 0.026979241520166397, -0.015584512613713741, 0.035333167761564255, 0.010640100575983524, 0.07039231061935425, 0.012846149504184723, -0.10985413193702698, -0.028702057898044586, -0.04162735491991043, -0.054017845541238785, -0.048572707921266556, 0.07605865597724915, -0.15095187723636627, 0.06223481521010399, 0.05408531054854393, -0.060812875628471375, 0.03611108660697937, -0.13669463992118835, 0.019338659942150116, 0.11691892147064209, 0.1753937304019928, -0.07945851236581802, -0.08858101069927216, 0.007807629182934761, 0.03697310760617256, 0.01864250935614109, -0.031085187569260597, -0.01371969934552908, 0.002323322230949998, 0.042361509054899216, 0.03559517115354538, 0.11431905627250671, 0.0485224649310112, -0.07516556978225708, -0.06375062465667725, 0.14696849882602692, -0.09683821350336075, 0.04728912562131882, 0.059525277465581894, -0.0524391271173954, 0.06699999421834946, 0.011745867319405079, 0.015062346123158932, -0.11844165623188019, 0.09014417976140976, -0.029666995629668236, 0.014572669751942158, -0.08125613629817963, -0.09848744422197342, 0.05451750382781029, -0.07662894576787949, -0.0758204311132431, -0.08338126540184021, -0.05149092897772789, -0.08241059631109238, 0.03924236074090004, -0.04208052530884743, 0.026625830680131912, 0.02142629213631153, -0.04267832264304161, -0.012548555620014668, 0.0057858629152178764, 0.03846242278814316, -0.054747965186834335, 0.04113885015249252, -0.09512811154127121, 0.038011692464351654, 0.11247535049915314, 0.04056964069604874, -0.10711245983839035, 0.06121138483285904, -0.19281084835529327, 0.13575023412704468, -0.05383361876010895, 0.02550770528614521, -0.1399735063314438, 0.009942091070115566, -0.00428260862827301, -0.03921016305685043, -0.002002426888793707, 0.14226765930652618, -0.08422017097473145, 0.020174743607640266, 0.05862531065940857, -0.05247326195240021, -0.0625668317079544, 0.036086924374103546, -0.038685597479343414, 0.004448320716619492, 0.08042474091053009, 0.13114741444587708, -0.050026003271341324, -0.10570692270994186, -0.10064973682165146, -0.04178321734070778, -0.033500466495752335, 0.15371906757354736, 0.06524386256933212, -0.035044122487306595, 0.08640065789222717, -0.005611037835478783, -0.010690109804272652, -0.04564598575234413, 0.015343695878982544, -0.032186511904001236, 0.01595373824238777, -0.0060859378427267075, -0.08177804201841354, 0.02076343633234501, -0.09507357329130173, 0.004829067271202803, -0.07280520349740982, -0.038095466792583466, 0.012537814676761627, -0.03177238255739212, 0.018558252602815628, -0.029349802061915398, 0.08349662274122238, -0.13422882556915283, -0.0014440246159210801, -0.16085797548294067, -0.09483016282320023, 0.06745831668376923, -0.04834615811705589, 0.03973483294248581, -0.06725424528121948, -0.012539103627204895, 0.025037646293640137, 0.038103729486465454, -0.015063163824379444, 0.046543341130018234, -0.017114099115133286, -0.041476309299468994, -0.13311713933944702, -0.049818672239780426, -0.021946590393781662, 0.1003720611333847, -0.11796196550130844, -0.029952064156532288, 0.1428692787885666, 0.11765642464160919, 0.04793759807944298, -0.04726134240627289, 0.08603519946336746, -0.024678943678736687, -0.01920461654663086, -0.08250914514064789, -0.01391619723290205, -0.0033765300177037716, 0.043510910123586655, 0.07876083254814148, -0.15542355179786682, -0.13975559175014496, 0.07929691672325134, 0.015454057604074478, -0.07947589457035065, -0.030180715024471283, -0.05359969288110733, -0.02303382195532322, -0.09383292496204376, -0.03323046490550041, 0.0247479397803545, 0.0706833004951477, 0.08508454263210297, -0.07268224656581879, -0.040312495082616806, 0.02778962440788746, -0.02328655496239662, -0.0769139975309372, 0.06567393988370895, 0.05421958118677139, -0.1251647174358368, 0.1013336107134819, -0.015474398620426655, 0.04376283660531044, 0.09252546727657318, 0.039659254252910614, -0.11061078310012817, 0.022925633937120438, 0.07699309289455414, 0.025227494537830353, 0.09200453013181686, -0.0336836576461792, 0.016692237928509712, 0.08275188505649567, -0.015218271873891354, -0.02153722196817398, -0.08393054455518723, 0.08174348622560501, 0.03445268049836159, -0.03426356241106987, 0.03707389533519745, -0.013379417359828949, 0.08181501179933548, 0.09694454818964005, 0.06018564850091934, 0.12022417038679123, -0.045198045670986176, -0.059475697576999664, -0.08909160643815994, 0.12537695467472076, -0.02846953086555004, -0.26656994223594666, -0.06894271075725555, -0.058276742696762085, -0.05980001762509346, -0.011505973525345325, 0.036755967885255814, 0.003020327305421233, -0.08582287281751633, -0.09999920427799225, 0.07083207368850708, 0.07027378678321838, -0.10396281629800797, -0.11333009600639343, 0.03470747545361519, 0.008650237694382668, -0.07832197099924088, -0.00047714385436847806, 0.026542019098997116, -0.04772515967488289, 0.018611036241054535, 0.04629664868116379, 0.1245136484503746, 0.05731874704360962, -0.015697196125984192, -0.00006097208824940026, -0.0057855998165905476, 0.18591797351837158, -0.15081237256526947, 0.11628080159425735, 0.1574806272983551, 0.010417306795716286, 0.07202871888875961, 0.19580288231372833, -0.013782527297735214, -0.025620877742767334, 0.023386448621749878, 0.07302439957857132, -0.05692138522863388, -0.19652843475341797, -0.05907919257879257, -0.054855868220329285, 0.027408454567193985, 0.13900259137153625, 0.034794747829437256, 0.022338267415761948, 0.09168718010187149, -0.10970042645931244, 0.047624144703149796, 0.02575564943253994, 0.10463467985391617, 0.04188721999526024, 0.04443681612610817, 0.04205049201846123, -0.04072650521993637, -0.036065295338630676, 0.09480206668376923, 0.12166441231966019, 0.10136407613754272, -0.10131794959306717, 0.09728574752807617, 0.0342356339097023, 0.03908677399158478, -0.04024666175246239, 0.003439880907535553, -0.03580094873905182, 0.061546698212623596, -0.0084201879799366, -0.10190470516681671, -0.01109456829726696, 0.08122175931930542, 0.13005372881889343, -0.020610155537724495, 0.01156158372759819, -0.04780004918575287, 0.0792727842926979, 0.24073465168476105, 0.022788155823946, -0.19766880571842194, 0.017102545127272606, 0.045599132776260376, 0.02127041295170784, -0.13102875649929047, -0.03834352269768715, 0.07723946869373322, -0.1688348352909088, 0.057511016726493835, -0.04264359921216965, 0.11035829037427902, -0.15869444608688354, -0.036889586597681046, 0.0534050352871418, 0.033774927258491516, -0.02108711190521717, 0.08018147200345993, -0.12273847311735153, 0.0732245221734047, 0.041592180728912354, 0.03605649620294571, -0.09433183073997498, 0.03824291005730629, -0.002604836830869317, -0.02007439360022545, 0.15203648805618286, -0.019070906564593315, 0.0014249220257624984, -0.14000658690929413, -0.11022554337978363, -0.012724700383841991, 0.04390468820929527, -0.06626614183187485, 0.09273461997509003, 0.017909983173012733, -0.03314552083611488, -0.0814930647611618, -0.05268798768520355, -0.07712257653474808, -0.18079648911952972, 0.0513298474252224, -0.009837545454502106, 0.009406828321516514, -0.009828618727624416, 0.033945005387067795, 0.0330965518951416, 0.12487468123435974, -0.05409034714102745, -0.09477709978818893, -0.14742253720760345, 0.05564409866929054, 0.09079460054636002, -0.020437007769942284, -0.024961916729807854, -0.09279230237007141, 0.17617608606815338, -0.029572324827313423, -0.06951092183589935, 0.027508828788995743, -0.06970217823982239, -0.11947576701641083, -0.06061425805091858, 0.10446086525917053, 0.025339020416140556, -0.00983850471675396, 0.010066978633403778, 0.05588783323764801, 0.008404124528169632, -0.04779358208179474, 0.03470294922590256, 0.09281587600708008, 0.12336442619562149, 0.1232340931892395, 0.010289582423865795, -0.1368059664964676, -0.12484199553728104, 0.00040698563680052757, 0.029049353674054146, 0.11136460304260254, -0.07140795141458511, 0.10823936015367508, 0.048822641372680664, -0.08043806254863739, -0.22623714804649353, 0.08877712488174438, 0.06454993784427643, -0.009330764412879944, -0.01128563191741705, -0.14053045213222504, 0.13359098136425018, 0.03497149795293808, -0.00420922227203846, 0.07017553597688675, -0.26622727513313293, -0.0741414874792099, -0.01385089848190546, 0.03821506351232529, -0.23054474592208862, -0.16347232460975647, -0.049744538962841034, -0.050003811717033386, -0.16160893440246582, 0.06113756075501442, -0.003495019394904375, 0.04192066565155983, 0.03923457860946655, 0.03584206849336624, 0.06521715968847275, -0.04973173514008522, 0.0996103584766388, 0.02452586218714714, 0.04233674332499504, -0.06871608644723892, -0.07567901909351349, 0.030913926661014557, -0.09060190618038177, 0.14626847207546234, 0.05182886868715286, 0.021681590005755424, -0.05513733997941017, -0.011419232934713364, -0.04682689532637596, 0.08849872648715973, -0.029321881011128426, -0.04719489812850952, -0.08624621480703354, 0.04061095044016838, 0.1322481483221054, 0.02671498991549015, 0.09835377335548401, -0.03640864044427872, -0.01873212866485119, 0.16546039283275604, 0.09755239635705948, -0.0027996490243822336, -0.13660670816898346, -0.04079405963420868, 0.0015913406386971474, 0.042196132242679596, -0.12637288868427277, 0.04563523456454277, 0.07983614504337311, 0.019483789801597595, 0.10977701097726822, -0.012536687776446342, -0.10237609595060349, 0.007776519749313593, 0.04210156947374344, -0.11116355657577515, -0.11104327440261841, 0.02790849097073078, 0.10612224787473679, -0.09312348812818527, -0.11865786463022232, 0.12021555751562119, -0.005892246030271053, -0.019558612257242203, 0.002689077751711011, 0.07923944294452667, 0.054990097880363464, 0.0639876201748848, 0.022251015529036522, 0.04053740203380585, -0.06862650066614151, 0.11354433745145798, 0.15326951444149017, -0.14432860910892487, 0.000818905362393707, 0.1144523099064827, -0.052839476615190506, -0.022581670433282852, -0.01504556369036436, 0.028289562091231346, 0.0035846871323883533, -0.02525007165968418, 0.03649240359663963, -0.044224418699741364, 0.024048034101724625, 0.07596118003129959, -0.004065709188580513, 0.05704576522111893, 0.02593742124736309, -0.018705042079091072, -0.14488761126995087, 0.13334590196609497, 0.02213340438902378, 0.05895945429801941, -0.09138227254152298, 0.005567811895161867, 0.025558006018400192, 0.012296199798583984, 0.00908805150538683, -0.053182993084192276, -0.07708019763231277, -0.0011099884286522865, -0.021521057933568954, 0.10467839241027832, -0.0870923325419426, -0.00799355749040842, -0.019855471327900887, 0.0055273608304560184, -0.013149673119187355, 0.028826622292399406, -0.04764639213681221, -0.07837013900279999, -0.045174967497587204, 0.12866631150245667, -0.14700354635715485, -0.030949104577302933, 0.059786587953567505, -0.09695140272378922, 0.0615367628633976, 0.000782444782089442, -0.04576173424720764, -0.08560343831777573, -0.17529736459255219, -0.04209888353943825, 0.034079451113939285, 0.06549011915922165, 0.04960823804140091, -0.07558852434158325, 0.04460836574435234, -0.005929477978497744, -0.09063836187124252, -0.02127971686422825, -0.002596649806946516, -0.11307400465011597, 0.046401653438806534, -0.08525719493627548, -0.030444489791989326, -0.0379922054708004, 0.1377420276403427, 0.051675718277692795, 0.0073278723284602165, 0.07030277699232101, -0.04421687126159668, 0.09650704264640808, -0.13211823999881744, -0.03976493328809738, -0.004930721130222082, -0.04128245636820793, -0.06911147385835648, 0.0011117629474028945, 0.07807064801454544, -0.03598466143012047, 0.12576960027217865, 0.12828724086284637, 0.0465567484498024, 0.042057789862155914, -0.009022177197039127, 0.05335548147559166, 0.060300279408693314, -0.03013032115995884, -0.021144593134522438, -0.019899873062968254, 0.06976250559091568, 0.012675410136580467, 0.015290248207747936, 0.10074550658464432, 0.06386573612689972, 0.23624031245708466, 0.1337135136127472, 0.01656266115605831, 0.042632922530174255, -0.07873131334781647, -0.06061949580907822, 0.10231317579746246, -0.04710564762353897, 0.09375885128974915, -0.09969473630189896, 0.04306565225124359, 0.08593879640102386, -0.15497362613677979, 0.060964930802583694, -0.011376687325537205, -0.0148705979809165, -0.02936640754342079, -0.10138453543186188, -0.06128760799765587, -0.019105903804302216, 0.0023930780589580536, -0.11142019927501678, 0.08398298174142838, 0.11651019006967545, -0.0038942473474889994, 0.01473117433488369, 0.10377266258001328, -0.04205869138240814, -0.0801401436328888, 0.08409261703491211, 0.017332235351204872, 0.045232828706502914, 0.03597668185830116, 0.04709239676594734, 0.0751325711607933, 0.011981463991105556, 0.08727527409791946, 0.08739499747753143, 0.08561266213655472, 0.035347290337085724, -0.07405140995979309, -0.0825701504945755, 0.031086258590221405, -0.012760801240801811, -0.015905214473605156, 0.1355564296245575, 0.07777084410190582, 0.01019213255494833, -0.02229522354900837, 0.1748838573694229, -0.0131309125572443, -0.016508931294083595, -0.13645146787166595, 0.026894571259617805, -0.03409908711910248, -0.01250569336116314, -0.005949521902948618, -0.15097473561763763, 0.008475080132484436, 0.1379055231809616, 0.06976457685232162, -0.0413706935942173, -0.013211971148848534, -0.019463947042822838, 0.006567106116563082, -0.02535846084356308, 0.04778742417693138, 0.01008244976401329, 0.20090405642986298, -0.059642814099788666, 0.013722674921154976, -0.039334554225206375, -0.038506388664245605, -0.062496524304151535, 0.09958942979574203, -0.014453140087425709, -0.0037188653368502855, -0.07386146485805511, 0.11059972643852234, -0.007967911660671234, -0.20158928632736206, 0.05162684991955757, -0.0958743616938591, -0.08603911846876144, 0.011576038785278797, -0.021907802671194077, 0.007146039512008429, 0.026293093338608742, 0.004573027137666941, -0.06376734375953674, 0.07996112108230591, 0.025047998875379562, -0.06020844355225563, -0.006478039547801018, 0.0003717558865901083, -0.09596984088420868, 0.26318052411079407, -0.026489637792110443, 0.03884120658040047, 0.08111562579870224, -0.023654358461499214, -0.14130902290344238, -0.03363312408328056, 0.08290836215019226, -0.03774009644985199, 0.02096257358789444, 0.13657847046852112, -0.006087247282266617, 0.14731767773628235, 0.08941216766834259, -0.09812216460704803, 0.04776204377412796, -0.03110930323600769, 0.01670905202627182, -0.11676081269979477, 0.0010242407443001866, -0.08675390481948853, 0.1092488169670105, 0.13994015753269196, -0.010634776204824448, -0.005823533982038498, -0.04238152503967285, 0.006615255028009415, -0.0006033348035998642, 0.10223770141601562, -0.004519397858530283, -0.06186305731534958, 0.009304594248533249, -0.14229093492031097, 0.09019754081964493, -0.11917321383953094, -0.0542834997177124, 0.03792894259095192, -0.022548291832208633, -0.017843367531895638, 0.08454854786396027, 0.02936943806707859, 0.00024833224597387016, -0.060121241956949234, -0.11640521883964539, 0.032981209456920624, 0.16441379487514496, -0.010299146175384521, -0.027397194877266884 ]
5f996521a6bfdd65fb2a0fc5fe1ffcbb4207f70e
# Dataset Card for aerial-cows ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/aerial-cows - **Point of Contact:** [email protected] ### Dataset Summary aerial-cows ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/aerial-cows ### Citation Information ``` @misc{ aerial-cows, title = { aerial cows Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-cows } }, url = { https://universe.roboflow.com/object-detection/aerial-cows }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/aerial-cows
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:11:54+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aerial-cows", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aerial-cows", "1": "cow"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:12:41+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for aerial-cows The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary aerial-cows ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for aerial-cows\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naerial-cows", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for aerial-cows\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naerial-cows", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for aerial-cows\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\naerial-cows### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.0176534466445446, 0.16586606204509735, -0.007565517909824848, 0.02200227975845337, 0.09944131970405579, 0.0012696986086666584, 0.060723986476659775, 0.08181207627058029, 0.0029715350829064846, 0.17445382475852966, -0.0031642785761505365, 0.07120078802108765, 0.11640787124633789, 0.08881045877933502, -0.021882420405745506, -0.1480972170829773, 0.05864963307976723, -0.06369233876466751, 0.06245728209614754, 0.07119952142238617, 0.07217803597450256, -0.13920356333255768, 0.0855841338634491, -0.040284931659698486, -0.025687847286462784, 0.02482997067272663, -0.056291282176971436, -0.041799452155828476, 0.006853028666228056, 0.043806739151477814, 0.027292374521493912, 0.02474767155945301, 0.03640926256775856, -0.19196505844593048, 0.021275866776704788, 0.10598896443843842, 0.03506602719426155, 0.025304362177848816, 0.15472722053527832, -0.0839042216539383, 0.046637266874313354, -0.12758769094944, 0.03767968714237213, 0.017981456592679024, -0.1188124343752861, -0.10703764110803604, -0.12350471317768097, 0.05770576000213623, 0.1125035285949707, 0.05005619674921036, -0.01728636398911476, 0.07771144807338715, -0.016601035371422768, 0.05642787739634514, 0.10999412089586258, -0.06463849544525146, -0.04119214788079262, 0.0813426598906517, 0.034135423600673676, 0.10596630722284317, -0.11337940394878387, -0.01708671636879444, 0.000851219694595784, -0.02584669180214405, 0.0050168829038739204, -0.05756698548793793, -0.048888083547353745, -0.00726677943021059, -0.10055964440107346, -0.14650577306747437, 0.14082711935043335, 0.050523653626441956, -0.049321915954351425, -0.14453324675559998, -0.00720218988135457, 0.051989782601594925, -0.03480793908238411, -0.0061613465659320354, 0.04414490610361099, -0.0038062133826315403, 0.06226107105612755, -0.06986398994922638, -0.10254346579313278, 0.05054212734103203, 0.039217762649059296, 0.03698532655835152, -0.0203410517424345, 0.03701305389404297, 0.01790381409227848, 0.07408458739519119, 0.011889143846929073, -0.10501556098461151, -0.022757038474082947, -0.037026602774858475, -0.06121614947915077, -0.04307955875992775, 0.06481591612100601, -0.14432457089424133, 0.06182821840047836, 0.05800275504589081, -0.06269442290067673, 0.031939052045345306, -0.13133098185062408, 0.020882725715637207, 0.1039111316204071, 0.18383851647377014, -0.07860011607408524, -0.08885858952999115, -0.0013046103995293379, 0.042620282620191574, 0.021163644269108772, -0.033872611820697784, -0.023574544116854668, 0.0023226782213896513, 0.030024616047739983, 0.03865908458828926, 0.11129195988178253, 0.04406184330582619, -0.07337777316570282, -0.06330090016126633, 0.13961783051490784, -0.09610185027122498, 0.05364423617720604, 0.06009764224290848, -0.04944984242320061, 0.07184657454490662, 0.012754406780004501, 0.01730581745505333, -0.11409968882799149, 0.10095811635255814, -0.02850576490163803, 0.014492543414235115, -0.09047534316778183, -0.093989297747612, 0.054572489112615585, -0.08288343995809555, -0.08298807591199875, -0.08068185299634933, -0.0466715469956398, -0.08752034604549408, 0.03847484290599823, -0.03760480135679245, 0.028334418311715126, 0.016262268647551537, -0.040319014340639114, -0.012012546882033348, 0.009149981662631035, 0.038448259234428406, -0.05409449711441994, 0.03604030981659889, -0.10048676282167435, 0.03114566206932068, 0.11264316737651825, 0.03845123201608658, -0.09662848711013794, 0.06088728457689285, -0.1968790888786316, 0.1351347416639328, -0.05272764712572098, 0.027091799303889275, -0.13203498721122742, 0.01648728922009468, -0.010249745100736618, -0.03754907101392746, -0.002610504860058427, 0.13944345712661743, -0.07785355299711227, 0.017093127593398094, 0.059192825108766556, -0.0552685372531414, -0.059089187532663345, 0.037264298647642136, -0.042207613587379456, -0.0032987967133522034, 0.0794878751039505, 0.12214238196611404, -0.04481566324830055, -0.1163230836391449, -0.10553877800703049, -0.041859425604343414, -0.032711878418922424, 0.15473994612693787, 0.07076792418956757, -0.04312857985496521, 0.09519486874341965, -0.010658863931894302, -0.013801097869873047, -0.045096829533576965, 0.01451956294476986, -0.03855190426111221, 0.01905096136033535, -0.006824120879173279, -0.08597121387720108, 0.01687023416161537, -0.09869423508644104, 0.005646911915391684, -0.08246354758739471, -0.05460253730416298, 0.014364676550030708, -0.03209047019481659, 0.020062487572431564, -0.03360610455274582, 0.08978768438100815, -0.13290533423423767, -0.00477141747251153, -0.15544426441192627, -0.11321189254522324, 0.06292597949504852, -0.035787954926490784, 0.041892800480127335, -0.07233703136444092, -0.011816082522273064, 0.023037752136588097, 0.036129362881183624, -0.01625002920627594, 0.04337293282151222, -0.022663334384560585, -0.04442834481596947, -0.12905366718769073, -0.04562545567750931, -0.023116642609238625, 0.11444715410470963, -0.12376414984464645, -0.02687852270901203, 0.1467677652835846, 0.11648744344711304, 0.04450386390089989, -0.0483219176530838, 0.07701360434293747, -0.021463587880134583, -0.019379958510398865, -0.08221469074487686, -0.009569055400788784, -0.002498978516086936, 0.028606174513697624, 0.08493240177631378, -0.16919170320034027, -0.13718372583389282, 0.0839548408985138, 0.020166581496596336, -0.08352676033973694, -0.05246220901608467, -0.05013478547334671, -0.02199181355535984, -0.0908329114317894, -0.03233880177140236, 0.041135676205158234, 0.07124444097280502, 0.08656353503465652, -0.06771393120288849, -0.032559219747781754, 0.023800430819392204, -0.015691202133893967, -0.07466905564069748, 0.06450062245130539, 0.05408291146159172, -0.11580555140972137, 0.10324009507894516, -0.019922299310564995, 0.036378808319568634, 0.0857163742184639, 0.03824003040790558, -0.11586935818195343, 0.022952400147914886, 0.0739784985780716, 0.030908778309822083, 0.09303540736436844, -0.02294643223285675, 0.014712215401232243, 0.07930846512317657, -0.017592299729585648, -0.018897641450166702, -0.08386650681495667, 0.07872132956981659, 0.036668334156274796, -0.03119603544473648, 0.041173480451107025, -0.016400083899497986, 0.08033328503370285, 0.09895841032266617, 0.0621248297393322, 0.11351660639047623, -0.04645387455821037, -0.06100192293524742, -0.08912710845470428, 0.1233905479311943, -0.023163923993706703, -0.2603389024734497, -0.07579060643911362, -0.0613204687833786, -0.05324064567685127, -0.008169038221240044, 0.03358878940343857, 0.0035279712174087763, -0.08587608486413956, -0.09916535019874573, 0.05753491818904877, 0.06520465761423111, -0.10602583736181259, -0.11879811435937881, 0.03218960016965866, 0.0035359454341232777, -0.07638698071241379, 0.0009660613141022623, 0.02672014944255352, -0.05678347870707512, 0.008967895992100239, 0.0445273295044899, 0.12976273894309998, 0.06449248641729355, -0.01565667800605297, 0.0023554328363388777, -0.010140640661120415, 0.1652466058731079, -0.16062630712985992, 0.10257739573717117, 0.1503239870071411, 0.005159352906048298, 0.07492935657501221, 0.19040384888648987, -0.014540420845150948, -0.019192224368453026, 0.02451597899198532, 0.07583491504192352, -0.05936160683631897, -0.1960088014602661, -0.06291767209768295, -0.048852529376745224, 0.025895021855831146, 0.13810543715953827, 0.03749668970704079, 0.024178465828299522, 0.09469836950302124, -0.11324045807123184, 0.03173897787928581, 0.024305976927280426, 0.10531023889780045, 0.03686928749084473, 0.043792251497507095, 0.04331416264176369, -0.042886070907115936, -0.034106384962797165, 0.09783456474542618, 0.12007248401641846, 0.10915132611989975, -0.09998707473278046, 0.10568226128816605, 0.02668321691453457, 0.028043750673532486, -0.0379243828356266, -0.003952132072299719, -0.0318373441696167, 0.05972376465797424, -0.006248402874916792, -0.10118818283081055, -0.004141672980040312, 0.08972114324569702, 0.13853763043880463, -0.020233014598488808, 0.006829339545220137, -0.04343225061893463, 0.08212204277515411, 0.2416037619113922, 0.01045020017772913, -0.20241233706474304, 0.017278343439102173, 0.03975728154182434, 0.02148957923054695, -0.12324631214141846, -0.03728930652141571, 0.0832476019859314, -0.1706518530845642, 0.05613569915294647, -0.04298163577914238, 0.11212281137704849, -0.150968998670578, -0.039716269820928574, 0.05655010789632797, 0.030238360166549683, -0.021927310153841972, 0.0797760859131813, -0.11683861911296844, 0.07233962416648865, 0.04128940403461456, 0.03135629743337631, -0.09012394398450851, 0.037334565073251724, 0.006702864542603493, -0.017291773110628128, 0.15142816305160522, -0.02143820747733116, 0.011983614414930344, -0.1322438269853592, -0.11933901906013489, -0.01331300102174282, 0.053917184472084045, -0.07790479809045792, 0.09929753094911575, 0.01634339988231659, -0.03355199471116066, -0.080604188144207, -0.049909014254808426, -0.062065642327070236, -0.1901428997516632, 0.04498035088181496, -0.006688256282359362, 0.016093114390969276, -0.012429959140717983, 0.028836572542786598, 0.02297333814203739, 0.12761466205120087, -0.05218474939465523, -0.0881769135594368, -0.1474674940109253, 0.05138982832431793, 0.08834321051836014, -0.014964387752115726, -0.020321525633335114, -0.09052940458059311, 0.17692816257476807, -0.033516719937324524, -0.0646648183465004, 0.028220610693097115, -0.06365274637937546, -0.12256024032831192, -0.06289979815483093, 0.10695155709981918, 0.0298319049179554, -0.005034042056649923, 0.004091580398380756, 0.0591522678732872, 0.00417453283444047, -0.047130804508924484, 0.030245795845985413, 0.10310915857553482, 0.1416618674993515, 0.1352815330028534, 0.013526687398552895, -0.13226428627967834, -0.12631002068519592, -0.00012434642121661454, 0.033427298069000244, 0.10356328636407852, -0.07584982365369797, 0.10794895142316818, 0.03702959045767784, -0.08460325747728348, -0.23000000417232513, 0.08706188946962357, 0.06716929376125336, -0.008526334539055824, -0.01556934230029583, -0.13966752588748932, 0.13003912568092346, 0.038266509771347046, -0.006416465155780315, 0.07797467708587646, -0.265529602766037, -0.07531442493200302, -0.018638571724295616, 0.03302205726504326, -0.23323099315166473, -0.17211486399173737, -0.04792380332946777, -0.05027134716510773, -0.14473631978034973, 0.05612640455365181, -0.0068548922426998615, 0.0431215763092041, 0.043764423578977585, 0.03861057385802269, 0.06561533361673355, -0.04972127079963684, 0.1047256588935852, 0.017279932275414467, 0.037978336215019226, -0.06888502836227417, -0.08421356976032257, 0.03639458119869232, -0.09386444091796875, 0.13760961592197418, 0.043938275426626205, 0.01757701300084591, -0.05392236262559891, -0.016349613666534424, -0.03406118229031563, 0.0859612450003624, -0.02844267524778843, -0.0431324727833271, -0.09328368306159973, 0.039866428822278976, 0.13002169132232666, 0.027906619012355804, 0.09487104415893555, -0.04775815084576607, -0.009704130701720715, 0.1581781655550003, 0.10454422980546951, 0.009167982265353203, -0.14574284851551056, -0.042259689420461655, 0.00043119952897541225, 0.044408008456230164, -0.12114807963371277, 0.04351907595992088, 0.08607560396194458, 0.013128555379807949, 0.10601988434791565, -0.010507454164326191, -0.10010818392038345, 0.00952829048037529, 0.045236699283123016, -0.1063680499792099, -0.11291128396987915, 0.024825993925333023, 0.11001922190189362, -0.09801185876131058, -0.11870793253183365, 0.11896535754203796, -0.004342928063124418, -0.01808304525911808, 0.004160790238529444, 0.07615715265274048, 0.054897740483284, 0.05683695152401924, 0.01696690544486046, 0.03906509652733803, -0.06608784943819046, 0.1153128445148468, 0.15202543139457703, -0.16138938069343567, -0.0006120205507613719, 0.12170307338237762, -0.05104485899209976, -0.02311408706009388, -0.023944633081555367, 0.037926141172647476, -0.010610837489366531, -0.030117835849523544, 0.037458449602127075, -0.04121258854866028, 0.027695216238498688, 0.08619682490825653, -0.0016632532933726907, 0.057477109134197235, 0.02535754069685936, -0.01606440544128418, -0.14113187789916992, 0.1310393214225769, 0.016795780509710312, 0.05329827219247818, -0.09118019789457321, 0.011468425393104553, 0.028659947216510773, 0.004402244929224253, 0.009633904322981834, -0.05632100626826286, -0.07237241417169571, 0.0013051588321104646, -0.025576133280992508, 0.10761240124702454, -0.0818653330206871, -0.008610035292804241, -0.0172908753156662, 0.010390629991889, -0.008729234337806702, 0.02642541378736496, -0.04743697866797447, -0.0764676034450531, -0.046360086649656296, 0.12586304545402527, -0.14381977915763855, -0.02491140365600586, 0.05266229063272476, -0.09264510124921799, 0.06229894608259201, 0.007964001968502998, -0.04205672815442085, -0.09316560626029968, -0.17541204392910004, -0.03355523943901062, 0.028249293565750122, 0.06408699601888657, 0.042014703154563904, -0.07387389242649078, 0.04748445749282837, -0.007412301376461983, -0.09421884268522263, -0.016781453043222427, 0.0016168819274753332, -0.11117001622915268, 0.04697981849312782, -0.07999736070632935, -0.025841884315013885, -0.04004400968551636, 0.13475917279720306, 0.053582146763801575, 0.013654736801981926, 0.06876268237829208, -0.049182746559381485, 0.10071076452732086, -0.1273844689130783, -0.036531783640384674, -0.0061923242174088955, -0.03326881304383278, -0.07364290207624435, -0.0006410080241039395, 0.07911713421344757, -0.033471450209617615, 0.1301559954881668, 0.12318882346153259, 0.047571711242198944, 0.04226115345954895, -0.013222984969615936, 0.06420811265707016, 0.061971355229616165, -0.026428712531924248, -0.011356628499925137, -0.019153136759996414, 0.07243282347917557, 0.01517708133906126, 0.01643352210521698, 0.09638465940952301, 0.061095356941223145, 0.22956791520118713, 0.14069274067878723, 0.020262397825717926, 0.0427497923374176, -0.08739852905273438, -0.0555383637547493, 0.10126219689846039, -0.06032608821988106, 0.08380965143442154, -0.10614271461963654, 0.047401025891304016, 0.09622296690940857, -0.15260179340839386, 0.06168024614453316, -0.010390298441052437, -0.010427651926875114, -0.027036011219024658, -0.09996350854635239, -0.06095357611775398, -0.01939830742776394, 0.0025012707337737083, -0.10924527049064636, 0.08195368200540543, 0.1302417665719986, -0.001585181220434606, 0.014545715413987637, 0.10556767880916595, -0.05826335772871971, -0.0764850303530693, 0.08459092676639557, 0.021313320845365524, 0.05771114304661751, 0.039998859167099, 0.0384288989007473, 0.07435081154108047, 0.0020631924271583557, 0.09036479890346527, 0.08935467153787613, 0.09522125124931335, 0.04088512808084488, -0.0713028684258461, -0.07641908526420593, 0.03233236074447632, -0.012676520273089409, -0.013461656868457794, 0.14927040040493011, 0.07267165929079056, 0.01721426658332348, -0.02537175454199314, 0.17149358987808228, -0.020681733265519142, -0.011282137595117092, -0.13705725967884064, 0.036835186183452606, -0.04038722813129425, -0.010772991925477982, -0.015334411524236202, -0.15116910636425018, 0.008866614662110806, 0.13444766402244568, 0.08081287145614624, -0.05130718648433685, -0.010827052406966686, -0.011579355224967003, 0.007978196255862713, -0.023093480616807938, 0.041042622178792953, 0.008446730673313141, 0.2055879533290863, -0.06149769201874733, 0.0085045350715518, -0.036664243787527084, -0.03586156666278839, -0.06028478592634201, 0.09634754061698914, -0.0200838390737772, 0.0008202296448871493, -0.0746154636144638, 0.10938367992639542, -0.007322276011109352, -0.20209147036075592, 0.06681088358163834, -0.09988156706094742, -0.08119553327560425, 0.012825255282223225, -0.022674113512039185, 0.0044538602232933044, 0.028698058798909187, 0.005068074446171522, -0.06877923756837845, 0.07538656890392303, 0.02325749769806862, -0.06488219648599625, -0.006518322508782148, -0.00511312996968627, -0.10011178255081177, 0.2644541561603546, -0.02976803667843342, 0.036948125809431076, 0.08255383372306824, -0.018487216904759407, -0.13459239900112152, -0.03309619426727295, 0.0857483297586441, -0.0511595793068409, 0.017621725797653198, 0.12732481956481934, -0.01113090943545103, 0.15254132449626923, 0.08719976991415024, -0.09599053859710693, 0.055512115359306335, -0.037634678184986115, 0.011711682192981243, -0.11292089521884918, -0.0005932969506829977, -0.09266766905784607, 0.11500750482082367, 0.13878336548805237, -0.004555795807391405, -0.007093159481883049, -0.03497076779603958, 0.000880890991538763, 0.0008155361283570528, 0.0998607948422432, -0.00015570860705338418, -0.057914428412914276, 0.009463882073760033, -0.1414235532283783, 0.08822327852249146, -0.130702942609787, -0.04959234595298767, 0.040262799710035324, -0.014441383071243763, -0.015040839090943336, 0.07776570320129395, 0.030758870765566826, -0.001837320625782013, -0.06155848503112793, -0.12260375171899796, 0.037063829600811005, 0.16359300911426544, -0.01139809936285019, -0.027025889605283737 ]
5c0e1d3d0f5a95bb916995c8ad34778cd2ca6c7c
# Dataset Card for furniture-ngpea ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/furniture-ngpea - **Point of Contact:** [email protected] ### Dataset Summary furniture-ngpea ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/furniture-ngpea ### Citation Information ``` @misc{ furniture-ngpea, title = { furniture ngpea Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/furniture-ngpea } }, url = { https://universe.roboflow.com/object-detection/furniture-ngpea }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/furniture-ngpea
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:12:19+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "furniture-ngpea", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "furniture", "1": "Chair", "2": "Sofa", "3": "Table"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:12:40+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for furniture-ngpea The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary furniture-ngpea ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for furniture-ngpea\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nfurniture-ngpea", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for furniture-ngpea\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nfurniture-ngpea", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for furniture-ngpea\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nfurniture-ngpea### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.010843855328857899, 0.17623834311962128, -0.008374262601137161, 0.02173052728176117, 0.11094724386930466, 0.013551700860261917, 0.04595233500003815, 0.08099032193422318, 0.01572803221642971, 0.14970973134040833, -0.018253613263368607, 0.07870898395776749, 0.12027129530906677, 0.08940883725881577, 0.007524706423282623, -0.14525450766086578, 0.07141336053609848, -0.05505616217851639, 0.073032908141613, 0.0592883825302124, 0.06903264671564102, -0.13259172439575195, 0.09492260962724686, -0.025342514738440514, -0.06028848513960838, 0.0014409637078642845, -0.04002705216407776, -0.04416084289550781, 0.02407938428223133, 0.028298193588852882, 0.047179337590932846, 0.014194021932780743, 0.054767221212387085, -0.1842416673898697, 0.017189526930451393, 0.11318297684192657, -0.0016619283705949783, 0.030722016468644142, 0.13587498664855957, -0.09330872446298599, 0.070149727165699, -0.12919050455093384, 0.03247511014342308, 0.025405222550034523, -0.12095608562231064, -0.11814487725496292, -0.1179855465888977, 0.0532601960003376, 0.09449487179517746, 0.05451837554574013, -0.007852202281355858, 0.05547572299838066, -0.0009615179151296616, 0.06302427500486374, 0.13084538280963898, -0.08901551365852356, -0.05305584520101547, 0.1032974049448967, 0.03128672391176224, 0.10640797764062881, -0.11705268174409866, -0.015329691581428051, -0.010284692980349064, -0.021454229950904846, 0.03644439950585365, -0.07553761452436447, -0.032617658376693726, 0.014460412785410881, -0.1018439531326294, -0.12237140536308289, 0.1509898602962494, 0.06467649340629578, -0.04083111509680748, -0.129129096865654, -0.019583474844694138, 0.057130079716444016, -0.043517161160707474, -0.01081117894500494, 0.0567043200135231, -0.013601823709905148, 0.06082355976104736, -0.07285206764936447, -0.10555681586265564, 0.03839756175875664, 0.018472276628017426, 0.0167949590831995, -0.03907389938831329, 0.03807539492845535, 0.006587516516447067, 0.06664938479661942, -0.0011065809521824121, -0.11018090695142746, -0.025921765714883804, -0.057315003126859665, -0.07572108507156372, -0.027433713898062706, 0.07102397084236145, -0.08929207175970078, 0.06001914665102959, 0.0398617684841156, -0.0772084891796112, 0.03695657104253769, -0.09975634515285492, 0.009447449818253517, 0.08990601450204849, 0.22159576416015625, -0.07944072782993317, -0.10216930508613586, -0.04507192596793175, 0.03413086384534836, 0.0069041126407682896, -0.02985137514770031, -0.041495129466056824, -0.02058873325586319, 0.00717856315895915, 0.026855308562517166, 0.10471642762422562, 0.02710539475083351, -0.07107551395893097, -0.05039282143115997, 0.13104403018951416, -0.09761703014373779, 0.06393080949783325, 0.04838651791214943, -0.014832663349807262, 0.06531260907649994, 0.013509881682693958, 0.014830059371888638, -0.10146743059158325, 0.07140865921974182, -0.050766874104738235, 0.02612217329442501, -0.10280044376850128, -0.09656909108161926, 0.032555725425481796, -0.10973301529884338, -0.09351594746112823, -0.08070603013038635, -0.025982042774558067, -0.08932562172412872, 0.043413419276475906, -0.03920306637883186, 0.03985018655657768, 0.0072061363607645035, -0.058924350887537, 0.001971419434994459, 0.022306179627776146, 0.023614460602402687, -0.05100971832871437, 0.029126480221748352, -0.11339348554611206, 0.03481389209628105, 0.09518710523843765, 0.042651958763599396, -0.0653998851776123, 0.056492555886507034, -0.19589775800704956, 0.1268550157546997, -0.035729557275772095, 0.04515332728624344, -0.12942688167095184, 0.03448868915438652, -0.026736736297607422, -0.031236205250024796, -0.018700504675507545, 0.1283540427684784, -0.10841330885887146, 0.016509218141436577, 0.09091074764728546, -0.06177704036235809, -0.06181200593709946, 0.029035868123173714, -0.035509321838617325, 0.031054643914103508, 0.08452703803777695, 0.10435450077056885, -0.02662714198231697, -0.09726883471012115, -0.11659565567970276, -0.04358527064323425, -0.06647113710641861, 0.13218508660793304, 0.06148819625377655, -0.040357302874326706, 0.08147454261779785, -0.017213163897395134, -0.025515204295516014, -0.040977708995342255, 0.026388319209218025, -0.034488532692193985, 0.017374461516737938, 0.0024829714093357325, -0.061206936836242676, 0.028531620278954506, -0.12151417881250381, 0.018555110320448875, -0.09818167239427567, -0.04292244836688042, 0.014063374139368534, -0.024114947766065598, 0.01841689832508564, -0.04143606498837471, 0.08402129262685776, -0.07675033062696457, -0.0123251648619771, -0.14351654052734375, -0.09184190630912781, 0.053210921585559845, 0.0370323620736599, 0.027086788788437843, -0.06545177847146988, 0.0015806503361091018, 0.012819328345358372, 0.050736021250486374, -0.021025678142905235, 0.036916106939315796, -0.010874191299080849, -0.021342111751437187, -0.1319873332977295, -0.023760823532938957, -0.038020312786102295, 0.10769294202327728, -0.12809672951698303, -0.028337890282273293, 0.14329801499843597, 0.12245558947324753, 0.05131366848945618, -0.04889586195349693, 0.05730123817920685, -0.021018698811531067, -0.019975794479250908, -0.08007597178220749, 0.0039238170720636845, -0.0175632257014513, 0.020793303847312927, 0.09684774279594421, -0.19835254549980164, -0.1370820701122284, 0.08416607230901718, 0.011585564352571964, -0.08523645997047424, -0.04018845036625862, -0.04090399295091629, -0.0018680847715586424, -0.08330797404050827, -0.057636361569166183, 0.044670313596725464, 0.06373383104801178, 0.07375404983758926, -0.05936016887426376, -0.05134325847029686, 0.021694181486964226, 0.00695606367662549, -0.10428246110677719, 0.05746162310242653, 0.04632021114230156, -0.11325111240148544, 0.0940704196691513, 0.031834639608860016, 0.048937905579805374, 0.12072892487049103, 0.034407198429107666, -0.09577802568674088, -0.01778070628643036, 0.07288867235183716, 0.024776378646492958, 0.12867926061153412, -0.04616349935531616, -0.004059985280036926, 0.06522922962903976, -0.014243426732718945, -0.029740480706095695, -0.10199656337499619, 0.07380205392837524, 0.030134806409478188, -0.03607761859893799, 0.06297031790018082, -0.030375424772500992, 0.08191058784723282, 0.09191051870584488, 0.0363907590508461, 0.07717019319534302, -0.05858384072780609, -0.06658543646335602, -0.09659045189619064, 0.10904058068990707, -0.047843825072050095, -0.2484549880027771, -0.08017031848430634, -0.0685218870639801, -0.026513343676924706, -0.0015535744605585933, 0.032111410051584244, -0.019619133323431015, -0.08520292490720749, -0.09325604885816574, 0.046391185373067856, 0.050432685762643814, -0.11213953793048859, -0.09495881199836731, 0.03252053260803223, -0.01707484945654869, -0.08779536932706833, -0.004194543231278658, 0.019090786576271057, -0.07762446254491806, 0.018361810594797134, 0.033514440059661865, 0.14447540044784546, 0.07792604714632034, -0.020738469436764717, 0.0014819478383287787, -0.011133726686239243, 0.17457234859466553, -0.15650466084480286, 0.12392875552177429, 0.15387769043445587, 0.017996883019804955, 0.08643078804016113, 0.21774381399154663, -0.003884931094944477, 0.007525660563260317, 0.006078372709453106, 0.0677761361002922, -0.0474855974316597, -0.1807611882686615, -0.04625479131937027, -0.055527158081531525, 0.007841991260647774, 0.11440616101026535, 0.04070745036005974, 0.00859055295586586, 0.08356260508298874, -0.09688283503055573, 0.004893559496849775, 0.0598672479391098, 0.10828229784965515, 0.046486929059028625, 0.022166933864355087, 0.0477711521089077, -0.05220263823866844, -0.03469172865152359, 0.09039713442325592, 0.12597963213920593, 0.12377449125051498, -0.09525307267904282, 0.11938770115375519, 0.023030927404761314, 0.013215535320341587, -0.045099858194589615, -0.014728265814483166, -0.03685205057263374, 0.05563215911388397, -0.011345412582159042, -0.09207054227590561, -0.00007570488378405571, 0.08580479770898819, 0.13492542505264282, -0.025121353566646576, 0.01126900501549244, -0.02097589708864689, 0.101463682949543, 0.18375129997730255, 0.03327437490224838, -0.19018258154392242, 0.03669781982898712, 0.04358075186610222, 0.0335836224257946, -0.13901230692863464, -0.029241956770420074, 0.11144069582223892, -0.16273663938045502, 0.06355568021535873, -0.04111199080944061, 0.10588396340608597, -0.11899954825639725, -0.0399906150996685, 0.03668130189180374, 0.054595429450273514, -0.02957567758858204, 0.06431508809328079, -0.11146890372037888, 0.09975628554821014, 0.04564374312758446, 0.026845796033740044, -0.0733654722571373, 0.03772580623626709, 0.01468336395919323, 0.0001992446050280705, 0.14303267002105713, -0.0037605613470077515, -0.040833745151758194, -0.14154210686683655, -0.06717178970575333, -0.0029898169450461864, 0.04902054741978645, -0.05946103855967522, 0.10372631251811981, -0.0022284057922661304, -0.04496368020772934, -0.06498520821332932, -0.04298454523086548, -0.05647715926170349, -0.18548865616321564, 0.034337274730205536, 0.0062541114166378975, 0.00616482412442565, -0.010928859002888203, 0.04464152827858925, 0.003408635500818491, 0.08530578762292862, -0.0756300613284111, -0.08361183106899261, -0.14043264091014862, -0.01119059044867754, 0.07513667643070221, -0.022048035636544228, -0.014192617498338223, -0.08760319650173187, 0.18625296652317047, -0.03786592185497284, -0.054725345224142075, 0.02530939131975174, -0.048980582505464554, -0.08225946128368378, -0.06458480656147003, 0.10777454078197479, 0.04198858141899109, 0.0011146669276058674, -0.0017508110031485558, 0.06713996827602386, -0.004072912968695164, -0.05842811241745949, 0.03634444996714592, 0.142769917845726, 0.12149091064929962, 0.13663814961910248, -0.003457392333075404, -0.15934711694717407, -0.13082671165466309, 0.017174657434225082, 0.048956211656332016, 0.09444638341665268, -0.10493700951337814, 0.11668048053979874, 0.01583804003894329, -0.0909317135810852, -0.22218739986419678, 0.06128465011715889, 0.04932112991809845, -0.011476777493953705, 0.008277516812086105, -0.13178999722003937, 0.11938927322626114, 0.027083832770586014, 0.0032120542600750923, 0.06612946838140488, -0.21339912712574005, -0.06415382772684097, -0.016411717981100082, 0.06247350946068764, -0.18064838647842407, -0.14140751957893372, -0.03178882226347923, -0.028292600065469742, -0.19147823750972748, 0.06621192395687103, -0.009978095069527626, 0.03296627104282379, 0.053524039685726166, 0.050881970673799515, 0.0632263794541359, -0.035521481186151505, 0.12086740881204605, 0.02633928880095482, 0.03884582594037056, -0.07177495211362839, -0.09080129116773605, 0.0753694623708725, -0.10570605844259262, 0.11937279254198074, 0.0362977460026741, 0.018949612975120544, -0.05696367472410202, -0.011114003136754036, -0.03557037562131882, 0.05882905796170235, -0.03604259714484215, -0.04291530326008797, -0.07634668052196503, 0.05551082640886307, 0.12125909328460693, 0.005578487645834684, 0.09268563240766525, -0.04545358940958977, 0.0030768238939344883, 0.15636922419071198, 0.10796727985143661, -0.03233871981501579, -0.12292546033859253, -0.040981706231832504, 0.006365475710481405, 0.03833902254700661, -0.09877011179924011, 0.05352011322975159, 0.08651931583881378, 0.010990055277943611, 0.10949340462684631, -0.009269720874726772, -0.10494218021631241, -0.010699506849050522, 0.06533944606781006, -0.07187271863222122, -0.14817461371421814, 0.007547661662101746, 0.06592603772878647, -0.11299683898687363, -0.11399570852518082, 0.12541358172893524, 0.008752631023526192, -0.012645218521356583, 0.01473798044025898, 0.0676160678267479, 0.05939061567187309, 0.031105760484933853, 0.00023229750513564795, 0.039944037795066833, -0.06203726306557655, 0.10559938848018646, 0.14815963804721832, -0.1182941123843193, -0.0015042003942653537, 0.12415990233421326, -0.052882399410009384, -0.019243158400058746, -0.03468693047761917, 0.05268504470586777, -0.034206461161375046, -0.04102885723114014, 0.03534316644072533, -0.0605437308549881, 0.03124237433075905, 0.1056012362241745, -0.00839716661721468, 0.06320344656705856, 0.03896387666463852, -0.00813291221857071, -0.12056740373373032, 0.13314080238342285, -0.010964881628751755, 0.04218457266688347, -0.11523068696260452, 0.022988542914390564, 0.03696540370583534, 0.027572376653552055, 0.0064252689480781555, -0.069330595433712, -0.07133296877145767, -0.00832547526806593, -0.041179001331329346, 0.1107964739203453, -0.10498570650815964, 0.0004207586753182113, -0.01784566417336464, 0.016428254544734955, -0.029183870181441307, 0.01862153224647045, -0.03902468830347061, -0.07180942595005035, -0.03801929950714111, 0.14783024787902832, -0.14173948764801025, -0.019687650725245476, 0.04823821783065796, -0.08040636777877808, 0.05848301202058792, -0.012391367927193642, -0.03698262944817543, -0.06477580964565277, -0.17520499229431152, -0.04195229336619377, 0.014978494495153427, 0.04995507746934891, 0.04760979488492012, -0.09137027710676193, 0.04260664060711861, -0.032040197402238846, -0.0983053520321846, -0.02452235110104084, 0.0077596018090844154, -0.10226882249116898, 0.04531008005142212, -0.10013778507709503, -0.036658138036727905, -0.043970830738544464, 0.13788656890392303, 0.041392259299755096, 0.00116436998359859, 0.07616046816110611, -0.03242956101894379, 0.08103344589471817, -0.15863463282585144, -0.03595093637704849, -0.01480900775641203, -0.02533547207713127, -0.05635702982544899, -0.019196562469005585, 0.06657113879919052, -0.03706901893019676, 0.11208273470401764, 0.12836413085460663, 0.046154022216796875, 0.04473762959241867, -0.033419013023376465, 0.024931062012910843, 0.040662024170160294, -0.019518857821822166, -0.013492874801158905, -0.023069102317094803, 0.05750516057014465, 0.005289143417030573, 0.00679646385833621, 0.11942730098962784, 0.08966616541147232, 0.22638916969299316, 0.15460635721683502, 0.025865741074085236, 0.06092037633061409, -0.08455895632505417, -0.06660200655460358, 0.10967353731393814, -0.05417414382100105, 0.049714308232069016, -0.1045788899064064, 0.011281055398285389, 0.14215868711471558, -0.17003287374973297, 0.07418455183506012, -0.009167781099677086, -0.004154588095843792, -0.031149042770266533, -0.11765534430742264, -0.05714540556073189, -0.03790350258350372, -0.005462270230054855, -0.11006078869104385, 0.07779644429683685, 0.10269264131784439, -0.013997596688568592, 0.03254532068967819, 0.062009308487176895, -0.07817932963371277, -0.07491815090179443, 0.08549967408180237, 0.035575125366449356, 0.0973503589630127, 0.05320987105369568, 0.05710505694150925, 0.07580117136240005, 0.005424695089459419, 0.08215183764696121, 0.07609383016824722, 0.10891266912221909, 0.05248444899916649, -0.06854505091905594, -0.07279461622238159, 0.042943473905324936, -0.0071382829919457436, -0.02044934779405594, 0.1406228095293045, 0.0809016078710556, 0.008010921068489552, -0.019276166334748268, 0.19035910069942474, -0.026692453771829605, -0.01479395292699337, -0.15460512042045593, 0.04428623989224434, -0.0421297624707222, -0.014120613224804401, -0.019804464653134346, -0.15481658279895782, -0.010237669572234154, 0.11537700146436691, 0.09085831791162491, -0.047266021370887756, -0.013613271526992321, -0.026340916752815247, 0.013783222995698452, 0.004816162865608931, 0.049606792628765106, 0.004927025642246008, 0.245902881026268, -0.05458316206932068, -0.009160579182207584, -0.039268843829631805, -0.015366999432444572, -0.05981765687465668, 0.0694107934832573, -0.0047760168090462685, -0.010576707310974598, -0.06103929132223129, 0.10551824420690536, 0.004570280201733112, -0.1620793640613556, 0.06532084941864014, -0.10801519453525543, -0.0970752090215683, 0.012694746255874634, 0.010625324212014675, -0.012103759683668613, 0.022435970604419708, 0.019654979929327965, -0.058407094329595566, 0.1117248684167862, 0.022762641310691833, -0.07861024141311646, 0.003486156463623047, -0.0024802826810628176, -0.08269157260656357, 0.2828013598918915, -0.03634657338261604, -0.01152208261191845, 0.10383569449186325, -0.011625277809798717, -0.14427369832992554, -0.017962029203772545, 0.0687001422047615, -0.0540359765291214, 0.01333717443048954, 0.11346562951803207, -0.01313415914773941, 0.14458240568637848, 0.10514087975025177, -0.09019441157579422, 0.06340151280164719, -0.010377475060522556, 0.014592212624847889, -0.09360234439373016, 0.022878197953104973, -0.09051614254713058, 0.10925144702196121, 0.16184939444065094, 0.008301371708512306, -0.013113760389387608, -0.036570191383361816, -0.02354149892926216, 0.01727467216551304, 0.10688351094722748, -0.020290996879339218, -0.025871815159916878, 0.013174927793443203, -0.11039675027132034, 0.054270196706056595, -0.09994299709796906, -0.07654060423374176, 0.034747928380966187, -0.013407621532678604, -0.02119881846010685, 0.08853602409362793, 0.049484867602586746, 0.024222834035754204, -0.054679010063409805, -0.09479872137308121, 0.021979618817567825, 0.17817696928977966, -0.02805575355887413, -0.030078161507844925 ]
558e96d0119d2833f55ad7113021e1df511745ed
# Dataset Card for thermal-cheetah-my4dp ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp - **Point of Contact:** [email protected] ### Dataset Summary thermal-cheetah-my4dp ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp ### Citation Information ``` @misc{ thermal-cheetah-my4dp, title = { thermal cheetah my4dp Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp } }, url = { https://universe.roboflow.com/object-detection/thermal-cheetah-my4dp }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/thermal-cheetah-my4dp
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:12:40+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "thermal-cheetah-my4dp", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "thermal-cheetah", "1": "cheetah", "2": "human"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:12:58+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for thermal-cheetah-my4dp The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary thermal-cheetah-my4dp ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for thermal-cheetah-my4dp\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nthermal-cheetah-my4dp", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for thermal-cheetah-my4dp\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nthermal-cheetah-my4dp", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 30, 22, 18, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for thermal-cheetah-my4dp\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nthermal-cheetah-my4dp### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 0.00018044280295725912, 0.1347195953130722, -0.008776395581662655, 0.03360241651535034, 0.09208407998085022, 0.006925623398274183, 0.04242352396249771, 0.08683936297893524, -0.0008414281764999032, 0.1804312914609909, -0.018827106803655624, 0.04907059669494629, 0.12070568650960922, 0.0846569687128067, -0.008119634352624416, -0.15034565329551697, 0.045283325016498566, -0.07407470047473907, 0.0589686818420887, 0.0516040213406086, 0.09017904847860336, -0.13136634230613708, 0.08812838792800903, -0.04185934737324715, -0.013197114691138268, 0.02726522460579872, -0.05050407350063324, -0.026964688673615456, 0.008966059423983097, 0.034986481070518494, 0.02009943500161171, 0.004376650787889957, 0.043233517557382584, -0.17229436337947845, 0.017492787912487984, 0.10034745186567307, 0.01960715465247631, 0.02390473149716854, 0.13562913239002228, -0.09237201511859894, 0.04357060790061951, -0.15802180767059326, 0.0190113577991724, 0.022878723219037056, -0.0933222621679306, -0.10850860178470612, -0.13708505034446716, 0.052006322890520096, 0.10401085019111633, 0.0374298058450222, -0.013103305362164974, 0.046420540660619736, -0.03206121176481247, 0.06759895384311676, 0.12680640816688538, -0.06916486471891403, -0.03488443046808243, 0.08547351509332657, 0.015483674593269825, 0.08161520212888718, -0.11708352714776993, -0.013050070032477379, 0.010813106782734394, -0.004073122516274452, 0.003641308518126607, -0.04009133577346802, -0.001243946491740644, -0.0033386435825377703, -0.08702139556407928, -0.12381783127784729, 0.1449720859527588, 0.054857008159160614, -0.047477807849645615, -0.13032878935337067, -0.018211092799901962, 0.01912933588027954, -0.0318395234644413, 0.002344319596886635, 0.04645629972219467, -0.013334222137928009, 0.051733311265707016, -0.04646122828125954, -0.10064256936311722, 0.06238032132387161, -0.009334948845207691, 0.05029582604765892, -0.01320174615830183, 0.0312730073928833, 0.02337002381682396, 0.07763778418302536, 0.022790106013417244, -0.1095748022198677, -0.030851256102323532, -0.01758856512606144, -0.05477296561002731, -0.035724520683288574, 0.05054178833961487, -0.09503880888223648, 0.06798442453145981, 0.11757219582796097, -0.07075145095586777, 0.030532915145158768, -0.10135965794324875, 0.00035407752147875726, 0.1027955636382103, 0.1533343493938446, -0.10296036303043365, -0.1113092377781868, 0.0038151228800415993, 0.022099008783698082, 0.030267518013715744, -0.024543048813939095, -0.03533364087343216, 0.004194296430796385, 0.04977773129940033, 0.03687700256705284, 0.09595921635627747, 0.02252199687063694, -0.07588722556829453, -0.04496749863028526, 0.14936698973178864, -0.11617254465818405, 0.052662868052721024, 0.050885606557130814, -0.05273450165987015, 0.10937143117189407, -0.003020199714228511, 0.002220361027866602, -0.09899495542049408, 0.09778165817260742, -0.02618897706270218, 0.008778872899711132, -0.0744127556681633, -0.09886863082647324, 0.04960218444466591, -0.07739367336034775, -0.07502008229494095, -0.08725136518478394, -0.037250690162181854, -0.0894845500588417, 0.03445965051651001, -0.05985245481133461, 0.03837288171052933, 0.016053006052970886, -0.05920711159706116, 0.0047598788514733315, 0.017107227817177773, 0.025210687890648842, -0.05703245848417282, 0.03219166025519371, -0.09766136109828949, 0.055805377662181854, 0.09677908569574356, 0.030681220814585686, -0.07619842886924744, 0.059059202671051025, -0.17737101018428802, 0.13474705815315247, -0.051706574857234955, 0.03642997890710831, -0.12965020537376404, 0.004836928099393845, -0.012417526915669441, -0.031557463109493256, 0.0003464859037194401, 0.13545642793178558, -0.09379933774471283, 0.004756294656544924, 0.08977854251861572, -0.025395845994353294, -0.052460622042417526, 0.05975428968667984, -0.036410052329301834, -0.0171057041734457, 0.0950600728392601, 0.08988723903894424, -0.020501013845205307, -0.12166714668273926, -0.12498210370540619, -0.017148321494460106, -0.03531558811664581, 0.16366662085056305, 0.07012105733156204, -0.036202721297740936, 0.09847446531057358, -0.0009399581467732787, -0.0020358534529805183, -0.03209298104047775, 0.00681852363049984, -0.035526346415281296, 0.01841752789914608, 0.0016853678971529007, -0.06732677668333054, -0.005898308474570513, -0.08150099217891693, -0.012014249339699745, -0.08669419586658478, -0.02077178843319416, 0.03956381231546402, -0.009802238084375858, 0.023612620308995247, -0.044396985322237015, 0.06479641795158386, -0.10345035791397095, 0.002710200846195221, -0.14399614930152893, -0.09771481156349182, 0.05609319731593132, -0.0345771424472332, 0.03896738961338997, -0.07047916203737259, 0.016516506671905518, 0.00227180402725935, 0.02078796550631523, -0.019359568133950233, 0.05984083190560341, -0.014834734611213207, -0.03197436407208443, -0.1257309913635254, -0.041751712560653687, -0.025484401732683182, 0.08835377544164658, -0.09552432596683502, -0.030942894518375397, 0.17197875678539276, 0.14322108030319214, 0.0375962108373642, -0.034798335283994675, 0.050232596695423126, -0.031968917697668076, -0.03299345448613167, -0.07516545802354813, -0.028311412781476974, -0.027092220261693, 0.03034443035721779, 0.08254449814558029, -0.13540871441364288, -0.11821983009576797, 0.08412531763315201, 0.05945051088929176, -0.08173523098230362, -0.02174728363752365, -0.03689773008227348, -0.023718981072306633, -0.06596410274505615, -0.07597005367279053, 0.021177727729082108, 0.05954533442854881, 0.07724154740571976, -0.051931120455265045, -0.04627633094787598, 0.02434205822646618, -0.0090691102668643, -0.08129718899726868, 0.0735652819275856, 0.01322860736399889, -0.10990579426288605, 0.09364648163318634, -0.0051320744678378105, 0.04529574513435364, 0.09391780197620392, 0.024647768586874008, -0.11123203486204147, -0.008886578492820263, 0.07543814927339554, 0.03285163640975952, 0.06091480702161789, -0.00079257384641096, 0.003164150984957814, 0.07178615778684616, 0.004825623705983162, -0.017622264102101326, -0.06292690336704254, 0.0790356919169426, 0.027869248762726784, -0.026806335896253586, 0.0738605260848999, -0.020348669961094856, 0.07328777760267258, 0.09671378880739212, 0.07042483240365982, 0.094764843583107, -0.041045933961868286, -0.05207112058997154, -0.06903230398893356, 0.12396425753831863, -0.05802841857075691, -0.24093173444271088, -0.0985228568315506, -0.08084484189748764, -0.056287981569767, -0.013453821651637554, 0.022488810122013092, -0.030978858470916748, -0.09779107570648193, -0.09900183975696564, 0.036452535539865494, 0.05267211049795151, -0.09913592785596848, -0.07980906218290329, 0.03255259618163109, -0.003261720761656761, -0.10141518712043762, -0.009791196323931217, 0.044821929186582565, -0.05601008981466293, 0.01481366902589798, 0.04432230442762375, 0.12271729856729507, 0.058967530727386475, -0.007568162400275469, 0.0022030856925994158, 0.003952109720557928, 0.16459721326828003, -0.15274254977703094, 0.14168888330459595, 0.13892975449562073, 0.0159256961196661, 0.08504951000213623, 0.18727484345436096, -0.005816911347210407, -0.01333666779100895, 0.02800733782351017, 0.07497155666351318, -0.0509529747068882, -0.19906091690063477, -0.06809529662132263, -0.046136122196912766, 0.022881751880049706, 0.12302421778440475, 0.055957067757844925, 0.007603758480399847, 0.05706355348229408, -0.10738541930913925, 0.033235855400562286, 0.025237426161766052, 0.08246170729398727, 0.037032417953014374, 0.025218747556209564, 0.036549828946590424, -0.049163054674863815, -0.04171532765030861, 0.12267810106277466, 0.11571826785802841, 0.11824837327003479, -0.10123979300260544, 0.13701105117797852, 0.025223340839147568, 0.01120460219681263, -0.059050578624010086, 0.00782614666968584, -0.031001228839159012, 0.05565166100859642, -0.0015984759666025639, -0.09316468983888626, 0.036948006600141525, 0.09310641139745712, 0.13470344245433807, -0.008659690618515015, 0.021150317043066025, -0.02796650305390358, 0.09024599194526672, 0.21752788126468658, 0.04188054800033569, -0.1830429583787918, 0.003567478386685252, 0.0515453927218914, 0.017656415700912476, -0.11143100261688232, -0.02745990827679634, 0.1066213920712471, -0.14943905174732208, 0.06285718083381653, -0.021919121965765953, 0.09750862419605255, -0.132552832365036, -0.04519049823284149, 0.04985098913311958, 0.07120764255523682, -0.01988932676613331, 0.06946344673633575, -0.133619487285614, 0.05113237723708153, 0.029310068115592003, 0.037505969405174255, -0.07829037308692932, 0.039990853518247604, 0.018816659227013588, -0.02951139025390148, 0.14077673852443695, 0.0013476723106577992, 0.021225841715931892, -0.12719643115997314, -0.1168643906712532, -0.020138120278716087, 0.08524785190820694, -0.07330472022294998, 0.10335936397314072, 0.011506902053952217, -0.05253242328763008, -0.06193225085735321, -0.08935042470693588, -0.05304775759577751, -0.17467066645622253, 0.04293506219983101, -0.021284284070134163, 0.011710179038345814, -0.02567388489842415, 0.013033948838710785, -0.024705588817596436, 0.1191302165389061, -0.0626785010099411, -0.08907388895750046, -0.13462026417255402, 0.02062995918095112, 0.10288675874471664, -0.037771694362163544, 0.002230430021882057, -0.08261442929506302, 0.15451402962207794, -0.01953871361911297, -0.07318015396595001, 0.03868454322218895, -0.05752148851752281, -0.11820919811725616, -0.051293183118104935, 0.1180562898516655, 0.03604857996106148, 0.00041196495294570923, -0.0028040804900228977, 0.05388456583023071, -0.000484108692035079, -0.05257105454802513, 0.03958941996097565, 0.11174022406339645, 0.1045985147356987, 0.14612039923667908, 0.018604889512062073, -0.1636798232793808, -0.10562687367200851, -0.004139342345297337, 0.04341540113091469, 0.10915952175855637, -0.07703108340501785, 0.11433868855237961, 0.04660044237971306, -0.08211112767457962, -0.24209241569042206, 0.04804592952132225, 0.04607325792312622, -0.003701520385220647, 0.00926884263753891, -0.14461852610111237, 0.15084952116012573, 0.04300278052687645, -0.0007773975958116353, 0.11583739519119263, -0.25953221321105957, -0.08116772770881653, -0.04052180051803589, 0.013825692236423492, -0.18358930945396423, -0.15561313927173615, -0.05342895910143852, -0.0635794997215271, -0.18046720325946808, 0.03776642307639122, 0.002840117784217, 0.041313402354717255, 0.034703705459833145, 0.056353047490119934, 0.0499090813100338, -0.04346337541937828, 0.11396822333335876, 0.02779701165854931, 0.04927441477775574, -0.08337470144033432, -0.08939576148986816, 0.07331068068742752, -0.09466318786144257, 0.14056465029716492, 0.01034105010330677, 0.026727452874183655, -0.051808275282382965, -0.00895453430712223, -0.05205434933304787, 0.09077904373407364, -0.03209184855222702, -0.04062685742974281, -0.11338302493095398, 0.054785460233688354, 0.12439703941345215, 0.015131971798837185, 0.10204869508743286, -0.0003950978862121701, -0.03278901427984238, 0.1383022964000702, 0.0962664932012558, 0.0016668091993778944, -0.1156865581870079, -0.048074908554553986, -0.008357631042599678, 0.02256421186029911, -0.13065947592258453, 0.045510999858379364, 0.09109589457511902, 0.02721935324370861, 0.10169494897127151, -0.01806708611547947, -0.11650555580854416, 0.005986917298287153, 0.06543943285942078, -0.07162296772003174, -0.15563324093818665, 0.01605805940926075, 0.05401874706149101, -0.09299258887767792, -0.08357708901166916, 0.12080564349889755, 0.009346832521259785, -0.01738429255783558, 0.006100849714130163, 0.0938025489449501, 0.03437015041708946, 0.06936851888895035, 0.0265120230615139, 0.03769862279295921, -0.06843187659978867, 0.11623195558786392, 0.1263548880815506, -0.13058680295944214, 0.02119452692568302, 0.11631424725055695, -0.05188480764627457, -0.019799962639808655, -0.032726455479860306, 0.01354243140667677, 0.009030007757246494, -0.006542432587593794, 0.032803021371364594, -0.06525254994630814, 0.037871234118938446, 0.05340724438428879, 0.003123654518276453, 0.07153643667697906, 0.02346855401992798, 0.000060655325796687976, -0.12223707884550095, 0.1486644297838211, 0.024773312732577324, 0.052887167781591415, -0.0968678891658783, 0.025783132761716843, 0.01173437014222145, 0.01037577260285616, 0.007020085584372282, -0.05778133496642113, -0.06923577934503555, -0.003714735619723797, -0.10143053531646729, 0.06897283345460892, -0.10502450168132782, -0.00912836566567421, -0.024230297654867172, 0.022964052855968475, -0.01180627103894949, 0.04157773032784462, -0.0448659285902977, -0.08286623656749725, -0.048517853021621704, 0.12499471753835678, -0.12777388095855713, -0.019097857177257538, 0.048724208027124405, -0.0957435891032219, 0.07264234125614166, 0.004709662403911352, -0.03204818069934845, -0.07541809231042862, -0.16569849848747253, -0.04758388549089432, 0.03370564803481102, 0.058459408581256866, 0.04451775550842285, -0.08575376868247986, 0.043262459337711334, -0.01541740819811821, -0.08635294437408447, -0.01677071675658226, -0.01024322584271431, -0.11279506981372833, 0.0640263631939888, -0.11119802296161652, -0.021162910386919975, -0.05376612767577171, 0.12556833028793335, 0.051218800246715546, -0.004542686510831118, 0.083039790391922, -0.04204605519771576, 0.08615048974752426, -0.1329580396413803, -0.045913953334093094, -0.01928117126226425, -0.039971981197595596, -0.08461954444646835, -0.0038391719572246075, 0.06854438036680222, -0.03417364880442619, 0.12211471796035767, 0.08889591693878174, -0.004118576645851135, 0.03898867219686508, -0.01860867068171501, 0.0006880200235173106, 0.05407053604722023, -0.005248446017503738, -0.0096189696341753, -0.030890027061104774, 0.01895350031554699, -0.004916863981634378, 0.020067069679498672, 0.07096654176712036, 0.0502019040286541, 0.2299111932516098, 0.12437213212251663, 0.024246668443083763, 0.056741420179605484, -0.0962759256362915, -0.09499792754650116, 0.08372914791107178, -0.08087857812643051, 0.07971382141113281, -0.0898970440030098, 0.016217948868870735, 0.0971856489777565, -0.14434002339839935, 0.06327500939369202, -0.017245136201381683, -0.006833974272012711, -0.017391834408044815, -0.10781864821910858, -0.06640175729990005, -0.0092662014067173, -0.0012034124229103327, -0.11177103221416473, 0.0799293965101242, 0.12438727170228958, 0.016895731911063194, 0.006829081103205681, 0.11219741404056549, -0.08821738511323929, -0.07798081636428833, 0.10512854158878326, 0.01564493402838707, 0.034150123596191406, 0.09443257004022598, 0.0249776653945446, 0.05850338563323021, 0.0010149076115339994, 0.08213464915752411, 0.09840565919876099, 0.09481707960367203, 0.022815218195319176, -0.06566797941923141, -0.08399560302495956, 0.030512547120451927, -0.0011794009478762746, -0.026050888001918793, 0.1454760879278183, 0.07238929718732834, 0.008771475404500961, -0.021378332749009132, 0.1423676311969757, -0.03552646189928055, -0.03557472303509712, -0.12415928393602371, 0.03866814821958542, -0.01799870654940605, 0.005071656312793493, -0.015080577693879604, -0.1552634984254837, -0.00853837188333273, 0.11261111497879028, 0.0834418535232544, -0.03532193973660469, -0.011725204065442085, -0.002658782061189413, 0.007236202713102102, -0.01813460700213909, 0.06264661252498627, 0.01564823091030121, 0.22351747751235962, -0.041521891951560974, 0.014273818582296371, -0.03307005763053894, -0.04137015715241432, -0.06929171830415726, 0.06294864416122437, -0.027958380058407784, 0.01658737286925316, -0.06835819780826569, 0.09737960249185562, -0.0032591125927865505, -0.20838136970996857, 0.0794348493218422, -0.09591993689537048, -0.08941525220870972, 0.015262315981090069, -0.004187567625194788, 0.028585055842995644, 0.03633351996541023, 0.022078340873122215, -0.05724712088704109, 0.1352004110813141, 0.015849227085709572, -0.0644451305270195, 0.013790475204586983, -0.0019250407349318266, -0.10010236501693726, 0.22653013467788696, -0.019748853519558907, 0.038333483040332794, 0.10022521018981934, -0.01741967536509037, -0.14905937016010284, -0.01365350466221571, 0.0784926488995552, -0.04078980162739754, 0.024802135303616524, 0.13182154297828674, -0.0067882537841796875, 0.12490342557430267, 0.09348633885383606, -0.061606910079717636, 0.038927748799324036, 0.035412244498729706, 0.014948630705475807, -0.1367906630039215, 0.01212801318615675, -0.08780059963464737, 0.10671361535787582, 0.15553681552410126, -0.009255354292690754, -0.003880406031385064, -0.03841916844248772, -0.002009760122746229, 0.015355483628809452, 0.09767486155033112, -0.006889341399073601, -0.06483297795057297, 0.01893598586320877, -0.11243277788162231, 0.10118333250284195, -0.13720233738422394, -0.050421055406332016, 0.025532521307468414, -0.004338127560913563, -0.015060631558299065, 0.09575678408145905, 0.0428486242890358, 0.022044308483600616, -0.044072140008211136, -0.08589164912700653, 0.022590674459934235, 0.15424010157585144, -0.030748797580599785, -0.017647888511419296 ]
29888d7b0512bd7f60645f5fdddf9501673fc797
# Dataset Card for fish-market-ggjso ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/fish-market-ggjso - **Point of Contact:** [email protected] ### Dataset Summary fish-market-ggjso ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/fish-market-ggjso ### Citation Information ``` @misc{ fish-market-ggjso, title = { fish market ggjso Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/fish-market-ggjso } }, url = { https://universe.roboflow.com/object-detection/fish-market-ggjso }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/fish-market-ggjso
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:12:41+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "fish-market-ggjso", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "fish", "1": "aair", "2": "boal", "3": "chapila", "4": "deshi puti", "5": "foli", "6": "ilish", "7": "kal baush", "8": "katla", "9": "koi", "10": "magur", "11": "mrigel", "12": "pabda", "13": "pangas", "14": "puti", "15": "rui", "16": "shol", "17": "taki", "18": "tara baim", "19": "telapiya"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:34+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for fish-market-ggjso The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary fish-market-ggjso ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for fish-market-ggjso\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nfish-market-ggjso", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for fish-market-ggjso\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nfish-market-ggjso", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for fish-market-ggjso\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nfish-market-ggjso### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.013498337008059025, 0.17562763392925262, -0.007446508388966322, 0.007888082414865494, 0.09278412163257599, -0.0027922268491238356, 0.0637744888663292, 0.0902952030301094, 0.006149587221443653, 0.16788816452026367, -0.011841504834592342, 0.061158038675785065, 0.11975333094596863, 0.1104760617017746, -0.00922116357833147, -0.16742248833179474, 0.0719456821680069, -0.05961248651146889, 0.05701294168829918, 0.07739075273275375, 0.07845450192689896, -0.13178309798240662, 0.09266667068004608, -0.038564372807741165, 0.006435750983655453, 0.027023011818528175, -0.06750882416963577, -0.04288637265563011, -0.005583833437412977, 0.044670529663562775, 0.01102278009057045, 0.029400765895843506, 0.04334096983075142, -0.19539469480514526, 0.023202024400234222, 0.11338550597429276, 0.039745353162288666, 0.018888602033257484, 0.1538052260875702, -0.07790689915418625, 0.05424274131655693, -0.1407727748155594, 0.03949820250272751, 0.01616094633936882, -0.10873302817344666, -0.12239867448806763, -0.10896724462509155, 0.05851646512746811, 0.10637778788805008, 0.057964809238910675, -0.021607359871268272, 0.07510458678007126, -0.025408869609236717, 0.05581161007285118, 0.12876872718334198, -0.03503572195768356, -0.04377664998173714, 0.09298478066921234, 0.04076939821243286, 0.11073607206344604, -0.11724398285150528, -0.011437700130045414, -0.00341356685385108, -0.018216777592897415, -0.014595488086342812, -0.05051717907190323, -0.03814058005809784, -0.0007778984727337956, -0.10074099153280258, -0.13904604315757751, 0.15312466025352478, 0.05527573451399803, -0.06449514627456665, -0.1442735642194748, 0.0024649135302752256, 0.05969197303056717, -0.03707394003868103, 0.0032522520050406456, 0.05941193923354149, -0.002350403228774667, 0.06466583162546158, -0.06425386667251587, -0.10727152228355408, 0.0418437123298645, 0.030130866914987564, 0.04998345673084259, -0.020478403195738792, 0.043563324958086014, 0.006005456671118736, 0.07172992080450058, -0.02010592259466648, -0.10208260267972946, -0.038047123700380325, -0.03765156492590904, -0.05961890146136284, -0.03953736275434494, 0.06734315305948257, -0.15763087570667267, 0.0726219192147255, 0.057859402149915695, -0.07098142802715302, 0.036954037845134735, -0.12510325014591217, 0.0074162594974040985, 0.11941542476415634, 0.18185947835445404, -0.09567178785800934, -0.0595172755420208, -0.0014980090782046318, 0.043160807341337204, 0.018441947177052498, -0.026370178908109665, -0.018094178289175034, 0.002161724027246237, 0.014491474255919456, 0.0305964183062315, 0.12088531255722046, 0.048326145857572556, -0.07055577635765076, -0.07440661638975143, 0.13937263190746307, -0.09204272925853729, 0.045869868248701096, 0.06752587109804153, -0.06341828405857086, 0.08216734975576401, 0.008013074286282063, 0.017181746661663055, -0.10186449438333511, 0.10216917842626572, -0.023370085284113884, 0.013916002586483955, -0.08180806785821915, -0.09673716127872467, 0.06546574831008911, -0.07328303158283234, -0.07369408756494522, -0.07786667346954346, -0.062141600996255875, -0.08900739997625351, 0.03728280961513519, -0.04195426031947136, 0.010717884637415409, 0.029684118926525116, -0.03152664750814438, -0.03023058921098709, 0.006816492415964603, 0.07281982153654099, -0.06095670163631439, 0.03581869229674339, -0.09830616414546967, 0.02821432426571846, 0.11064493656158447, 0.041158922016620636, -0.10639026015996933, 0.05998995900154114, -0.1843443065881729, 0.14084255695343018, -0.05707305669784546, 0.024062756448984146, -0.13569897413253784, 0.0009504762711003423, -0.020619302988052368, -0.0378793440759182, -0.006575371604412794, 0.14408999681472778, -0.08320532739162445, 0.016284050419926643, 0.05354372039437294, -0.05837051197886467, -0.03682167828083038, 0.03996432200074196, -0.03858313336968422, -0.01956401765346527, 0.09964870661497116, 0.1407032459974289, -0.03356345370411873, -0.11614286154508591, -0.10924293845891953, -0.026181599125266075, -0.04103478044271469, 0.15561704337596893, 0.09212249517440796, -0.033892400562763214, 0.1102849617600441, -0.0017720820615068078, -0.032771218568086624, -0.040689148008823395, 0.014760144054889679, -0.03580359369516373, 0.022061090916395187, -0.006678170524537563, -0.10095211863517761, 0.01701543852686882, -0.10475517809391022, 0.011307463981211185, -0.0874437689781189, -0.03276437148451805, 0.017034223303198814, -0.031061971560120583, 0.018748870119452477, -0.027111083269119263, 0.10363233834505081, -0.12133754044771194, 0.007996262982487679, -0.14621929824352264, -0.12061473727226257, 0.05233589559793472, -0.06291957944631577, 0.04536136984825134, -0.07870212942361832, -0.00753497751429677, 0.020734790712594986, 0.04203616455197334, -0.009524536319077015, 0.04668889194726944, -0.022075457498431206, -0.03931812196969986, -0.12259314954280853, -0.04261884465813637, -0.020267045125365257, 0.09520021826028824, -0.11681883782148361, -0.019819259643554688, 0.1610427051782608, 0.11746741086244583, 0.024909624829888344, -0.0590469129383564, 0.09319043904542923, -0.04341626912355423, -0.007565414533019066, -0.0906684622168541, -0.012184394523501396, -0.001773742027580738, 0.02692987769842148, 0.08444782346487045, -0.153543621301651, -0.12519557774066925, 0.08487783372402191, 0.05278940871357918, -0.0740325078368187, -0.05795586109161377, -0.05356061831116676, -0.01384651567786932, -0.1069972813129425, -0.015946637839078903, 0.03179135173559189, 0.07387156039476395, 0.07165228575468063, -0.08019371330738068, -0.02309577353298664, 0.027306197211146355, -0.016464030370116234, -0.06675872206687927, 0.0854090079665184, 0.033562276512384415, -0.11872370541095734, 0.10190153867006302, -0.06002368777990341, 0.05922074615955353, 0.08522683382034302, 0.02638295851647854, -0.11319281905889511, 0.02532021887600422, 0.07726070284843445, 0.013054847717285156, 0.09658917039632797, -0.019204868003726006, 0.03279384598135948, 0.08526119589805603, -0.004417973104864359, -0.017774801701307297, -0.0888037234544754, 0.06615054607391357, 0.04145481064915657, -0.046008653938770294, 0.0054055568762123585, -0.015365893952548504, 0.08429905027151108, 0.091088205575943, 0.06634826958179474, 0.1329149603843689, -0.04740529879927635, -0.062342558056116104, -0.08713553100824356, 0.14398135244846344, -0.0179988332092762, -0.2593890428543091, -0.08302069455385208, -0.05991317331790924, -0.05838415399193764, -0.013932176865637302, 0.039970673620700836, -0.005768408067524433, -0.09088188409805298, -0.09327185899019241, 0.063555508852005, 0.05965873971581459, -0.09676609933376312, -0.12448599189519882, 0.03215078264474869, 0.007115611806511879, -0.07715249061584473, -0.0011178392451256514, 0.01896919310092926, -0.03675495833158493, 0.0030824567656964064, 0.04072432965040207, 0.11589229851961136, 0.048443753272295, -0.02310304343700409, 0.005370602011680603, -0.0015790571924299002, 0.1861681491136551, -0.13982224464416504, 0.08947639167308807, 0.16325043141841888, 0.027974799275398254, 0.07111967355012894, 0.1928856521844864, -0.018684450536966324, -0.01651810109615326, 0.014485959894955158, 0.08786620944738388, -0.07274980843067169, -0.19941386580467224, -0.05400146543979645, -0.042132019996643066, 0.033514369279146194, 0.138479083776474, 0.043523453176021576, 0.012204211205244064, 0.08751258999109268, -0.11216864734888077, 0.018705647438764572, 0.03828682377934456, 0.10485398769378662, 0.0613844133913517, 0.04321838542819023, 0.04538621008396149, -0.03993186354637146, -0.024209467694163322, 0.09900255501270294, 0.10497142374515533, 0.1074652224779129, -0.10375196486711502, 0.10543990880250931, 0.03270658850669861, 0.005942005198448896, -0.03451733663678169, -0.006449176464229822, -0.038452573120594025, 0.05442587658762932, -0.011503987945616245, -0.10843905806541443, 0.012060110457241535, 0.08846013247966766, 0.1299404799938202, -0.021420858800411224, 0.004829063080251217, -0.044554080814123154, 0.06265528500080109, 0.23147150874137878, -0.014623714610934258, -0.20491090416908264, 0.01602805219590664, 0.03611604869365692, 0.023322012275457382, -0.12033998966217041, -0.046997927129268646, 0.06904137134552002, -0.16960017383098602, 0.06531238555908203, -0.03744199126958847, 0.11882083863019943, -0.12860165536403656, -0.028379665687680244, 0.06998438388109207, 0.04236026480793953, -0.0226131659001112, 0.09145812690258026, -0.10600914806127548, 0.07224970310926437, 0.029354842379689217, 0.029675960540771484, -0.07895471900701523, 0.033360693603754044, -0.004656182136386633, -0.0011157430708408356, 0.1574069708585739, -0.012860694900155067, 0.0009539107559248805, -0.134304478764534, -0.13055357336997986, -0.0039306520484387875, 0.03107023984193802, -0.06781910359859467, 0.09508974850177765, 0.02225443534553051, -0.026312977075576782, -0.08331210911273956, -0.03153714910149574, -0.05478695034980774, -0.18660898506641388, 0.038015931844711304, -0.019169451668858528, 0.037443384528160095, -0.01760248653590679, 0.01830284483730793, 0.032048698514699936, 0.13742275536060333, -0.04062368720769882, -0.10328828543424606, -0.14390043914318085, 0.06275835633277893, 0.09628324210643768, -0.020597638562321663, -0.035197801887989044, -0.1055566668510437, 0.17832963168621063, -0.024813979864120483, -0.07037989050149918, 0.01911258138716221, -0.06315791606903076, -0.12070415914058685, -0.050908163189888, 0.09781859815120697, 0.03342004120349884, 0.00036206317599862814, -0.005218776874244213, 0.053990885615348816, 0.00450455117970705, -0.04574115201830864, 0.007053872104734182, 0.11595713347196579, 0.14673727750778198, 0.1288282722234726, 0.020670026540756226, -0.13156720995903015, -0.13496464490890503, -0.004381503444164991, -0.0010232600616291165, 0.10094420611858368, -0.05676904693245888, 0.13029471039772034, 0.02598073147237301, -0.08020976930856705, -0.20317061245441437, 0.07909929007291794, 0.05840792506933212, -0.003803564701229334, -0.007840432226657867, -0.14456790685653687, 0.14438121020793915, 0.03705001622438431, -0.003365505486726761, 0.06971056759357452, -0.2798190414905548, -0.0784977525472641, -0.023162679746747017, 0.023493653163313866, -0.2359849512577057, -0.1837276816368103, -0.05176755040884018, -0.056406762450933456, -0.15278877317905426, 0.08377295732498169, 0.006035016383975744, 0.04846935346722603, 0.037269238382577896, 0.04684257507324219, 0.06876781582832336, -0.04775957018136978, 0.11388667672872543, 0.011622847057878971, 0.027733569964766502, -0.06500772386789322, -0.07936526834964752, 0.010876216925680637, -0.08720953017473221, 0.1447632759809494, 0.04091016948223114, 0.012771514244377613, -0.06489922851324081, -0.026584027335047722, -0.04615352675318718, 0.08959601819515228, -0.014947289600968361, -0.042704977095127106, -0.10376638919115067, 0.03970380499958992, 0.13420167565345764, 0.029921861365437508, 0.09553808718919754, -0.049803394824266434, -0.02159411646425724, 0.13440470397472382, 0.09523200988769531, 0.0052048214711248875, -0.18156029284000397, -0.050137296319007874, 0.0070890989154577255, 0.043410774320364, -0.1282900869846344, 0.025991838425397873, 0.08467240631580353, 0.024529146030545235, 0.10446412116289139, -0.01284472830593586, -0.11305023729801178, -0.0013275195378810167, 0.03332410007715225, -0.09788168221712112, -0.11386191099882126, 0.028722109273076057, 0.11688060313463211, -0.10779793560504913, -0.13020777702331543, 0.10230864584445953, -0.0028473164420574903, -0.02076723426580429, 0.0032798247411847115, 0.08517589420080185, 0.04683072865009308, 0.06821390986442566, 0.015920761972665787, 0.03989351913332939, -0.07974380254745483, 0.10595181584358215, 0.1452210694551468, -0.14805540442466736, 0.004341087769716978, 0.11260905861854553, -0.04749493673443794, -0.015604847110807896, -0.01456785574555397, 0.026433777064085007, -0.008410446345806122, -0.035677358508110046, 0.026739122346043587, -0.05106671154499054, 0.03716081380844116, 0.062174487859010696, 0.016045870259404182, 0.06145738065242767, 0.027332622557878494, -0.018403351306915283, -0.1359143853187561, 0.12116881459951401, 0.03648021072149277, 0.04814388230443001, -0.0978296771645546, -0.004421818070113659, 0.03631918132305145, 0.0005553553346544504, 0.01433119922876358, -0.05921671912074089, -0.08215945214033127, 0.0010358402505517006, -0.0335494726896286, 0.11933735013008118, -0.09618448466062546, -0.0029563766438513994, -0.02480963245034218, 0.0036789614241570234, -0.014360754750669003, 0.03246257081627846, -0.03835025429725647, -0.07698366045951843, -0.05669837445020676, 0.12223029136657715, -0.1569712609052658, -0.02926911599934101, 0.04561956971883774, -0.0833110585808754, 0.04002097249031067, 0.016530174762010574, -0.0333092175424099, -0.09952869266271591, -0.18610255420207977, -0.03507889062166214, 0.03387822210788727, 0.055772144347429276, 0.023053430020809174, -0.09173545241355896, 0.051591068506240845, 0.0018708473071455956, -0.09537843614816666, -0.013802946545183659, -0.018512118607759476, -0.12483281642198563, 0.030274705961346626, -0.08493328839540482, -0.020382924005389214, -0.03213675320148468, 0.12989485263824463, 0.05706118047237396, 0.02115279994904995, 0.08215171098709106, -0.04983746260404587, 0.09839937835931778, -0.13270312547683716, -0.040749236941337585, -0.008653171360492706, -0.03868608921766281, -0.08002550899982452, 0.0043186466209590435, 0.07075244933366776, -0.023280475288629532, 0.1292695552110672, 0.1502547711133957, 0.04364316165447235, 0.05042600259184837, 0.005776317790150642, 0.09874334186315536, 0.06912953406572342, -0.01113192830234766, -0.014930794015526772, -0.011902736499905586, 0.08931150287389755, 0.018445992842316628, 0.01612071506679058, 0.09353578090667725, 0.047909341752529144, 0.2531328499317169, 0.12281004339456558, 0.01889798976480961, 0.04257936403155327, -0.07723456621170044, -0.06097956746816635, 0.11024099588394165, -0.05187558755278587, 0.0801234319806099, -0.10214877873659134, 0.049162358045578, 0.07351066917181015, -0.15788480639457703, 0.06969264149665833, -0.004649601876735687, -0.01103424746543169, -0.044560756534338, -0.13027390837669373, -0.05644789710640907, -0.02356121502816677, 0.0011517925886437297, -0.10765636712312698, 0.09617271274328232, 0.1311572641134262, 0.003351059975102544, 0.017302855849266052, 0.0970684289932251, -0.06717227399349213, -0.08561666309833527, 0.06358417123556137, 0.014655226841568947, 0.04529786854982376, 0.055979516357183456, 0.04625436291098595, 0.10474992543458939, -0.008953877724707127, 0.08700140565633774, 0.08875592797994614, 0.10672372579574585, 0.0284224022179842, -0.07022424042224884, -0.0748441219329834, 0.023898834362626076, -0.011425092816352844, -0.005858353804796934, 0.15297622978687286, 0.07282967865467072, 0.007636972237378359, -0.022471938282251358, 0.184030681848526, 0.000891916046384722, -0.02828081324696541, -0.1305047571659088, 0.05034765228629112, -0.04772014170885086, -0.01333322562277317, -0.0114695243537426, -0.14441223442554474, 0.004141756799072027, 0.1392965018749237, 0.06809476017951965, -0.03705400601029396, -0.01803932525217533, -0.008172906935214996, 0.0021881263237446547, -0.026444200426340103, 0.030704639852046967, 0.005868187174201012, 0.1969543695449829, -0.06031682714819908, 0.033670950680971146, -0.02979317493736744, -0.04265047609806061, -0.07681959867477417, 0.07493460178375244, -0.0008310644770972431, 0.006050595082342625, -0.07943588495254517, 0.11247418075799942, -0.013740277849137783, -0.18740516901016235, 0.0596807636320591, -0.09214925020933151, -0.07967477291822433, -0.0034434080589562654, -0.03823813050985336, 0.018343230709433556, 0.03427363187074661, -0.0031473604030907154, -0.06461361050605774, 0.06193981319665909, 0.025733184069395065, -0.08921200782060623, -0.015986790880560875, 0.004565033596009016, -0.0810183733701706, 0.25928711891174316, -0.030628958716988564, 0.05070384219288826, 0.07170010358095169, -0.038655225187540054, -0.13976827263832092, -0.04786143824458122, 0.07659592479467392, -0.045993201434612274, 0.015161851420998573, 0.12068778276443481, -0.015748362988233566, 0.1395183950662613, 0.07932106405496597, -0.08926014602184296, 0.04496467858552933, -0.025874242186546326, 0.020977791398763657, -0.113470658659935, 0.0003773873031605035, -0.10463796555995941, 0.10624245554208755, 0.13214197754859924, -0.0036165339406579733, -0.013133606873452663, -0.04365628585219383, 0.020330160856246948, 0.013958157040178776, 0.08079306781291962, 0.017675068229436874, -0.05436106026172638, -0.005781162995845079, -0.13257159292697906, 0.09369951486587524, -0.15105777978897095, -0.05262206122279167, 0.03369666263461113, -0.012577204965054989, 0.008546320721507072, 0.07641682773828506, 0.025286167860031128, 0.002948795212432742, -0.06331263482570648, -0.1210293397307396, 0.03924435377120972, 0.15838079154491425, -0.0034205520059913397, -0.026989014819264412 ]
02a0263ac6694c917c374fa112c4863a0cc0939b
# Dataset Card for parasites-1s07h ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/parasites-1s07h - **Point of Contact:** [email protected] ### Dataset Summary parasites-1s07h ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/parasites-1s07h ### Citation Information ``` @misc{ parasites-1s07h, title = { parasites 1s07h Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/parasites-1s07h } }, url = { https://universe.roboflow.com/object-detection/parasites-1s07h }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/parasites-1s07h
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:12:59+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "parasites-1s07h", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "parasites", "1": "Ancylostoma Spp", "2": "Ascaris Lumbricoides", "3": "Enterobius Vermicularis", "4": "Fasciola Hepatica", "5": "Hymenolepis", "6": "Schistosoma", "7": "Taenia Sp", "8": "Trichuris Trichiura"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:13:36+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for parasites-1s07h The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary parasites-1s07h ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for parasites-1s07h\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nparasites-1s07h", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for parasites-1s07h\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nparasites-1s07h", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for parasites-1s07h\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nparasites-1s07h### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.0019193155458196998, 0.16411662101745605, -0.008477216586470604, 0.027510005980730057, 0.09780760854482651, 0.0028467774391174316, 0.0413188710808754, 0.082013800740242, -0.003988063894212246, 0.16598592698574066, -0.014544222503900528, 0.08816226571798325, 0.12317777425050735, 0.07070329040288925, -0.012278426438570023, -0.16923074424266815, 0.07998539507389069, -0.05848954617977142, 0.05880087986588478, 0.07051923871040344, 0.07846467941999435, -0.11883793026208878, 0.09015698730945587, -0.038895007222890854, -0.019260041415691376, 0.030465329065918922, -0.04353545606136322, -0.02533878944814205, 0.020710254088044167, 0.009000257588922977, 0.032820623368024826, 0.01730693317949772, 0.0373159795999527, -0.17961515486240387, 0.022566504776477814, 0.10471393167972565, 0.03180696815252304, 0.029404260218143463, 0.14021556079387665, -0.07617831975221634, 0.07202836871147156, -0.1324799656867981, 0.04789493605494499, 0.01459607481956482, -0.1196819469332695, -0.13986065983772278, -0.13436457514762878, 0.06552863121032715, 0.10817340016365051, 0.03703649714589119, -0.011519204825162888, 0.07683315128087997, -0.0004019682528451085, 0.06981801986694336, 0.1325145661830902, -0.09252756088972092, -0.04598138481378555, 0.07069326192140579, 0.04639934375882149, 0.10697154700756073, -0.10161078721284866, -0.02942235954105854, -0.011193010956048965, -0.014545639045536518, 0.005135850049555302, -0.0744774341583252, -0.03692547604441643, -0.023229999467730522, -0.10047750174999237, -0.13827398419380188, 0.14116090536117554, 0.044027142226696014, -0.0555538646876812, -0.12627404928207397, -0.030186574906110764, 0.05024942010641098, -0.03518514335155487, -0.013234968297183514, 0.04906132072210312, 0.013026732951402664, 0.08088694512844086, -0.05234668403863907, -0.07469760626554489, 0.037702951580286026, 0.027252456173300743, 0.03863878175616264, -0.011201850138604641, 0.03221573308110237, 0.005121987778693438, 0.06199053302407265, -0.004911168944090605, -0.10329663008451462, -0.02772815153002739, -0.030067065730690956, -0.05790368840098381, -0.03433031216263771, 0.08370494097471237, -0.15043769776821136, 0.07799620926380157, 0.07424046844244003, -0.055412206798791885, 0.03251821920275688, -0.16193456947803497, 0.023061692714691162, 0.107415571808815, 0.1494675576686859, -0.0997697040438652, -0.07879850268363953, 0.014008207246661186, 0.03802976757287979, 0.03616770729422569, -0.030076662078499794, -0.007342492695897818, 0.012365075759589672, 0.06289336085319519, 0.04365609213709831, 0.11518809199333191, 0.04443240910768509, -0.06989801675081253, -0.03716267645359039, 0.12494387477636337, -0.10550066828727722, 0.047212712466716766, 0.054459258913993835, -0.03507796302437782, 0.08735357969999313, 0.016665928065776825, 0.002041233005002141, -0.1104789599776268, 0.09776297956705093, -0.04171651974320412, 0.006651538424193859, -0.08343812078237534, -0.11425536125898361, 0.04916972294449806, -0.06829986721277237, -0.08561183512210846, -0.09099903702735901, -0.0553702637553215, -0.0751781016588211, 0.03655792772769928, -0.042601726949214935, 0.018804946914315224, 0.03477857634425163, -0.057748232036828995, -0.00876178964972496, 0.003922779578715563, 0.034391604363918304, -0.05717204138636589, 0.05036475136876106, -0.10798823088407516, 0.040593668818473816, 0.0835617408156395, 0.033276427537202835, -0.09451562911272049, 0.07408957183361053, -0.20843197405338287, 0.10147940367460251, -0.06514228880405426, 0.027219204232096672, -0.13324794173240662, -0.005791825242340565, -0.023022841662168503, -0.052612919360399246, 0.009068536572158337, 0.13994048535823822, -0.08718826621770859, 0.021868186071515083, 0.10849162936210632, -0.07095996290445328, -0.04952371492981911, 0.049540042877197266, -0.029456622898578644, 0.007736010476946831, 0.09666965901851654, 0.1207524761557579, -0.04267137870192528, -0.1035565435886383, -0.11227402836084366, -0.04341379553079605, -0.038172293454408646, 0.17424912750720978, 0.058134254068136215, -0.04233040660619736, 0.08500400930643082, -0.00931680016219616, -0.009958681650459766, -0.016759522259235382, 0.02481869049370289, -0.013355365954339504, 0.01164349727332592, -0.008176503702998161, -0.05935203284025192, 0.008878258988261223, -0.1000715121626854, 0.006958878133445978, -0.08025412261486053, -0.04731721058487892, 0.03393997251987457, -0.0358656570315361, 0.02967793680727482, -0.041301429271698, 0.10944574326276779, -0.10978510975837708, 0.0038224474992603064, -0.1703595072031021, -0.08961714059114456, 0.06599874794483185, -0.029025891795754433, 0.04174662381410599, -0.06568839401006699, -0.0009860160062089562, 0.014947370626032352, 0.03281763568520546, -0.01205852348357439, 0.04197489470243454, -0.009585613384842873, -0.04216809943318367, -0.13869991898536682, -0.03704991191625595, -0.025661123916506767, 0.11193544417619705, -0.1058410182595253, -0.01718485914170742, 0.1599656641483307, 0.11827843636274338, 0.047090835869312286, -0.05994075909256935, 0.0796765461564064, -0.025985581800341606, -0.02311321347951889, -0.07840809971094131, -0.02218819037079811, -0.004821098409593105, 0.03493788093328476, 0.06926906853914261, -0.1716364175081253, -0.10487716645002365, 0.07529774308204651, 0.01566147990524769, -0.0766923800110817, -0.0006767682498320937, -0.04246411472558975, -0.017650362104177475, -0.08381400257349014, -0.06956353038549423, 0.029173966497182846, 0.07220584899187088, 0.08736656606197357, -0.06014465540647507, -0.025816814973950386, 0.020462151616811752, -0.02575177326798439, -0.0606340654194355, 0.06516342610120773, 0.03881523758172989, -0.11123828589916229, 0.09875853359699249, -0.016883309930562973, 0.028002405539155006, 0.07583072781562805, 0.040848780423402786, -0.1021408960223198, 0.01549152098596096, 0.08476139605045319, 0.043671488761901855, 0.09222302585840225, -0.040945861488580704, 0.024292584508657455, 0.08317804336547852, 0.009507914073765278, -0.014696257188916206, -0.07739806175231934, 0.08784567564725876, 0.026013093069195747, -0.03750995174050331, 0.025798939168453217, -0.02874671295285225, 0.07530426234006882, 0.1185564175248146, 0.039932731539011, 0.07998654246330261, -0.05760408192873001, -0.05763300508260727, -0.0929192528128624, 0.12012883275747299, -0.04029521718621254, -0.2350686490535736, -0.07736528664827347, -0.07959198951721191, -0.066288061439991, -0.015750344842672348, 0.02807876281440258, -0.0047239582054317, -0.08371549099683762, -0.09706687927246094, 0.033408649265766144, 0.052140362560749054, -0.10039499402046204, -0.10340185463428497, 0.03063889406621456, 0.01621515303850174, -0.09108446538448334, -0.009990889579057693, 0.023793447762727737, -0.062391649931669235, 0.011953904293477535, 0.036848776042461395, 0.13972507417201996, 0.08002282679080963, -0.008711648173630238, -0.002950443187728524, -0.004423022270202637, 0.17843905091285706, -0.12757508456707, 0.12362711876630783, 0.1628638058900833, -0.0042307632975280285, 0.09160670638084412, 0.18708524107933044, -0.00899932999163866, -0.023842668160796165, 0.017712654545903206, 0.0697890892624855, -0.055645592510700226, -0.18839094042778015, -0.05133491009473801, -0.05969369783997536, 0.03055853582918644, 0.12285386770963669, 0.05207698419690132, 0.0032420894131064415, 0.07400239259004593, -0.09436748921871185, 0.03206050768494606, 0.056351080536842346, 0.10483545809984207, 0.018986010923981667, 0.029905183240771294, 0.04145639017224312, -0.04190223664045334, -0.03385575860738754, 0.10022039711475372, 0.1265266388654709, 0.11265972256660461, -0.08837560564279556, 0.12998846173286438, 0.0356486476957798, 0.01782674714922905, -0.05107836797833443, 0.03143927827477455, -0.04730725288391113, 0.06297027319669724, -0.011034462600946426, -0.09311868250370026, -0.020485645160079002, 0.05279065668582916, 0.11837131530046463, 0.006656063720583916, 0.0224046278744936, -0.03223273903131485, 0.09506209939718246, 0.20957259833812714, 0.015571695752441883, -0.17848435044288635, 0.039465419948101044, 0.043757203966379166, -0.0006503703771159053, -0.13706925511360168, -0.044033780694007874, 0.0753990188241005, -0.16025978326797485, 0.0626453086733818, -0.05168428272008896, 0.11827044188976288, -0.1521652787923813, -0.03173603489995003, 0.015526893548667431, 0.01817784458398819, -0.031092355027794838, 0.08274542540311813, -0.12636975944042206, 0.08639267086982727, 0.03203359991312027, 0.04329477250576019, -0.0874767154455185, 0.04444443807005882, 0.019355807453393936, 0.0031097629107534885, 0.1541631668806076, -0.008621632121503353, -0.019091175869107246, -0.1329297125339508, -0.122002974152565, -0.006552402395755053, 0.04643911495804787, -0.049019183963537216, 0.10850135236978531, 0.0056451172567903996, -0.022357868030667305, -0.08194328844547272, -0.04304642230272293, -0.06710156053304672, -0.1722312569618225, 0.06058138981461525, -0.031082380563020706, 0.01884652115404606, -0.021352259442210197, 0.041686780750751495, 0.024196604266762733, 0.12791034579277039, -0.09548921883106232, -0.09590812027454376, -0.1524575799703598, 0.054206229746341705, 0.06361137330532074, -0.03094119392335415, -0.04929914325475693, -0.08978700637817383, 0.15435174107551575, -0.04117179661989212, -0.061472002416849136, 0.028505781665444374, -0.05245494097471237, -0.11294374614953995, -0.0705312117934227, 0.08829660713672638, 0.036644283682107925, 0.008224770426750183, 0.015215552411973476, 0.0520060770213604, 0.013397928327322006, -0.056740619242191315, 0.03150906786322594, 0.09414462745189667, 0.11258669197559357, 0.14155548810958862, 0.0017050738679245114, -0.13356544077396393, -0.13107769191265106, 0.027976030483841896, 0.057395532727241516, 0.10804097354412079, -0.06508462131023407, 0.08736355602741241, 0.04547363147139549, -0.09841672331094742, -0.22837992012500763, 0.061003781855106354, 0.05128845199942589, -0.028337063267827034, -0.006028821226209402, -0.14886659383773804, 0.14110711216926575, 0.06668537110090256, -0.00977271981537342, 0.06049914285540581, -0.2755330502986908, -0.06514234095811844, -0.007356012240052223, 0.04292325675487518, -0.19026514887809753, -0.18168891966342926, -0.040674805641174316, -0.060001809149980545, -0.17893730103969574, 0.04140229523181915, -0.03204863891005516, 0.026837535202503204, 0.048487626016139984, 0.04760076105594635, 0.05920351296663284, -0.04807749763131142, 0.12336786836385727, 0.02916182205080986, 0.04789259284734726, -0.06165824085474014, -0.08512254804372787, 0.04623262956738472, -0.089990995824337, 0.13779939711093903, 0.03322784602642059, -0.004398735705763102, -0.09477794915437698, -0.0013211095938459039, -0.04111221060156822, 0.08703695982694626, -0.023160405457019806, -0.044220175594091415, -0.0807127133011818, 0.035363223403692245, 0.14291951060295105, 0.03492027893662453, 0.08961895108222961, -0.045027200132608414, -0.008563941344618797, 0.14120401442050934, 0.10871319472789764, -0.016386354342103004, -0.1584041565656662, -0.0295102521777153, 0.012111556716263294, 0.030178101733326912, -0.088579460978508, 0.05636706203222275, 0.07674117386341095, 0.01686088927090168, 0.11179224401712418, -0.00018573999113868922, -0.10567723959684372, 0.023544294759631157, 0.042897045612335205, -0.10687706619501114, -0.11046908795833588, 0.041553426533937454, 0.10451865196228027, -0.11326983571052551, -0.11383295059204102, 0.12744936347007751, 0.004434817936271429, -0.013128850609064102, 0.011324582621455193, 0.10581402480602264, 0.035925108939409256, 0.0681706890463829, 0.027894746512174606, 0.03788240626454353, -0.06751593947410583, 0.11275528371334076, 0.15611079335212708, -0.14740358293056488, -0.005888966843485832, 0.1126227080821991, -0.048535216599702835, -0.011774490587413311, -0.03993955999612808, 0.0588868074119091, 0.024682624265551567, -0.03820683807134628, 0.0230870358645916, -0.050344087183475494, 0.017487194389104843, 0.07724043726921082, -0.0012486045015975833, 0.059702761471271515, 0.007598781958222389, -0.020797137171030045, -0.14086665213108063, 0.13153070211410522, 0.020054157823324203, 0.06304178386926651, -0.08453715592622757, 0.03270415961742401, 0.022182881832122803, 0.0054493313655257225, 0.005698883440345526, -0.05398948863148689, -0.08215823769569397, -0.00015724801050964743, -0.03518625721335411, 0.10274259001016617, -0.10264929383993149, -0.016285158693790436, -0.011180113069713116, 0.027108151465654373, -0.015555444173514843, 0.025885066017508507, -0.055458202958106995, -0.07878320664167404, -0.03394791856408119, 0.1210586205124855, -0.15209630131721497, -0.027220265939831734, 0.06920567899942398, -0.10023605078458786, 0.07123593986034393, 0.007668617181479931, -0.04388832673430443, -0.0762612372636795, -0.1732252985239029, -0.05434262752532959, 0.03329562395811081, 0.058262668550014496, 0.049561746418476105, -0.09959550201892853, 0.04407278075814247, -0.012379225343465805, -0.09480249881744385, -0.006161516532301903, 0.010176261886954308, -0.10719241946935654, 0.05422024056315422, -0.07927951961755753, -0.029061023145914078, -0.031593985855579376, 0.12299081683158875, 0.063820980489254, 0.01191308069974184, 0.0818505585193634, -0.040914375334978104, 0.09193546324968338, -0.14257262647151947, -0.03101516328752041, -0.0004522010567598045, -0.05422399193048477, -0.04068595543503761, 0.004822973627597094, 0.07265326380729675, -0.02591661922633648, 0.1235780343413353, 0.11614023149013519, 0.02132417820394039, 0.04131808131933212, -0.0015937085263431072, 0.044828422367572784, 0.049676764756441116, -0.03214987739920616, -0.020176993682980537, -0.021795067936182022, 0.07100185751914978, -0.003288812004029751, 0.017422238364815712, 0.10234484076499939, 0.09195128083229065, 0.22956959903240204, 0.14680485427379608, 0.01656099408864975, 0.037268947809934616, -0.07097437232732773, -0.08674044907093048, 0.07729362696409225, -0.028956761583685875, 0.09139009565114975, -0.08691949397325516, 0.0519728809595108, 0.09577419608831406, -0.15354064106941223, 0.05821768566966057, -0.0007588682929053903, -0.014765816740691662, -0.03615720942616463, -0.1088317409157753, -0.049433834850788116, -0.027589578181505203, -0.011747038923203945, -0.12093231827020645, 0.06461326777935028, 0.14065459370613098, -0.014925326220691204, 0.02669074945151806, 0.07938016206026077, -0.09665943682193756, -0.06907237321138382, 0.07248055934906006, 0.005052864085882902, 0.040706079453229904, 0.04225458949804306, 0.035578057169914246, 0.05861130729317665, 0.0140488026663661, 0.11031167954206467, 0.09718745201826096, 0.09961532801389694, 0.026917871087789536, -0.0896061435341835, -0.07355081290006638, 0.029070576652884483, -0.010987675748765469, -0.03372929245233536, 0.17190474271774292, 0.08412430435419083, -0.0009000326390378177, -0.025869477540254593, 0.15810717642307281, -0.017954310402274132, -0.012538764625787735, -0.1533680260181427, 0.05170527473092079, -0.03789079189300537, -0.007997741922736168, -0.00998361874371767, -0.1562037318944931, 0.004710698500275612, 0.12882956862449646, 0.06254222989082336, -0.048693254590034485, -0.007815295830368996, -0.03290707990527153, 0.00994101818650961, -0.007107206620275974, 0.044133078306913376, 0.03388804569840431, 0.21233855187892914, -0.06046212464570999, 0.01926211267709732, -0.04642772302031517, -0.036601472645998, -0.09354469180107117, 0.07616285979747772, -0.008922413922846317, 0.005263725761324167, -0.07683669030666351, 0.13096199929714203, -0.0058318073861300945, -0.1952604353427887, 0.029722945764660835, -0.0820176899433136, -0.0842365249991417, 0.01657482609152794, -0.017269905656576157, 0.007778651546686888, 0.03147188574075699, 0.005207860376685858, -0.06353028863668442, 0.09025700390338898, 0.019145790487527847, -0.0526358038187027, -0.019614310935139656, 0.01520298421382904, -0.09267909824848175, 0.27758580446243286, -0.019902439787983894, 0.023156186565756798, 0.10239125788211823, -0.03298105299472809, -0.14324817061424255, -0.0244577806442976, 0.07735686004161835, -0.03333389759063721, 0.001647070050239563, 0.14581674337387085, -0.0073781488463282585, 0.121938057243824, 0.08286167681217194, -0.08513526618480682, 0.03788739815354347, -0.015200857073068619, 0.012953286990523338, -0.11090769618749619, -0.0010718127014115453, -0.09586067497730255, 0.10190429538488388, 0.16304245591163635, -0.011228134855628014, 0.007408966310322285, -0.043311603367328644, -0.020796652883291245, 0.002741302130743861, 0.09356279671192169, -0.01274537481367588, -0.08293172717094421, -0.0034664918202906847, -0.12442947924137115, 0.0751849114894867, -0.1147819235920906, -0.05608244612812996, 0.023613249883055687, -0.010065904818475246, -0.01857902854681015, 0.08465346693992615, 0.02527555637061596, -0.0029516268987208605, -0.05457988753914833, -0.11534065753221512, 0.024493582546710968, 0.17613500356674194, -0.018267210572957993, -0.0164287518709898 ]
afc7570ad69acd1ec488302a219f03de586f3a95
# Dataset Card for cells-uyemf ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cells-uyemf - **Point of Contact:** [email protected] ### Dataset Summary cells-uyemf ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cells-uyemf ### Citation Information ``` @misc{ cells-uyemf, title = { cells uyemf Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cells-uyemf } }, url = { https://universe.roboflow.com/object-detection/cells-uyemf }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cells-uyemf
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:13:30+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cells-uyemf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cells", "1": "celula"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:13:46+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cells-uyemf The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cells-uyemf ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cells-uyemf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncells-uyemf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cells-uyemf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncells-uyemf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cells-uyemf\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncells-uyemf### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01044389232993126, 0.167173370718956, -0.0077241030521690845, 0.01674583926796913, 0.09820050746202469, -0.004758605267852545, 0.068688303232193, 0.07904140651226044, -0.011006643995642662, 0.17241644859313965, 0.0008307279204018414, 0.05622859671711922, 0.11202636361122131, 0.0892428383231163, -0.019217394292354584, -0.1610911339521408, 0.06257934123277664, -0.06867725402116776, 0.06629666686058044, 0.0687553659081459, 0.07658932358026505, -0.1346188634634018, 0.08597060292959213, -0.03905287757515907, -0.01382574625313282, 0.03691909462213516, -0.05981020629405975, -0.040245719254016876, -0.0013754453975707293, 0.049007706344127655, 0.011868957430124283, 0.03133508935570717, 0.03723641112446785, -0.19985273480415344, 0.02275988459587097, 0.1049160584807396, 0.030076254159212112, 0.02138056978583336, 0.1536298394203186, -0.09584967792034149, 0.07452138513326645, -0.11982810497283936, 0.03121267445385456, 0.011828284710645676, -0.11091938614845276, -0.10567447543144226, -0.1191338300704956, 0.06454122066497803, 0.093451589345932, 0.0542248897254467, -0.019179662689566612, 0.08393876999616623, -0.016648773103952408, 0.06068773195147514, 0.13015498220920563, -0.04400624334812164, -0.04231761395931244, 0.08295968919992447, 0.047879938036203384, 0.09684982150793076, -0.11002170294523239, -0.018158435821533203, 0.007570216432213783, -0.023566193878650665, 0.0023783918004482985, -0.051549531519412994, -0.05470739305019379, 0.0006141859921626747, -0.10068254917860031, -0.14844603836536407, 0.14204604923725128, 0.04853305593132973, -0.05101480707526207, -0.14236226677894592, 0.0017574522644281387, 0.05994846299290657, -0.030751239508390427, -0.0014214464463293552, 0.04725465551018715, -0.008800155483186245, 0.05208001285791397, -0.05816464498639107, -0.09785998612642288, 0.052422262728214264, 0.030986908823251724, 0.02725941315293312, -0.020343448966741562, 0.03731917589902878, 0.016777943819761276, 0.07649358361959457, 0.010419509373605251, -0.11539247632026672, -0.02597278356552124, -0.038778264075517654, -0.043449342250823975, -0.04518144950270653, 0.05518914386630058, -0.14632658660411835, 0.06974002718925476, 0.06455720216035843, -0.07283132523298264, 0.025199823081493378, -0.1143832728266716, 0.01107572391629219, 0.11715810745954514, 0.16135850548744202, -0.08036394417285919, -0.07874199002981186, -0.002775167813524604, 0.04419875517487526, 0.025276117026805878, -0.027121271938085556, -0.02443147636950016, 0.007887974381446838, 0.01979261264204979, 0.0446065254509449, 0.11095986515283585, 0.04110903665423393, -0.06796173751354218, -0.06690245121717453, 0.13625170290470123, -0.09770982712507248, 0.045083269476890564, 0.06000969558954239, -0.053465213626623154, 0.07520132511854172, 0.010088295675814152, 0.013229576870799065, -0.11797869950532913, 0.08929556608200073, -0.024912633001804352, 0.01619906723499298, -0.092385433614254, -0.0940910056233406, 0.05973777920007706, -0.07209614664316177, -0.07480292022228241, -0.0838673934340477, -0.03996840864419937, -0.08901010453701019, 0.03757628798484802, -0.044278718531131744, 0.023744095116853714, 0.02022417262196541, -0.04521353170275688, -0.016033947467803955, 0.008719246834516525, 0.0497233048081398, -0.05774080008268356, 0.03413369506597519, -0.09541312605142593, 0.03528004139661789, 0.11586789041757584, 0.0423896349966526, -0.10424865037202835, 0.06337115913629532, -0.1990203857421875, 0.13667826354503632, -0.05400362238287926, 0.021302305161952972, -0.12875469028949738, 0.008233982138335705, -0.00737511832267046, -0.03697618842124939, -0.0027345814742147923, 0.13710415363311768, -0.07833331823348999, 0.009472440928220749, 0.043765839189291, -0.06044895946979523, -0.05638769641518593, 0.028863977640867233, -0.045265600085258484, -0.017102492973208427, 0.0803493782877922, 0.14165088534355164, -0.03652250021696091, -0.11662475019693375, -0.1245170533657074, -0.03675287961959839, -0.03512407839298248, 0.15245305001735687, 0.08107048273086548, -0.03352797031402588, 0.10746628046035767, -0.011603454127907753, -0.008845409378409386, -0.0436706468462944, 0.010232253931462765, -0.035779230296611786, 0.01318860799074173, -0.0021588236559182405, -0.10135086625814438, 0.02042609639465809, -0.09906560182571411, 0.002807047450914979, -0.07508350908756256, -0.02543693408370018, 0.022091146558523178, -0.03769805282354355, 0.012646963819861412, -0.030406398698687553, 0.09632619470357895, -0.1181725561618805, -0.0013321370352059603, -0.1587737500667572, -0.1206178292632103, 0.05184845253825188, -0.05878043547272682, 0.03551124408841133, -0.08644077181816101, -0.01637427695095539, 0.02735995687544346, 0.034465398639440536, -0.008476144634187222, 0.041335951536893845, -0.021886635571718216, -0.03921850025653839, -0.13205131888389587, -0.0526965968310833, -0.02768649160861969, 0.08852068334817886, -0.13292518258094788, -0.030613061040639877, 0.13670696318149567, 0.1313689798116684, 0.03728458285331726, -0.050887420773506165, 0.08309269696474075, -0.023416895419359207, -0.0251455157995224, -0.08731599152088165, -0.011597584001719952, -0.004733729176223278, 0.04578860104084015, 0.08563364297151566, -0.16436052322387695, -0.14101672172546387, 0.08397793024778366, 0.03992148116230965, -0.08651922643184662, -0.06255226582288742, -0.046550072729587555, -0.01429039891809225, -0.09983660280704498, -0.022330114617943764, 0.03322649747133255, 0.06206097826361656, 0.08549883961677551, -0.07736814767122269, -0.03991510719060898, 0.019240587949752808, -0.01661016047000885, -0.07901608198881149, 0.08206024020910263, 0.06582574546337128, -0.12046705186367035, 0.10461914539337158, -0.029407469555735588, 0.042558204382658005, 0.09149404615163803, 0.02782493457198143, -0.12010311335325241, 0.020875560119748116, 0.06589171290397644, 0.026564355939626694, 0.08670973777770996, -0.01289899367839098, 0.026619426906108856, 0.08218225091695786, -0.021552830934524536, -0.016896478831768036, -0.07705801725387573, 0.07227820158004761, 0.037944402545690536, -0.04028548300266266, 0.017169620841741562, -0.014264564961194992, 0.08227132260799408, 0.09433875232934952, 0.05150163546204567, 0.11595650017261505, -0.04651956260204315, -0.06002189591526985, -0.09579707682132721, 0.13162657618522644, -0.017474370077252388, -0.2603468894958496, -0.07665254175662994, -0.06455143541097641, -0.05650517717003822, -0.009668998420238495, 0.03727048262953758, 0.007970225065946579, -0.08745207637548447, -0.10979072004556656, 0.06158185750246048, 0.061864033341407776, -0.10535877197980881, -0.12251382321119308, 0.04418732970952988, 0.011389123275876045, -0.07589462399482727, 0.0025409243535250425, 0.027084728702902794, -0.03721966594457626, 0.007984695956110954, 0.0392489954829216, 0.12671217322349548, 0.05179072543978691, -0.017693577334284782, 0.0022583671379834414, -0.004604186862707138, 0.1780448853969574, -0.15003813803195953, 0.09069031476974487, 0.16921831667423248, 0.014601675793528557, 0.07358987629413605, 0.19432468712329865, -0.02068287879228592, -0.01371096819639206, 0.027555231004953384, 0.07622209936380386, -0.06264951825141907, -0.19537127017974854, -0.06091715395450592, -0.04297763109207153, 0.014695883728563786, 0.1380615532398224, 0.03769282251596451, 0.015450692735612392, 0.09371860325336456, -0.11487450450658798, 0.02132520265877247, 0.011713575571775436, 0.10351098328828812, 0.059451643377542496, 0.04829208180308342, 0.04722647741436958, -0.049306388944387436, -0.036809053272008896, 0.09876043349504471, 0.09583260118961334, 0.12044922262430191, -0.10601354390382767, 0.08952854573726654, 0.03142445161938667, 0.026993278414011, -0.03172175958752632, -0.006866218522191048, -0.03306519612669945, 0.05292806401848793, -0.007830941118299961, -0.10831030458211899, 0.012555456720292568, 0.0825302004814148, 0.13254907727241516, -0.018688511103391647, -0.008078424260020256, -0.038066115230321884, 0.06575118005275726, 0.24059951305389404, 0.005099479109048843, -0.20996037125587463, 0.016824720427393913, 0.03505707532167435, 0.014795747585594654, -0.11671052128076553, -0.045259974896907806, 0.09889873117208481, -0.16808423399925232, 0.0637921690940857, -0.03146777302026749, 0.11302918195724487, -0.13470777869224548, -0.033783651888370514, 0.055117055773735046, 0.044834066182374954, -0.028018195182085037, 0.08799177408218384, -0.10160794109106064, 0.07389117777347565, 0.031805701553821564, 0.02726210467517376, -0.08137252926826477, 0.036757469177246094, 0.010117474012076855, -0.007338805589824915, 0.14038920402526855, -0.016598522663116455, -0.0013060353230684996, -0.12578602135181427, -0.11376490443944931, -0.011177831329405308, 0.05148855969309807, -0.0731758326292038, 0.10452870279550552, 0.01477870438247919, -0.02814342826604843, -0.07969479262828827, -0.049881067126989365, -0.06254138052463531, -0.19292673468589783, 0.0394476018846035, -0.010318012908101082, 0.02493537962436676, -0.015542715787887573, 0.01894811913371086, 0.037894200533628464, 0.12659159302711487, -0.028617005795240402, -0.0950726717710495, -0.14255282282829285, 0.055261626839637756, 0.10301899909973145, -0.020103998482227325, -0.022987976670265198, -0.09353766590356827, 0.17715778946876526, -0.02488134242594242, -0.07873319089412689, 0.021087683737277985, -0.07268166542053223, -0.11854490637779236, -0.05636401101946831, 0.10173680633306503, 0.01963450387120247, -0.002887584501877427, 0.0038447645492851734, 0.060332346707582474, -0.0013567093992605805, -0.04586673155426979, 0.0174399446696043, 0.10315906256437302, 0.1558540314435959, 0.13198736310005188, 0.008240221999585629, -0.13916520774364471, -0.1205403134226799, -0.010843401774764061, 0.021739603951573372, 0.10307882726192474, -0.06803411990404129, 0.11745050549507141, 0.026785286143422127, -0.0809393972158432, -0.21921712160110474, 0.07450847327709198, 0.07813040912151337, -0.006451991852372885, 0.0024822328705340624, -0.1473044753074646, 0.1469351053237915, 0.038424037396907806, 0.0038063637912273407, 0.0746186301112175, -0.26886019110679626, -0.07194531708955765, -0.025501742959022522, 0.02135142870247364, -0.23758310079574585, -0.16738201677799225, -0.057596489787101746, -0.06084383279085159, -0.13778109848499298, 0.05681868642568588, -0.000782448158133775, 0.05031142383813858, 0.04109637811779976, 0.03431827202439308, 0.06616714596748352, -0.04512220248579979, 0.11026589572429657, 0.016750160604715347, 0.0399106964468956, -0.07793902605772018, -0.08856905996799469, 0.008292321115732193, -0.09161290526390076, 0.14347530901432037, 0.03270711004734039, 0.031182825565338135, -0.05830253288149834, -0.022194499149918556, -0.028260916471481323, 0.09134206920862198, -0.020891698077321053, -0.03149784728884697, -0.10495271533727646, 0.0341060496866703, 0.1346103847026825, 0.02734270878136158, 0.09008526802062988, -0.049908123910427094, -0.017684640362858772, 0.15964442491531372, 0.10242527723312378, 0.006714445538818836, -0.15766997635364532, -0.04765316843986511, 0.0025491320993751287, 0.04276571422815323, -0.11543294787406921, 0.0322929285466671, 0.08466003835201263, 0.018637510016560555, 0.1025986447930336, -0.014236889779567719, -0.09544897824525833, 0.009522584266960621, 0.04565193131566048, -0.10413499176502228, -0.10245851427316666, 0.01995762437582016, 0.11360809206962585, -0.11469363421201706, -0.11963696032762527, 0.1143597662448883, -0.0030907061882317066, -0.015276435762643814, -0.0005585787585005164, 0.07264528423547745, 0.05989231541752815, 0.06362485140562057, 0.018939241766929626, 0.03752624988555908, -0.07123329490423203, 0.10724250227212906, 0.1474560797214508, -0.1442088633775711, 0.007096664980053902, 0.11233707517385483, -0.0510321781039238, -0.02000064216554165, -0.021381981670856476, 0.03274020925164223, -0.024647720158100128, -0.03178173303604126, 0.030893832445144653, -0.04667436704039574, 0.042697321623563766, 0.09681728482246399, 0.0066600278951227665, 0.04872655123472214, 0.023915981873869896, -0.020112305879592896, -0.14092963933944702, 0.13299210369586945, 0.029625900089740753, 0.052074216306209564, -0.08663414418697357, 0.01308530941605568, 0.03549811244010925, 0.004950454458594322, 0.008782261051237583, -0.05544957518577576, -0.07802101224660873, -0.0020650611259043217, -0.038922302424907684, 0.10656692832708359, -0.08919832855463028, -0.009204452857375145, -0.01430529449135065, 0.006360416766256094, -0.012790042906999588, 0.035594332963228226, -0.04400137811899185, -0.07889756560325623, -0.05344342067837715, 0.13199573755264282, -0.1522914469242096, -0.022313276305794716, 0.05247503146529198, -0.08855836093425751, 0.05927394703030586, 0.018195800483226776, -0.03929339349269867, -0.10329894721508026, -0.17448265850543976, -0.04808276146650314, 0.030349653214216232, 0.0735182985663414, 0.03281617537140846, -0.084727443754673, 0.05214662849903107, 0.0008079098188318312, -0.09629960358142853, -0.012022578157484531, -0.015767769888043404, -0.12013812363147736, 0.038266174495220184, -0.08394429087638855, -0.029692843556404114, -0.03688643500208855, 0.1369706392288208, 0.048319313675165176, 0.006187032908201218, 0.08909563720226288, -0.05283253267407417, 0.09394664317369461, -0.13436372578144073, -0.037532221525907516, -0.011464215815067291, -0.03443911671638489, -0.09128677845001221, 0.006636949721723795, 0.07520942389965057, -0.02978810854256153, 0.13092415034770966, 0.1363724023103714, 0.03537099435925484, 0.04216480255126953, 0.0025381939485669136, 0.09849933534860611, 0.06131039559841156, -0.007727946154773235, 0.00016641980619169772, -0.014822057448327541, 0.07178708910942078, 0.016507016494870186, 0.02342480979859829, 0.08132001757621765, 0.05394832417368889, 0.24211084842681885, 0.1211870014667511, 0.015038954094052315, 0.04312732070684433, -0.08357647806406021, -0.04096555709838867, 0.09710220247507095, -0.041046302765607834, 0.08303745090961456, -0.09647791087627411, 0.047715093940496445, 0.09464658796787262, -0.14705760776996613, 0.06702426075935364, -0.006232629530131817, -0.005499218124896288, -0.03130786865949631, -0.10572389513254166, -0.06199221312999725, -0.028352918103337288, -0.0037053104024380445, -0.1188129261136055, 0.0938684493303299, 0.1438073068857193, 0.0025735055096447468, 0.01960422471165657, 0.09570524096488953, -0.06047864258289337, -0.085633285343647, 0.07271113991737366, 0.01221927534788847, 0.059019025415182114, 0.040134161710739136, 0.04379454627633095, 0.09559693932533264, -0.0049802684225142, 0.08087673038244247, 0.0958743616938591, 0.11334431171417236, 0.027600232511758804, -0.07460840046405792, -0.0744214653968811, 0.02899792604148388, -0.012521428056061268, -0.01274870429188013, 0.15307676792144775, 0.07865302264690399, 0.018342161551117897, -0.022334299981594086, 0.1786588579416275, -0.013792826794087887, -0.02797422744333744, -0.1385032683610916, 0.048056311905384064, -0.04080434888601303, -0.008486405946314335, -0.017604544758796692, -0.14917846024036407, -0.0004841601476073265, 0.1321212351322174, 0.07776951044797897, -0.05153704434633255, -0.013631916604936123, -0.016111301258206367, 0.0055635347962379456, -0.015817368403077126, 0.03358329460024834, 0.015081699006259441, 0.20095916092395782, -0.057162608951330185, 0.011891957372426987, -0.04636871814727783, -0.028447704389691353, -0.07093416154384613, 0.08686448633670807, -0.011487568728625774, -0.007118951063603163, -0.07010077685117722, 0.11261202394962311, -0.007462361361831427, -0.18089096248149872, 0.05160271003842354, -0.0894598662853241, -0.08426754176616669, 0.0086212158203125, -0.025696828961372375, 0.01905295066535473, 0.02360362932085991, 0.004260540008544922, -0.06374051421880722, 0.0745469480752945, 0.028453797101974487, -0.0807693749666214, -0.017179345712065697, 0.0035497075878083706, -0.09653408080339432, 0.2561475336551666, -0.03599248081445694, 0.04688209667801857, 0.07955373823642731, -0.023321498185396194, -0.13346125185489655, -0.031170139089226723, 0.08610720187425613, -0.05482136458158493, 0.03381185606122017, 0.1134197786450386, -0.007953604683279991, 0.15620237588882446, 0.082756906747818, -0.07386811077594757, 0.05025695636868477, -0.021394869312644005, 0.02175554819405079, -0.10917539149522781, -0.00041898517520166934, -0.09415455162525177, 0.1058548092842102, 0.14625385403633118, -0.006981761194765568, -0.01112925074994564, -0.03593020141124725, 0.012066318653523922, 0.007983734831213951, 0.07941152900457382, 0.016023408621549606, -0.05842754244804382, 0.010012766346335411, -0.14297431707382202, 0.08777782320976257, -0.14073146879673004, -0.0518278107047081, 0.04090900346636772, -0.016395697370171547, -0.003530077636241913, 0.07529065757989883, 0.03567943722009659, 0.005051993764936924, -0.06575827300548553, -0.09727490693330765, 0.036019302904605865, 0.16099314391613007, -0.009134725667536259, -0.02554566040635109 ]
07181d7d834b4c6063cdcc3ef7dbbf682cc14c92
# Dataset Card for acl-x-ray ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/acl-x-ray - **Point of Contact:** [email protected] ### Dataset Summary acl-x-ray ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/acl-x-ray ### Citation Information ``` @misc{ acl-x-ray, title = { acl x ray Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/acl-x-ray } }, url = { https://universe.roboflow.com/object-detection/acl-x-ray }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/acl-x-ray
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:13:36+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "acl-x-ray", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "acl-x-ray", "1": "acl"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:14:08+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for acl-x-ray The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary acl-x-ray ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for acl-x-ray\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nacl-x-ray", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for acl-x-ray\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nacl-x-ray", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for acl-x-ray\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nacl-x-ray### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01859159581363201, 0.1631097048521042, -0.007690201047807932, 0.020167259499430656, 0.10100586712360382, 0.002892464864999056, 0.05740794911980629, 0.08273881673812866, 0.005577126517891884, 0.1748071312904358, -0.004086075350642204, 0.08346083760261536, 0.11893724650144577, 0.09677795320749283, -0.02028806321322918, -0.15493305027484894, 0.057079046964645386, -0.061854999512434006, 0.06781810522079468, 0.07278319448232651, 0.07570825517177582, -0.1389211118221283, 0.08368254452943802, -0.03889891877770424, -0.02095191553235054, 0.026379885151982307, -0.05431545525789261, -0.04889967665076256, 0.008447171188890934, 0.04652439430356026, 0.0233798548579216, 0.028185784816741943, 0.03491395339369774, -0.19580140709877014, 0.020253058522939682, 0.10742875933647156, 0.037976957857608795, 0.025140952318906784, 0.15686260163784027, -0.08358471840620041, 0.05692024156451225, -0.12770769000053406, 0.04063792899250984, 0.015471200458705425, -0.11926769465208054, -0.1230849102139473, -0.11679720133543015, 0.0541468970477581, 0.11413184553384781, 0.04798498749732971, -0.01656949333846569, 0.0774134024977684, -0.01120947115123272, 0.05885743349790573, 0.10845158994197845, -0.06432807445526123, -0.04230939969420433, 0.07757089287042618, 0.036775652319192886, 0.11057636141777039, -0.11262955516576767, -0.01703500747680664, -0.0007163663394749165, -0.026158638298511505, 0.014491816982626915, -0.057690151035785675, -0.04977859556674957, -0.0048296451568603516, -0.0992773175239563, -0.14622914791107178, 0.13963019847869873, 0.04678201302886009, -0.05144575238227844, -0.14505143463611603, -0.0017649192595854402, 0.049283530563116074, -0.03514571487903595, -0.008661593310534954, 0.046618569642305374, -0.006676420569419861, 0.05811448395252228, -0.07129702717065811, -0.10304123908281326, 0.04665409028530121, 0.039773497730493546, 0.03675370663404465, -0.020680932328104973, 0.03746496140956879, 0.01884915865957737, 0.07328824698925018, 0.010135701857507229, -0.10459265857934952, -0.024210821837186813, -0.040042705833911896, -0.06525051593780518, -0.04324514791369438, 0.06388154625892639, -0.14658130705356598, 0.05897129327058792, 0.05612419173121452, -0.06526724994182587, 0.03774475306272507, -0.13337066769599915, 0.020761234685778618, 0.10712573677301407, 0.18201309442520142, -0.0824502632021904, -0.08213271200656891, -0.005981318652629852, 0.04254781827330589, 0.020878570154309273, -0.0351291224360466, -0.019166847690939903, 0.007110621314495802, 0.02942901849746704, 0.038558728992938995, 0.11113050580024719, 0.044625889509916306, -0.07415347546339035, -0.06556505709886551, 0.13110977411270142, -0.0995260700583458, 0.05154915899038315, 0.0636618509888649, -0.05270375311374664, 0.070833720266819, 0.008097721263766289, 0.012691386975347996, -0.11280541121959686, 0.1027587503194809, -0.02712785080075264, 0.016894469037652016, -0.09325026720762253, -0.09634103626012802, 0.05384856089949608, -0.08448902517557144, -0.08268013596534729, -0.07904075086116791, -0.04712573438882828, -0.08514345437288284, 0.04571405425667763, -0.04448769614100456, 0.03045678324997425, 0.020302969962358475, -0.0373879037797451, -0.011620347388088703, 0.0053076972253620625, 0.04443379491567612, -0.05522925779223442, 0.04212150350213051, -0.09252624213695526, 0.03959701210260391, 0.11291056126356125, 0.0406220369040966, -0.09599041193723679, 0.06393878161907196, -0.19366492331027985, 0.13625898957252502, -0.05552326515316963, 0.019347144290804863, -0.13729164004325867, 0.011045994237065315, -0.016433661803603172, -0.035114556550979614, 0.002372812945395708, 0.13752008974552155, -0.08482985198497772, 0.01908045820891857, 0.05660513415932655, -0.055130716413259506, -0.05981812626123428, 0.03426497429609299, -0.04125214368104935, -0.0016486275708302855, 0.07620375603437424, 0.12153365463018417, -0.05422889068722725, -0.11129176616668701, -0.1068197712302208, -0.03778664022684097, -0.03683493658900261, 0.1535501927137375, 0.07111737877130508, -0.03310135379433632, 0.09540665149688721, -0.009243994951248169, -0.01996528171002865, -0.04509682208299637, 0.012770365923643112, -0.038895849138498306, 0.020496279001235962, -0.005250691901892424, -0.08811985701322556, 0.0167197585105896, -0.09998860955238342, 0.00852496363222599, -0.0823078453540802, -0.04891914874315262, 0.013864707201719284, -0.029843419790267944, 0.016664136201143265, -0.03796110674738884, 0.08825568854808807, -0.13522014021873474, -0.0028830680530518293, -0.15979380905628204, -0.10701221227645874, 0.06158899888396263, -0.04130494222044945, 0.03728902339935303, -0.0741630420088768, -0.01265031285583973, 0.019140854477882385, 0.037154875695705414, -0.0168146975338459, 0.044685617089271545, -0.021656665951013565, -0.038791485130786896, -0.1281306892633438, -0.048381540924310684, -0.022190911695361137, 0.11095882952213287, -0.128168985247612, -0.02782316692173481, 0.1456945389509201, 0.11218682676553726, 0.03964035212993622, -0.04732032120227814, 0.07779887318611145, -0.025079697370529175, -0.019379010424017906, -0.08159872144460678, -0.0072040562517941, -0.0011035839561372995, 0.02769722230732441, 0.0875985249876976, -0.16858844459056854, -0.13860228657722473, 0.08574476838111877, 0.014142991043627262, -0.08438187837600708, -0.052296724170446396, -0.04877983033657074, -0.022119328379631042, -0.09365399926900864, -0.03171674162149429, 0.03324449434876442, 0.07407518476247787, 0.08577780425548553, -0.06726671755313873, -0.030607402324676514, 0.027349397540092468, -0.01715662144124508, -0.07895682752132416, 0.06616784632205963, 0.057440172880887985, -0.11958809196949005, 0.10224365442991257, -0.024773044511675835, 0.035470932722091675, 0.08265671133995056, 0.041009556502103806, -0.11807776242494583, 0.0204243753105402, 0.07594498991966248, 0.02992926724255085, 0.09586948901414871, -0.02341841161251068, 0.014950575307011604, 0.07975605875253677, -0.022638723254203796, -0.019793199375271797, -0.08541091531515121, 0.07681820541620255, 0.03805987536907196, -0.032434746623039246, 0.03680149465799332, -0.018514277413487434, 0.0791085734963417, 0.1013827845454216, 0.06175776571035385, 0.1163054034113884, -0.046654362231492996, -0.06035027652978897, -0.08760526776313782, 0.12405285984277725, -0.018511617556214333, -0.26657241582870483, -0.07215612381696701, -0.06725979596376419, -0.04870887100696564, -0.01025355514138937, 0.030545495450496674, 0.002716663060709834, -0.08411683142185211, -0.09834274649620056, 0.048640064895153046, 0.06020781025290489, -0.10648990422487259, -0.12245483696460724, 0.031130827963352203, 0.008034000173211098, -0.07491680979728699, 0.0004549167351797223, 0.028120476752519608, -0.053417712450027466, 0.01688065007328987, 0.04859141260385513, 0.12969060242176056, 0.060092516243457794, -0.020104866474866867, 0.004011433105915785, -0.008374394848942757, 0.16676051914691925, -0.15808585286140442, 0.10064811259508133, 0.15273965895175934, 0.004685080610215664, 0.0747104063630104, 0.18888123333454132, -0.014607195742428303, -0.020621037110686302, 0.023570064455270767, 0.07725920528173447, -0.06283033639192581, -0.1975613385438919, -0.05744174122810364, -0.04783971980214119, 0.026953915134072304, 0.14071732759475708, 0.03900601714849472, 0.01928061991930008, 0.09449060261249542, -0.10936357080936432, 0.03073839284479618, 0.02319885790348053, 0.10539671033620834, 0.047911498695611954, 0.04204857721924782, 0.046166542917490005, -0.041879091411828995, -0.0345798097550869, 0.0965266227722168, 0.11844146251678467, 0.11153736710548401, -0.10418343544006348, 0.10125963389873505, 0.025596918538212776, 0.024996507912874222, -0.03964956849813461, -0.003459247760474682, -0.03684844821691513, 0.060301873832941055, -0.007113929837942123, -0.10075902938842773, -0.008429250679910183, 0.08993503451347351, 0.1357562243938446, -0.022451389580965042, 0.011128752492368221, -0.04548465460538864, 0.07935203611850739, 0.23275335133075714, 0.0073592206463217735, -0.20629900693893433, 0.018467947840690613, 0.039821360260248184, 0.026264743879437447, -0.12870918214321136, -0.03928644210100174, 0.0839301273226738, -0.16725635528564453, 0.05851874500513077, -0.04705856740474701, 0.10958141833543777, -0.14972375333309174, -0.03863220661878586, 0.06394483149051666, 0.034644581377506256, -0.020162954926490784, 0.08250229060649872, -0.12619581818580627, 0.07532843202352524, 0.04003838077187538, 0.03331214189529419, -0.08988609910011292, 0.03632983937859535, 0.005836523603647947, -0.023527218028903008, 0.15737678110599518, -0.021078653633594513, 0.002803279086947441, -0.1418137401342392, -0.1146388128399849, -0.013074505142867565, 0.052280813455581665, -0.07094761729240417, 0.0979606956243515, 0.017896419391036034, -0.032799333333969116, -0.08135312795639038, -0.04318249970674515, -0.05830336734652519, -0.19087199866771698, 0.047352805733680725, -0.006382174324244261, 0.016298804432153702, -0.010361217893660069, 0.02883320115506649, 0.030689522624015808, 0.1299002319574356, -0.04561445862054825, -0.08950150012969971, -0.14673949778079987, 0.060172051191329956, 0.09188269823789597, -0.015782857313752174, -0.02160857431590557, -0.08823972195386887, 0.1761212944984436, -0.028183577582240105, -0.06285645812749863, 0.02884136326611042, -0.06402205675840378, -0.11522525548934937, -0.06228917837142944, 0.10114311426877975, 0.02521599270403385, -0.0034690091852098703, 0.0027468535117805004, 0.0613890141248703, 0.005645541939884424, -0.046629395335912704, 0.03611859679222107, 0.09935618191957474, 0.1340143084526062, 0.12853209674358368, 0.0049301935359835625, -0.13302293419837952, -0.12644898891448975, -0.0050293817184865475, 0.03203940764069557, 0.10042614489793777, -0.07346729934215546, 0.1060592383146286, 0.03858059644699097, -0.0848713293671608, -0.22496601939201355, 0.0861857533454895, 0.06687790155410767, -0.010144046507775784, -0.003962639253586531, -0.1506633311510086, 0.12422142177820206, 0.039279643446207047, -0.00478338124230504, 0.07715761661529541, -0.2638895809650421, -0.0713382214307785, -0.01619999296963215, 0.039917923510074615, -0.23384903371334076, -0.17624320089817047, -0.052721355110406876, -0.05531293898820877, -0.1432039588689804, 0.0617484487593174, 0.0022782390005886555, 0.04449223726987839, 0.043406713753938675, 0.032162055373191833, 0.06805342435836792, -0.051308151334524155, 0.10533089935779572, 0.011708511039614677, 0.03615983948111534, -0.06856019049882889, -0.08486023545265198, 0.03323756530880928, -0.09021036326885223, 0.14449940621852875, 0.04420512914657593, 0.016549579799175262, -0.05456119030714035, -0.0196614358574152, -0.03491351008415222, 0.08229120075702667, -0.02802305668592453, -0.045356448739767075, -0.08716583251953125, 0.04454515501856804, 0.13334262371063232, 0.025884373113512993, 0.08297044038772583, -0.05091651901602745, -0.012300271540880203, 0.15761242806911469, 0.10575959086418152, 0.017513008788228035, -0.15007971227169037, -0.04196181148290634, 0.003824022365733981, 0.04330595210194588, -0.1196526512503624, 0.04365795850753784, 0.08552607893943787, 0.013697337359189987, 0.10799454897642136, -0.009120923466980457, -0.100347600877285, 0.011637486517429352, 0.045984260737895966, -0.09939347207546234, -0.11236024647951126, 0.02587280236184597, 0.11960655450820923, -0.09698524326086044, -0.12215694040060043, 0.11219633370637894, -0.0068275644443929195, -0.01784997247159481, 0.0036602055188268423, 0.07730123400688171, 0.057956550270318985, 0.0617491789162159, 0.01660107634961605, 0.03954149782657623, -0.06562933325767517, 0.11103059351444244, 0.15351592004299164, -0.16556929051876068, 0.00044310116209089756, 0.11780215799808502, -0.047305814921855927, -0.021666929125785828, -0.027944311499595642, 0.023653168231248856, -0.008571836166083813, -0.03248756378889084, 0.03601761907339096, -0.041436634957790375, 0.029774591326713562, 0.07741701602935791, -0.003465255256742239, 0.05549100786447525, 0.02397467941045761, -0.013720644637942314, -0.13917072117328644, 0.1332656592130661, 0.01561435405164957, 0.0545104444026947, -0.08759008347988129, 0.012099113315343857, 0.03330080583691597, 0.00728999450802803, 0.010175916366279125, -0.057321690022945404, -0.07413741946220398, 0.0026180355343967676, -0.022823147475719452, 0.10657411068677902, -0.0818716362118721, -0.01248775515705347, -0.017598668113350868, 0.01327616348862648, -0.011379587464034557, 0.025988254696130753, -0.04648906737565994, -0.07786117494106293, -0.04755965247750282, 0.1268957257270813, -0.14732591807842255, -0.025880133733153343, 0.05175880342721939, -0.09494054317474365, 0.0605735220015049, 0.009589361026883125, -0.04454120993614197, -0.09719261527061462, -0.1786702573299408, -0.03373431786894798, 0.02559647150337696, 0.06599285453557968, 0.03881751745939255, -0.08108393102884293, 0.05173449590802193, -0.004370726179331541, -0.09577146172523499, -0.02046032063663006, -0.0030142583418637514, -0.114537313580513, 0.04265347868204117, -0.07991653680801392, -0.028615595772862434, -0.03605988994240761, 0.1353294998407364, 0.0522858165204525, 0.014925557188689709, 0.07113011181354523, -0.04846985265612602, 0.09744354337453842, -0.13190898299217224, -0.036764856427907944, -0.0061509739607572556, -0.03346487507224083, -0.06908891350030899, -0.001536745228804648, 0.07914995402097702, -0.03494885563850403, 0.13334202766418457, 0.12991145253181458, 0.038603365421295166, 0.04516972601413727, -0.013487803749740124, 0.06315410882234573, 0.061112914234399796, -0.01883336342871189, -0.010955450125038624, -0.017124252393841743, 0.07428085803985596, 0.01613527163863182, 0.01171938981860876, 0.10992990434169769, 0.05932684615254402, 0.23570998013019562, 0.1417304277420044, 0.01565447449684143, 0.04729603976011276, -0.08860687166452408, -0.05250944197177887, 0.10666292160749435, -0.061492808163166046, 0.08670580387115479, -0.10413975268602371, 0.055969007313251495, 0.09598346799612045, -0.15620467066764832, 0.06554916501045227, -0.0153990862891078, -0.011920532211661339, -0.02969932183623314, -0.1070963442325592, -0.06066933274269104, -0.01859758235514164, 0.0014557818649336696, -0.10705247521400452, 0.0876479223370552, 0.1320921927690506, -0.000236517284065485, 0.01446075364947319, 0.10612188279628754, -0.05566675215959549, -0.07854646444320679, 0.08635298907756805, 0.021285701543092728, 0.05653442442417145, 0.03667481616139412, 0.04375931993126869, 0.07882517576217651, 0.0004503116651903838, 0.09052884578704834, 0.08792570978403091, 0.09483092278242111, 0.041019029915332794, -0.07038944959640503, -0.07625653594732285, 0.032188545912504196, -0.01713804341852665, -0.01065683551132679, 0.14543697237968445, 0.07165662199258804, 0.018040312454104424, -0.02566998079419136, 0.1772686392068863, -0.019665079191327095, -0.0075764404609799385, -0.13632705807685852, 0.037159908562898636, -0.03948437049984932, -0.012900002300739288, -0.014863109216094017, -0.14903996884822845, 0.009212902747094631, 0.1321992725133896, 0.07467494159936905, -0.05262849107384682, -0.013839312829077244, -0.01126137375831604, 0.008187488652765751, -0.02256842516362667, 0.04291868582367897, 0.011712344363331795, 0.2066347897052765, -0.06174959987401962, 0.013865980319678783, -0.03939865529537201, -0.03445502743124962, -0.05470850318670273, 0.10068874806165695, -0.015667254105210304, 0.003490808652713895, -0.07654330134391785, 0.11085256189107895, -0.004013125319033861, -0.20112064480781555, 0.061885613948106766, -0.09614230692386627, -0.08411812782287598, 0.011625600978732109, -0.018719855695962906, 0.006669289898127317, 0.02634650282561779, 0.0027188006788492203, -0.06540435552597046, 0.07218115031719208, 0.025881176814436913, -0.06413886696100235, -0.007657048758119345, -0.0015830328920856118, -0.09024038165807724, 0.2623967230319977, -0.029337028041481972, 0.03946203738451004, 0.08178579062223434, -0.019966773688793182, -0.13318495452404022, -0.02625943347811699, 0.08477819710969925, -0.05410149320960045, 0.023404791951179504, 0.12825711071491241, -0.010282354429364204, 0.15097305178642273, 0.08702847361564636, -0.09083078056573868, 0.05729904770851135, -0.03072664700448513, 0.009174490347504616, -0.11369583010673523, 0.00037570661515928805, -0.09499284625053406, 0.1121813952922821, 0.1426561325788498, -0.005141852423548698, -0.0102770971134305, -0.03993811458349228, 0.0038151636254042387, 0.000862360349856317, 0.10326795279979706, 0.0021771949250251055, -0.06148975342512131, 0.008457008749246597, -0.14401763677597046, 0.09071213006973267, -0.13471725583076477, -0.048454269766807556, 0.042628269642591476, -0.01844281516969204, -0.011659589596092701, 0.07375522702932358, 0.03080654703080654, 0.0026051115710288286, -0.06453336030244827, -0.11784438788890839, 0.03856675326824188, 0.16476044058799744, -0.013701468706130981, -0.024884846061468124 ]
2fe1c8ae95d2a46d8c9568846fedb04b16ab3790
# Dataset Card for bccd-ouzjz ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/bccd-ouzjz - **Point of Contact:** [email protected] ### Dataset Summary bccd-ouzjz ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/bccd-ouzjz ### Citation Information ``` @misc{ bccd-ouzjz, title = { bccd ouzjz Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/bccd-ouzjz } }, url = { https://universe.roboflow.com/object-detection/bccd-ouzjz }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/bccd-ouzjz
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:13:46+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bccd-ouzjz", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bccd", "1": "Platelets", "2": "RBC", "3": "WBC"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:14:05+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for bccd-ouzjz The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary bccd-ouzjz ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for bccd-ouzjz\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbccd-ouzjz", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for bccd-ouzjz\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbccd-ouzjz", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for bccd-ouzjz\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nbccd-ouzjz### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01474618911743164, 0.16889721155166626, -0.0077512688003480434, 0.01849735900759697, 0.08704128861427307, -0.00048580404836684465, 0.055591482669115067, 0.0775182694196701, 0.0009359618998132646, 0.17511554062366486, -0.007700919173657894, 0.0634232610464096, 0.1315469890832901, 0.08146639168262482, -0.023583922535181046, -0.13889986276626587, 0.05906045809388161, -0.06708180904388428, 0.09351914376020432, 0.06755921244621277, 0.07364175468683243, -0.13528209924697876, 0.08293875306844711, -0.02059529535472393, -0.021394239738583565, 0.023893004283308983, -0.06622466444969177, -0.02910962887108326, -0.0022753451485186815, 0.035533733665943146, 0.02611374482512474, 0.034836310893297195, 0.060465939342975616, -0.1842765063047409, 0.019124984741210938, 0.09140264987945557, 0.030857717618346214, 0.01856052130460739, 0.16254419088363647, -0.08044225722551346, 0.021064558997750282, -0.1370074450969696, 0.019125504419207573, 0.019386051222682, -0.10640564560890198, -0.07225845754146576, -0.13180705904960632, 0.07015758752822876, 0.08764075487852097, 0.04858946055173874, -0.02148055098950863, 0.07403485476970673, -0.03333507478237152, 0.04814230278134346, 0.14726713299751282, -0.06150660663843155, -0.03923029452562332, 0.0916852205991745, 0.062450673431158066, 0.07689253985881805, -0.11768659949302673, -0.02001652866601944, 0.011219801381230354, -0.023128831759095192, -0.012760341167449951, -0.04715648666024208, -0.02817590907216072, -0.007808236870914698, -0.1043015792965889, -0.13485181331634521, 0.13952608406543732, 0.06805915385484695, -0.064292773604393, -0.13071444630622864, -0.006213457323610783, 0.0665958896279335, -0.03670074790716171, 0.0016305120661854744, 0.05109789967536926, -0.007659686263650656, 0.06398895382881165, -0.05376464128494263, -0.10716726630926132, 0.05346820130944252, 0.01919068954885006, 0.03706849366426468, -0.019010944291949272, 0.036128029227256775, 0.023584814742207527, 0.07826414704322815, 0.012640097178518772, -0.11066088080406189, -0.021977243945002556, -0.0446828231215477, -0.04598705470561981, -0.04589776322245598, 0.05690930783748627, -0.11931359767913818, 0.07478614896535873, 0.06439484655857086, -0.051329128444194794, 0.017986077815294266, -0.11732781678438187, 0.011182078160345554, 0.1330133080482483, 0.18193688988685608, -0.09547939151525497, -0.09402140974998474, -0.00008024538692552596, 0.051872167736291885, 0.008027496747672558, -0.018470894545316696, -0.030726350843906403, -0.0171695277094841, 0.034067701548337936, 0.033342793583869934, 0.11326569318771362, 0.0363428108394146, -0.0800282210111618, -0.0669199675321579, 0.15076862275600433, -0.09413721412420273, 0.05170923471450806, 0.06142272427678108, -0.07789063453674316, 0.08576212078332901, 0.011712949723005295, 0.02629534713923931, -0.12067220360040665, 0.07024222612380981, -0.02573353610932827, 0.011500322259962559, -0.08885722607374191, -0.09767183661460876, 0.05313948541879654, -0.08459320664405823, -0.06919804960489273, -0.08004928380250931, -0.047356978058815, -0.09632252156734467, 0.03616802394390106, -0.039611805230379105, 0.014844661578536034, 0.010608427226543427, -0.04191570356488228, -0.015830514952540398, 0.006879802793264389, 0.04899054020643234, -0.055293094366788864, 0.036873385310173035, -0.10305827111005783, 0.03093378059566021, 0.1043921709060669, 0.04150986298918724, -0.09222088754177094, 0.06574510782957077, -0.17217250168323517, 0.1259223371744156, -0.031445931643247604, 0.031073322519659996, -0.1278541088104248, 0.008711105212569237, -0.010910402983427048, -0.03750627487897873, 0.0029295776039361954, 0.14103057980537415, -0.08463708311319351, 0.023847287520766258, 0.04273106902837753, -0.030148286372423172, -0.05185312777757645, 0.0408310629427433, -0.045391421765089035, -0.005826836451888084, 0.08152548968791962, 0.12116784602403641, -0.035320840775966644, -0.1304015815258026, -0.12200543284416199, -0.0493132546544075, -0.04338749498128891, 0.1543615460395813, 0.07308965921401978, -0.033466886729002, 0.10036434233188629, -0.009818139486014843, -0.0010517016053199768, -0.05040166899561882, 0.005176711827516556, -0.03677662834525108, 0.010805275291204453, -0.010421889834105968, -0.07849963009357452, 0.009682255797088146, -0.1003146693110466, 0.013202916830778122, -0.07402640581130981, -0.03868461027741432, 0.0240623839199543, -0.015886321663856506, 0.005917706526815891, -0.03399030119180679, 0.08150552958250046, -0.12407246232032776, -0.00022681639529764652, -0.144064798951149, -0.10070490092039108, 0.059755660593509674, -0.05396672710776329, 0.040708526968955994, -0.0714758113026619, -0.015442675910890102, 0.015453287400305271, 0.045684944838285446, -0.01619311049580574, 0.040032047778367996, -0.02856605313718319, -0.042290862649679184, -0.11345407366752625, -0.0593746155500412, -0.01632123626768589, 0.08952099084854126, -0.12306684255599976, -0.030086921527981758, 0.10686280578374863, 0.11958715319633484, 0.020389020442962646, -0.04154416546225548, 0.07178183645009995, -0.04068668559193611, -0.018145110458135605, -0.07115428894758224, -0.019099855795502663, -0.004213838372379541, 0.0514875166118145, 0.06561736017465591, -0.14339061081409454, -0.1470903754234314, 0.08256278187036514, 0.03349701315164566, -0.07163411378860474, -0.05686008930206299, -0.04998994991183281, -0.018755290657281876, -0.08703302592039108, -0.03101113811135292, 0.01824110373854637, 0.06247689947485924, 0.07214883714914322, -0.08229357749223709, -0.043076079338788986, 0.021610692143440247, -0.022883612662553787, -0.08198337256908417, 0.0713152065873146, 0.06286870688199997, -0.13915078341960907, 0.0911184549331665, -0.02977336198091507, 0.0564408004283905, 0.09296621382236481, 0.040356721729040146, -0.11889312416315079, 0.01045448798686266, 0.07572542876005173, 0.011988435871899128, 0.09080706536769867, -0.012978630140423775, 0.01851784810423851, 0.0806957557797432, -0.011557220481336117, -0.014724038541316986, -0.07901925593614578, 0.07589484006166458, 0.026194902136921883, -0.037429362535476685, 0.01055594626814127, -0.02565121278166771, 0.09324327856302261, 0.09686674922704697, 0.0768604651093483, 0.10943823307752609, -0.04740654677152634, -0.06633014976978302, -0.08945521712303162, 0.11767640709877014, -0.024223025888204575, -0.2406431883573532, -0.073212169110775, -0.0683833435177803, -0.06758727133274078, -0.005560839548707008, 0.023546019569039345, 0.006167188286781311, -0.08585970103740692, -0.08982866257429123, 0.07525796443223953, 0.05664190649986267, -0.10735724121332169, -0.10838872194290161, 0.04408804327249527, 0.0006080141174606979, -0.08032102882862091, 0.00012880159192718565, 0.020768335089087486, -0.04275381565093994, 0.002094821073114872, 0.03079037554562092, 0.1327531635761261, 0.052471231669187546, -0.02132187969982624, -0.0047017731703817844, 0.011756359599530697, 0.17714141309261322, -0.145191952586174, 0.10438725352287292, 0.16204850375652313, 0.020202739164233208, 0.07642174512147903, 0.196369469165802, -0.02175535075366497, -0.011271706782281399, 0.028349751606583595, 0.08023685216903687, -0.04303998127579689, -0.19069945812225342, -0.059622399508953094, -0.043740298599004745, 0.002356418874114752, 0.13999147713184357, 0.0346907302737236, 0.011644125916063786, 0.09049436450004578, -0.11566699296236038, 0.022985192015767097, 0.018641021102666855, 0.09145409613847733, 0.02384623885154724, 0.0454486645758152, 0.03866089880466461, -0.039951082319021225, -0.04280775412917137, 0.08954453468322754, 0.12717798352241516, 0.11229179799556732, -0.09660439938306808, 0.0992484912276268, 0.034614693373441696, 0.05344148725271225, -0.0415927916765213, -0.004740181379020214, -0.018577052280306816, 0.04730013385415077, -0.004933684132993221, -0.08989871293306351, 0.008737503550946712, 0.08549052476882935, 0.1506730318069458, -0.0024536431301385164, -0.01285588275641203, -0.05183480679988861, 0.06866130977869034, 0.26183563470840454, 0.011732690967619419, -0.2000860571861267, 0.0209355428814888, 0.03578749671578407, 0.006895298138260841, -0.13132989406585693, -0.04288417473435402, 0.07638915628194809, -0.16433747112751007, 0.050769273191690445, -0.020479096099734306, 0.11532817035913467, -0.1297386735677719, -0.038405902683734894, 0.04553994536399841, 0.04398101940751076, -0.026139307767152786, 0.0748152807354927, -0.09486354142427444, 0.06094982847571373, 0.03439662232995033, 0.03808094561100006, -0.08670330792665482, 0.033456020057201385, 0.008323676884174347, -0.02920108288526535, 0.13724899291992188, -0.01991463266313076, 0.04118635132908821, -0.1264737844467163, -0.1145043894648552, -0.01437043771147728, 0.05725415423512459, -0.07376008480787277, 0.11628704518079758, 0.014907361008226871, -0.028728414326906204, -0.07763995230197906, -0.027237117290496826, -0.0745101347565651, -0.16397452354431152, 0.036330707371234894, -0.0292255487293005, 0.012609793804585934, -0.013434533029794693, 0.026676276698708534, -0.005208003334701061, 0.12431339919567108, -0.03186393901705742, -0.09075240045785904, -0.12823069095611572, 0.041477352380752563, 0.10222417116165161, -0.01505672000348568, -0.014303379692137241, -0.09106577187776566, 0.17796462774276733, -0.03149127960205078, -0.07651013135910034, 0.018058691173791885, -0.06761901825666428, -0.11356884241104126, -0.057798486202955246, 0.1023256927728653, 0.04679643735289574, -0.006528584286570549, 0.0048432317562401295, 0.04209078103303909, -0.014948932453989983, -0.03854497894644737, 0.02097291126847267, 0.08947385102510452, 0.147275909781456, 0.13859963417053223, 0.006863712333142757, -0.16582922637462616, -0.1211313009262085, -0.0013084218371659517, 0.015333740040659904, 0.10303228348493576, -0.06253548711538315, 0.09684009104967117, 0.04982795938849449, -0.07156237214803696, -0.21736401319503784, 0.07902144640684128, 0.07141802459955215, 0.0031545476522296667, -0.015600177459418774, -0.12584902346134186, 0.13643668591976166, 0.038238029927015305, -0.001827828586101532, 0.08797971159219742, -0.27937474846839905, -0.06639232486486435, -0.01832084357738495, 0.020192379131913185, -0.21071797609329224, -0.16531643271446228, -0.045914970338344574, -0.06083249673247337, -0.17323409020900726, 0.061529017984867096, 0.004941841587424278, 0.049024637788534164, 0.03564880043268204, 0.06626452505588531, 0.06787289679050446, -0.043107859790325165, 0.10734505206346512, 0.018421271815896034, 0.03677127882838249, -0.08384662121534348, -0.0987119972705841, 0.014445201493799686, -0.09819653630256653, 0.1497824490070343, 0.05711674690246582, 0.027977637946605682, -0.05242335796356201, -0.021493980661034584, -0.05042586475610733, 0.08419812470674515, -0.02789415791630745, -0.037282105535268784, -0.09880342334508896, 0.040793269872665405, 0.12726591527462006, 0.037961751222610474, 0.07367445528507233, -0.03965708240866661, -0.03672834858298302, 0.1321607083082199, 0.1015128493309021, 0.0006235018954612315, -0.12460412085056305, -0.040223754942417145, 0.0024895742535591125, 0.04140857979655266, -0.09776721894741058, 0.03820440545678139, 0.09388676285743713, 0.024809138849377632, 0.0976315587759018, -0.013134936802089214, -0.09916096925735474, 0.0003410220961086452, 0.03473934903740883, -0.08600270748138428, -0.10371970385313034, 0.03055182471871376, 0.10130226612091064, -0.12377560883760452, -0.10585573315620422, 0.10794612765312195, 0.01087139267474413, -0.02716594934463501, -0.0017859998624771833, 0.07977060973644257, 0.04057932272553444, 0.054496828466653824, 0.03150244802236557, 0.03461111709475517, -0.07021505385637283, 0.11506092548370361, 0.15110844373703003, -0.10254408419132233, -0.0044962819665670395, 0.09996038675308228, -0.0426173098385334, -0.018945423886179924, -0.01839435286819935, 0.031471483409404755, -0.01999404840171337, -0.024953577667474747, 0.03714226186275482, -0.059198927134275436, 0.042152903974056244, 0.0644637793302536, -0.002071653725579381, 0.054935816675424576, 0.03992798179388046, -0.013978825882077217, -0.1392105221748352, 0.12033269554376602, 0.038223862648010254, 0.051170725375413895, -0.08859559148550034, -0.005306206177920103, 0.014969409443438053, 0.021628083661198616, 0.012055570259690285, -0.04671298339962959, -0.0832434594631195, 0.008116111159324646, -0.07284262776374817, 0.10379672050476074, -0.1013033539056778, 0.0015736476052552462, -0.025179186835885048, 0.0028893868438899517, -0.016690891236066818, 0.028829311951994896, -0.04693540558218956, -0.08521101623773575, -0.044932156801223755, 0.1348349153995514, -0.13152477145195007, -0.023117555305361748, 0.05290268361568451, -0.08509625494480133, 0.054839134216308594, 0.016260555014014244, -0.031764257699251175, -0.09882652759552002, -0.17746315896511078, -0.05947541072964668, 0.024157444015145302, 0.07286898791790009, 0.04319768771529198, -0.08130218833684921, 0.05075892060995102, 0.002910077339038253, -0.09952180832624435, -0.025873903185129166, -0.016358481720089912, -0.11917135864496231, 0.03288404271006584, -0.09293034672737122, -0.02828073687851429, -0.042090971022844315, 0.13492479920387268, 0.04974973574280739, 0.007784884423017502, 0.07405009120702744, -0.03208257257938385, 0.08903653174638748, -0.13418987393379211, -0.03978509455919266, -0.01634908840060234, -0.023672837764024734, -0.05678420886397362, 0.00047408309183083475, 0.07056193053722382, -0.022894203662872314, 0.11910269409418106, 0.12270678579807281, 0.03915826231241226, 0.03050500899553299, 0.0033290754072368145, 0.06308507919311523, 0.062263123691082, -0.013935480266809464, -0.016247360035777092, -0.016429314389824867, 0.07027028501033783, 0.01836504600942135, 0.01596563123166561, 0.07574150711297989, 0.05446518585085869, 0.23967507481575012, 0.14241763949394226, 0.024637427181005478, 0.058249324560165405, -0.0965622290968895, -0.054155852645635605, 0.11085622757673264, -0.0546598918735981, 0.06931856274604797, -0.10390231013298035, 0.026373369619250298, 0.09384916722774506, -0.1424047201871872, 0.06360509991645813, -0.013338102959096432, 0.0008475076756440103, -0.013159958645701408, -0.10383618623018265, -0.061275236308574677, -0.0056528556160628796, 0.0036133623216301203, -0.10914847999811172, 0.08915919810533524, 0.12006188929080963, -0.003953983075916767, 0.009732278063893318, 0.08629016578197479, -0.05014212056994438, -0.09711256623268127, 0.07875901460647583, 0.00958537869155407, 0.05678274855017662, 0.04293864220380783, 0.032899484038352966, 0.10181865096092224, 0.014414382167160511, 0.08890820294618607, 0.08916337043046951, 0.09183350205421448, 0.025948207825422287, -0.07058516144752502, -0.07425248622894287, 0.02476940117776394, -0.013164225965738297, -0.0009078998118638992, 0.1512417197227478, 0.07272512465715408, 0.017337867990136147, -0.021495819091796875, 0.1562550812959671, -0.006860322784632444, -0.03721467778086662, -0.13658276200294495, 0.005006246734410524, -0.04040034860372543, -0.01532178744673729, -0.01324030477553606, -0.1527792066335678, 0.006130602210760117, 0.1354263722896576, 0.07196833193302155, -0.05964333564043045, -0.019468827173113823, -0.005257130600512028, 0.0037456387653946877, -0.02621517702937126, 0.035213250666856766, 0.020799212157726288, 0.21345451474189758, -0.05757090821862221, 0.016945045441389084, -0.03709325194358826, -0.020472519099712372, -0.05205467715859413, 0.08362597972154617, -0.014820017851889133, 0.008635030128061771, -0.08329585939645767, 0.10826541483402252, -0.008397703990340233, -0.1808568388223648, 0.051888227462768555, -0.07475161552429199, -0.08969354629516602, 0.008272171020507812, -0.035417504608631134, 0.009982248768210411, 0.03686470165848732, -0.0004469814884942025, -0.05471298471093178, 0.08007875084877014, 0.010947023518383503, -0.05455097556114197, -0.00994044728577137, 0.00676583219319582, -0.07293689250946045, 0.27609267830848694, -0.03014175221323967, 0.036780886352062225, 0.07709531486034393, -0.01766308955848217, -0.1387498825788498, -0.03554205223917961, 0.07900043576955795, -0.04916199669241905, 0.03259238228201866, 0.11320824921131134, -0.00628521665930748, 0.13301144540309906, 0.08834678679704666, -0.07772845774888992, 0.05029255896806717, -0.012103956192731857, 0.03679130971431732, -0.12975049018859863, 0.020756229758262634, -0.0952027440071106, 0.11267507076263428, 0.131261944770813, -0.005564600229263306, -0.005058805458247662, -0.03899197652935982, 0.02002687193453312, 0.01052878238260746, 0.10621515661478043, 0.005712755490094423, -0.06296686083078384, 0.01592775620520115, -0.14998075366020203, 0.08126041293144226, -0.12234101444482803, -0.05096271634101868, 0.035785846412181854, -0.02025364525616169, -0.005030201282352209, 0.07466734945774078, 0.02886129729449749, 0.01179746724665165, -0.05834823101758957, -0.11455069482326508, 0.024999473243951797, 0.15820233523845673, -0.014545883983373642, -0.032466206699609756 ]
678ef951ad5a7d96fc7a057344e879a97a9f90cd
# Dataset Card for poker-cards-cxcvz ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/poker-cards-cxcvz - **Point of Contact:** [email protected] ### Dataset Summary poker-cards-cxcvz ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/poker-cards-cxcvz ### Citation Information ``` @misc{ poker-cards-cxcvz, title = { poker cards cxcvz Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/poker-cards-cxcvz } }, url = { https://universe.roboflow.com/object-detection/poker-cards-cxcvz }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/poker-cards-cxcvz
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:14:05+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "poker-cards-cxcvz", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "poker-cards", "1": 59, "2": "10 Diamonds", "3": "10 Hearts", "4": "10 Spades", "5": "10 Trefoils", "6": "2 Diamonds", "7": "2 Hearts", "8": "2 Spades", "9": "2 Trefoils", "10": "3 Diamonds", "11": "3 Hearts", "12": "3 Spades", "13": "3 Trefoils", "14": "4 Diamonds", "15": "4 Hearts", "16": "4 Spades", "17": "4 Trefoils", "18": "5 Diamonds", "19": "5 Hearts", "20": "5 Spades", "21": "5 Trefoils", "22": "6 Diamonds", "23": "6 Hearts", "24": "6 Spades", "25": "6 Trefoils", "26": "7 Diamonds", "27": "7 Hearts", "28": "7 Spades", "29": "7 Trefoils", "30": "8 Diamonds", "31": "8 Hearts", "32": "8 Spades", "33": "8 Trefoils", "34": "9 Diamonds", "35": "9 Hearts", "36": "9 Spades", "37": "9 Trefoils", "38": "A Diamonds", "39": "A Hearts", "40": "A Spades", "41": "A Trefoils", "42": "J Diamonds", "43": "J Hearts", "44": "J Spades", "45": "J Trefoils", "46": "K Diamonds", "47": "K Hearts", "48": "K Spades", "49": "K Trefoils", "50": "Q Diamonds", "51": "Q Hearts", "52": "Q Spades", "53": "Q Trefoils"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:14:35+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for poker-cards-cxcvz The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary poker-cards-cxcvz ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for poker-cards-cxcvz\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npoker-cards-cxcvz", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for poker-cards-cxcvz\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npoker-cards-cxcvz", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for poker-cards-cxcvz\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\npoker-cards-cxcvz### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01530761830508709, 0.16681145131587982, -0.008093144744634628, 0.02198776602745056, 0.0848185122013092, 0.010171578265726566, 0.02989143878221512, 0.09715709835290909, -0.006091310176998377, 0.15754568576812744, 0.002193627879023552, 0.056960660964250565, 0.15519817173480988, 0.09478823095560074, 0.009624327532947063, -0.10466593503952026, 0.05780261754989624, -0.03929125517606735, 0.09626264870166779, 0.0689469501376152, 0.06381978839635849, -0.14604462683200836, 0.07973287254571915, 0.0001883444783743471, -0.017497673630714417, 0.015624038875102997, -0.08122553676366806, -0.014127397909760475, 0.012420654296875, 0.01780615746974945, 0.025601202622056007, 0.028857188299298286, 0.0425344780087471, -0.20923973619937897, 0.024285083636641502, 0.08490850031375885, 0.01641649566590786, 0.015367435291409492, 0.16978488862514496, -0.07934839278459549, 0.001966906012967229, -0.14902988076210022, 0.03811245411634445, 0.026706326752901077, -0.09609377384185791, -0.13737130165100098, -0.15176112949848175, 0.05343017354607582, 0.10072645545005798, 0.03471924364566803, -0.018105609342455864, 0.07488653808832169, -0.03215932101011276, 0.015574864111840725, 0.1420961171388626, -0.1289464831352234, -0.031485892832279205, 0.11090407520532608, 0.02019645646214485, 0.06774243712425232, -0.10772497951984406, -0.033433545380830765, 0.0031577153131365776, -0.007646679412573576, 0.007724814582616091, -0.03504275530576706, 0.0021170524414628744, 0.018740957602858543, -0.09103033691644669, -0.13128681480884552, 0.09407424926757812, 0.049960583448410034, -0.04285942763090134, -0.15902623534202576, 0.00784013606607914, 0.024097150191664696, -0.034785568714141846, -0.005713282618671656, 0.06564683467149734, -0.008441228419542313, 0.08011916279792786, -0.04626300558447838, -0.11427070945501328, 0.046363599598407745, 0.024926384910941124, -0.047649383544921875, -0.02521013468503952, 0.03977205604314804, 0.011022658087313175, 0.08405975997447968, 0.025978464633226395, -0.10389141738414764, -0.05381738767027855, -0.03782830759882927, -0.0754481852054596, -0.04928317666053772, 0.068385548889637, -0.0928429663181305, 0.07274973392486572, 0.07632516324520111, -0.03291372209787369, 0.032211050391197205, -0.11391884833574295, 0.0036049054469913244, 0.1165570467710495, 0.16958358883857727, -0.09125559777021408, -0.07720930129289627, -0.030011946335434914, 0.053444307297468185, 0.016879798844456673, -0.016218366101384163, -0.0318419374525547, -0.0071808272041380405, 0.03939583897590637, 0.04632338508963585, 0.08999330550432205, 0.03571149334311485, -0.06335945427417755, -0.04763578996062279, 0.19285260140895844, -0.08025021851062775, 0.04743781313300133, 0.07691293954849243, -0.06439783424139023, 0.1024525910615921, -0.005854459013789892, 0.020067403092980385, -0.1008940190076828, 0.06792698800563812, -0.02342700958251953, 0.01720844954252243, -0.09332480281591415, -0.07607199251651764, 0.07020720839500427, -0.07183267921209335, -0.0890732929110527, -0.08746861666440964, -0.03334527462720871, -0.07163766771554947, 0.03434976935386658, -0.048797640949487686, 0.03936413675546646, 0.005243042018264532, -0.030909065157175064, -0.008863372728228569, 0.013842470943927765, 0.05924733728170395, -0.05540498346090317, 0.022980747744441032, -0.11510860174894333, 0.04656281694769859, 0.11799609661102295, 0.034641608595848083, -0.09019576013088226, 0.0639534518122673, -0.17927779257297516, 0.10014355927705765, -0.024875903502106667, 0.00893543940037489, -0.1340092569589615, 0.0013889259425923228, -0.007341970223933458, -0.048614852130413055, -0.00902543868869543, 0.12867489457130432, -0.10140170156955719, 0.028708606958389282, 0.06917832791805267, -0.051188819110393524, -0.07517736405134201, 0.033880170434713364, -0.04928145557641983, -0.011817539110779762, 0.08302868157625198, 0.10552460700273514, -0.0009031696245074272, -0.11470966041088104, -0.12203492969274521, -0.021920938044786453, -0.05987285450100899, 0.1269088089466095, 0.08980076014995575, -0.03419022262096405, 0.10626725107431412, -0.005490217357873917, -0.007104599382728338, -0.04687462002038956, 0.02000068500638008, -0.04661092534661293, 0.01860763132572174, -0.031143102794885635, -0.08046073466539383, 0.004374138079583645, -0.09282063692808151, 0.016692887991666794, -0.07427728921175003, -0.07695509493350983, 0.028219372034072876, -0.011660769581794739, 0.005498784128576517, -0.0644703283905983, 0.08547689020633698, -0.10783305019140244, 0.008386330679059029, -0.14374642074108124, -0.1009027287364006, 0.06366204470396042, -0.06817149370908737, 0.02793206460773945, -0.04795781522989273, -0.001920997747220099, 0.011579243466258049, 0.05152158439159393, -0.015627143904566765, 0.07424049824476242, -0.028761202469468117, -0.011542423628270626, -0.1159806102514267, -0.06616123020648956, -0.033101145178079605, 0.11221328377723694, -0.12095273286104202, -0.03728295862674713, 0.14216949045658112, 0.08828672766685486, 0.00646211626008153, -0.03128432109951973, 0.05043443664908409, -0.058233775198459625, -0.014937333762645721, -0.07023609429597855, 0.003257479751482606, 0.007175462320446968, 0.04508184269070625, 0.05892760306596756, -0.13142135739326477, -0.11468884348869324, 0.10175631195306778, 0.05418369546532631, -0.07163756340742111, -0.06424801051616669, -0.049770645797252655, -0.025917917490005493, -0.077994704246521, -0.018192337825894356, 0.027901412919163704, 0.08500349521636963, 0.09191669523715973, -0.08434947580099106, -0.05831199884414673, 0.030880240723490715, 0.003463484114035964, -0.07576911151409149, 0.05750265344977379, 0.06541379541158676, -0.1414477825164795, 0.07915979623794556, -0.045341599732637405, 0.08595488220453262, 0.08457880467176437, 0.029129857197403908, -0.09205097705125809, 0.004223323427140713, 0.0902017205953598, 0.01356295496225357, 0.11259513348340988, 0.00042161784949712455, 0.008488669991493225, 0.08626499772071838, -0.018315643072128296, -0.012217503972351551, -0.09500928968191147, 0.06612122058868408, 0.027485284954309464, -0.040288910269737244, 0.008863065391778946, -0.017294714227318764, 0.09295778721570969, 0.10464954376220703, 0.07657182961702347, 0.1138637587428093, -0.047936178743839264, -0.07030021399259567, -0.10670777410268784, 0.11553619801998138, -0.057174503803253174, -0.26842001080513, -0.06828989088535309, -0.05072512477636337, -0.01851915940642357, -0.0083555206656456, 0.026509350165724754, -0.02913893572986126, -0.07833826541900635, -0.08758798241615295, 0.04525231942534447, 0.028414104133844376, -0.11677286028862, -0.0934930294752121, 0.030448324978351593, -0.02729659341275692, -0.09386444091796875, 0.0009192686411552131, 0.031135722994804382, -0.059133611619472504, 0.0008756997413001955, 0.03788455203175545, 0.1287447065114975, 0.0901719406247139, -0.023436492308974266, -0.0020198035053908825, -0.02216573990881443, 0.13399773836135864, -0.11768490821123123, 0.1105017140507698, 0.15132617950439453, 0.00827784650027752, 0.08074955642223358, 0.16891197860240936, -0.011971854604780674, 0.013876727782189846, 0.004630036186426878, 0.058207448571920395, -0.05616886168718338, -0.19341571629047394, -0.04113997146487236, -0.030157191678881645, 0.03198676183819771, 0.15199267864227295, 0.03402261435985565, 0.01085878349840641, 0.08918578922748566, -0.09712864458560944, -0.016852490603923798, 0.045126333832740784, 0.09509038180112839, 0.0279451385140419, 0.04551644250750542, 0.04065018892288208, -0.062116943299770355, -0.03624535724520683, 0.08543553948402405, 0.12357542663812637, 0.12294453382492065, -0.08640199154615402, 0.137258380651474, 0.043928224593400955, 0.03480622544884682, -0.04775872826576233, 0.011527782306075096, -0.04231230169534683, 0.05876642465591431, -0.01689453423023224, -0.08880313485860825, 0.019979864358901978, 0.07643686980009079, 0.14980757236480713, 0.013852516189217567, -0.01204683817923069, -0.026813898235559464, 0.08255312591791153, 0.22738400101661682, -0.0007177979568950832, -0.1716916710138321, 0.039204325526952744, 0.028492404147982597, 0.020122695714235306, -0.13449378311634064, -0.02325538732111454, 0.041340842843055725, -0.1669178009033203, 0.06486485153436661, -0.03635862469673157, 0.0966278463602066, -0.1194663718342781, -0.03678128868341446, 0.08758288621902466, 0.021199433133006096, -0.008121538907289505, 0.08851402252912521, -0.12429793924093246, 0.05081990361213684, 0.03467721492052078, 0.03435556963086128, -0.10478633642196655, 0.036117784678936005, -0.006323125679045916, -0.05037391930818558, 0.13282422721385956, -0.029289716854691505, 0.03346133232116699, -0.12684926390647888, -0.08302173018455505, -0.01068252045661211, 0.04571377485990524, -0.06075272709131241, 0.12261348217725754, 0.00465784827247262, -0.03227755427360535, -0.07368963211774826, -0.06476880609989166, -0.031572118401527405, -0.19089241325855255, 0.04406166076660156, -0.06282053142786026, -0.005062185227870941, -0.023404864594340324, 0.03192605450749397, -0.034093357622623444, 0.10606006532907486, -0.040087174624204636, -0.0937814712524414, -0.11805849522352219, 0.028958583250641823, 0.07098948955535889, -0.01174243725836277, 0.008620334789156914, -0.10612382739782333, 0.19582635164260864, -0.04641668125987053, -0.0853695496916771, -0.00843807216733694, -0.06061657890677452, -0.11186888813972473, -0.03836093097925186, 0.11395766586065292, 0.04733516648411751, -0.00617615133523941, 0.02405020408332348, 0.034250032156705856, -0.003185831941664219, -0.048640597611665726, 0.033498745411634445, 0.06509764492511749, 0.13851897418498993, 0.08726800233125687, 0.04844425618648529, -0.14925028383731842, -0.11783729493618011, -0.003338463371619582, 0.03333818539977074, 0.12754644453525543, -0.09601407498121262, 0.12731660902500153, 0.03281930834054947, -0.07547643035650253, -0.19875316321849823, 0.062022194266319275, 0.03536444157361984, -0.03835528716444969, -0.024006934836506844, -0.14132896065711975, 0.15543507039546967, 0.00926611665636301, -0.009572606533765793, 0.09569307416677475, -0.2562423050403595, -0.05176829174160957, -0.009072579443454742, 0.02156265825033188, -0.18151120841503143, -0.17056402564048767, -0.04077519476413727, -0.03961224481463432, -0.20430999994277954, 0.08315732330083847, -0.01765906810760498, 0.028991635888814926, 0.029719799757003784, 0.06197867542505264, 0.05514936149120331, -0.052233561873435974, 0.11907157301902771, 0.03299754485487938, 0.05736280232667923, -0.05179422348737717, -0.08357781171798706, 0.018940459936857224, -0.09758666157722473, 0.14866076409816742, 0.06301523000001907, 0.020805729553103447, -0.06601974368095398, -0.01698419824242592, -0.04333166033029556, 0.049271952360868454, -0.03153492510318756, -0.026932936161756516, -0.11937563866376877, 0.050844706594944, 0.14460507035255432, 0.01918177120387554, 0.06520085781812668, -0.019973985850811005, -0.026784460991621017, 0.10121866315603256, 0.11838212609291077, -0.022819627076387405, -0.14614346623420715, -0.047837696969509125, -0.006114782765507698, 0.02940809540450573, -0.0772765576839447, 0.038181718438863754, 0.09476296603679657, 0.035835422575473785, 0.07211568206548691, 0.005034526344388723, -0.11540764570236206, -0.009611972607672215, 0.043259456753730774, -0.08012787252664566, -0.12143943458795547, 0.05253637209534645, 0.12290327996015549, -0.10202138870954514, -0.124737948179245, 0.07795960456132889, 0.028717054054141045, -0.03706444427371025, 0.015793142840266228, 0.07181678712368011, 0.05919555202126503, 0.03144305571913719, 0.0252190213650465, 0.04795235022902489, -0.07949817925691605, 0.12059763818979263, 0.13222071528434753, -0.10572300851345062, -0.007541411090642214, 0.0812201052904129, -0.05886771157383919, -0.025505395606160164, -0.01528909057378769, 0.054836515337228775, 0.0011932706693187356, -0.042605798691511154, 0.04682021215558052, -0.0810464471578598, 0.06219678372144699, 0.08542608469724655, 0.00960585568100214, 0.05837368592619896, 0.03924109786748886, 0.0021396430674940348, -0.13529139757156372, 0.12693732976913452, 0.016111066564917564, 0.03579942509531975, -0.07185439765453339, 0.008449561893939972, 0.041356030851602554, 0.02607640251517296, 0.0192062109708786, -0.044755637645721436, -0.0749194324016571, 0.01053653098642826, -0.06273443251848221, 0.1263905167579651, -0.10765741765499115, 0.004091149661689997, -0.01041930727660656, 0.038395460695028305, -0.010706748813390732, 0.014621582813560963, -0.04109210520982742, -0.06863895803689957, -0.03803342208266258, 0.12727586925029755, -0.1481402963399887, -0.03353730961680412, 0.03430819511413574, -0.09301582723855972, 0.042772769927978516, -0.009061952121555805, -0.02719903364777565, -0.07800932973623276, -0.17831984162330627, -0.06225540488958359, 0.018467111513018608, 0.0717010647058487, 0.03055524453520775, -0.09455671906471252, 0.051786914467811584, -0.005736327730119228, -0.11810363829135895, -0.015599855221807957, -0.023833153769373894, -0.0954180359840393, 0.03302217647433281, -0.11658405512571335, -0.005641413386911154, -0.035894595086574554, 0.13598112761974335, 0.06450726091861725, 0.007719400338828564, 0.07628090679645538, -0.027799328789114952, 0.09402495622634888, -0.15594276785850525, -0.04962602257728577, -0.025400055572390556, -0.020287908613681793, -0.07036863267421722, -0.007927117869257927, 0.061834365129470825, -0.028952162712812424, 0.1398017257452011, 0.10805123299360275, 0.052846815437078476, 0.029269393533468246, -0.015429374761879444, 0.03579048067331314, 0.06801718473434448, -0.007107325829565525, -0.021786419674754143, -0.015197371132671833, 0.08401673287153244, 0.020360739901661873, 0.006092679686844349, 0.0655888244509697, 0.08496717363595963, 0.21766434609889984, 0.15121988952159882, 0.022637326270341873, 0.03630682826042175, -0.12432742863893509, -0.048694998025894165, 0.11371559649705887, -0.05675733834505081, 0.04567275568842888, -0.09214446693658829, 0.06793440878391266, 0.10428384691476822, -0.1441667526960373, 0.06361202150583267, -0.03218773379921913, 0.013147948309779167, -0.021722985431551933, -0.07931527495384216, -0.048215243965387344, -0.012590840458869934, 0.005441943183541298, -0.10363160818815231, 0.07903306931257248, 0.12496085464954376, 0.010212765075266361, 0.006675327196717262, 0.07121677696704865, -0.0380244106054306, -0.07052455842494965, 0.08081897348165512, 0.014057036489248276, 0.06224661320447922, 0.0572047159075737, 0.06073278561234474, 0.10451238602399826, -0.006720258854329586, 0.08768504112958908, 0.07878575474023819, 0.09421262890100479, 0.03143860772252083, -0.057194240391254425, -0.0696515291929245, 0.03537354990839958, -0.016730722039937973, -0.0031134996097534895, 0.1849299520254135, 0.06981338560581207, 0.025174986571073532, -0.027695737779140472, 0.1215628981590271, 0.019667871296405792, -0.034206610172986984, -0.13069595396518707, 0.025141257792711258, -0.049676887691020966, -0.013811144977807999, -0.004888737108558416, -0.14651095867156982, -0.007435956504195929, 0.15634287893772125, 0.0707617923617363, -0.040956560522317886, -0.020471135154366493, -0.006030132528394461, 0.008656393736600876, -0.013918000273406506, 0.051978956907987595, 0.027408258989453316, 0.19969576597213745, -0.07436303794384003, 0.0009812703356146812, -0.050988636910915375, -0.024934712797403336, -0.036768838763237, 0.09989599138498306, 0.004509498365223408, 0.04043235257267952, -0.06900450587272644, 0.07808489352464676, -0.0034169447608292103, -0.17270174622535706, 0.05749644711613655, -0.05866105109453201, -0.06487970799207687, 0.035629309713840485, -0.028510060161352158, -0.020662155002355576, 0.02632414735853672, 0.0016523969825357199, -0.05462835729122162, 0.10045911371707916, 0.02092442661523819, -0.08361732959747314, 0.005422760266810656, 0.01848151721060276, -0.0971202403306961, 0.2947254478931427, -0.04256661981344223, 0.040443304926157, 0.09553800523281097, -0.008348951116204262, -0.1505754441022873, -0.0536888986825943, 0.07962264120578766, -0.02418902888894081, 0.023714276030659676, 0.09253747016191483, 0.010145931504666805, 0.1295151561498642, 0.09207242727279663, -0.08978460729122162, 0.049617767333984375, -0.006105771753937006, 0.023691225796937943, -0.12005174905061722, 0.024684570729732513, -0.07829849421977997, 0.10222198069095612, 0.09807771444320679, -0.005621802527457476, 0.009231730364263058, -0.030286356806755066, 0.01556389220058918, -0.016954537481069565, 0.13236333429813385, 0.007248484995216131, -0.041355863213539124, 0.02481115236878395, -0.16087637841701508, 0.08656542003154755, -0.1418178677558899, -0.06063279137015343, 0.02562912181019783, -0.02763228677213192, -0.01662307418882847, 0.07798730581998825, 0.010528787970542908, 0.02797364816069603, -0.0675014927983284, -0.07171640545129776, 0.012441519647836685, 0.16742365062236786, -0.027529336512088776, -0.024853792041540146 ]
a06a3254448172ded7e295ee21d3cf87d04b8a49
# Dataset Card for truck-movement ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/truck-movement - **Point of Contact:** [email protected] ### Dataset Summary truck-movement ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/truck-movement ### Citation Information ``` @misc{ truck-movement, title = { truck movement Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/truck-movement } }, url = { https://universe.roboflow.com/object-detection/truck-movement }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/truck-movement
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:14:08+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "truck-movement", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "truck-movement", "1": "otr_chassis_loaded", "2": "otr_chassis_unloaded", "3": "otr_chassis_working", "4": "person", "5": "stacker"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:14:40+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for truck-movement The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary truck-movement ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for truck-movement\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ntruck-movement", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for truck-movement\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ntruck-movement", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for truck-movement\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ntruck-movement### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01758766360580921, 0.1575121432542801, -0.008601851761341095, 0.02724032662808895, 0.11716751754283905, 0.0024283432867377996, 0.05178214609622955, 0.08178107440471649, 0.008244939148426056, 0.1537422388792038, -0.0063003296963870525, 0.08065788447856903, 0.12684032320976257, 0.09719864279031754, -0.016057511791586876, -0.16029275953769684, 0.048192914575338364, -0.07300570607185364, 0.07605025172233582, 0.06773989647626877, 0.06932248175144196, -0.13888679444789886, 0.10585574805736542, -0.0367828793823719, -0.054820217192173004, 0.011963378638029099, -0.028894489631056786, -0.038460396230220795, 0.019695883616805077, 0.03009946644306183, 0.028759075328707695, 0.01697838120162487, 0.051092419773340225, -0.18507236242294312, 0.0244823656976223, 0.11233724653720856, 0.010894102975726128, 0.03888094052672386, 0.13336081802845, -0.08869315683841705, 0.05669115111231804, -0.12963438034057617, 0.028099866583943367, 0.023043224588036537, -0.11748211085796356, -0.09465520083904266, -0.12505605816841125, 0.04385063052177429, 0.12014643102884293, 0.04948702082037926, -0.007630262989550829, 0.06857357174158096, -0.009487166069447994, 0.06931595504283905, 0.12262492626905441, -0.08350811153650284, -0.05182414501905441, 0.10430866479873657, 0.027941394597291946, 0.10657608509063721, -0.12618504464626312, -0.012190885841846466, -0.005490786395967007, -0.027721136808395386, 0.020656529814004898, -0.06909899413585663, -0.05164375156164169, 0.009560885839164257, -0.09364215284585953, -0.12638592720031738, 0.1319248229265213, 0.047270696610212326, -0.051652245223522186, -0.11871548742055893, -0.03643527999520302, 0.03343700245022774, -0.030519481748342514, -0.014929555356502533, 0.05142943561077118, -0.0011947904713451862, 0.06233074888586998, -0.06561404466629028, -0.1068095788359642, 0.038410961627960205, -0.003196477424353361, 0.028987016528844833, -0.03321350738406181, 0.042775958776474, 0.003522806568071246, 0.08114321529865265, 0.0019262965070083737, -0.11904986202716827, -0.03237907961010933, -0.0476454421877861, -0.07593217492103577, -0.03968217968940735, 0.06896143406629562, -0.12781351804733276, 0.0579606294631958, 0.040939923375844955, -0.07099992781877518, 0.04697807878255844, -0.12765762209892273, 0.012211834080517292, 0.09638156741857529, 0.20645205676555634, -0.06687256693840027, -0.08730144053697586, -0.010494157671928406, 0.0258906539529562, 0.01946709305047989, -0.037844423204660416, -0.0454084612429142, -0.01370831485837698, 0.0339161716401577, 0.03982991725206375, 0.10371609777212143, 0.03636331483721733, -0.06585326045751572, -0.05802685394883156, 0.10552842170000076, -0.10011397302150726, 0.0666654035449028, 0.04788465052843094, -0.027334341779351234, 0.07823993265628815, 0.01595156639814377, 0.01645129919052124, -0.09585905075073242, 0.08333547413349152, -0.046941500157117844, 0.02960864081978798, -0.10117051005363464, -0.08513285219669342, 0.04832412302494049, -0.10126660019159317, -0.09453584998846054, -0.09138843417167664, -0.07189590483903885, -0.08204717934131622, 0.04226275160908699, -0.04100291430950165, 0.025301827117800713, 0.011758006177842617, -0.03854252025485039, 0.004954284057021141, 0.00996855553239584, 0.039138201624155045, -0.048855796456336975, 0.0368366576731205, -0.10959281772375107, 0.03106139972805977, 0.10217682272195816, 0.03561804071068764, -0.07711614668369293, 0.05639520660042763, -0.18641544878482819, 0.12339694052934647, -0.0340963639318943, 0.05133339390158653, -0.13235792517662048, 0.031557198613882065, -0.03580788895487785, -0.042847394943237305, -0.010726956650614738, 0.14195659756660461, -0.11301754415035248, 0.014535082504153252, 0.07731501013040543, -0.037609945982694626, -0.04631514847278595, 0.03228471800684929, -0.0427267923951149, 0.012410088442265987, 0.08454835414886475, 0.09334481507539749, -0.008291968144476414, -0.13503077626228333, -0.10495509207248688, -0.03484513983130455, -0.056615181267261505, 0.12714818120002747, 0.05794656649231911, -0.047440797090530396, 0.06910540908575058, -0.009822486899793148, -0.008911322802305222, -0.02380148321390152, 0.014581887982785702, -0.03142279013991356, 0.014878056943416595, 0.009181343950331211, -0.0629640445113182, 0.018008459359407425, -0.101862832903862, 0.016673555597662926, -0.08644337207078934, -0.054074328392744064, 0.002434159629046917, -0.003797123907133937, 0.023745587095618248, -0.029077893123030663, 0.08285369724035263, -0.11177996546030045, -0.0014976372476667166, -0.14817239344120026, -0.11334366351366043, 0.0686110407114029, 0.015266207046806812, 0.039743490517139435, -0.0833626240491867, 0.004834192339330912, 0.01333185937255621, 0.037050336599349976, -0.020944999530911446, 0.057009365409612656, -0.025940703228116035, -0.04560811445116997, -0.1356099247932434, -0.007193169556558132, -0.024916239082813263, 0.08701173961162567, -0.11636929959058762, -0.02813289687037468, 0.16317608952522278, 0.1152874231338501, 0.05700919032096863, -0.046930085867643356, 0.06281373649835587, -0.024345163255929947, -0.03649304434657097, -0.07393474131822586, -0.011008599773049355, -0.012498520314693451, 0.03279027342796326, 0.10631754994392395, -0.18810614943504333, -0.11280149966478348, 0.08392056077718735, 0.01432042010128498, -0.0792282298207283, -0.05415307357907295, -0.042277634143829346, -0.009798203594982624, -0.09809231013059616, -0.048555776476860046, 0.036370377987623215, 0.059217531234025955, 0.08937641978263855, -0.06022630259394646, -0.03568149358034134, 0.027362346649169922, -0.012141954153776169, -0.08099164068698883, 0.041311055421829224, 0.05781039595603943, -0.0935584008693695, 0.106527179479599, 0.021959343925118446, 0.050441205501556396, 0.13007855415344238, 0.03608150780200958, -0.09366372227668762, -0.017244556918740273, 0.06385906785726547, 0.024027042090892792, 0.10136978328227997, -0.02534918114542961, 0.005757560022175312, 0.0711287185549736, 0.0077413287945091724, -0.03111795336008072, -0.08984558284282684, 0.08318039029836655, 0.031412940472364426, -0.03512050583958626, 0.06391561031341553, -0.015744904056191444, 0.07482483983039856, 0.09588053077459335, 0.043124523013830185, 0.08997716754674911, -0.04528634995222092, -0.05913904309272766, -0.0960778146982193, 0.1216251328587532, -0.045010410249233246, -0.2449851632118225, -0.0987706333398819, -0.08457829803228378, -0.051681119948625565, 0.0014116441598162055, 0.029923880472779274, -0.0041635241359472275, -0.08061005175113678, -0.08344902098178864, 0.04395294934511185, 0.07977888733148575, -0.08663388341665268, -0.10583488643169403, 0.015444613993167877, -0.0033798995427787304, -0.0799332708120346, -0.011841358616948128, 0.02475539781153202, -0.0661064088344574, 0.012995900586247444, 0.04388422891497612, 0.1363743096590042, 0.07581942528486252, -0.01742035709321499, 0.009709585458040237, -0.013196619227528572, 0.171646848320961, -0.14762850105762482, 0.13139326870441437, 0.16234749555587769, 0.019779914990067482, 0.09262125194072723, 0.20718829333782196, -0.013563074171543121, 0.0051113879308104515, 0.02002706006169319, 0.06572552770376205, -0.0645194724202156, -0.19708551466464996, -0.04184426739811897, -0.057692740112543106, 0.018475977703928947, 0.10680171102285385, 0.04161179065704346, 0.0388713963329792, 0.0834880992770195, -0.09448231011629105, 0.0323527455329895, 0.03393499553203583, 0.10534720122814178, 0.03091074526309967, 0.0326261967420578, 0.05276770517230034, -0.0433439239859581, -0.02903134934604168, 0.09826869517564774, 0.1221838891506195, 0.1342419534921646, -0.08366628736257553, 0.11026660352945328, 0.019698919728398323, 0.014321072027087212, -0.03742270544171333, 0.0021598367020487785, -0.027129128575325012, 0.05678735673427582, -0.009391054511070251, -0.09247372299432755, -0.004857643973082304, 0.08307743817567825, 0.13417592644691467, 0.0017950552282854915, 0.018231751397252083, 0.0018402975983917713, 0.09839370101690292, 0.21997635066509247, 0.01580449752509594, -0.1903298944234848, 0.03429124131798744, 0.03427417203783989, 0.02102312631905079, -0.12609298527240753, -0.03648438677191734, 0.0984281599521637, -0.17115184664726257, 0.05853712931275368, -0.053934644907712936, 0.10848404467105865, -0.1160922646522522, -0.023716965690255165, 0.048003312200307846, 0.05085279420018196, -0.030513621866703033, 0.07017047703266144, -0.13257275521755219, 0.09480954706668854, 0.04292634129524231, 0.028945881873369217, -0.08130719512701035, 0.04354100301861763, 0.018235569819808006, -0.0028105988167226315, 0.14046937227249146, -0.008598873391747475, -0.04761287942528725, -0.1230853870511055, -0.09991874545812607, -0.019235827028751373, 0.0622953400015831, -0.06074009835720062, 0.11175385117530823, 0.0027246170211583376, -0.043367937207221985, -0.06096283718943596, -0.038370825350284576, -0.05889938771724701, -0.17137770354747772, 0.03992525860667229, -0.012875684536993504, 0.012223766185343266, -0.02135135605931282, 0.030354579910635948, 0.007467732764780521, 0.07713411748409271, -0.09021276235580444, -0.07913648337125778, -0.14974816143512726, 0.012714446522295475, 0.04598899558186531, -0.04057450592517853, -0.026763448491692543, -0.09425175935029984, 0.17575274407863617, -0.026529524475336075, -0.07028782367706299, 0.046002574265003204, -0.052936162799596786, -0.10291203111410141, -0.08132301270961761, 0.1154797151684761, 0.021036989986896515, -0.008266597986221313, -0.0035481208469718695, 0.05919361487030983, -0.0010464261285960674, -0.05686592310667038, 0.049782268702983856, 0.13670174777507782, 0.11359274387359619, 0.14403288066387177, 0.0135306091979146, -0.16659942269325256, -0.10368555784225464, 0.012442502193152905, 0.045252468436956406, 0.08056469261646271, -0.08970343321561813, 0.11465617269277573, 0.031677063554525375, -0.11019264906644821, -0.2424664944410324, 0.08242763578891754, 0.06247640773653984, -0.005842834711074829, 0.0007993869949132204, -0.14016157388687134, 0.12436501681804657, 0.04418683052062988, -0.003027264727279544, 0.07078112661838531, -0.2404285967350006, -0.07466898113489151, -0.025930017232894897, 0.03593802452087402, -0.16252285242080688, -0.15240992605686188, -0.042394381016492844, -0.042066317051649094, -0.1686263084411621, 0.06529926508665085, -0.023022156208753586, 0.04198248311877251, 0.03966764733195305, 0.05210883542895317, 0.0652179941534996, -0.04747522249817848, 0.10599061101675034, 0.017098575830459595, 0.05319630354642868, -0.07485261559486389, -0.09677350521087646, 0.06582099199295044, -0.10995842516422272, 0.12432748824357986, 0.02039497159421444, 0.018397953361272812, -0.05024969205260277, -0.020317208021879196, -0.03694493696093559, 0.07769051194190979, -0.03387396037578583, -0.05223221704363823, -0.07563995569944382, 0.029972432181239128, 0.1236448884010315, 0.00941240694373846, 0.09195377677679062, -0.03592132776975632, -0.014855320565402508, 0.1863066852092743, 0.11481766402721405, -0.0170624777674675, -0.1304224133491516, -0.05304732546210289, 0.004175627138465643, 0.037001822143793106, -0.12867334485054016, 0.05376991257071495, 0.09117207676172256, 0.014143240638077259, 0.1099458858370781, -0.008882450871169567, -0.10127165913581848, 0.0059764026664197445, 0.058806996792554855, -0.0944523960351944, -0.1612839698791504, -0.005603100173175335, 0.07850994169712067, -0.11124439537525177, -0.10608397424221039, 0.12206738442182541, 0.006601342465728521, -0.00698940409347415, 0.011550536379218102, 0.08270567655563354, 0.06733111292123795, 0.0488978736102581, 0.009463130496442318, 0.03620466589927673, -0.05885472893714905, 0.10827095806598663, 0.14127281308174133, -0.11254815757274628, -0.0009835511445999146, 0.1236095204949379, -0.05077522620558739, -0.018405938521027565, -0.04336024448275566, 0.08332893997430801, -0.029903171584010124, -0.025989055633544922, 0.03301683068275452, -0.06719940155744553, 0.027561411261558533, 0.1118074506521225, -0.00891378615051508, 0.06035299226641655, 0.026783453300595284, -0.008686119690537453, -0.11520319432020187, 0.14830757677555084, -0.004406878724694252, 0.05947147309780121, -0.11858215928077698, 0.018094399943947792, 0.015967339277267456, 0.027690216898918152, 0.006458389572799206, -0.06994900107383728, -0.0705876350402832, -0.005599854048341513, -0.06675425916910172, 0.09748663753271103, -0.09021355211734772, -0.01283812802284956, -0.010897919535636902, 0.015073896385729313, -0.01625625230371952, 0.026191655546426773, -0.042721085250377655, -0.06835625320672989, -0.042680829763412476, 0.13501140475273132, -0.13411693274974823, -0.026128916069865227, 0.05516839027404785, -0.08095923811197281, 0.06541017442941666, 0.0018993047997355461, -0.030928460881114006, -0.05891076847910881, -0.1779210865497589, -0.023684876039624214, 0.029062271118164062, 0.055775806307792664, 0.05558285117149353, -0.07802166789770126, 0.05401623994112015, -0.018189577385783195, -0.091145358979702, -0.02073691599071026, -0.010464213788509369, -0.11427634954452515, 0.06645192950963974, -0.06882079690694809, -0.040022533386945724, -0.04854179918766022, 0.13903598487377167, 0.030481865629553795, 0.008730088360607624, 0.08568515628576279, -0.05056342855095863, 0.09131162613630295, -0.1525719314813614, -0.0323912538588047, -0.009818682447075844, -0.036638714373111725, -0.07632198929786682, -0.023966694250702858, 0.07072176039218903, -0.033149026334285736, 0.10047589987516403, 0.14414304494857788, 0.040976352989673615, 0.03463880717754364, -0.017553720623254776, 0.04394358769059181, 0.04353608563542366, -0.040723200887441635, -0.009582539089024067, -0.022820189595222473, 0.0694713369011879, 0.014072250574827194, 0.02184174954891205, 0.09534545242786407, 0.09216592460870743, 0.21814164519309998, 0.14537322521209717, 0.02721508964896202, 0.056084271520376205, -0.08699961751699448, -0.08487209677696228, 0.08396028727293015, -0.08102940768003464, 0.0668637678027153, -0.10555057227611542, 0.0028646355494856834, 0.11703910678625107, -0.16607490181922913, 0.05841996148228645, -0.017099199816584587, -0.00515373982489109, -0.04023764282464981, -0.12062906473875046, -0.06332999467849731, -0.039864055812358856, -0.006613164208829403, -0.10285794734954834, 0.07461226731538773, 0.10476194322109222, -0.010811259038746357, 0.013429534621536732, 0.09126587212085724, -0.08304299414157867, -0.073119156062603, 0.08375456929206848, 0.023924220353364944, 0.07366973906755447, 0.04658576101064682, 0.03916901722550392, 0.05911784619092941, -0.009791722521185875, 0.0851452425122261, 0.07960677146911621, 0.11225435882806778, 0.04267977550625801, -0.07337567210197449, -0.07144321501255035, 0.03682934492826462, -0.010665509849786758, -0.038756441324949265, 0.1306678205728531, 0.07594658434391022, 0.018930751830339432, -0.019561508670449257, 0.1723964661359787, -0.02466067671775818, -0.021528739482164383, -0.1424012929201126, 0.04948654770851135, -0.02198452316224575, 0.005423169117420912, -0.01908183842897415, -0.15424177050590515, 0.0012848195619881153, 0.11900848150253296, 0.07945870608091354, -0.04760795831680298, -0.007294815499335527, -0.020736241713166237, 0.010053946636617184, 0.0036999352741986513, 0.05226767063140869, 0.02380489930510521, 0.22751924395561218, -0.04650077223777771, 0.015467165969312191, -0.02879760041832924, -0.020890507847070694, -0.06407790631055832, 0.08736614137887955, -0.022110452875494957, 0.007690932601690292, -0.06700421869754791, 0.09932716935873032, 0.000717496033757925, -0.173831507563591, 0.06139984354376793, -0.10557503998279572, -0.08555243909358978, 0.011290869675576687, 0.017336415126919746, 0.008599594235420227, 0.02104582078754902, 0.010423596017062664, -0.06645987182855606, 0.1053636446595192, 0.02312586084008217, -0.07161556929349899, -0.004585538525134325, 0.008797140792012215, -0.11891558766365051, 0.27332356572151184, -0.03273061662912369, 0.006960861850529909, 0.10287945717573166, -0.01876223273575306, -0.14591997861862183, -0.015982072800397873, 0.07212501019239426, -0.06407102942466736, 0.004756370559334755, 0.10994217544794083, -0.003229813650250435, 0.1431027352809906, 0.08684062212705612, -0.0724155455827713, 0.04242108017206192, -0.02293391525745392, 0.012492106296122074, -0.10769996792078018, 0.01716003194451332, -0.08076528459787369, 0.1054331585764885, 0.15379710495471954, 0.0031950196716934443, -0.0013227238086983562, -0.03654591739177704, -0.013156475499272346, 0.006938663776963949, 0.09940668195486069, -0.009100694209337234, -0.0430707186460495, 0.01516212709248066, -0.08787623047828674, 0.08030668646097183, -0.10258706659078598, -0.07020744681358337, 0.03462943062186241, -0.008302784524857998, -0.022269772365689278, 0.09094037115573883, 0.05706886202096939, 0.019584117457270622, -0.04937727376818657, -0.09852749854326248, 0.017164437100291252, 0.17542029917240143, -0.017452390864491463, -0.027727123349905014 ]
c59b6cd19a84115766acfcf79ed6d313165b44aa
# Dataset Card for digits-t2eg6 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/digits-t2eg6 - **Point of Contact:** [email protected] ### Dataset Summary digits-t2eg6 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/digits-t2eg6 ### Citation Information ``` @misc{ digits-t2eg6, title = { digits t2eg6 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/digits-t2eg6 } }, url = { https://universe.roboflow.com/object-detection/digits-t2eg6 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/digits-t2eg6
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:14:35+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "digits-t2eg6", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "digits", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:15:27+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for digits-t2eg6 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary digits-t2eg6 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for digits-t2eg6\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ndigits-t2eg6", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for digits-t2eg6\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ndigits-t2eg6", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for digits-t2eg6\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ndigits-t2eg6### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01162483636289835, 0.16907356679439545, -0.0075459652580320835, 0.02476046420633793, 0.09803327172994614, -0.0008730395929887891, 0.06694510579109192, 0.08165507763624191, -0.008970709517598152, 0.16927403211593628, 0.00699244299903512, 0.0567857101559639, 0.11068695783615112, 0.09521052241325378, -0.021203693002462387, -0.1651906669139862, 0.06315600872039795, -0.07061026990413666, 0.07180925458669662, 0.07380512356758118, 0.07641218602657318, -0.13467387855052948, 0.08487442880868912, -0.04247404634952545, -0.0122511126101017, 0.03948519751429558, -0.056129373610019684, -0.042311448603868484, -0.000369660381693393, 0.05206245183944702, 0.011192713864147663, 0.0314689576625824, 0.040652669966220856, -0.20085912942886353, 0.022146426141262054, 0.10631021857261658, 0.029586082324385643, 0.018979161977767944, 0.1508585661649704, -0.09165412187576294, 0.06798658519983292, -0.11693226546049118, 0.03462563455104828, 0.012141672894358635, -0.11424433439970016, -0.1086946576833725, -0.11521290242671967, 0.06434070318937302, 0.0958952009677887, 0.05667508393526077, -0.0208108052611351, 0.08431272208690643, -0.021492674946784973, 0.06061992049217224, 0.12769782543182373, -0.04496891424059868, -0.04234733432531357, 0.08090656250715256, 0.04255262017250061, 0.10699254274368286, -0.1105155348777771, -0.02063152939081192, 0.008961336687207222, -0.020616943016648293, 0.0008283898932859302, -0.04913501814007759, -0.053629107773303986, 0.000023752450942993164, -0.10168731957674026, -0.1537650227546692, 0.14575901627540588, 0.052379537373781204, -0.05273779481649399, -0.13819269835948944, -0.0009562757331877947, 0.05788802355527878, -0.027736758813261986, -0.0006796089583076537, 0.04485774412751198, -0.006929964292794466, 0.049448028206825256, -0.05995963513851166, -0.10046998411417007, 0.05195014551281929, 0.03222224488854408, 0.033169038593769073, -0.020904403179883957, 0.041697509586811066, 0.01638861931860447, 0.07659483700990677, -0.001254267175681889, -0.11335757374763489, -0.030750485137104988, -0.04061763361096382, -0.04583442211151123, -0.044946443289518356, 0.05508028715848923, -0.13788418471813202, 0.06602589786052704, 0.07484611868858337, -0.07573171705007553, 0.0324171744287014, -0.11588779091835022, 0.009893864393234253, 0.11611296981573105, 0.17000573873519897, -0.08355878293514252, -0.0767819732427597, -0.0010654771467670798, 0.04441703110933304, 0.02834486775100231, -0.030840136110782623, -0.02565768174827099, 0.003540653269737959, 0.023777397349476814, 0.044869937002658844, 0.1130947545170784, 0.04233958199620247, -0.06892189383506775, -0.06422562152147293, 0.13563260436058044, -0.09966090321540833, 0.04414338618516922, 0.058126188814640045, -0.05796444043517113, 0.07728667557239532, 0.0112776979804039, 0.01111859641969204, -0.11993402987718582, 0.09158955514431, -0.02374972216784954, 0.01745270937681198, -0.0891166627407074, -0.09515445679426193, 0.06006799638271332, -0.07688981294631958, -0.07401397079229355, -0.08259199559688568, -0.04467068985104561, -0.08687672019004822, 0.03997119888663292, -0.0423075370490551, 0.02496609464287758, 0.01663309335708618, -0.04597984254360199, -0.014462155289947987, 0.005677119828760624, 0.04796573519706726, -0.06108875945210457, 0.0376574844121933, -0.09372156858444214, 0.036737699061632156, 0.10700857639312744, 0.041241880506277084, -0.10659702122211456, 0.061898570507764816, -0.19724951684474945, 0.13761548697948456, -0.0479433611035347, 0.020963037386536598, -0.13056857883930206, 0.004247691947966814, -0.008951599709689617, -0.036660682410001755, -0.0024909821804612875, 0.140485018491745, -0.08143241703510284, 0.014059685170650482, 0.048202406615018845, -0.062119513750076294, -0.057004548609256744, 0.03645211458206177, -0.044532228261232376, -0.01599430851638317, 0.08124357461929321, 0.13611404597759247, -0.034768253564834595, -0.11799497902393341, -0.11671839654445648, -0.03389102220535278, -0.039317354559898376, 0.15438537299633026, 0.07993531972169876, -0.034413084387779236, 0.10499519854784012, -0.012447251938283443, -0.012378985062241554, -0.046953264623880386, 0.010949470102787018, -0.03607533872127533, 0.012148094363510609, -0.0007036210154183209, -0.09504470974206924, 0.022612862288951874, -0.10205242037773132, -0.00014435063349083066, -0.08445417881011963, -0.025830868631601334, 0.019669219851493835, -0.034858956933021545, 0.01716110110282898, -0.0326131209731102, 0.09375879168510437, -0.12209588289260864, -0.0014624044997617602, -0.1592172533273697, -0.11646174639463425, 0.05011177062988281, -0.04907448962330818, 0.040168534964323044, -0.08340777456760406, -0.011410465463995934, 0.022845858708024025, 0.031049752607941628, -0.01511803362518549, 0.03950320929288864, -0.0221185814589262, -0.03624241426587105, -0.12841099500656128, -0.05398811027407646, -0.02653747983276844, 0.09173461049795151, -0.12208493053913116, -0.03223029151558876, 0.13505712151527405, 0.12591762840747833, 0.03535749018192291, -0.04999534413218498, 0.07893302291631699, -0.023919982835650444, -0.025620287284255028, -0.08748199790716171, -0.012564346194267273, -0.003677543019875884, 0.03682578727602959, 0.08127719908952713, -0.16369301080703735, -0.13732697069644928, 0.08722111582756042, 0.03606822341680527, -0.08587303757667542, -0.05476834252476692, -0.044701509177684784, -0.013143998570740223, -0.09806752949953079, -0.027391906827688217, 0.035702500492334366, 0.06050190329551697, 0.08245272934436798, -0.07907351851463318, -0.037362050265073776, 0.02089204639196396, -0.016716519370675087, -0.08239870518445969, 0.08110442012548447, 0.061350323259830475, -0.12160713970661163, 0.10219775885343552, -0.025893645361065865, 0.039135806262493134, 0.09267647564411163, 0.029035000130534172, -0.12368210405111313, 0.02170957811176777, 0.06868677586317062, 0.024228163063526154, 0.08218351751565933, -0.014934283681213856, 0.02746634930372238, 0.08066743612289429, -0.016563795506954193, -0.021159987896680832, -0.08275777846574783, 0.07127946615219116, 0.03824390470981598, -0.04056873172521591, 0.011208931915462017, -0.015988074243068695, 0.0805378407239914, 0.09717433899641037, 0.06043199449777603, 0.11535030603408813, -0.042246099561452866, -0.061089903116226196, -0.09606330096721649, 0.13289768993854523, -0.01923302561044693, -0.25923478603363037, -0.07942485064268112, -0.06710413098335266, -0.054983410984277725, -0.01010856032371521, 0.040992334485054016, 0.001282014767639339, -0.08970167487859726, -0.1126764789223671, 0.06297016888856888, 0.05278114601969719, -0.10556820034980774, -0.12178090214729309, 0.04012922942638397, 0.010084224864840508, -0.07698916643857956, 0.003232464659959078, 0.02901620976626873, -0.038208749145269394, 0.011233377270400524, 0.038341835141181946, 0.12497591227293015, 0.055361557751894, -0.02140616625547409, 0.0045016431249678135, -0.005330448504537344, 0.18002553284168243, -0.14815305173397064, 0.09186446666717529, 0.16794615983963013, 0.009381679818034172, 0.07525984197854996, 0.1965247541666031, -0.020669065415859222, -0.016852986067533493, 0.028585970401763916, 0.07339000701904297, -0.06851331889629364, -0.1979617178440094, -0.05656684190034866, -0.0431271493434906, 0.018860632553696632, 0.1426747590303421, 0.03481267765164375, 0.01161753199994564, 0.08992111682891846, -0.11824291199445724, 0.019338883459568024, 0.017318258062005043, 0.10314862430095673, 0.0605568066239357, 0.04578089341521263, 0.04594695568084717, -0.05067625269293785, -0.03252139315009117, 0.10102899372577667, 0.09488572180271149, 0.11648794263601303, -0.10739340633153915, 0.08668311685323715, 0.03106723167002201, 0.024688836187124252, -0.0333140529692173, -0.005279702600091696, -0.028901174664497375, 0.054447196424007416, -0.006680465769022703, -0.10679106414318085, 0.007583759259432554, 0.08841555565595627, 0.1341189444065094, -0.01595298759639263, -0.0074996622279286385, -0.040190666913986206, 0.06457509845495224, 0.2454666644334793, 0.008898484520614147, -0.21862941980361938, 0.012544509954750538, 0.03532189130783081, 0.013685566373169422, -0.1173248291015625, -0.04255744069814682, 0.09276685863733292, -0.16513372957706451, 0.06680150330066681, -0.027467476204037666, 0.11122516542673111, -0.13227634131908417, -0.03813338652253151, 0.058838874101638794, 0.042641956359148026, -0.02942923828959465, 0.08298242092132568, -0.10788808763027191, 0.07491998374462128, 0.03187270835042, 0.029531653970479965, -0.08239603787660599, 0.03577379882335663, 0.008124323561787605, -0.012488307431340218, 0.1455879658460617, -0.018210096284747124, 0.002143245190382004, -0.12677092850208282, -0.1102742925286293, -0.009959717281162739, 0.0535205714404583, -0.06671629101037979, 0.10143247246742249, 0.011933043599128723, -0.028747137635946274, -0.07782621681690216, -0.04416770488023758, -0.060675714164972305, -0.19022905826568604, 0.03400426357984543, -0.009612235240638256, 0.021091118454933167, -0.01233341172337532, 0.01754988543689251, 0.03787592053413391, 0.1314493864774704, -0.025061074644327164, -0.0960964784026146, -0.1414845734834671, 0.05982033163309097, 0.10312860459089279, -0.02031421661376953, -0.018315523862838745, -0.09548895806074142, 0.17555412650108337, -0.02364468388259411, -0.0772600919008255, 0.02216448448598385, -0.06894738972187042, -0.11785437911748886, -0.056519344449043274, 0.10415898263454437, 0.02031540311872959, -0.0015283877728506923, -0.0009100954630412161, 0.06045146659016609, 0.0037798546254634857, -0.04589003697037697, 0.018733004108071327, 0.10558617860078812, 0.14631536602973938, 0.13433857262134552, 0.01650099828839302, -0.1426631659269333, -0.12177393585443497, -0.010355212725698948, 0.01985306851565838, 0.10630210489034653, -0.06933550536632538, 0.11552873253822327, 0.02997191809117794, -0.0755639374256134, -0.22262708842754364, 0.07758260518312454, 0.07074078917503357, -0.00891923438757658, -0.0016950942808762193, -0.13802866637706757, 0.14098840951919556, 0.03667250648140907, 0.0055574956350028515, 0.07306505739688873, -0.2794704735279083, -0.07186824083328247, -0.026256786659359932, 0.027052517980337143, -0.23354393243789673, -0.16560928523540497, -0.05436448007822037, -0.06339158117771149, -0.1438058316707611, 0.05171094089746475, 0.005653086118400097, 0.048019323498010635, 0.03900003805756569, 0.035986434668302536, 0.06629641354084015, -0.045399367809295654, 0.1078580766916275, 0.013284978456795216, 0.036901552230119705, -0.08075227588415146, -0.08186277002096176, 0.011364211328327656, -0.09776485711336136, 0.14599314332008362, 0.03601882606744766, 0.032010551542043686, -0.04726244881749153, -0.023759502917528152, -0.03144656866788864, 0.08602321147918701, -0.022241532802581787, -0.03704705834388733, -0.10202429443597794, 0.03221915289759636, 0.13046924769878387, 0.02660008892416954, 0.0862281322479248, -0.0499868243932724, -0.015287804417312145, 0.15508022904396057, 0.10385105013847351, 0.004963908344507217, -0.15092091262340546, -0.04632176458835602, -0.0007376291323453188, 0.044420499354600906, -0.12901228666305542, 0.035438746213912964, 0.0849565640091896, 0.021582063287496567, 0.105038583278656, -0.012198070995509624, -0.09583190083503723, 0.010376142337918282, 0.04494335129857063, -0.10261015594005585, -0.10879595577716827, 0.022114548832178116, 0.10507983714342117, -0.1121644377708435, -0.12139490246772766, 0.11523406952619553, -0.004506054800003767, -0.014722595922648907, -0.0018224332015961409, 0.07240543514490128, 0.05815838649868965, 0.06087416782975197, 0.017862897366285324, 0.03658664971590042, -0.07156714051961899, 0.11227120459079742, 0.14487957954406738, -0.14914211630821228, 0.00834344606846571, 0.1155398041009903, -0.04962969198822975, -0.020354490727186203, -0.023533014580607414, 0.01994236558675766, -0.02669997699558735, -0.03304557874798775, 0.033734701573848724, -0.04417840391397476, 0.04456452652812004, 0.09233378618955612, 0.004247534088790417, 0.05155428498983383, 0.028120610862970352, -0.017685813829302788, -0.14068225026130676, 0.1306377351284027, 0.028279021382331848, 0.051770471036434174, -0.09092018753290176, 0.009369934909045696, 0.037743207067251205, 0.007238272111862898, 0.01039107982069254, -0.058267395943403244, -0.07879439741373062, 0.0037847913336008787, -0.0398101881146431, 0.10969256609678268, -0.08655831962823868, -0.005242050625383854, -0.016926217824220657, 0.003927027340978384, -0.016093427315354347, 0.03680112585425377, -0.044987596571445465, -0.0801055058836937, -0.05103059113025665, 0.12990376353263855, -0.15080317854881287, -0.02348669059574604, 0.05135810375213623, -0.09028021991252899, 0.06197841838002205, 0.015862025320529938, -0.045022957026958466, -0.09460620582103729, -0.18086159229278564, -0.04340006411075592, 0.031356893479824066, 0.06915899366140366, 0.03388286754488945, -0.0783296525478363, 0.05469274893403053, 0.0010994754265993834, -0.09781450778245926, -0.013262618333101273, -0.018825601786375046, -0.11941932886838913, 0.04222651571035385, -0.08343291282653809, -0.03466044366359711, -0.03783274069428444, 0.13613452017307281, 0.05670982971787453, 0.003956243395805359, 0.087615966796875, -0.053581010550260544, 0.09769575297832489, -0.1354677677154541, -0.03891479969024658, -0.008822688832879066, -0.03009837679564953, -0.09174267202615738, 0.005682062357664108, 0.07457014173269272, -0.033777687698602676, 0.1283581703901291, 0.13197249174118042, 0.04317477345466614, 0.04521356523036957, -0.002527635544538498, 0.09389441460371017, 0.06261817365884781, -0.0032604439184069633, -0.0068444455973804, -0.01792059652507305, 0.06937330961227417, 0.015199558809399605, 0.02351192571222782, 0.08685505390167236, 0.05314701795578003, 0.2416832000017166, 0.1257108747959137, 0.017967475578188896, 0.04079761356115341, -0.07876897603273392, -0.0451144315302372, 0.09747233986854553, -0.040305573493242264, 0.08374930173158646, -0.09453082084655762, 0.04665771871805191, 0.09675679355859756, -0.14448541402816772, 0.06247730925679207, -0.010165322571992874, -0.004147817846387625, -0.03411705791950226, -0.10509150475263596, -0.06429293751716614, -0.02977198176085949, 0.0028983724769204855, -0.11624167114496231, 0.09608599543571472, 0.1463916152715683, 0.006152076181024313, 0.015225091949105263, 0.09299306571483612, -0.055633220821619034, -0.08731969445943832, 0.07185783237218857, 0.013247217983007431, 0.05703100189566612, 0.04945281147956848, 0.04233665391802788, 0.09884629398584366, -0.008759886026382446, 0.07936269044876099, 0.09599803388118744, 0.10724540799856186, 0.028765564784407616, -0.07626301795244217, -0.07413264364004135, 0.029996560886502266, -0.008077440783381462, -0.009176395833492279, 0.15782137215137482, 0.07840868085622787, 0.015227426774799824, -0.019163616001605988, 0.17898620665073395, -0.015761185437440872, -0.029708445072174072, -0.1387791931629181, 0.059659507125616074, -0.03811994567513466, -0.010620967485010624, -0.013217855244874954, -0.15142638981342316, 0.0008303360664285719, 0.12620049715042114, 0.07282324135303497, -0.046150773763656616, -0.014088582247495651, -0.01774733141064644, 0.005885079503059387, -0.019604865461587906, 0.0400254912674427, 0.015386386774480343, 0.2003883719444275, -0.05693572387099266, 0.012967797927558422, -0.04403701424598694, -0.02712223306298256, -0.06148547679185867, 0.08892282843589783, -0.012821630574762821, -0.007031511049717665, -0.07591848075389862, 0.11575853079557419, -0.011523193679749966, -0.18456782400608063, 0.05979755520820618, -0.08967703580856323, -0.08256501704454422, 0.0110698277130723, -0.026863427832722664, 0.01801125891506672, 0.028395161032676697, 0.0023767666425555944, -0.06631191074848175, 0.06798727065324783, 0.02708251029253006, -0.08491035550832748, -0.019180139526724815, 0.0014442200772464275, -0.09387930482625961, 0.26106971502304077, -0.03247981145977974, 0.04884563758969307, 0.08039341121912003, -0.018276579678058624, -0.1340722143650055, -0.024468107149004936, 0.08695903420448303, -0.05299045518040657, 0.031548723578453064, 0.11409223824739456, -0.010454636998474598, 0.15911051630973816, 0.08489272743463516, -0.07664348185062408, 0.051027871668338776, -0.015809187665581703, 0.022413624450564384, -0.11576231569051743, 0.00029513362096622586, -0.09600513428449631, 0.10963807255029678, 0.14295855164527893, -0.007112046238034964, -0.01399825420230627, -0.04044090583920479, 0.012633761391043663, 0.006583995185792446, 0.07860353589057922, 0.013957073912024498, -0.058157362043857574, 0.01168689876794815, -0.1440238207578659, 0.08827630430459976, -0.14903561770915985, -0.05071888864040375, 0.03894172981381416, -0.014375295490026474, -0.004226719029247761, 0.07933243364095688, 0.03257684037089348, 0.0069451420567929745, -0.06355263292789459, -0.09979581087827682, 0.03780580312013626, 0.1627008020877838, -0.009732173755764961, -0.028102055191993713 ]
77e7baefd1ef98310414a260abe13e5706354915
# Dataset Card for phages ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/phages - **Point of Contact:** [email protected] ### Dataset Summary phages ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/phages ### Citation Information ``` @misc{ phages, title = { phages Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/phages } }, url = { https://universe.roboflow.com/object-detection/phages }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/phages
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:14:40+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "phages", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "phages", "1": "activated", "2": "non-activated"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:15:16+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for phages The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary phages ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for phages\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nphages", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for phages\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nphages", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 20, 22, 8, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for phages\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nphages### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.009588239714503288, 0.1591774970293045, -0.0083664795383811, 0.03552938625216484, 0.11540302634239197, -0.0011889892630279064, 0.0661039650440216, 0.06994907557964325, 0.020638253539800644, 0.15258872509002686, -0.028273776173591614, 0.06067057326436043, 0.12816426157951355, 0.09769636392593384, -0.009192236699163914, -0.14907729625701904, 0.06181027740240097, -0.07332869619131088, 0.06744060665369034, 0.06563489139080048, 0.07293305546045303, -0.13669589161872864, 0.0876796543598175, -0.044430945068597794, -0.02437341958284378, 0.015362361446022987, -0.022225890308618546, -0.031056778505444527, 0.005143298767507076, 0.024558646604418755, 0.037619173526763916, 0.009530371055006981, 0.04436691850423813, -0.21540816128253937, 0.030174119397997856, 0.11015424132347107, 0.006230377592146397, 0.0356634259223938, 0.11794444173574448, -0.09041354060173035, 0.02895069681107998, -0.15060630440711975, 0.03475794568657875, 0.006719358265399933, -0.13065606355667114, -0.0968010202050209, -0.1269596368074417, 0.029506586492061615, 0.1020720899105072, 0.052789341658353806, -0.02060636691749096, 0.04760210961103439, 0.0005185591289773583, 0.06170695275068283, 0.09154065698385239, -0.10844887793064117, -0.05827997252345085, 0.07010293006896973, 0.01235615462064743, 0.11934828013181686, -0.12609799206256866, -0.010428481735289097, -0.005644212011247873, -0.0219557024538517, 0.014402908273041248, -0.06615801155567169, -0.04983518272638321, 0.002072791336104274, -0.09718739986419678, -0.1352016180753708, 0.1593020260334015, 0.043540723621845245, -0.050673291087150574, -0.08342012763023376, -0.018881360068917274, 0.02133633755147457, -0.024907076731324196, -0.005780506879091263, 0.04533813148736954, 0.022917600348591805, 0.054605092853307724, -0.0651141107082367, -0.11703129857778549, 0.06408025324344635, -0.013314922340214252, 0.042649392038583755, -0.03325900062918663, 0.035617630928754807, 0.03099091537296772, 0.07066626846790314, 0.018039755523204803, -0.11883232742547989, -0.03808996081352234, -0.03612539917230606, -0.0866713672876358, -0.0479380302131176, 0.04250293970108032, -0.10077570378780365, 0.06092600151896477, 0.09607136249542236, -0.068904809653759, 0.03685183823108673, -0.10986059159040451, 0.027834666892886162, 0.10481030493974686, 0.1774974912405014, -0.07591940462589264, -0.0716492310166359, 0.013417054899036884, 0.02117270790040493, 0.03576464578509331, -0.053136639297008514, -0.03459213301539421, -0.0003630136779975146, 0.026918375864624977, 0.026142440736293793, 0.09175477176904678, 0.021946288645267487, -0.07102511078119278, -0.049259524792432785, 0.07625831663608551, -0.11203433573246002, 0.0568169541656971, 0.04881037771701813, -0.003973465878516436, 0.0779496356844902, 0.01921132765710354, 0.03435550630092621, -0.09317575395107269, 0.05026041343808174, -0.04717320203781128, 0.036847665905952454, -0.08553462475538254, -0.06005030497908592, 0.048048749566078186, -0.06247882544994354, -0.08253080397844315, -0.08487007766962051, -0.04032871872186661, -0.09635651856660843, 0.04583114758133888, -0.03957280144095421, 0.033781349658966064, 0.01407186035066843, -0.02346961945295334, -0.013544464483857155, 0.019757689908146858, 0.01473670732229948, -0.05760880187153816, 0.034115538001060486, -0.10049201548099518, 0.028468167409300804, 0.04648731276392937, 0.031117834150791168, -0.08253486454486847, 0.06121690943837166, -0.165775865316391, 0.1283016949892044, -0.036944303661584854, 0.02938856929540634, -0.12111745774745941, 0.027926992624998093, -0.018259894102811813, -0.04404197260737419, 0.0065031289122998714, 0.10215285420417786, -0.11256667971611023, 0.030780736356973648, 0.07363802939653397, -0.0630844458937645, -0.04669896140694618, 0.04537445306777954, -0.04922538250684738, 0.004168722312897444, 0.07408822327852249, 0.08971186727285385, 0.0010951580479741096, -0.1171119436621666, -0.13055765628814697, -0.044351790100336075, -0.03815893828868866, 0.15248970687389374, 0.07157914340496063, -0.02023162506520748, 0.05392865464091301, -0.0017179764108732343, -0.0170489139854908, -0.03295152261853218, 0.023600298911333084, -0.053176719695329666, 0.013606145977973938, 0.015343560837209225, -0.07620786875486374, 0.018451999872922897, -0.10992147773504257, 0.029260724782943726, -0.06994511187076569, -0.06942334771156311, 0.00865712109953165, -0.041947394609451294, 0.02755531296133995, -0.045639172196388245, 0.08715949207544327, -0.10186289250850677, -0.00797769334167242, -0.14181329309940338, -0.11272064596414566, 0.060249947011470795, 0.03936314582824707, 0.04890964925289154, -0.06113739684224129, 0.0014732584822922945, 0.023917928338050842, 0.029992658644914627, -0.00515618734061718, 0.044997766613960266, -0.017228344455361366, -0.025858327746391296, -0.14479771256446838, -0.026930270716547966, -0.03003714792430401, 0.15905819833278656, -0.11391565948724747, -0.026486126706004143, 0.14405962824821472, 0.12044691294431686, 0.03153679147362709, -0.04057678207755089, 0.0401303768157959, -0.012565011158585548, -0.035969123244285583, -0.06565693020820618, -0.00797685794532299, 0.009546968154609203, 0.048933736979961395, 0.05168057233095169, -0.19994096457958221, -0.16074468195438385, 0.07535207271575928, -0.006427030544728041, -0.0766712948679924, -0.09540755301713943, -0.04534660279750824, -0.008087499998509884, -0.09498095512390137, -0.043221332132816315, 0.08520424365997314, 0.04752921313047409, 0.07379716634750366, -0.05853436514735222, -0.03680651634931564, 0.02583319880068302, -0.02893269620835781, -0.08118871599435806, 0.019294682890176773, 0.05219533294439316, -0.11031781136989594, 0.09453152865171432, -0.001700521563179791, 0.014645162038505077, 0.11131526529788971, 0.031117605045437813, -0.10268489271402359, -0.019286729395389557, 0.08540230244398117, 0.02601046860218048, 0.10249598324298859, -0.0359543040394783, 0.02823692373931408, 0.07210526615381241, -0.017751991748809814, -0.026782101020216942, -0.08586502075195312, 0.0726713240146637, 0.01189851388335228, -0.03129128739237785, 0.0698411613702774, -0.04982750490307808, 0.0745004266500473, 0.09300193190574646, 0.0475890226662159, 0.09363093972206116, -0.05378873646259308, -0.05922960489988327, -0.0930468738079071, 0.11780396103858948, -0.06719288229942322, -0.24534887075424194, -0.09065784513950348, -0.09553830325603485, -0.05162544921040535, 0.008921519853174686, 0.025334741920232773, -0.010056902654469013, -0.08131858706474304, -0.08931492269039154, 0.01689714565873146, 0.08317673951387405, -0.09768121689558029, -0.09002737700939178, 0.019731972366571426, 0.001023263088427484, -0.06873150914907455, -0.01170764397829771, 0.025132155045866966, -0.07397361844778061, 0.01912795379757881, 0.05023703724145889, 0.12096084654331207, 0.08708944916725159, -0.02174733392894268, 0.00698851840570569, -0.00600376958027482, 0.1850375533103943, -0.14653411507606506, 0.12259835004806519, 0.13831184804439545, -0.02128160372376442, 0.08350490778684616, 0.22717617452144623, -0.015169616788625717, -0.0015254395548254251, 0.012581995688378811, 0.0587853379547596, -0.06919220834970474, -0.20145685970783234, -0.05110081657767296, -0.07669207453727722, 0.001004546182230115, 0.11672569066286087, 0.03670459985733032, 0.023272117599844933, 0.09802161157131195, -0.10644587129354477, 0.033470720052719116, 0.04490002989768982, 0.09133296459913254, 0.05217605456709862, 0.03157792240381241, 0.05079248547554016, -0.04066234454512596, -0.042273540049791336, 0.09496413916349411, 0.14165402948856354, 0.1268509179353714, -0.09992938488721848, 0.10471271723508835, 0.03719397261738777, 0.022128572687506676, -0.042167484760284424, 0.008637754246592522, -0.031899888068437576, 0.06463313102722168, -0.0033533598762005568, -0.1009475439786911, -0.01940065249800682, 0.07435157895088196, 0.1214115098118782, -0.011238855309784412, 0.015118874609470367, 0.0001694970269454643, 0.08690953999757767, 0.19682176411151886, 0.03316330909729004, -0.17319662868976593, 0.026385894045233727, 0.038329046219587326, 0.046125467866659164, -0.12854619324207306, -0.037927817553281784, 0.11241500079631805, -0.15370658040046692, 0.06771232187747955, -0.03119606338441372, 0.09474645555019379, -0.13777263462543488, -0.039718709886074066, 0.062273357063531876, 0.06103428825736046, -0.018030721694231033, 0.07454276084899902, -0.1026538759469986, 0.08265318721532822, 0.040168941020965576, 0.040698129683732986, -0.0776183232665062, 0.05191585049033165, 0.007503332570195198, -0.00853675976395607, 0.12724782526493073, 0.007029377855360508, -0.03642041236162186, -0.13927216827869415, -0.10819040238857269, 0.0028797092381864786, 0.0543879009783268, -0.060324739664793015, 0.11061573773622513, -0.007366996258497238, -0.041958022862672806, -0.06083177775144577, -0.049564752727746964, -0.05550920590758324, -0.20804937183856964, 0.05083219334483147, -0.01563264988362789, 0.032577548176050186, -0.016432680189609528, 0.03129485249519348, -0.0016875362489372492, 0.12067320942878723, -0.036265574395656586, -0.06807520240545273, -0.1339472085237503, 0.0450504831969738, 0.04920603334903717, -0.02827487699687481, -0.029723167419433594, -0.09464655071496964, 0.17403137683868408, -0.02812393195927143, -0.06248711422085762, 0.014811837114393711, -0.03365996479988098, -0.0930885300040245, -0.08034093677997589, 0.12889589369297028, 0.02073812298476696, -0.00981175061315298, 0.027749642729759216, 0.07124600559473038, -0.0033706838730722666, -0.06694748252630234, 0.04232686758041382, 0.10918265581130981, 0.12057624012231827, 0.16287019848823547, -0.005340975243598223, -0.16056562960147858, -0.11293692141771317, 0.01785273291170597, 0.06821157038211823, 0.10340289026498795, -0.07994137704372406, 0.08760128915309906, 0.03838738799095154, -0.10979019105434418, -0.20922884345054626, 0.04437997192144394, 0.058086998760700226, -0.01762092486023903, -0.02151942439377308, -0.14732015132904053, 0.15488439798355103, 0.06334976106882095, 0.01507582701742649, 0.05250336229801178, -0.2045888602733612, -0.0605337917804718, -0.020468588918447495, 0.04618028178811073, -0.1381388157606125, -0.1399611532688141, -0.042923737317323685, -0.043182484805583954, -0.15571987628936768, 0.08094310015439987, -0.06750988960266113, 0.04997536540031433, 0.048082705587148666, 0.004266714211553335, 0.05746041610836983, -0.03916208818554878, 0.1290179342031479, 0.020596321672201157, 0.033869050443172455, -0.072657510638237, -0.07602600008249283, 0.07840599864721298, -0.0956135168671608, 0.10248736292123795, 0.040232397615909576, 0.011602952145040035, -0.03168920427560806, -0.022146420553326607, -0.026422031223773956, 0.06487402319908142, -0.03330110386013985, -0.050247713923454285, -0.08190742880105972, 0.04167943075299263, 0.13187693059444427, 0.024719133973121643, 0.080876424908638, -0.03363339230418205, 0.015575953759253025, 0.1762828528881073, 0.12331968545913696, 0.002629674505442381, -0.12548871338367462, -0.04650575667619705, 0.003380456008017063, 0.018337974324822426, -0.07533365488052368, 0.0637059211730957, 0.09720060974359512, 0.010895994491875172, 0.10867558419704437, 0.0018115174025297165, -0.09649641811847687, 0.0027253783773630857, 0.0693453699350357, -0.09628978371620178, -0.1468140184879303, 0.002736885566264391, 0.08600825816392899, -0.11947210133075714, -0.12118050456047058, 0.1365801990032196, 0.017877353355288506, -0.01388512458652258, 0.019607290625572205, 0.07400702685117722, 0.036530740559101105, 0.037370819598436356, 0.019235920161008835, 0.02811833843588829, -0.0670643150806427, 0.08815053105354309, 0.16193623840808868, -0.09857822954654694, -0.004667435307055712, 0.11664406210184097, -0.04595918953418732, -0.02936987765133381, -0.04413207247853279, 0.06950607150793076, -0.013099291361868382, -0.019513972103595734, 0.03152643144130707, -0.07106095552444458, 0.01363052986562252, 0.07745630294084549, -0.010926568880677223, 0.06627912819385529, 0.025186916813254356, -0.008435781113803387, -0.12071428447961807, 0.14327730238437653, -0.020743047818541527, 0.044949594885110855, -0.09153518825769424, 0.043449658900499344, 0.01746068149805069, 0.029867049306631088, 0.006448099855333567, -0.08749493956565857, -0.0784439742565155, -0.008052661083638668, -0.06806012988090515, 0.11134134978055954, -0.10614746063947678, -0.011210850439965725, -0.005939020775258541, 0.0203393567353487, -0.031530603766441345, 0.02562168799340725, -0.03963923826813698, -0.054390475153923035, -0.04252165928483009, 0.11833732575178146, -0.13564768433570862, -0.018460828810930252, 0.055199526250362396, -0.0904342457652092, 0.07422732561826706, 0.004994106013327837, -0.03294125199317932, -0.06951168179512024, -0.17528808116912842, -0.01977158710360527, 0.03643060103058815, 0.06749116629362106, 0.03560764342546463, -0.08412400633096695, 0.05667663365602493, -0.007781694643199444, -0.09163404256105423, -0.007710593286901712, 0.0266339760273695, -0.1037873923778534, 0.056571487337350845, -0.06301558017730713, -0.029341891407966614, -0.0573732815682888, 0.1311737447977066, 0.021963300183415413, 0.015569804236292839, 0.06861045211553574, -0.057663075625896454, 0.09630153328180313, -0.15620985627174377, -0.035501427948474884, -0.007917690090835094, -0.02730410546064377, -0.07139996439218521, -0.034563854336738586, 0.07279945909976959, -0.022566592320799828, 0.12525303661823273, 0.11828487366437912, 0.03550487384200096, 0.02232779748737812, -0.024949535727500916, 0.047959331423044205, 0.06478188186883926, -0.0003748216840904206, -0.0017664721235632896, -0.03602476045489311, 0.06994084268808365, 0.004259068053215742, 0.02338363602757454, 0.11515074223279953, 0.09733748435974121, 0.20298467576503754, 0.1802528202533722, 0.016293654218316078, 0.05564381182193756, -0.0942777469754219, -0.04527349770069122, 0.09440641850233078, -0.07888977229595184, 0.04003378748893738, -0.09534408152103424, -0.026642806828022003, 0.10241492837667465, -0.16973544657230377, 0.06043577566742897, -0.017634477466344833, -0.021356932818889618, -0.03998595103621483, -0.10828518867492676, -0.054194893687963486, -0.03112763911485672, -0.019314516335725784, -0.1338450163602829, 0.053825248032808304, 0.10961751639842987, -0.013502519577741623, 0.00777307478711009, 0.06897448748350143, -0.07998667657375336, -0.06376102566719055, 0.06782269477844238, 0.02847360260784626, 0.10154444724321365, 0.04025658220052719, 0.03490004688501358, 0.07292767614126205, -0.003271633991971612, 0.09018658846616745, 0.0905960276722908, 0.1622820794582367, 0.044413626194000244, -0.08016116172075272, -0.07782923430204391, 0.0413651280105114, -0.019533101469278336, -0.017742933705449104, 0.13305354118347168, 0.07010168582201004, 0.025103220716118813, -0.00026930932654067874, 0.17072518169879913, -0.01010811235755682, -0.041781146079301834, -0.16602198779582977, 0.05089754983782768, -0.03753678873181343, -0.003830485977232456, -0.016640298068523407, -0.1497635394334793, -0.0004915025201626122, 0.10954202711582184, 0.06195620447397232, -0.04990914836525917, 0.007352162152528763, -0.0008311103447340429, 0.01216270960867405, 0.010265076532959938, 0.05128098279237747, 0.023959051817655563, 0.21365997195243835, -0.06346961110830307, -0.018185464665293694, -0.02795333042740822, -0.015933509916067123, -0.06711962074041367, 0.07101882249116898, -0.02375803515315056, 0.01011730544269085, -0.06775539368391037, 0.0986211895942688, -0.016572318971157074, -0.1505976766347885, 0.04877752810716629, -0.10324548929929733, -0.09669927507638931, 0.0064732166938483715, 0.0031959658954292536, 0.0031041819602251053, 0.011888323351740837, 0.013107637874782085, -0.06843166053295135, 0.12893569469451904, 0.03278980776667595, -0.059554167091846466, 0.012575143948197365, 0.021463943645358086, -0.10789810121059418, 0.2608426809310913, -0.025569947436451912, 0.0392645001411438, 0.10312463343143463, 0.0004606081638485193, -0.13484682142734528, -0.028252175077795982, 0.07122577726840973, -0.05035311356186867, 0.011534432880580425, 0.10573357343673706, -0.002520262962207198, 0.11366073042154312, 0.10534344613552094, -0.047631870955228806, 0.05236724019050598, -0.006111467722803354, 0.027926968410611153, -0.0880599170923233, 0.007634470704942942, -0.10472562164068222, 0.10992294549942017, 0.13722315430641174, -0.0038105726707726717, -0.01146131195127964, -0.03474947065114975, -0.0134043013677001, 0.006556435488164425, 0.10936995595693588, -0.012357701547443867, -0.05932711437344551, 0.006708757486194372, -0.09760156273841858, 0.0829063281416893, -0.116500623524189, -0.06736541539430618, 0.03801633045077324, -0.010842576622962952, -0.02542668767273426, 0.09933127462863922, 0.040658868849277496, 0.024979261681437492, -0.06169240176677704, -0.09989678114652634, 0.01729159615933895, 0.15812338888645172, -0.016370339319109917, -0.02427249774336815 ]
e2d54ecf2ab815773efcdb06ea3bb009d6035dd7
# Dataset Card for bone-fracture-7fylg ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/bone-fracture-7fylg - **Point of Contact:** [email protected] ### Dataset Summary bone-fracture-7fylg ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/bone-fracture-7fylg ### Citation Information ``` @misc{ bone-fracture-7fylg, title = { bone fracture 7fylg Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/bone-fracture-7fylg } }, url = { https://universe.roboflow.com/object-detection/bone-fracture-7fylg }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/bone-fracture-7fylg
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:14:40+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bone-fracture-7fylg", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bone-fracture", "1": "angle", "2": "fracture", "3": "line", "4": "messed_up_angle"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:14:59+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for bone-fracture-7fylg The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary bone-fracture-7fylg ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for bone-fracture-7fylg\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbone-fracture-7fylg", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for bone-fracture-7fylg\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbone-fracture-7fylg", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for bone-fracture-7fylg\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nbone-fracture-7fylg### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.009531496092677116, 0.18405616283416748, -0.007272884715348482, 0.03113456629216671, 0.09274670481681824, 0.0018569992389529943, 0.061289023607969284, 0.09054017066955566, -0.004470882471650839, 0.1781892329454422, 0.005778933875262737, 0.06151894852519035, 0.11229822039604187, 0.09764226526021957, -0.012178023345768452, -0.1636987179517746, 0.05081460624933243, -0.06511542946100235, 0.08217882364988327, 0.06713884323835373, 0.06758883595466614, -0.1354278326034546, 0.08263789862394333, -0.04100418835878372, -0.03610192611813545, 0.04461212828755379, -0.05654441565275192, -0.02722894586622715, 0.002928211120888591, 0.04788301885128021, 0.014024460688233376, 0.02754782885313034, 0.04027310386300087, -0.20337970554828644, 0.02313273772597313, 0.10876447707414627, 0.02094334177672863, 0.023450832813978195, 0.14687952399253845, -0.08340433239936829, 0.09957242757081985, -0.12783268094062805, 0.029233107343316078, 0.01209258008748293, -0.11702442914247513, -0.10447410494089127, -0.11286390572786331, 0.06979833543300629, 0.07928580790758133, 0.05542123317718506, -0.01989692449569702, 0.09393183141946793, -0.015764504671096802, 0.06454402953386307, 0.12996932864189148, -0.050237592309713364, -0.05382228270173073, 0.08607229590415955, 0.03214380890130997, 0.11191921681165695, -0.12076658010482788, -0.017456552013754845, 0.0039709750562906265, -0.015229975804686546, 0.005580758210271597, -0.045039281249046326, -0.06610582768917084, 0.004476991947740316, -0.09829719364643097, -0.13975673913955688, 0.1257643699645996, 0.04728998988866806, -0.04117989167571068, -0.14465750753879547, 0.0002929371257778257, 0.049578458070755005, -0.020802227780222893, 0.0007239235565066338, 0.039583466947078705, -0.009444178082048893, 0.060915257781744, -0.06799335032701492, -0.09831193834543228, 0.04613532871007919, 0.019393999129533768, 0.0241542998701334, -0.023629644885659218, 0.040396351367235184, 0.028510358184576035, 0.08013161271810532, -0.004633803851902485, -0.11263979971408844, -0.024720195680856705, -0.03980514034628868, -0.0501590222120285, -0.05030825734138489, 0.055105868726968765, -0.12477285414934158, 0.08157926052808762, 0.05771169438958168, -0.09051018953323364, 0.02966252714395523, -0.12447264045476913, 0.008475099690258503, 0.09867556393146515, 0.14611946046352386, -0.07365258038043976, -0.08718214929103851, 0.00017706194194033742, 0.057741038501262665, 0.03247036039829254, -0.020682847127318382, -0.02578689716756344, -0.006435290910303593, 0.0071480548940598965, 0.03960900381207466, 0.1232147067785263, 0.037642739713191986, -0.07352318614721298, -0.06658907234668732, 0.1413746327161789, -0.09312506765127182, 0.04646492749452591, 0.05842555686831474, -0.042159873992204666, 0.055834099650382996, 0.013857128098607063, 0.022017449140548706, -0.10841123759746552, 0.07604008167982101, -0.026085348799824715, 0.017412126064300537, -0.08663241565227509, -0.0872325599193573, 0.058217648416757584, -0.09718599915504456, -0.0778169259428978, -0.07920745760202408, -0.0494452603161335, -0.0846916139125824, 0.026198498904705048, -0.05111020430922508, 0.01769474521279335, 0.01646815799176693, -0.03957030922174454, -0.0137912817299366, 0.010587195865809917, 0.06123240292072296, -0.05474225431680679, 0.03494392707943916, -0.08113530278205872, 0.04065489023923874, 0.09737621992826462, 0.03870067000389099, -0.09781309217214584, 0.05486143007874489, -0.17573197185993195, 0.14340348541736603, -0.04678031802177429, 0.024841690436005592, -0.12782810628414154, 0.015279627405107021, -0.05480049178004265, -0.04119349643588066, 0.0028121047653257847, 0.13709822297096252, -0.08486256748437881, 0.010200790129601955, 0.060236137360334396, -0.05622054636478424, -0.06318847090005875, 0.04439222812652588, -0.04661238566040993, -0.015882762148976326, 0.0819426104426384, 0.14858084917068481, -0.027621975168585777, -0.1074470579624176, -0.1086493581533432, -0.049682632088661194, -0.04452243447303772, 0.14670312404632568, 0.07639821618795395, -0.05184461921453476, 0.11928681284189224, -0.010201964527368546, -0.02118726260960102, -0.03698606416583061, 0.014404494315385818, -0.03455943241715431, 0.0056923977099359035, -0.013331281952559948, -0.08596763759851456, 0.028875090181827545, -0.10425582528114319, -0.004630164708942175, -0.07879648357629776, -0.0438673235476017, 0.01838604547083378, -0.035741403698921204, 0.00693453848361969, -0.022697897627949715, 0.0865875780582428, -0.12016275525093079, -0.006607301067560911, -0.16653111577033997, -0.13276492059230804, 0.05381753668189049, -0.04038563370704651, 0.040321193635463715, -0.08869372308254242, -0.012245072051882744, 0.024558721110224724, 0.03634361922740936, -0.012641536071896553, 0.04269617795944214, -0.018619993701577187, -0.039863571524620056, -0.13543525338172913, -0.04635379835963249, -0.03239785507321358, 0.08712933957576752, -0.1392163336277008, -0.030968712642788887, 0.12422443926334381, 0.1476547122001648, 0.03333698585629463, -0.05700251832604408, 0.07904043048620224, -0.017745865508913994, -0.018000492826104164, -0.09299644082784653, 0.004184042569249868, -0.009384624660015106, 0.04523458331823349, 0.06780198216438293, -0.16625632345676422, -0.1475033462047577, 0.08454468101263046, 0.04631783440709114, -0.07910282909870148, -0.08129577338695526, -0.04324198141694069, -0.01999129354953766, -0.09646625816822052, -0.027242038398981094, 0.05156588926911354, 0.05655907467007637, 0.07470978796482086, -0.07987113296985626, -0.04614773392677307, 0.01389705203473568, -0.00022887546219862998, -0.07986360788345337, 0.0735296756029129, 0.0618266761302948, -0.14588265120983124, 0.10499660670757294, -0.02982412651181221, 0.03744499385356903, 0.11192843317985535, 0.031928956508636475, -0.11751671135425568, 0.0193799901753664, 0.07114709913730621, 0.022865980863571167, 0.08100777864456177, -0.019116632640361786, 0.019712472334504128, 0.07314872741699219, -0.025977300480008125, -0.013678722083568573, -0.08114562183618546, 0.07143903523683548, 0.02949070930480957, -0.0402199923992157, 0.016133690252900124, -0.009752001613378525, 0.0781199261546135, 0.09265705943107605, 0.05326317623257637, 0.12751269340515137, -0.042443860322237015, -0.06284234672784805, -0.10166162252426147, 0.12411311268806458, -0.022502247244119644, -0.245076522231102, -0.08568780869245529, -0.055978767573833466, -0.057888176292181015, -0.012367771938443184, 0.03543660789728165, 0.007766195572912693, -0.07839594036340714, -0.1079404354095459, 0.07351067662239075, 0.05341915413737297, -0.10347194969654083, -0.11919090896844864, 0.039294905960559845, 0.013406427577137947, -0.06940734386444092, -0.002481284784153104, 0.026803310960531235, -0.030961807817220688, 0.01085586380213499, 0.0269949808716774, 0.1284961998462677, 0.0382932648062706, -0.014147873036563396, 0.007328093517571688, -0.009168538264930248, 0.1723782867193222, -0.14392299950122833, 0.09669046849012375, 0.16726230084896088, 0.016707908362150192, 0.07543226331472397, 0.19146686792373657, -0.011223838664591312, -0.008756752125918865, 0.03204584866762161, 0.08525670319795609, -0.06166192889213562, -0.18026942014694214, -0.054712433367967606, -0.05204450711607933, 0.007680754642933607, 0.15037886798381805, 0.038555026054382324, 0.02411489561200142, 0.08796539902687073, -0.1096101924777031, 0.009678605012595654, 0.02445152774453163, 0.10001640021800995, 0.072252556681633, 0.05588866397738457, 0.053337790071964264, -0.05212390422821045, -0.031881820410490036, 0.09555890411138535, 0.09068287163972855, 0.11872321367263794, -0.10697639733552933, 0.09898842126131058, 0.03096865490078926, 0.04815877601504326, -0.030746949836611748, -0.003100460162386298, -0.027566879987716675, 0.04243279621005058, 0.0014333409490063787, -0.10706808418035507, 0.006400576326996088, 0.08173911273479462, 0.14750570058822632, -0.008619005791842937, 0.0030760252848267555, -0.036500900983810425, 0.06144377961754799, 0.2517297565937042, 0.0029709432274103165, -0.22842872142791748, 0.019618932157754898, 0.0287819504737854, 0.025392699986696243, -0.11569777876138687, -0.05128097161650658, 0.09361617267131805, -0.16398777067661285, 0.06431382894515991, -0.03841931372880936, 0.11145307868719101, -0.11989858001470566, -0.03390317037701607, 0.05859055742621422, 0.05721064656972885, -0.03392714634537697, 0.07594318687915802, -0.09818790853023529, 0.07462064921855927, 0.03456955775618553, 0.03132025524973869, -0.07164401561021805, 0.03288545832037926, 0.018990851938724518, -0.006522177252918482, 0.14260883629322052, -0.02467041090130806, 0.019500724971294403, -0.12465620785951614, -0.10122352838516235, -0.010689648799598217, 0.05182001367211342, -0.08390495926141739, 0.10874950885772705, 0.005406512878835201, -0.019305095076560974, -0.072618268430233, -0.033319998532533646, -0.06411050260066986, -0.19610320031642914, 0.02999795600771904, 0.007826382294297218, 0.01302928477525711, -0.012260794639587402, 0.014939223416149616, 0.022113259881734848, 0.1199989765882492, -0.04534938186407089, -0.1009460911154747, -0.1469961702823639, 0.07926428318023682, 0.11005105823278427, -0.018735654652118683, -0.02332361787557602, -0.09710434824228287, 0.17630083858966827, -0.028454158455133438, -0.08741605281829834, 0.014032701030373573, -0.0701797753572464, -0.11064375191926956, -0.05673876032233238, 0.10719835758209229, 0.02446291223168373, -0.00926133617758751, 0.003017221810296178, 0.07005422562360764, -0.011176013387739658, -0.0381794348359108, 0.026277128607034683, 0.11773823201656342, 0.16030123829841614, 0.13099588453769684, -0.0010338164865970612, -0.12321759015321732, -0.1250227987766266, -0.009466825053095818, 0.018207209184765816, 0.09629810601472855, -0.0781390443444252, 0.11567830294370651, 0.008389690890908241, -0.08172938972711563, -0.21639703214168549, 0.07464039325714111, 0.08962054550647736, -0.0007990726735442877, 0.02194756455719471, -0.13558748364448547, 0.15064406394958496, 0.03200095519423485, 0.011855891905725002, 0.0743059515953064, -0.25061729550361633, -0.061186064034700394, -0.030219074338674545, 0.020443778485059738, -0.24790160357952118, -0.1627524346113205, -0.06246364861726761, -0.04721986874938011, -0.16173027455806732, 0.04843403026461601, -0.01794223114848137, 0.04262803867459297, 0.03327895328402519, 0.03705764189362526, 0.06568203121423721, -0.041226889938116074, 0.10799005627632141, 0.006120431236922741, 0.0410182885825634, -0.07647388428449631, -0.08545272052288055, -0.004570824094116688, -0.09924177825450897, 0.14264199137687683, 0.030330026522278786, 0.029136057943105698, -0.055332109332084656, -0.02427978813648224, -0.04281344637274742, 0.09370740503072739, -0.021582461893558502, -0.028850452974438667, -0.08949767053127289, 0.03154941648244858, 0.12599799036979675, 0.025580165907740593, 0.08148162066936493, -0.05690521374344826, 0.008621162734925747, 0.16804933547973633, 0.10508351773023605, 0.009205200709402561, -0.15291129052639008, -0.04999436438083649, 0.0014996229438111186, 0.026241810992360115, -0.1088140532374382, 0.03102347068488598, 0.09148137271404266, 0.022827688604593277, 0.098053939640522, -0.010758930817246437, -0.09262698888778687, 0.00592343183234334, 0.05084413290023804, -0.09679747372865677, -0.10023176670074463, 0.01995905488729477, 0.09469622373580933, -0.12167859822511673, -0.1216241791844368, 0.10907355695962906, 0.006772572640329599, -0.016860205680131912, -0.0005770141142420471, 0.06782785058021545, 0.054232195019721985, 0.05245474353432655, 0.015749020501971245, 0.033302776515483856, -0.06763340532779694, 0.10775721818208694, 0.1379362940788269, -0.1377573311328888, -0.0017084472347050905, 0.11440805345773697, -0.061207618564367294, -0.02387714385986328, -0.012368014082312584, 0.03318756818771362, -0.02951815351843834, -0.031129080802202225, 0.032538071274757385, -0.041661132127046585, 0.038514528423547745, 0.0859023779630661, 0.0031109401024878025, 0.04520252346992493, 0.016247935593128204, -0.016887402161955833, -0.13826821744441986, 0.1346452385187149, 0.013475960120558739, 0.05738784000277519, -0.08698894083499908, 0.02594624273478985, 0.0332370325922966, -0.0037369346246123314, 0.012501147575676441, -0.04434986785054207, -0.06671231985092163, -0.006024049129337072, -0.0156765878200531, 0.10204734653234482, -0.09177958220243454, -0.005946975201368332, -0.014600604772567749, -0.0008652660762891173, -0.01866275444626808, 0.04181298986077309, -0.039447009563446045, -0.08416607975959778, -0.05051766708493233, 0.13754969835281372, -0.15076765418052673, -0.02676147222518921, 0.044161826372146606, -0.07910710573196411, 0.05994655564427376, 0.013073044829070568, -0.03710465878248215, -0.0929977297782898, -0.16093681752681732, -0.029439549893140793, 0.024335479363799095, 0.06437323242425919, 0.025923769921064377, -0.0858580693602562, 0.048584673553705215, -0.0025065969675779343, -0.09857278317213058, -0.008272635750472546, -0.013915267772972584, -0.11116094887256622, 0.038113776594400406, -0.09029719233512878, -0.031859803944826126, -0.03650742396712303, 0.13583266735076904, 0.056368883699178696, 0.010481917299330235, 0.08839958906173706, -0.05941431596875191, 0.08399409800767899, -0.14596910774707794, -0.04043189063668251, -0.011189745739102364, -0.022746197879314423, -0.09954888373613358, -0.00034646986750885844, 0.08094995468854904, -0.025263620540499687, 0.11832964420318604, 0.13289541006088257, 0.04333438724279404, 0.04050840809941292, -0.013091322034597397, 0.09195730835199356, 0.05814016982913017, 0.011841978877782822, -0.016114050522446632, -0.024727722629904747, 0.07390355318784714, 0.013942311517894268, 0.011802836321294308, 0.09370501339435577, 0.05523921549320221, 0.2480311542749405, 0.1265147477388382, 0.005377416964620352, 0.059148188680410385, -0.08080660551786423, -0.02885124459862709, 0.10321500152349472, -0.030719032511115074, 0.05696023628115654, -0.09604131430387497, 0.050911612808704376, 0.10417243838310242, -0.15607456862926483, 0.059863995760679245, -0.00481344573199749, -0.0060265157371759415, -0.02930491603910923, -0.09967587143182755, -0.059574149549007416, -0.030056433752179146, -0.00408904068171978, -0.12082096934318542, 0.09565886110067368, 0.1367475390434265, 0.0013060081982985139, 0.01240102481096983, 0.10591354966163635, -0.038893911987543106, -0.09809145331382751, 0.07673097401857376, 0.01792662963271141, 0.06280079483985901, 0.035929638892412186, 0.05195803567767143, 0.09928321093320847, -0.01699591986835003, 0.07927339524030685, 0.08161377906799316, 0.1035643219947815, 0.018558761104941368, -0.07963070273399353, -0.07346531748771667, 0.03841342777013779, -0.016285251826047897, -0.02141227014362812, 0.1557568609714508, 0.08813094347715378, 0.00893857516348362, -0.026096630841493607, 0.1690325140953064, -0.009584126994013786, -0.016815416514873505, -0.14196030795574188, 0.054161086678504944, -0.048905808478593826, -0.007633041590452194, -0.02072453871369362, -0.15030474960803986, 0.01571527123451233, 0.11881177127361298, 0.06877521425485611, -0.05226282775402069, -0.010827446356415749, -0.0161268413066864, 0.006309739779680967, -0.013972979970276356, 0.02952447533607483, 0.015906333923339844, 0.18373744189739227, -0.056417450308799744, 0.018856355920433998, -0.046624358743429184, -0.019258782267570496, -0.066179558634758, 0.06685200333595276, -0.006446301471441984, -0.005359490867704153, -0.07507891952991486, 0.11771885305643082, 0.00889008492231369, -0.16716082394123077, 0.0637657642364502, -0.1046464741230011, -0.07979841530323029, 0.0017789609264582396, -0.03761489316821098, 0.0014692158438265324, 0.017246155068278313, -0.003210529452189803, -0.058064863085746765, 0.07629506289958954, 0.022452088072896004, -0.09025343507528305, -0.020169250667095184, -0.008733788505196571, -0.08834251016378403, 0.24031278491020203, -0.04525197297334671, 0.050135958939790726, 0.08744990080595016, -0.02730504795908928, -0.13231787085533142, -0.024047989398241043, 0.07756384462118149, -0.04276115819811821, 0.030325787141919136, 0.10327507555484772, 0.001750248484313488, 0.1399928331375122, 0.08806252479553223, -0.06634970754384995, 0.05513479560613632, -0.016639219596982002, 0.024355001747608185, -0.1183662861585617, 0.014560515992343426, -0.09509371966123581, 0.1196102425456047, 0.1367311030626297, -0.002089795656502247, -0.011366701684892178, -0.03162840008735657, 0.0076457904651761055, 0.01618115045130253, 0.12531474232673645, 0.008420374244451523, -0.06121748313307762, 0.01634998619556427, -0.14911086857318878, 0.08071281760931015, -0.17047186195850372, -0.06219565123319626, 0.036729875952005386, -0.02152942307293415, 0.002019858919084072, 0.08109745383262634, 0.03556577116250992, 0.004616282414644957, -0.06396506726741791, -0.11238066852092743, 0.033150579780340195, 0.16981399059295654, -0.016630135476589203, -0.02369586192071438 ]
13c1c1432cdb65d0c1eb1ee49629fcbb6e2f5269
# Dataset Card for csgo-videogame ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/csgo-videogame - **Point of Contact:** [email protected] ### Dataset Summary csgo-videogame ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/csgo-videogame ### Citation Information ``` @misc{ csgo-videogame, title = { csgo videogame Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/csgo-videogame } }, url = { https://universe.roboflow.com/object-detection/csgo-videogame }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/csgo-videogame
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:15:12+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "csgo-videogame", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "CSGO", "1": "CT", "2": "T"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:15:55+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for csgo-videogame The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary csgo-videogame ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for csgo-videogame\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncsgo-videogame", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for csgo-videogame\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncsgo-videogame", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for csgo-videogame\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncsgo-videogame### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.00980324111878872, 0.1565445512533188, -0.007677612826228142, 0.05064074322581291, 0.1256897896528244, 0.0024276047479361296, 0.02487128973007202, 0.08765139430761337, -0.007074899505823851, 0.1611543595790863, -0.007964841090142727, 0.07921280711889267, 0.13211040198802948, 0.11038561165332794, 0.002535187406465411, -0.15079276263713837, 0.0631590411067009, -0.05918616056442261, 0.07669594138860703, 0.06788979470729828, 0.0629020482301712, -0.13028128445148468, 0.08903401345014572, -0.03304200991988182, -0.041583701968193054, 0.01375590916723013, -0.035385861992836, -0.03605132922530174, 0.019285785034298897, 0.02041497267782688, 0.017457854002714157, 0.0010176406940445304, 0.03304215520620346, -0.20148533582687378, 0.02591714821755886, 0.09839966148138046, 0.036101944744586945, 0.009714173153042793, 0.161791130900383, -0.04757894575595856, 0.04808611422777176, -0.11670468747615814, 0.042291682213544846, 0.04012401029467583, -0.1168007031083107, -0.12716402113437653, -0.12328795343637466, 0.019107338041067123, 0.11164998263120651, 0.034241799265146255, -0.017129087820649147, 0.07124551385641098, -0.011592681519687176, 0.04287102445960045, 0.12526139616966248, -0.07611681520938873, -0.05246772617101669, 0.12319992482662201, 0.04114072769880295, 0.11357545852661133, -0.11916740983724594, -0.025697806850075722, 0.0006040281150490046, -0.0291852168738842, -0.0018256355542689562, -0.05869352072477341, -0.04090023413300514, 0.0051079788245260715, -0.07005343586206436, -0.14298716187477112, 0.12421988695859909, 0.058990731835365295, -0.0381939560174942, -0.14113782346248627, -0.0037032654508948326, 0.030029283836483955, -0.03800337389111519, -0.007551600690931082, 0.04693054035305977, -0.005192032549530268, 0.04952726885676384, -0.05443430691957474, -0.09603163599967957, 0.02800990268588066, 0.021886831149458885, 0.006927797105163336, -0.037307534366846085, 0.03011258877813816, -0.013054201379418373, 0.08620253950357437, -0.014769802801311016, -0.10170173645019531, -0.04185856506228447, -0.04100519046187401, -0.11026585102081299, -0.046441808342933655, 0.06435974687337875, -0.11592013388872147, 0.07334945350885391, 0.06399788707494736, -0.04861392825841904, 0.05021104961633682, -0.1338573396205902, 0.012311946600675583, 0.09640000760555267, 0.17928661406040192, -0.08491303026676178, -0.10604836046695709, -0.008290908299386501, 0.05656208097934723, 0.0330132357776165, -0.041380565613508224, -0.030609790235757828, 0.010456330142915249, 0.03843957558274269, 0.037355173379182816, 0.11448819190263748, 0.04397369176149368, -0.09348416328430176, -0.038553833961486816, 0.1545199304819107, -0.08956339955329895, 0.05910986661911011, 0.07428353279829025, -0.055415693670511246, 0.07902713119983673, -0.015171658247709274, 0.01492567453533411, -0.0812247022986412, 0.06495260447263718, -0.04183755815029144, 0.020044418051838875, -0.10476040840148926, -0.08167557418346405, 0.07825937122106552, -0.10266607254743576, -0.0871739536523819, -0.07667852938175201, -0.03308377414941788, -0.07973825186491013, 0.029029345139861107, -0.04207813739776611, 0.023171016946434975, -0.0037596290931105614, -0.06275224685668945, -0.008352230302989483, 0.018225491046905518, 0.039898745715618134, -0.05283045768737793, 0.04746789485216141, -0.10034008324146271, 0.044209178537130356, 0.094753697514534, 0.031121883541345596, -0.08711392432451248, 0.058062393218278885, -0.218999445438385, 0.1366003304719925, -0.03980712965130806, 0.011370320804417133, -0.12293228507041931, 0.021911192685365677, -0.012409680522978306, -0.05283457413315773, -0.009866371750831604, 0.14253251254558563, -0.1260693073272705, 0.005054697394371033, 0.07296257466077805, -0.05045878514647484, -0.06548004597425461, 0.04106840863823891, -0.050507716834545135, -0.026454919949173927, 0.08201086521148682, 0.11634498089551926, -0.03315896913409233, -0.12573140859603882, -0.10136271268129349, -0.039322223514318466, -0.06111907958984375, 0.1495521515607834, 0.08599378168582916, -0.027880413457751274, 0.12293732166290283, -0.006783009972423315, -0.045463450253009796, -0.006675091106444597, 0.010880581103265285, -0.02379494346678257, 0.024813126772642136, -0.014429384842514992, -0.08026029169559479, 0.02789190225303173, -0.10007018595933914, 0.002934777643531561, -0.06619802862405777, -0.0421624593436718, 0.016550535336136818, -0.02159753255546093, 0.029414279386401176, -0.05406947061419487, 0.10137751698493958, -0.1281900405883789, -0.0021993638947606087, -0.16798754036426544, -0.12846426665782928, 0.06477384269237518, -0.016605740413069725, 0.03804289922118187, -0.07531943172216415, 0.0008935898658819497, 0.024676168337464333, 0.034955669194459915, -0.028564119711518288, 0.016597995534539223, -0.02053755894303322, -0.00302887219004333, -0.135480135679245, -0.048847757279872894, -0.039910219609737396, 0.12361302226781845, -0.11087596416473389, -0.036061979830265045, 0.16468265652656555, 0.11648440361022949, 0.04346875846385956, -0.06416407972574234, 0.061421338468790054, -0.03152470290660858, -0.023691250011324883, -0.08585301786661148, -0.012194349430501461, -0.003622852498665452, 0.01058945246040821, 0.07994840294122696, -0.160535991191864, -0.1066301017999649, 0.10147177428007126, 0.023875078186392784, -0.06862876564264297, -0.02996688336133957, -0.03633677959442139, -0.019586162641644478, -0.08802623301744461, -0.03888152539730072, 0.04109190031886101, 0.08829270303249359, 0.09555987268686295, -0.07084935158491135, -0.01530388556420803, 0.036524318158626556, -0.018509021028876305, -0.073532834649086, 0.04141497611999512, 0.04832670837640762, -0.10959325730800629, 0.10353640466928482, -0.03961452469229698, 0.05987492576241493, 0.1349683403968811, 0.030366571620106697, -0.10870130360126495, 0.009122820571064949, 0.07208641618490219, 0.030762609094381332, 0.09192737936973572, -0.017494771629571915, 0.01332069281488657, 0.07699913531541824, -0.017057092860341072, -0.03655100613832474, -0.08810392022132874, 0.06277035921812057, 0.03756566718220711, -0.03321586549282074, 0.030460413545370102, -0.0038597097154706717, 0.0802253857254982, 0.11064112931489944, 0.0560305118560791, 0.10745757073163986, -0.028015967458486557, -0.06860306859016418, -0.09250623732805252, 0.10924725979566574, -0.04933702200651169, -0.24508966505527496, -0.08233170211315155, -0.06093963608145714, -0.06342366337776184, 0.005122395697981119, 0.016872255131602287, -0.025904200971126556, -0.06743833422660828, -0.07826925814151764, 0.040102459490299225, 0.056023046374320984, -0.1155417263507843, -0.09164193272590637, 0.027049250900745392, -0.01179538108408451, -0.06910143792629242, 0.001524609629996121, 0.029279736801981926, -0.10641510039567947, 0.012846232391893864, 0.038208480924367905, 0.16587837040424347, 0.07665185630321503, -0.02173471823334694, 0.012916265986859798, -0.02080616168677807, 0.14988860487937927, -0.14754362404346466, 0.12976829707622528, 0.15564432740211487, 0.01792076975107193, 0.08546192944049835, 0.17100460827350616, -0.005107453558593988, 0.0045031956396996975, 0.02410554513335228, 0.060384757816791534, -0.06330246478319168, -0.1822120100259781, -0.04075300693511963, -0.05448431894183159, 0.040970657020807266, 0.12847797572612762, 0.026087414473295212, 0.0201982744038105, 0.08152277022600174, -0.08725020289421082, 0.01439474243670702, 0.05543169006705284, 0.10879794508218765, 0.025929920375347137, 0.04246281087398529, 0.023393724113702774, -0.04743938520550728, -0.01853884942829609, 0.11405260115861893, 0.13064581155776978, 0.10840404778718948, -0.10424003005027771, 0.12730194628238678, 0.028062617406249046, 0.006388866808265448, -0.04953916743397713, 0.011313775554299355, -0.018489504233002663, 0.05688868835568428, -0.015972604975104332, -0.07960562407970428, -0.02004534751176834, 0.07191895693540573, 0.1473817229270935, -0.0016582661774009466, 0.005253953859210014, 0.0024111936800181866, 0.10201677680015564, 0.20126673579216003, -0.005777811165899038, -0.19496877491474152, 0.033884447067976, 0.0415538065135479, 0.03204889968037605, -0.1431480497121811, -0.0190739743411541, 0.10332444310188293, -0.18398119509220123, 0.08136387169361115, -0.0381515808403492, 0.09651312977075577, -0.12756943702697754, -0.037821151316165924, 0.07871057093143463, 0.03718544542789459, -0.014701809734106064, 0.0784120112657547, -0.14298023283481598, 0.05227477476000786, 0.03516251966357231, 0.038772180676460266, -0.07953337579965591, 0.021559111773967743, 0.015150995925068855, -0.029858052730560303, 0.1436828225851059, -0.01838156022131443, 0.006634457036852837, -0.14903369545936584, -0.0734030082821846, -0.019256262108683586, 0.0475582592189312, -0.04945581778883934, 0.10790645331144333, 0.00715973787009716, -0.02537088841199875, -0.08025166392326355, -0.07427914440631866, -0.045121509581804276, -0.19007660448551178, 0.023073220625519753, 0.0011162166483700275, 0.023477565497159958, -0.019216295331716537, 0.03696645051240921, -0.002981727011501789, 0.09714806079864502, -0.060049064457416534, -0.08036354184150696, -0.14042162895202637, 0.05397922173142433, 0.06908505409955978, -0.023514239117503166, -0.007823758758604527, -0.10604289919137955, 0.1967400759458542, -0.061659421771764755, -0.045495010912418365, 0.01850094646215439, -0.05843733996152878, -0.12016736716032028, -0.05619465559720993, 0.0882481262087822, 0.04382719099521637, -0.006023250985890627, 0.0011597495758906007, 0.0527811199426651, 0.02340203896164894, -0.06208366900682449, 0.033826012164354324, 0.10619758069515228, 0.1090313270688057, 0.10625850409269333, 0.0548815093934536, -0.15059193968772888, -0.1106046587228775, 0.019406329840421677, 0.0433616004884243, 0.11450342833995819, -0.0986335426568985, 0.10692189633846283, 0.013733497820794582, -0.08080527186393738, -0.22115863859653473, 0.07856869697570801, 0.05938069522380829, -0.0385870598256588, 0.00669424794614315, -0.14635613560676575, 0.12573988735675812, 0.019970538094639778, -0.005598350428044796, 0.07055352628231049, -0.24387472867965698, -0.06427197903394699, -0.03648241236805916, 0.059636764228343964, -0.20581598579883575, -0.16019871830940247, -0.026855288073420525, -0.039762698113918304, -0.2025747299194336, 0.05528353899717331, -0.002731260610744357, 0.03522222861647606, 0.037072937935590744, 0.049886271357536316, 0.06255069375038147, -0.061168473213911057, 0.12406421452760696, 0.035108789801597595, 0.05791592597961426, -0.05298636108636856, -0.09711410850286484, 0.0816115066409111, -0.10082359611988068, 0.12475748360157013, 0.06798931956291199, -0.005731046199798584, -0.06705841422080994, -0.0019479624461382627, -0.04134580120444298, 0.05691671743988991, -0.02139858342707157, -0.025475336238741875, -0.08903110772371292, 0.05232687294483185, 0.12279423326253891, 0.0329754576086998, 0.07864853739738464, -0.04121487960219383, -0.025595925748348236, 0.14374583959579468, 0.10704299062490463, -0.005230835173279047, -0.15348847210407257, -0.04401521757245064, 0.004747158382087946, 0.03255482390522957, -0.09162404388189316, 0.050606708973646164, 0.08677294105291367, 0.017978636547923088, 0.0940081775188446, 0.004745827987790108, -0.11412151157855988, 0.05071098729968071, 0.04644327238202095, -0.07746035605669022, -0.10249684005975723, 0.031871914863586426, 0.09116297215223312, -0.07732436805963516, -0.1272100806236267, 0.08416947722434998, 0.012867477722465992, -0.016641853377223015, 0.0046203602105379105, 0.07491584122180939, 0.049470219761133194, 0.032082393765449524, 0.016179950907826424, 0.04361095279455185, -0.09076244384050369, 0.1411810964345932, 0.12447468936443329, -0.14861224591732025, -0.007326026912778616, 0.09649322926998138, -0.05951445549726486, -0.003165035741403699, -0.037910547107458115, 0.0529777929186821, -0.002428771462291479, -0.06157434731721878, 0.03239378333091736, -0.05175085738301277, 0.038764890283346176, 0.07184397429227829, 0.0019107694970443845, 0.061485156416893005, 0.01873643323779106, -0.010129256173968315, -0.14491799473762512, 0.13253924250602722, 0.02137858048081398, 0.0369458831846714, -0.10529540479183197, 0.0007676986278966069, 0.038895245641469955, 0.01871473342180252, 0.012196102179586887, -0.06622069329023361, -0.0633685439825058, 0.014094511978328228, -0.006565561052411795, 0.10466707497835159, -0.0900823101401329, -0.005669566802680492, -0.026276353746652603, 0.01871083304286003, -0.0055547854863107204, 0.025107229128479958, -0.05096600949764252, -0.07890170067548752, -0.03378830850124359, 0.13647322356700897, -0.16339148581027985, -0.029230566695332527, 0.05458679050207138, -0.09304502606391907, 0.06225860118865967, 0.0017907763831317425, -0.03907627612352371, -0.06874369084835052, -0.20703595876693726, -0.053701478987932205, 0.03356077894568443, 0.050492413341999054, 0.051333315670490265, -0.07107538729906082, 0.05413389578461647, -0.005236381199210882, -0.10119833052158356, -0.024780413135886192, -0.009771640412509441, -0.101894311606884, 0.06337928026914597, -0.07445742934942245, -0.034604206681251526, -0.05325537174940109, 0.1380208283662796, 0.08236071467399597, 0.00669437600299716, 0.07337800413370132, -0.0346187986433506, 0.0915430560708046, -0.1617424637079239, -0.04484162479639053, -0.008732220157980919, -0.029982106760144234, -0.08958986401557922, -0.002754908986389637, 0.07040728628635406, -0.022273262962698936, 0.12537847459316254, 0.10267839580774307, 0.04558436945080757, 0.03404315188527107, -0.007600841112434864, 0.04976097121834755, 0.06280110031366348, -0.03471772000193596, -0.02194507047533989, -0.012974191457033157, 0.09540625661611557, 0.028210191056132317, 0.020139304921030998, 0.0976823940873146, 0.07408270239830017, 0.1914849430322647, 0.1137419044971466, 0.031060179695487022, 0.022036390379071236, -0.06460122764110565, -0.058988895267248154, 0.12991037964820862, -0.07118361443281174, 0.05147445574402809, -0.09887108206748962, 0.05010787770152092, 0.11733544617891312, -0.1775665134191513, 0.05263451859354973, -0.0070406668819487095, 0.0022806681226938963, -0.023879921063780785, -0.09230287373065948, -0.06138605251908302, -0.04622500762343407, 0.018367938697338104, -0.1153922751545906, 0.10258197039365768, 0.12195415794849396, 0.006547479424625635, 0.014344771392643452, 0.09851177781820297, -0.06402990967035294, -0.06750655174255371, 0.08398561179637909, 0.009576413780450821, 0.05647961422801018, 0.06265503168106079, 0.038704920560121536, 0.08125421404838562, -0.012121603824198246, 0.10240460932254791, 0.09783881157636642, 0.09111568331718445, 0.0558304637670517, -0.06725018471479416, -0.07003962248563766, 0.046921610832214355, -0.014511565677821636, -0.029124656692147255, 0.14755989611148834, 0.07801289856433868, 0.015169785358011723, -0.022774588316679, 0.14339227974414825, -0.00325185083784163, -0.029517164453864098, -0.13777358829975128, 0.033879004418849945, -0.03562960773706436, -0.02155386097729206, -0.013112944550812244, -0.16427329182624817, 0.0017893175827339292, 0.12015746533870697, 0.05396591126918793, -0.05968918651342392, -0.02707434445619583, -0.04466408118605614, 0.008015397004783154, -0.006517594214528799, 0.06868155300617218, -0.0013708785409107804, 0.17997924983501434, -0.07524256408214569, -0.003133364487439394, -0.056542713195085526, -0.041638538241386414, -0.022843537852168083, 0.08190679550170898, -0.004063104745000601, 0.014775712974369526, -0.0879654735326767, 0.1047164723277092, -0.030608268454670906, -0.19362273812294006, 0.0771111324429512, -0.07195339351892471, -0.058239784091711044, 0.02382368966937065, 0.008076009340584278, -0.0071427603252232075, 0.03830713406205177, 0.01578819751739502, -0.04814403876662254, 0.08678075671195984, 0.019381674006581306, -0.07990995794534683, 0.008873398415744305, 0.0015740207163617015, -0.11136344820261002, 0.27610671520233154, -0.03976155072450638, 0.03368089348077774, 0.09174124151468277, -0.02210109308362007, -0.1344996839761734, -0.015603830106556416, 0.07541324198246002, -0.0222171600908041, -0.004077962599694729, 0.12329856306314468, 0.010362747125327587, 0.14243793487548828, 0.0796155110001564, -0.09224139899015427, 0.06289111822843552, -0.04326207563281059, -0.0033599422313272953, -0.13677306473255157, 0.009207646362483501, -0.08233079314231873, 0.11568181961774826, 0.12395989149808884, -0.003930804319679737, 0.01387476734817028, -0.046899471431970596, -0.0004685473977588117, 0.0009656891343183815, 0.12710286676883698, -0.002806439297273755, -0.04496215283870697, 0.014765421859920025, -0.12616170942783356, 0.07507386058568954, -0.09089133143424988, -0.049626097083091736, 0.016672348603606224, -0.02861887402832508, -0.003449956187978387, 0.07856545597314835, 0.006545149255543947, 0.004312226548790932, -0.05661899968981743, -0.10308415442705154, 0.03818293660879135, 0.18424373865127563, -0.013954553753137589, -0.02320748381316662 ]
1cedf75b9406833ef6ff00bdee3561fdb0fe841b
# Dataset Card for team-fight-tactics ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/team-fight-tactics - **Point of Contact:** [email protected] ### Dataset Summary team-fight-tactics ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/team-fight-tactics ### Citation Information ``` @misc{ team-fight-tactics, title = { team fight tactics Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/team-fight-tactics } }, url = { https://universe.roboflow.com/object-detection/team-fight-tactics }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/team-fight-tactics
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:15:16+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "team-fight-tactics", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "characters", "1": "Akali", "2": "Blitzcrank", "3": "Braum", "4": "Caitlyn", "5": "Camille", "6": "Cho-Gath", "7": "Darius", "8": "Dr- Mundo", "9": "Ekko", "10": "Ezreal", "11": "Fiora", "12": "Galio", "13": "Gankplank", "14": "Garen", "15": "Graves", "16": "Heimerdinger", "17": "Illaoi", "18": "Janna", "19": "Jayce", "20": "Jhin", "21": "Jinx", "22": "Kai-Sa", "23": "Kassadin", "24": "Katarina", "25": "Kog-Maw", "26": "Leona", "27": "Lissandra", "28": "Lulu", "29": "Lux", "30": "Malzahar", "31": "Miss Fortune", "32": "Orianna", "33": "Poppy", "34": "Quinn", "35": "Samira", "36": "Seraphine", "37": "Shaco", "38": "Singed", "39": "Sion", "40": "Swain", "41": "Tahm Kench", "42": "Talon", "43": "Taric", "44": "Tristana", "45": "Trundle", "46": "Twisted Fate", "47": "Twitch", "48": "Urgot", "49": "Veigar", "50": "Vex", "51": "Vi", "52": "Viktor", "53": "Warwick", "54": "Yone", "55": "Yuumi", "56": "Zac", "57": "Ziggs", "58": "Zilean", "59": "Zyra"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:12+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for team-fight-tactics The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary team-fight-tactics ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for team-fight-tactics\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nteam-fight-tactics", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for team-fight-tactics\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nteam-fight-tactics", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for team-fight-tactics\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nteam-fight-tactics### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.00970502384006977, 0.16501392424106598, -0.007906810380518436, 0.019318079575896263, 0.09335402399301529, 0.001669467892497778, 0.060050249099731445, 0.07782178372144699, -0.00801161490380764, 0.1676834523677826, -0.0132457185536623, 0.06654051691293716, 0.12854009866714478, 0.08182858675718307, -0.012515872716903687, -0.1485353708267212, 0.0599975660443306, -0.07346230000257492, 0.08034518361091614, 0.0702720582485199, 0.0786774605512619, -0.13475246727466583, 0.0834895595908165, -0.017896750941872597, -0.017738211899995804, 0.026750948280096054, -0.061951879411935806, -0.025341853499412537, 0.00695847300812602, 0.03262864425778389, 0.03551836311817169, 0.02751636877655983, 0.05346382036805153, -0.1933276504278183, 0.020291537046432495, 0.09874981641769409, 0.03584989532828331, 0.01682928204536438, 0.15480832755565643, -0.07647722214460373, 0.02018444426357746, -0.1263488382101059, 0.028944632038474083, 0.0243820883333683, -0.10991203039884567, -0.07198729366064072, -0.13429942727088928, 0.05862580984830856, 0.09678785502910614, 0.05449900031089783, -0.02238008938729763, 0.08350273221731186, -0.03330704942345619, 0.051565222442150116, 0.13451901078224182, -0.07490743696689606, -0.044167712330818176, 0.08435648679733276, 0.05866198241710663, 0.0738789439201355, -0.11229179799556732, -0.017048360779881477, 0.010961797088384628, -0.013582688756287098, -0.013372310437262058, -0.03995475545525551, -0.04411929473280907, -0.006711164023727179, -0.10316494107246399, -0.1397658884525299, 0.13618475198745728, 0.059152863919734955, -0.06219250708818436, -0.1409895420074463, -0.0048292251303792, 0.05903340503573418, -0.03389177471399307, -0.011276948265731335, 0.052004069089889526, -0.0074614230543375015, 0.06601119786500931, -0.05898246541619301, -0.10969951748847961, 0.050148673355579376, 0.020579814910888672, 0.02144714817404747, -0.01683560572564602, 0.033796507865190506, 0.026991507038474083, 0.08231014758348465, 0.01971716806292534, -0.10547870397567749, -0.020322270691394806, -0.04353832080960274, -0.058505427092313766, -0.05219760537147522, 0.05535849556326866, -0.12659016251564026, 0.07064160704612732, 0.06433601677417755, -0.052159667015075684, 0.018277063965797424, -0.10998367518186569, 0.008572227321565151, 0.12572859227657318, 0.18108943104743958, -0.09325391799211502, -0.0819242000579834, -0.004558069631457329, 0.04789308086037636, 0.010136590339243412, -0.01733044721186161, -0.024807199835777283, -0.009740680456161499, 0.033172834664583206, 0.04172821715474129, 0.11288698762655258, 0.04026009887456894, -0.08120820671319962, -0.06415610015392303, 0.1509733498096466, -0.10138741880655289, 0.0467536523938179, 0.04901724308729172, -0.06495548039674759, 0.07703154534101486, 0.014140868559479713, 0.025417987257242203, -0.11494281888008118, 0.0605684332549572, -0.026514634490013123, 0.008305244147777557, -0.09304144233465195, -0.10077463090419769, 0.05675864964723587, -0.07818406820297241, -0.08282234519720078, -0.07063546776771545, -0.056715067476034164, -0.09485378116369247, 0.03899966552853584, -0.04467092454433441, 0.005204267334192991, 0.011171847581863403, -0.04157973825931549, -0.0168174859136343, 0.009200300090014935, 0.040684595704078674, -0.056715529412031174, 0.03284604102373123, -0.09673350304365158, 0.03517185151576996, 0.11312007158994675, 0.04177973046898842, -0.09454528242349625, 0.06633917987346649, -0.2018263339996338, 0.13148199021816254, -0.038708146661520004, 0.03857158124446869, -0.1269822120666504, 0.010257930494844913, -0.011015771888196468, -0.030121006071567535, -0.0031811229418963194, 0.14690044522285461, -0.09588591754436493, 0.019456926733255386, 0.05466436967253685, -0.046935439109802246, -0.06139497458934784, 0.045388877391815186, -0.0452788770198822, 0.005638030357658863, 0.08808092027902603, 0.10690892487764359, -0.02227291651070118, -0.13180500268936157, -0.11183994263410568, -0.04760238155722618, -0.05018872395157814, 0.15327851474285126, 0.06538785994052887, -0.037604641169309616, 0.1011563241481781, -0.004794681444764137, -0.004016762133687735, -0.050176091492176056, 0.001268958323635161, -0.037373702973127365, 0.009881445206701756, -0.01040905062109232, -0.08110617846250534, 0.008610975928604603, -0.09787991642951965, 0.008647222071886063, -0.07936713099479675, -0.03626476600766182, 0.016016319394111633, -0.013377159833908081, 0.007243744097650051, -0.035111989825963974, 0.07034584879875183, -0.11261039227247238, -0.00473027816042304, -0.14929503202438354, -0.12346804141998291, 0.062137916684150696, -0.048253290355205536, 0.05099255591630936, -0.06228893622756004, -0.009792761877179146, 0.004723374731838703, 0.03323402255773544, -0.013708117417991161, 0.03963548317551613, -0.025034146383404732, -0.040919020771980286, -0.12355321645736694, -0.052543774247169495, -0.019225290045142174, 0.09732335060834885, -0.12213069945573807, -0.029091637581586838, 0.10965355485677719, 0.1292603760957718, 0.022473245859146118, -0.04046235233545303, 0.0718119740486145, -0.038156211376190186, -0.01522547286003828, -0.07303457707166672, -0.014681529253721237, -0.0020168605260550976, 0.05130354315042496, 0.06962145864963531, -0.1386282593011856, -0.14830173552036285, 0.0804525762796402, 0.03312293440103531, -0.08417212218046188, -0.05921214818954468, -0.049715932458639145, -0.020230960100889206, -0.09431705623865128, -0.041898805648088455, 0.01789337582886219, 0.06287559866905212, 0.07352340966463089, -0.07615949958562851, -0.043414920568466187, 0.014707835391163826, -0.017439523711800575, -0.08155078440904617, 0.07001592218875885, 0.05757598578929901, -0.12407322227954865, 0.09426712989807129, -0.03789856284856796, 0.05719306319952011, 0.08784392476081848, 0.03561575338244438, -0.11198733747005463, 0.01224486343562603, 0.07723024487495422, 0.018018396571278572, 0.08404280245304108, -0.017174500972032547, 0.019064966589212418, 0.08073428273200989, -0.01501394435763359, -0.015091047622263432, -0.08468447625637054, 0.07065238803625107, 0.02462158352136612, -0.03780031576752663, 0.021887054666876793, -0.023944050073623657, 0.09728366136550903, 0.10212849080562592, 0.07368304580450058, 0.10945233702659607, -0.04914829134941101, -0.06633666902780533, -0.09200244396924973, 0.12102759629487991, -0.03117068111896515, -0.250386506319046, -0.07996059954166412, -0.05497896671295166, -0.05508188158273697, -0.00846486072987318, 0.022111419588327408, -0.010972505435347557, -0.0883781835436821, -0.09582576155662537, 0.06975623220205307, 0.05356224253773689, -0.11326952278614044, -0.10409796983003616, 0.03899397701025009, 0.0013244252186268568, -0.08373279124498367, 0.0021631568670272827, 0.025891177356243134, -0.046309944242239, -0.0002111554640578106, 0.03353578969836235, 0.12383431941270828, 0.06412319093942642, -0.017991455271840096, -0.0035056844353675842, -0.00206135050393641, 0.18825657665729523, -0.1483459174633026, 0.11031225323677063, 0.16056236624717712, 0.020472491160035133, 0.07843342423439026, 0.2051268219947815, -0.020878344774246216, -0.015594596974551678, 0.03616367653012276, 0.0827927514910698, -0.04554528743028641, -0.20272475481033325, -0.05773143842816353, -0.04377423971891403, 0.008654835633933544, 0.13138321042060852, 0.03674605116248131, 0.019816668704152107, 0.08273328095674515, -0.11674892157316208, 0.0096411919221282, 0.021182948723435402, 0.08957906067371368, 0.05002373084425926, 0.03931747376918793, 0.038441359996795654, -0.04826771840453148, -0.04396378993988037, 0.08884071558713913, 0.12940813601016998, 0.11120326071977615, -0.08567766845226288, 0.1033816933631897, 0.04110720753669739, 0.039796799421310425, -0.041658174246549606, -0.001556042698211968, -0.018259387463331223, 0.04796324670314789, -0.005128053016960621, -0.08764245361089706, 0.012522732838988304, 0.08227682113647461, 0.14695358276367188, -0.010789829306304455, -0.005083639640361071, -0.042729053646326065, 0.07182133942842484, 0.2789759337902069, 0.014898337423801422, -0.19861018657684326, 0.014885556884109974, 0.03684995695948601, -0.00034795451210811734, -0.12391018122434616, -0.04488025978207588, 0.07235382497310638, -0.16592049598693848, 0.0611661821603775, -0.028271958231925964, 0.10950088500976562, -0.12657693028450012, -0.03830084949731827, 0.0567292757332325, 0.04805546998977661, -0.025231344625353813, 0.07131394743919373, -0.09285348653793335, 0.06872443109750748, 0.031121116131544113, 0.036491625010967255, -0.07944079488515854, 0.04008932039141655, 0.007570668123662472, -0.03332844376564026, 0.14207512140274048, -0.01839842088520527, 0.031523339450359344, -0.12127777189016342, -0.11087864637374878, -0.015249252319335938, 0.058119598776102066, -0.07002273201942444, 0.11783954501152039, 0.009819884784519672, -0.027630284428596497, -0.07019075751304626, -0.037863992154598236, -0.07879437506198883, -0.17058725655078888, 0.03585118055343628, -0.03553558886051178, 0.015320363454520702, -0.016888367012143135, 0.019058100879192352, -0.022801607847213745, 0.1382141262292862, -0.03405555710196495, -0.09179025143384933, -0.133573517203331, 0.04352471977472305, 0.10056819021701813, -0.01270728837698698, -0.0041434383019804955, -0.09452378749847412, 0.17657403647899628, -0.027563538402318954, -0.0667913556098938, 0.018267041072249413, -0.0657794326543808, -0.11352120339870453, -0.059213340282440186, 0.10633871704339981, 0.047047585248947144, -0.0034514323342591524, 0.00561418104916811, 0.04595354571938515, -0.009358174167573452, -0.040953099727630615, 0.027474280446767807, 0.08906339108943939, 0.1357523649930954, 0.13714128732681274, 0.00006470268272096291, -0.15109293162822723, -0.12291741371154785, -0.00938920397311449, 0.026362372562289238, 0.09856779128313065, -0.0661650151014328, 0.10184155404567719, 0.03175639733672142, -0.07782131433486938, -0.22547011077404022, 0.07577924430370331, 0.07445763051509857, -0.0019887357484549284, -0.0007443695212714374, -0.1274501234292984, 0.1453244835138321, 0.04139157757163048, -0.0024680772330611944, 0.08380093425512314, -0.26847872138023376, -0.07479888945817947, -0.02368530072271824, 0.020816415548324585, -0.2240896075963974, -0.16462554037570953, -0.046351056545972824, -0.05493003875017166, -0.16881391406059265, 0.0521807000041008, 0.011099922470748425, 0.04532000049948692, 0.04088294506072998, 0.05740489810705185, 0.05867554992437363, -0.0419568195939064, 0.10791835933923721, 0.01891600899398327, 0.041337303817272186, -0.07358057051897049, -0.09536635130643845, 0.02344772219657898, -0.0965929925441742, 0.14709623157978058, 0.06884018331766129, 0.0245802141726017, -0.053791578859090805, -0.021009104326367378, -0.052315063774585724, 0.0811619684100151, -0.03140843287110329, -0.03563358262181282, -0.09971637278795242, 0.04349476844072342, 0.12280087172985077, 0.02904854714870453, 0.0729176253080368, -0.04595291242003441, -0.0076966132037341595, 0.1429724544286728, 0.11952250450849533, 0.008787768892943859, -0.12555211782455444, -0.03664688766002655, 0.0032490133307874203, 0.03193969279527664, -0.08903723210096359, 0.04104297235608101, 0.09487231075763702, 0.024057485163211823, 0.09994260221719742, -0.014400186017155647, -0.10051968693733215, 0.0028824906330555677, 0.042128950357437134, -0.0792006179690361, -0.13233785331249237, 0.03525285795331001, 0.09004374593496323, -0.12571598589420319, -0.1051873192191124, 0.10695165395736694, 0.00949572492390871, -0.028900902718305588, 0.002581134671345353, 0.07716801017522812, 0.04644450545310974, 0.05716737359762192, 0.025134390220046043, 0.03660646453499794, -0.07184023410081863, 0.12245606631040573, 0.14509254693984985, -0.12153369933366776, -0.0033675413578748703, 0.10305921733379364, -0.044322993606328964, -0.01862429454922676, -0.007892066612839699, 0.02619834430515766, -0.017832310870289803, -0.02153797633945942, 0.029680414125323296, -0.07106789946556091, 0.04299837350845337, 0.08272604644298553, -0.004290806129574776, 0.058779407292604446, 0.035893648862838745, -0.0023130241315811872, -0.12687218189239502, 0.1273895651102066, 0.04237813875079155, 0.05059925839304924, -0.09430303424596786, 0.0006467566126957536, 0.021551091223955154, 0.016254179179668427, 0.011765696108341217, -0.05195821821689606, -0.07979507744312286, 0.007480424828827381, -0.061813633888959885, 0.09354022145271301, -0.09821126610040665, -0.0016748138004913926, -0.019996657967567444, 0.0054086679592728615, -0.012644381262362003, 0.03081575222313404, -0.04702848941087723, -0.0815337523818016, -0.044887181371450424, 0.13392554223537445, -0.13598504662513733, -0.017796356230974197, 0.05610731244087219, -0.08355341106653214, 0.05404553934931755, 0.011128225363790989, -0.03438805788755417, -0.09714773297309875, -0.18091291189193726, -0.05610240250825882, 0.02429240569472313, 0.06728871166706085, 0.043818965554237366, -0.09152358770370483, 0.045666832476854324, 0.00116642692591995, -0.09782224148511887, -0.023162590339779854, -0.023259377107024193, -0.1140349730849266, 0.041757624596357346, -0.07321646064519882, -0.030539406463503838, -0.04258850961923599, 0.12760022282600403, 0.06132027879357338, -0.002371111186221242, 0.07722695916891098, -0.04226633533835411, 0.08849477767944336, -0.14806805551052094, -0.038249898701906204, -0.01869850605726242, -0.02164975367486477, -0.06575142592191696, 0.0025495109148323536, 0.07333789020776749, -0.017671626061201096, 0.1249249279499054, 0.12039966881275177, 0.040575914084911346, 0.04047701507806778, 0.002540560672059655, 0.04881308600306511, 0.06396906077861786, -0.026221223175525665, -0.01705627329647541, -0.016513323411345482, 0.07326792925596237, 0.008414486423134804, 0.010440394282341003, 0.06439613550901413, 0.07033966481685638, 0.2324848622083664, 0.13874638080596924, 0.021386150270700455, 0.06489119678735733, -0.08478757739067078, -0.061946455389261246, 0.10384231060743332, -0.0548577681183815, 0.07059801369905472, -0.10368338972330093, 0.025847751647233963, 0.09831459075212479, -0.1474013477563858, 0.07722706347703934, -0.02482708916068077, -0.00043310524779371917, -0.016391852870583534, -0.11402751505374908, -0.05909476429224014, -0.01885482668876648, 0.0010659205727279186, -0.11567438393831253, 0.0877942442893982, 0.13450117409229279, 0.0013286115135997534, 0.012035399675369263, 0.09809928387403488, -0.055884573608636856, -0.09241491556167603, 0.0771547481417656, 0.01308447401970625, 0.06466605514287949, 0.039300329983234406, 0.040102217346429825, 0.09203673899173737, 0.024139096960425377, 0.08466842770576477, 0.09296809881925583, 0.08781403303146362, 0.022933650761842728, -0.07026924937963486, -0.07482577115297318, 0.029007602483034134, -0.009662163443863392, -0.013559579849243164, 0.14512628316879272, 0.0706992968916893, 0.017293905839323997, -0.019163865596055984, 0.15803071856498718, -0.016063090413808823, -0.04592692106962204, -0.14427106082439423, 0.03787687420845032, -0.046816401183605194, -0.0133835943415761, -0.010586952790617943, -0.15322117507457733, 0.005586497951298952, 0.14060474932193756, 0.07671646773815155, -0.05789068341255188, -0.017137104645371437, -0.01037088967859745, 0.005219810642302036, -0.023542184382677078, 0.0341683104634285, 0.026963872835040092, 0.20915775001049042, -0.06072942540049553, 0.02158518135547638, -0.037559524178504944, -0.03133045509457588, -0.0531497523188591, 0.07859949767589569, -0.009697696194052696, 0.01887080818414688, -0.07992342114448547, 0.11915095895528793, -0.0032177367247641087, -0.18730022013187408, 0.04742344468832016, -0.07585429400205612, -0.08950478583574295, 0.008343457244336605, -0.0316157191991806, 0.005956832319498062, 0.037275489419698715, 0.0046736132353544235, -0.059009913355112076, 0.09654238820075989, 0.015551815740764141, -0.05069968104362488, -0.01672798953950405, 0.016313735395669937, -0.08571039140224457, 0.264671266078949, -0.02960936166346073, 0.03223857656121254, 0.08022475987672806, -0.02265162579715252, -0.1334639936685562, -0.03577010706067085, 0.08156632632017136, -0.04884975776076317, 0.026654569432139397, 0.109108105301857, -0.00031363865127786994, 0.13807551562786102, 0.08484840393066406, -0.08171247690916061, 0.054528284817934036, 0.0006973387789912522, 0.02781457081437111, -0.1277666538953781, 0.025619985535740852, -0.09675523638725281, 0.11461763083934784, 0.13945019245147705, -0.005459828767925501, 0.0015729055739939213, -0.0374288447201252, 0.008854847401380539, 0.009846163913607597, 0.1084461435675621, 0.001883061369881034, -0.07060907036066055, 0.019744111225008965, -0.1395636349916458, 0.07843130826950073, -0.125662699341774, -0.0603148490190506, 0.039939090609550476, -0.016510484740138054, -0.004497517365962267, 0.07763707637786865, 0.0341060645878315, 0.014354239217936993, -0.054305411875247955, -0.10509917885065079, 0.027156421914696693, 0.16904954612255096, -0.013460029847919941, -0.02598363533616066 ]
89bb824ede8af3d8df4319ba191ad6f21b15f211
# Dataset Card for valentines-chocolate ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/valentines-chocolate - **Point of Contact:** [email protected] ### Dataset Summary valentines-chocolate ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/valentines-chocolate ### Citation Information ``` @misc{ valentines-chocolate, title = { valentines chocolate Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/valentines-chocolate } }, url = { https://universe.roboflow.com/object-detection/valentines-chocolate }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/valentines-chocolate
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:15:30+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "valentines-chocolate", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "valentines-chocolate", "1": "sees-dark-almond-nougat", "2": "sees-dark-almonds", "3": "sees-dark-bordeaux", "4": "sees-dark-caramel-patties", "5": "sees-dark-chocolate-buttercream", "6": "sees-dark-marzipan", "7": "sees-dark-normandie", "8": "sees-dark-scotchmallow", "9": "sees-dark-walnut-square", "10": "sees-milk-almond-caramel", "11": "sees-milk-almonds", "12": "sees-milk-beverly", "13": "sees-milk-bordeaux", "14": "sees-milk-butterscotch-square", "15": "sees-milk-california-brittle", "16": "sees-milk-chelsea", "17": "sees-milk-chocolate-buttercream", "18": "sees-milk-coconut-cream", "19": "sees-milk-mayfair", "20": "sees-milk-mocha", "21": "sees-milk-molasses-chips", "22": "sees-milk-rum-nougat"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:15:50+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for valentines-chocolate The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary valentines-chocolate ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for valentines-chocolate\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nvalentines-chocolate", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for valentines-chocolate\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nvalentines-chocolate", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for valentines-chocolate\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nvalentines-chocolate### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.012842891737818718, 0.18249806761741638, -0.007781791500747204, 0.02224045805633068, 0.09694558382034302, -0.003814565483480692, 0.061662983149290085, 0.0798642486333847, -0.009943976067006588, 0.1729506403207779, -0.00013601976388599724, 0.05593949183821678, 0.10713399201631546, 0.09362456947565079, -0.014738444238901138, -0.1645142138004303, 0.06469477713108063, -0.0669361799955368, 0.0699547678232193, 0.07368031144142151, 0.08185303211212158, -0.1355425864458084, 0.07881204038858414, -0.043535325676202774, -0.013555808924138546, 0.03753238916397095, -0.06100796163082123, -0.038783296942710876, -0.0029035077895969152, 0.048772186040878296, 0.01403866522014141, 0.027163054794073105, 0.036967553198337555, -0.2051762342453003, 0.02204396389424801, 0.1053876131772995, 0.02567349001765251, 0.021037260070443153, 0.15020985901355743, -0.09179683029651642, 0.07631323486566544, -0.12486284226179123, 0.03764764219522476, 0.017614400014281273, -0.11710497736930847, -0.10684052854776382, -0.1176416277885437, 0.06392546743154526, 0.09958804398775101, 0.05600254610180855, -0.021802358329296112, 0.08469890803098679, -0.02019314467906952, 0.058337848633527756, 0.12152034789323807, -0.04640217497944832, -0.046711284667253494, 0.07839181274175644, 0.0439058393239975, 0.10253702104091644, -0.11607415229082108, -0.014971693977713585, 0.012314323335886002, -0.02304135449230671, 0.007219047751277685, -0.04699171707034111, -0.05754164978861809, 0.00010254338849335909, -0.1021668016910553, -0.15228460729122162, 0.1471533626317978, 0.05307977274060249, -0.051571208983659744, -0.13870148360729218, -0.0030756897758692503, 0.06227713078260422, -0.033769842237234116, -0.004819854162633419, 0.046250179409980774, -0.002716142451390624, 0.06225571036338806, -0.05737701803445816, -0.09978368878364563, 0.05192223936319351, 0.04019739478826523, 0.027887800708413124, -0.023804957047104836, 0.03415916487574577, 0.02004062943160534, 0.07170657813549042, 0.006280936766415834, -0.11529256403446198, -0.0239079799503088, -0.04325359687209129, -0.05024316534399986, -0.046053554862737656, 0.052431896328926086, -0.13760146498680115, 0.07163391262292862, 0.0793776735663414, -0.07021959125995636, 0.02756248228251934, -0.11821594089269638, 0.004189890809357166, 0.11344370990991592, 0.1765381097793579, -0.07734569907188416, -0.0812331810593605, -0.004067058674991131, 0.044070083647966385, 0.02572302706539631, -0.029008809477090836, -0.02245577983558178, 0.003094018902629614, 0.02704680524766445, 0.04676060751080513, 0.11665443331003189, 0.03737475723028183, -0.07150224596261978, -0.06536564230918884, 0.13923901319503784, -0.09671088308095932, 0.05019095540046692, 0.06150642782449722, -0.04875178262591362, 0.07741939276456833, 0.007768330629914999, 0.012270491570234299, -0.11169160902500153, 0.09496685862541199, -0.026121221482753754, 0.014371814206242561, -0.09000721573829651, -0.08970003575086594, 0.05977947637438774, -0.07129035145044327, -0.07761490345001221, -0.07750878483057022, -0.03501459211111069, -0.0954376757144928, 0.03622547537088394, -0.04545699805021286, 0.02029283158481121, 0.015835938975214958, -0.041940320283174515, -0.014276460744440556, 0.011966735124588013, 0.05161808803677559, -0.05607563257217407, 0.03730461746454239, -0.09333062916994095, 0.035803452134132385, 0.11406303197145462, 0.04197124391794205, -0.10486283898353577, 0.06121961027383804, -0.18591491878032684, 0.13518573343753815, -0.05780096352100372, 0.029413830488920212, -0.12909525632858276, 0.01170486118644476, -0.009941326454281807, -0.03524181991815567, -0.005633247084915638, 0.13885755836963654, -0.09623771905899048, 0.013892767950892448, 0.05540543794631958, -0.0628790631890297, -0.0542600117623806, 0.037500374019145966, -0.045768801122903824, -0.018063534051179886, 0.08580856770277023, 0.12775570154190063, -0.030634678900241852, -0.11348856985569, -0.11018940806388855, -0.04183873161673546, -0.03189338743686676, 0.1601572334766388, 0.0764315277338028, -0.039795998483896255, 0.10220472514629364, -0.0067443945445120335, -0.014937084168195724, -0.05147811025381088, 0.013185893185436726, -0.03608880192041397, 0.009858322329819202, -0.004463633988052607, -0.09037879854440689, 0.024954022839665413, -0.10264483094215393, -0.00039064601878635585, -0.08576561510562897, -0.04050615057349205, 0.01468919962644577, -0.030418477952480316, 0.01590833067893982, -0.025524068623781204, 0.09812517464160919, -0.10610881447792053, -0.0010406834771856666, -0.15860190987586975, -0.11535630375146866, 0.05604859068989754, -0.046329986304044724, 0.03755306825041771, -0.08356491476297379, -0.015800198540091515, 0.019273629412055016, 0.03071896731853485, -0.012548808008432388, 0.03925413265824318, -0.019579920917749405, -0.0320720449090004, -0.12712198495864868, -0.05063692107796669, -0.029923686757683754, 0.10092311352491379, -0.11723584681749344, -0.032985102385282516, 0.13712389767169952, 0.13456808030605316, 0.03579817712306976, -0.04839611425995827, 0.08147285133600235, -0.022755326703190804, -0.019519485533237457, -0.0854882150888443, -0.009153975173830986, -0.005096948705613613, 0.04173189029097557, 0.07409047335386276, -0.15861865878105164, -0.14798074960708618, 0.08234730362892151, 0.034052155911922455, -0.08130919188261032, -0.06493377685546875, -0.045493993908166885, -0.009948648512363434, -0.09873384982347488, -0.029875565320253372, 0.023152349516749382, 0.060613002628088, 0.0781785100698471, -0.07431226968765259, -0.036389824002981186, 0.013631440699100494, -0.013066152110695839, -0.08457352221012115, 0.07772626727819443, 0.060949794948101044, -0.1193276196718216, 0.10116606950759888, -0.021059194579720497, 0.044011496007442474, 0.08476151525974274, 0.024057962000370026, -0.12014645338058472, 0.020471032708883286, 0.0653495267033577, 0.026685962453484535, 0.07838168740272522, -0.023484839126467705, 0.02566797100007534, 0.081816665828228, -0.026911921799182892, -0.022007567808032036, -0.0755031555891037, 0.07282885909080505, 0.036556828767061234, -0.035112831741571426, 0.029175246134400368, -0.012921181507408619, 0.07993367314338684, 0.09246427565813065, 0.056224457919597626, 0.11699783802032471, -0.04922260716557503, -0.061336666345596313, -0.09276598691940308, 0.12712466716766357, -0.024431955069303513, -0.25800541043281555, -0.08095355331897736, -0.06041386350989342, -0.05501328781247139, -0.008302323520183563, 0.04002481326460838, -0.0021324725821614265, -0.09239009022712708, -0.1064668744802475, 0.06328573822975159, 0.06369836628437042, -0.10771390795707703, -0.1176823079586029, 0.04332181438803673, 0.009486475959420204, -0.07618356496095657, 0.004216714296489954, 0.02542828768491745, -0.03430286794900894, 0.00808609277009964, 0.0358627587556839, 0.1289978325366974, 0.053119536489248276, -0.01075044460594654, 0.002333663869649172, -0.0022603829856961966, 0.18701718747615814, -0.1490931510925293, 0.09435246884822845, 0.16246297955513, 0.008805989287793636, 0.07541843503713608, 0.20138360559940338, -0.01728305034339428, -0.01850835606455803, 0.027518942952156067, 0.07704011350870132, -0.0594617985188961, -0.1934201717376709, -0.06817935407161713, -0.04702502861618996, 0.012028094381093979, 0.13988223671913147, 0.035910893231630325, 0.016553958877921104, 0.08721187710762024, -0.12099912017583847, 0.01745024137198925, 0.01612638309597969, 0.10361142456531525, 0.06909146159887314, 0.045532651245594025, 0.041943471878767014, -0.049003761261701584, -0.03308776766061783, 0.09725217521190643, 0.08669649064540863, 0.11613115668296814, -0.09645583480596542, 0.09557528793811798, 0.033475231379270554, 0.023320309817790985, -0.034142762422561646, -0.009226996451616287, -0.026773324236273766, 0.056421563029289246, -0.00833296962082386, -0.10719562321901321, 0.005092578940093517, 0.08718835562467575, 0.13335204124450684, -0.019346028566360474, -0.007438996806740761, -0.04505355283617973, 0.06899494677782059, 0.2399437427520752, 0.004169207997620106, -0.20363137125968933, 0.013148943893611431, 0.03980284556746483, 0.016195600852370262, -0.11846019327640533, -0.04350056126713753, 0.08206980675458908, -0.16491909325122833, 0.0637083500623703, -0.026743892580270767, 0.11263448745012283, -0.12840652465820312, -0.03404157981276512, 0.05904433876276016, 0.045216258615255356, -0.023471517488360405, 0.08527731895446777, -0.10868579894304276, 0.08199678361415863, 0.03310135006904602, 0.026516105979681015, -0.07854540646076202, 0.03684313967823982, 0.006268426310271025, -0.0047033098526299, 0.14459635317325592, -0.01929403282701969, -0.002479999093338847, -0.11131294816732407, -0.10617826879024506, -0.013566019013524055, 0.04956573247909546, -0.075020432472229, 0.10136041790246964, 0.01112338062375784, -0.034517738968133926, -0.07913625985383987, -0.03834867104887962, -0.06913789361715317, -0.19650088250637054, 0.03724426031112671, -0.011488215066492558, 0.023426633328199387, -0.016771404072642326, 0.015499714761972427, 0.025512991473078728, 0.12386082112789154, -0.021317943930625916, -0.09068914502859116, -0.14033396542072296, 0.06177767366170883, 0.10776954144239426, -0.017839180305600166, -0.01872291974723339, -0.09814877063035965, 0.1871323138475418, -0.028641531243920326, -0.06874330341815948, 0.01760193519294262, -0.0695066750049591, -0.11837058514356613, -0.06218884512782097, 0.11262284219264984, 0.021903129294514656, -0.0052576432935893536, 0.004675406031310558, 0.0654987022280693, 0.003035166999325156, -0.04541824012994766, 0.016952360048890114, 0.11277570575475693, 0.13876377046108246, 0.124329574406147, 0.007370046339929104, -0.15247929096221924, -0.12829239666461945, -0.008024277165532112, 0.021034004166722298, 0.10082962363958359, -0.07213246077299118, 0.12108097970485687, 0.03008684515953064, -0.08286392688751221, -0.21718651056289673, 0.07093486189842224, 0.06919869035482407, -0.010469653643667698, 0.0006867945194244385, -0.136876180768013, 0.1380426436662674, 0.029083862900733948, 0.002835633931681514, 0.06251999735832214, -0.26855820417404175, -0.06953281164169312, -0.027480654418468475, 0.020940382033586502, -0.24814388155937195, -0.16614888608455658, -0.06240696460008621, -0.06204179674386978, -0.1487126350402832, 0.05196741595864296, 0.012994090095162392, 0.041779376566410065, 0.0379461795091629, 0.026220260187983513, 0.06796222925186157, -0.041802771389484406, 0.11406463384628296, 0.014276979491114616, 0.03480428084731102, -0.07676616311073303, -0.07933736592531204, 0.015494279563426971, -0.09306851029396057, 0.13303010165691376, 0.037324171513319016, 0.02743452601134777, -0.04864680767059326, -0.02254744991660118, -0.03253035247325897, 0.08801499009132385, -0.03136992081999779, -0.03326857462525368, -0.09898890554904938, 0.03533677011728287, 0.135755717754364, 0.02704346925020218, 0.07303422689437866, -0.04841470345854759, -0.006830375641584396, 0.1572721302509308, 0.10205347836017609, 0.0032942744437605143, -0.15096311271190643, -0.046164803206920624, 0.004977670963853598, 0.04099450260400772, -0.12147840112447739, 0.03754187747836113, 0.08738785982131958, 0.018858391791582108, 0.10270514339208603, -0.017780346795916557, -0.09616904705762863, 0.002730409847572446, 0.04545670375227928, -0.10113974660634995, -0.10720264166593552, 0.019877256825566292, 0.10922195017337799, -0.10930969566106796, -0.13063696026802063, 0.10958407074213028, 0.0017723665805533528, -0.0202382430434227, 0.000809527060482651, 0.07200393825769424, 0.06208118796348572, 0.05321848765015602, 0.014537908136844635, 0.0392012894153595, -0.07005798071622849, 0.10508467257022858, 0.15104630589485168, -0.15112169086933136, 0.0016256622038781643, 0.11590540409088135, -0.04908037558197975, -0.022908804938197136, -0.014997659251093864, 0.03214338421821594, -0.019728275015950203, -0.02953755483031273, 0.033632200211286545, -0.046898432075977325, 0.04122156277298927, 0.09049606323242188, 0.008366228081285954, 0.05076686665415764, 0.025178205221891403, -0.02045850269496441, -0.13658379018306732, 0.13256435096263885, 0.03709983080625534, 0.050313014537096024, -0.08616447448730469, 0.004417811520397663, 0.034810446202754974, -0.004505301360040903, 0.012162938714027405, -0.05880355089902878, -0.07308489084243774, 0.0008865843410603702, -0.040875669568777084, 0.10824261605739594, -0.0906388983130455, -0.004782717674970627, -0.018849998712539673, 0.004731203429400921, -0.011448205448687077, 0.03429489955306053, -0.04603734239935875, -0.08104570209980011, -0.05243964120745659, 0.13477195799350739, -0.15373040735721588, -0.020777055993676186, 0.058041855692863464, -0.08978699892759323, 0.05832979828119278, 0.008533925749361515, -0.04290380701422691, -0.09429562836885452, -0.19088660180568695, -0.04209483787417412, 0.027086526155471802, 0.06801319867372513, 0.0343172512948513, -0.08513318747282028, 0.05460027977824211, -0.00004119832374271937, -0.0988922119140625, -0.015464265830814838, -0.015353623777627945, -0.11919853091239929, 0.03681908920407295, -0.07324102520942688, -0.03797166422009468, -0.03389570489525795, 0.13160574436187744, 0.05664493516087532, 0.000004209023700241232, 0.08740989863872528, -0.054407790303230286, 0.0979015901684761, -0.13382497429847717, -0.03596409782767296, -0.012567494064569473, -0.02764614298939705, -0.10453984886407852, 0.002055798890069127, 0.07475438714027405, -0.02731163240969181, 0.1263856440782547, 0.13324148952960968, 0.05287032574415207, 0.04805399850010872, -0.002335044788196683, 0.08888787031173706, 0.06400639563798904, -0.0017364316154271364, -0.008446253836154938, -0.012431167997419834, 0.06896408647298813, 0.008790360763669014, 0.02081446349620819, 0.09057100117206573, 0.04759378731250763, 0.24401307106018066, 0.13131240010261536, 0.014745701104402542, 0.04460735246539116, -0.07133536040782928, -0.045028217136859894, 0.10152583569288254, -0.03995847329497337, 0.08005810528993607, -0.0995311290025711, 0.037662822753190994, 0.0869143158197403, -0.15101957321166992, 0.06673895567655563, -0.013895123265683651, -0.004964910447597504, -0.0274274330586195, -0.1034083217382431, -0.06690029799938202, -0.02873263508081436, 0.0029473458416759968, -0.11594122648239136, 0.09351789951324463, 0.1291491836309433, -0.0033655508887022734, 0.01117289811372757, 0.09311346709728241, -0.05416928604245186, -0.08558526635169983, 0.07816336303949356, 0.01631763018667698, 0.05570434406399727, 0.04663669690489769, 0.049270763993263245, 0.086072638630867, -0.001668779645115137, 0.0725039541721344, 0.09728262573480606, 0.11027085781097412, 0.025562437251210213, -0.07764259725809097, -0.07461773604154587, 0.03463546186685562, -0.01570490188896656, -0.013103650882840157, 0.1654619574546814, 0.07727213203907013, 0.015260442160069942, -0.01991228014230728, 0.17876878380775452, -0.012631876394152641, -0.030982010066509247, -0.14354290068149567, 0.0498502179980278, -0.039935119450092316, -0.009772375226020813, -0.012032859958708286, -0.14576758444309235, 0.004692666698247194, 0.12488195300102234, 0.06806433200836182, -0.03984902799129486, -0.012056846171617508, -0.015677645802497864, 0.007196838967502117, -0.01907605491578579, 0.03674684092402458, 0.015130072832107544, 0.1931363195180893, -0.057636041194200516, 0.011785040609538555, -0.04811323434114456, -0.033577460795640945, -0.06989086419343948, 0.08957741409540176, -0.014519733376801014, -0.007852314040064812, -0.07362089306116104, 0.12252563238143921, -0.008114400319755077, -0.189253032207489, 0.05895781144499779, -0.09632951766252518, -0.08435839414596558, 0.007300408091396093, -0.017908886075019836, 0.023483756929636, 0.028926720842719078, 0.006232790648937225, -0.06957942247390747, 0.0888385996222496, 0.025753917172551155, -0.07068169116973877, -0.018265318125486374, 0.0035174391232430935, -0.10628341883420944, 0.2656419277191162, -0.02892591990530491, 0.04236416146159172, 0.0819597840309143, -0.018484782427549362, -0.1334124058485031, -0.029006734490394592, 0.08981131762266159, -0.05147930234670639, 0.03401809558272362, 0.11357323080301285, -0.006551737897098064, 0.15331411361694336, 0.08442539721727371, -0.08006812632083893, 0.058170974254608154, -0.014146963134407997, 0.02050122618675232, -0.11384958028793335, 0.016013840213418007, -0.09932002425193787, 0.11019347608089447, 0.1430434286594391, -0.008817256428301334, -0.016020942479372025, -0.03826256841421127, 0.015316590666770935, 0.0063508800230920315, 0.08720362186431885, 0.01108410581946373, -0.05833742767572403, 0.012807205319404602, -0.12600311636924744, 0.08815277367830276, -0.13756833970546722, -0.055485066026449203, 0.03724949061870575, -0.011543991044163704, -0.0005948481848463416, 0.0800015851855278, 0.03103332594037056, 0.0017687720246613026, -0.060716304928064346, -0.10744383186101913, 0.03528925031423569, 0.16137723624706268, -0.009980662725865841, -0.020565060898661613 ]
ce7718b3ba2d133188282d42683f142b5eab0c95
# Dataset Card for asbestos ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/asbestos - **Point of Contact:** [email protected] ### Dataset Summary asbestos ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/asbestos ### Citation Information ``` @misc{ asbestos, title = { asbestos Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/asbestos } }, url = { https://universe.roboflow.com/object-detection/asbestos }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/asbestos
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:15:51+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "asbestos", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "asbestos", "1": "thick-dark-mark", "2": "thick-light-mark", "3": "thin-dark-mark", "4": "thin-light-mark"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:17+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for asbestos The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary asbestos ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for asbestos\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nasbestos", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for asbestos\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nasbestos", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 21, 22, 9, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for asbestos\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nasbestos### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.019235296174883842, 0.16608484089374542, -0.008657935075461864, 0.02641896717250347, 0.11967425793409348, -0.0076331039890646935, 0.07395920157432556, 0.07337155193090439, 0.026754576712846756, 0.1585722714662552, -0.022635476663708687, 0.059086959809064865, 0.13039274513721466, 0.10628833621740341, -0.021888796240091324, -0.14429499208927155, 0.05290363356471062, -0.07123034447431564, 0.049351971596479416, 0.06351590901613235, 0.07175474613904953, -0.13275927305221558, 0.09128859639167786, -0.03928963467478752, -0.04026740789413452, 0.02227969840168953, -0.01932644657790661, -0.04791992902755737, 0.01282211672514677, 0.020487891510128975, 0.04527606442570686, 0.005698844790458679, 0.046305157244205475, -0.20140928030014038, 0.027552513405680656, 0.11049900203943253, 0.013173065148293972, 0.04164371266961098, 0.12662525475025177, -0.09988412261009216, 0.023419111967086792, -0.14782890677452087, 0.022849639877676964, 0.017118418589234352, -0.12270499765872955, -0.06261085718870163, -0.1272648274898529, 0.021407848224043846, 0.10506123304367065, 0.06056501716375351, -0.010355114005506039, 0.0462929792702198, 0.007198310922831297, 0.05721162632107735, 0.11948443204164505, -0.0850767269730568, -0.06559878587722778, 0.07950855791568756, 0.012133410200476646, 0.12055327743291855, -0.12381874024868011, 0.0018866760656237602, -0.0032359363976866007, -0.028514713048934937, 0.013131760992109776, -0.06556806713342667, -0.03558570519089699, 0.005873202811926603, -0.09310105443000793, -0.12238240987062454, 0.15679024159908295, 0.0515417605638504, -0.04737529158592224, -0.0913240909576416, -0.034177716821432114, 0.031257037073373795, -0.017941510304808617, -0.010247633792459965, 0.04590926691889763, 0.01967046968638897, 0.06944051384925842, -0.06117246299982071, -0.11588553339242935, 0.059842076152563095, -0.004024171736091375, 0.06068882718682289, -0.045618314296007156, 0.046989504247903824, 0.01616925559937954, 0.07167422771453857, 0.015453316271305084, -0.12735269963741302, -0.028749549761414528, -0.03929206356406212, -0.07741819322109222, -0.035066451877355576, 0.05820528417825699, -0.1157475933432579, 0.06388934701681137, 0.06929586827754974, -0.07204485684633255, 0.03152281790971756, -0.10585816949605942, 0.023593485355377197, 0.08967231214046478, 0.18805046379566193, -0.06725563108921051, -0.08941097557544708, 0.005976167041808367, 0.025463765487074852, 0.040123142302036285, -0.05193481966853142, -0.036084018647670746, -0.0140166524797678, 0.010447087697684765, 0.03163858503103256, 0.10397274792194366, 0.010548930615186691, -0.06921941041946411, -0.051631856709718704, 0.08586229383945465, -0.11457617580890656, 0.059814877808094025, 0.04214309900999069, -0.011183430440723896, 0.08311029523611069, 0.014920433051884174, 0.026918169111013412, -0.09059566259384155, 0.0630536749958992, -0.045128174126148224, 0.0351400226354599, -0.09149110317230225, -0.06057513505220413, 0.04228099063038826, -0.07939170300960541, -0.08466475456953049, -0.09011974185705185, -0.033736683428287506, -0.08823514729738235, 0.04038873314857483, -0.04045632854104042, 0.03488113731145859, 0.017545487731695175, -0.040705665946006775, -0.007610134780406952, 0.022493531927466393, 0.022154206410050392, -0.052040670067071915, 0.024578062817454338, -0.09200618416070938, 0.027922673150897026, 0.06617961078882217, 0.025509726256132126, -0.07832872122526169, 0.05959353968501091, -0.16198231279850006, 0.1250447779893875, -0.03482704982161522, 0.04517064616084099, -0.12403685599565506, 0.029288360849022865, -0.03841405734419823, -0.05205120891332626, 0.008442939259111881, 0.12109479308128357, -0.10739544779062271, 0.0236221794039011, 0.06445638090372086, -0.05543551221489906, -0.04677977040410042, 0.0380338653922081, -0.04119624197483063, 0.006520644761621952, 0.07459121197462082, 0.09825526922941208, -0.011459320783615112, -0.11566529422998428, -0.1300303339958191, -0.05255284160375595, -0.05000302940607071, 0.14703305065631866, 0.06590015441179276, -0.03366931527853012, 0.06975264847278595, -0.007767403498291969, -0.03206882253289223, -0.023457268252968788, 0.023107802495360374, -0.04552159830927849, 0.008012915961444378, 0.01286238618195057, -0.06986553966999054, 0.015366618521511555, -0.1106950044631958, 0.015528779476881027, -0.08068124949932098, -0.0734601840376854, 0.004155355971306562, -0.02840437740087509, 0.027895387262105942, -0.03816366568207741, 0.09076308459043503, -0.10403772443532944, -0.01355549693107605, -0.138779878616333, -0.10909543931484222, 0.06360988318920135, 0.047645505517721176, 0.03871458023786545, -0.07856947928667068, 0.0012779851676896214, 0.017406854778528214, 0.03665059432387352, -0.009436119347810745, 0.04042990505695343, -0.024043992161750793, -0.02563045173883438, -0.13580720126628876, -0.02097347006201744, -0.028639836236834526, 0.1247660219669342, -0.12025332450866699, -0.02211984060704708, 0.15076369047164917, 0.11504168808460236, 0.03370720148086548, -0.04495009407401085, 0.04929979145526886, -0.02452346310019493, -0.04316752403974533, -0.078831747174263, -0.018603136762976646, 0.00319475750438869, 0.03562160208821297, 0.058039288967847824, -0.19950415194034576, -0.14161670207977295, 0.07197309285402298, 0.00584100466221571, -0.0699082687497139, -0.07569629698991776, -0.04749363660812378, -0.004066368564963341, -0.10783199965953827, -0.038590606302022934, 0.07019907236099243, 0.050005216151475906, 0.06918390840291977, -0.0592007115483284, -0.029295191168785095, 0.022044749930500984, -0.025318771600723267, -0.08474115282297134, 0.022886201739311218, 0.04542779549956322, -0.1068180501461029, 0.09539351612329483, 0.01424329448491335, 0.026539646089076996, 0.12640368938446045, 0.03422647714614868, -0.09627246111631393, -0.016056319698691368, 0.07739239931106567, 0.028729749843478203, 0.1126900389790535, -0.03625129163265228, 0.022875288501381874, 0.06558936834335327, -0.010335242375731468, -0.035856034606695175, -0.08866497874259949, 0.07049451768398285, 0.01899695210158825, -0.039044253528118134, 0.07231269776821136, -0.03839116171002388, 0.06761766970157623, 0.09310462325811386, 0.04233274236321449, 0.08626849949359894, -0.05737673491239548, -0.06357211619615555, -0.08909985423088074, 0.11345726996660233, -0.05789961293339729, -0.2253878265619278, -0.0927746519446373, -0.07344133406877518, -0.05204508826136589, 0.015993228182196617, 0.024264274165034294, -0.011181367561221123, -0.07623087614774704, -0.08214709907770157, 0.03572271019220352, 0.07463988661766052, -0.09089265018701553, -0.06848371773958206, 0.027058472856879234, -0.002032288582995534, -0.07095478475093842, -0.013902970589697361, 0.022080428898334503, -0.07138258963823318, 0.009214821271598339, 0.04974345117807388, 0.1335218995809555, 0.08740685880184174, -0.0227285735309124, 0.010045488364994526, -0.0077881277538836, 0.1648012101650238, -0.15069454908370972, 0.13478584587574005, 0.15730558335781097, 0.0016317351255565882, 0.08820738643407822, 0.21539485454559326, -0.007440412882715464, 0.0066208564676344395, 0.012044854462146759, 0.05431881174445152, -0.06993185728788376, -0.20527246594429016, -0.046423736959695816, -0.06885246187448502, 0.004246351309120655, 0.10524054616689682, 0.0378601998090744, 0.022583303973078728, 0.09880338609218597, -0.100553959608078, 0.010736828669905663, 0.04613620787858963, 0.0927238017320633, 0.032398175448179245, 0.03833891451358795, 0.052481088787317276, -0.03947870433330536, -0.03817188739776611, 0.09426844865083694, 0.1337955743074417, 0.12627361714839935, -0.09567678719758987, 0.11175259947776794, 0.029044704511761665, 0.017204338684678078, -0.04280254244804382, 0.008141356520354748, -0.016032185405492783, 0.055155444890260696, -0.0010954960016533732, -0.10064912587404251, -0.013460854068398476, 0.07517644762992859, 0.11091066896915436, 0.012646116316318512, 0.01587693579494953, 0.018353894352912903, 0.0974254161119461, 0.20162448287010193, 0.02428426221013069, -0.17568062245845795, 0.022259414196014404, 0.03731474280357361, 0.04135315492749214, -0.12911704182624817, -0.0381954163312912, 0.12113991379737854, -0.15492643415927887, 0.0682091936469078, -0.04377632960677147, 0.10196220129728317, -0.10675322264432907, -0.03308646380901337, 0.05982496589422226, 0.06327075511217117, -0.02642887644469738, 0.0769411101937294, -0.10120917111635208, 0.09844031929969788, 0.04024350270628929, 0.04182608798146248, -0.07930928468704224, 0.05604275315999985, 0.015797745436429977, -0.0045478856191039085, 0.1333027482032776, 0.0045570265501737595, -0.05392913147807121, -0.13388611376285553, -0.10642190277576447, -0.0051772878505289555, 0.06334138661623001, -0.07458823174238205, 0.11001512408256531, -0.005512004252523184, -0.0414222851395607, -0.05610302463173866, -0.049389246851205826, -0.058880969882011414, -0.19681976735591888, 0.05169624462723732, -0.0024369133170694113, 0.016500188037753105, -0.01869654469192028, 0.029557572677731514, 0.015335269272327423, 0.10278984159231186, -0.059987299144268036, -0.07426176965236664, -0.1403404325246811, 0.03303290158510208, 0.04621477797627449, -0.03333986550569534, -0.027431322261691093, -0.09167803078889847, 0.1832163780927658, -0.03232932463288307, -0.061194878071546555, 0.019928887486457825, -0.04717760160565376, -0.09326909482479095, -0.07830981910228729, 0.13081274926662445, 0.02729148603975773, -0.015091798268258572, 0.02175476960837841, 0.06610988825559616, -0.0006598941399715841, -0.06149885803461075, 0.05158873274922371, 0.11825352907180786, 0.11888798326253891, 0.1578795164823532, 0.003275636350736022, -0.15319164097309113, -0.12093927711248398, 0.010671102441847324, 0.050388529896736145, 0.09702342748641968, -0.0879490077495575, 0.090548574924469, 0.005326025653630495, -0.11332473158836365, -0.20286090672016144, 0.06432635337114334, 0.06433438509702682, -0.006810559891164303, -0.008706865832209587, -0.13438117504119873, 0.1519542634487152, 0.04861629009246826, 0.00505082868039608, 0.05670906603336334, -0.2145431488752365, -0.05434061214327812, -0.03545110300183296, 0.03163960948586464, -0.1358540952205658, -0.15169377624988556, -0.04073255881667137, -0.04392538592219353, -0.15164409577846527, 0.0620216503739357, -0.03476555272936821, 0.04396050423383713, 0.04431973397731781, 0.028156820684671402, 0.060748226940631866, -0.04189246892929077, 0.13070757687091827, 0.01887640170753002, 0.034257423132658005, -0.07356443256139755, -0.08735287934541702, 0.08717798441648483, -0.11063046753406525, 0.10397446900606155, 0.041512757539749146, 0.014102142304182053, -0.031649116426706314, -0.01696183905005455, -0.025955816730856895, 0.08555445075035095, -0.030064130201935768, -0.04696160927414894, -0.08273486793041229, 0.02910769172012806, 0.12679609656333923, 0.024083806201815605, 0.09180113673210144, -0.029121221974492073, 0.011124581098556519, 0.1735609620809555, 0.11666472256183624, -0.01717638038098812, -0.12178269773721695, -0.04344481602311134, 0.009140832349658012, 0.020356450229883194, -0.08450187742710114, 0.06059839576482773, 0.09476427733898163, 0.01542850024998188, 0.08995479345321655, 0.0035299488808959723, -0.0956866666674614, 0.003905810648575425, 0.06509791314601898, -0.09554112702608109, -0.1468604952096939, -0.013686754740774632, 0.09142833948135376, -0.1190163865685463, -0.10767754912376404, 0.13984952867031097, 0.014996250160038471, -0.008521806448698044, 0.013741759583353996, 0.07918008416891098, 0.04130997508764267, 0.041522178798913956, 0.016089653596282005, 0.030988100916147232, -0.05306825786828995, 0.1002204567193985, 0.14741507172584534, -0.0847073346376419, -0.006863239221274853, 0.11241137236356735, -0.04745839163661003, -0.015956182032823563, -0.036570653319358826, 0.06375109404325485, -0.022447433322668076, -0.020062344148755074, 0.019640203565359116, -0.0711289644241333, 0.008225508965551853, 0.08817167580127716, -0.008349002338945866, 0.05306903272867203, 0.021868787705898285, -0.009170466102659702, -0.12099798768758774, 0.1354740411043167, -0.005734722130000591, 0.05059300363063812, -0.10945447534322739, 0.04068486765027046, 0.013386773876845837, 0.028750596567988396, 0.007047341670840979, -0.0822051391005516, -0.06944601237773895, -0.004319180268794298, -0.04252622276544571, 0.10497342795133591, -0.09727934747934341, -0.017767274752259254, -0.014306054450571537, 0.013928065076470375, -0.03251080960035324, 0.03427986428141594, -0.03592249006032944, -0.057653192430734634, -0.049775924533605576, 0.11867779493331909, -0.13400398194789886, -0.02139418013393879, 0.057557474821805954, -0.08804190158843994, 0.06567151844501495, 0.011991094797849655, -0.03211069852113724, -0.07450155913829803, -0.19534923136234283, -0.023413509130477905, 0.04294789582490921, 0.05902634188532829, 0.029156893491744995, -0.09077906608581543, 0.05397329106926918, -0.008275754749774933, -0.09074954688549042, -0.017963657155632973, 0.013771678321063519, -0.10120927542448044, 0.04856925457715988, -0.0664316788315773, -0.027156859636306763, -0.04736092686653137, 0.1379811316728592, 0.038981541991233826, 0.014990515075623989, 0.0669875368475914, -0.049621958285570145, 0.10025520622730255, -0.16548413038253784, -0.03439239785075188, -0.009032187052071095, -0.03197626769542694, -0.07173942029476166, -0.027116861194372177, 0.07584235072135925, -0.026240704581141472, 0.10976412892341614, 0.13402023911476135, 0.04977380111813545, 0.029280750080943108, -0.03918399661779404, 0.06445958465337753, 0.059825390577316284, 0.0034342731814831495, -0.008934437297284603, -0.025623979046940804, 0.08118248730897903, -0.0016105257673189044, 0.03493143990635872, 0.10629891604185104, 0.09076164662837982, 0.21685071289539337, 0.1541280597448349, 0.026496654376387596, 0.053989227861166, -0.09384841471910477, -0.06533106416463852, 0.07119482010602951, -0.07749877870082855, 0.041776545345783234, -0.09530793875455856, -0.026955267414450645, 0.11060696840286255, -0.17083464562892914, 0.05716466158628464, -0.018873807042837143, -0.018306149169802666, -0.04770372807979584, -0.11485210061073303, -0.0503043532371521, -0.04166875407099724, -0.013710057362914085, -0.12289579212665558, 0.0658174455165863, 0.1175687164068222, -0.019397251307964325, 0.010053902864456177, 0.07992837578058243, -0.07904737442731857, -0.06719396263360977, 0.0837850421667099, 0.026695387437939644, 0.09206066280603409, 0.046773526817560196, 0.03421047329902649, 0.06481647491455078, -0.0035617314279079437, 0.08831099420785904, 0.08230920881032944, 0.14361786842346191, 0.0422065295279026, -0.07424470782279968, -0.07135588675737381, 0.04184874892234802, -0.02281043864786625, -0.025532426312565804, 0.13373753428459167, 0.07126811891794205, 0.021976247429847717, -0.003870252287015319, 0.19421297311782837, -0.01937870681285858, -0.03051932156085968, -0.15569639205932617, 0.02162052132189274, -0.032915148884058, -0.00019503888324834406, -0.031028987839818, -0.1552238166332245, 0.0045072962529957294, 0.1057763323187828, 0.05886342376470566, -0.04445836693048477, 0.001117625623010099, -0.018309449777007103, 0.011455541476607323, 0.00774837052449584, 0.04392978176474571, 0.01669151894748211, 0.20153918862342834, -0.05441451817750931, -0.011168750002980232, -0.028294531628489494, -0.012357385829091072, -0.08384182304143906, 0.07767028361558914, -0.03020411916077137, 0.006163280922919512, -0.06379850208759308, 0.10571646690368652, 0.010526208207011223, -0.1624075323343277, 0.050908081233501434, -0.12141096591949463, -0.09484099596738815, 0.009781275875866413, 0.010090327821671963, -0.0083003556355834, 0.022370606660842896, 0.012618477456271648, -0.06707977503538132, 0.130141943693161, 0.0367414653301239, -0.06656872481107712, 0.005524383392184973, 0.00468053063377738, -0.13378679752349854, 0.27057433128356934, -0.02574513480067253, 0.006734078750014305, 0.10154642164707184, -0.0036091262008994818, -0.14060980081558228, -0.02469862438738346, 0.07016688585281372, -0.045673102140426636, 0.010541385039687157, 0.11000429838895798, -0.00862908735871315, 0.12104316800832748, 0.10295294225215912, -0.05462568625807762, 0.047695666551589966, -0.005754668265581131, 0.030031973496079445, -0.09507355839014053, 0.006236367858946323, -0.10069342702627182, 0.1035592332482338, 0.13382290303707123, -0.005124421324580908, -0.006795560475438833, -0.03272102773189545, -0.013003976084291935, 0.013806918635964394, 0.11265023797750473, -0.011842898093163967, -0.05634259805083275, 0.0014440801460295916, -0.09759639203548431, 0.07871220260858536, -0.09934975951910019, -0.07404447346925735, 0.0331786647439003, -0.014761646278202534, -0.022052649408578873, 0.08994465321302414, 0.048574890941381454, 0.019169030711054802, -0.05637327581644058, -0.09497852623462677, 0.021784955635666847, 0.17094729840755463, -0.021947002038359642, -0.021684998646378517 ]
0d3447a9b46b4f591a0a2b3aa92878bb282c6f11
# Dataset Card for shark-teeth-5atku ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/shark-teeth-5atku - **Point of Contact:** [email protected] ### Dataset Summary shark-teeth-5atku ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/shark-teeth-5atku ### Citation Information ``` @misc{ shark-teeth-5atku, title = { shark teeth 5atku Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/shark-teeth-5atku } }, url = { https://universe.roboflow.com/object-detection/shark-teeth-5atku }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/shark-teeth-5atku
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:15:55+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "shark-teeth-5atku", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "teeth", "1": "Lower", "2": "Sand Tiger Shark", "3": "Snaggletooth Shark", "4": "Upper"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:15+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for shark-teeth-5atku The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary shark-teeth-5atku ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for shark-teeth-5atku\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nshark-teeth-5atku", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for shark-teeth-5atku\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nshark-teeth-5atku", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for shark-teeth-5atku\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nshark-teeth-5atku### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.00424576411023736, 0.17311759293079376, -0.007617664057761431, 0.01061807107180357, 0.08941108733415604, 0.00396113283932209, 0.0577554814517498, 0.08173936605453491, -0.00814398005604744, 0.17176049947738647, -0.016644416376948357, 0.051199547946453094, 0.13614368438720703, 0.08685361593961716, -0.007766644936054945, -0.1487247496843338, 0.0727667585015297, -0.06821238994598389, 0.08939505368471146, 0.07355053722858429, 0.07237830013036728, -0.14325210452079773, 0.08437741547822952, -0.02732669748365879, -0.006689493544399738, 0.025884894654154778, -0.06969647854566574, -0.03932229056954384, 0.000961439625825733, 0.02963387221097946, 0.03482183814048767, 0.028339119628071785, 0.06160175800323486, -0.18721064925193787, 0.020449403673410416, 0.10622559487819672, 0.029847940430045128, 0.017098471522331238, 0.15731939673423767, -0.06808340549468994, 0.019758470356464386, -0.13012130558490753, 0.030983978882431984, 0.017196085304021835, -0.10905174165964127, -0.08926661312580109, -0.1269800066947937, 0.06590728461742401, 0.1018841415643692, 0.057031285017728806, -0.025470195338129997, 0.07643813639879227, -0.031073283404111862, 0.05029855668544769, 0.14109563827514648, -0.07034517079591751, -0.04411274194717407, 0.09942037612199783, 0.06253814697265625, 0.07089008390903473, -0.11404137313365936, -0.012473566457629204, 0.013622918166220188, -0.0154837341979146, -0.005072721280157566, -0.03824225813150406, -0.025180891156196594, -0.01288784109055996, -0.10081540048122406, -0.13880693912506104, 0.1342272311449051, 0.06656739860773087, -0.06399194151163101, -0.13895109295845032, -0.004686810076236725, 0.0589364692568779, -0.03495600074529648, -0.00031646338175050914, 0.050153184682130814, -0.0071650040335953236, 0.05438271537423134, -0.05384278669953346, -0.10711387544870377, 0.04766330122947693, 0.015976496040821075, 0.03446925804018974, -0.01203013677150011, 0.03810462728142738, 0.014312108978629112, 0.07341986894607544, 0.011426251381635666, -0.10616438835859299, -0.02096722088754177, -0.04065784066915512, -0.05167819932103157, -0.04807685688138008, 0.058654237538576126, -0.1354161947965622, 0.07612883299589157, 0.06461557000875473, -0.05623381584882736, 0.022361546754837036, -0.11095530539751053, 0.006303585600107908, 0.12560877203941345, 0.176158607006073, -0.11051353812217712, -0.07923760265111923, -0.0014445841079577804, 0.050620365887880325, 0.007576129399240017, -0.024549441412091255, -0.02121255360543728, -0.006060704588890076, 0.04503675550222397, 0.04061947762966156, 0.1213257908821106, 0.03599560260772705, -0.06319621950387955, -0.06924840062856674, 0.138450026512146, -0.09745854139328003, 0.04911979287862778, 0.06397977471351624, -0.07121027261018753, 0.08289586752653122, 0.00545464688912034, 0.019973833113908768, -0.11665521562099457, 0.07150330394506454, -0.02458300068974495, 0.012248790822923183, -0.09406909346580505, -0.10683891922235489, 0.05810195580124855, -0.06692507117986679, -0.08810823410749435, -0.07942069321870804, -0.049172334372997284, -0.09479491412639618, 0.03996226564049721, -0.04875081777572632, 0.008410402573645115, 0.02102069742977619, -0.04470996931195259, -0.02047588862478733, 0.007793152704834938, 0.04940032213926315, -0.05768994987010956, 0.034089431166648865, -0.09860000759363174, 0.03838060796260834, 0.1149924248456955, 0.04552638158202171, -0.08530200272798538, 0.06706652045249939, -0.17896917462348938, 0.12204194813966751, -0.036738671362400055, 0.030410751700401306, -0.1366310864686966, -0.005151207558810711, -0.022941986098885536, -0.036971140652894974, 0.00791736226528883, 0.145832359790802, -0.09918596595525742, 0.026886336505413055, 0.06088307127356529, -0.042636942118406296, -0.052395205944776535, 0.04666297137737274, -0.04129692539572716, -0.01118038035929203, 0.08383990079164505, 0.11150497943162918, -0.0441935732960701, -0.12164247781038284, -0.11727895587682724, -0.0570560097694397, -0.039944566786289215, 0.15683846175670624, 0.06785587221384048, -0.03298599272966385, 0.10335654020309448, -0.006452004425227642, 0.002121544675901532, -0.05030769482254982, 0.002507944591343403, -0.04075680673122406, 0.017919151112437248, -0.006985947489738464, -0.08711738884449005, 0.008018797263503075, -0.09900045394897461, 0.011876520700752735, -0.07903514802455902, -0.04122256860136986, 0.013433197513222694, -0.024414360523223877, 0.015995744615793228, -0.03274964913725853, 0.09438873082399368, -0.10950460284948349, 0.0050250873900949955, -0.14473740756511688, -0.1175815612077713, 0.05909619852900505, -0.06279734522104263, 0.04157903790473938, -0.07687912881374359, -0.012485777959227562, 0.008320441469550133, 0.03603016957640648, -0.016997704282402992, 0.04060033708810806, -0.02170277200639248, -0.040630657225847244, -0.11384306102991104, -0.047649554908275604, -0.013413939625024796, 0.08679725229740143, -0.1197371855378151, -0.024124855175614357, 0.12097122520208359, 0.13296152651309967, 0.011871114373207092, -0.04437820613384247, 0.08225802332162857, -0.040836483240127563, -0.013410890474915504, -0.07356227934360504, -0.014977323822677135, -0.006608522497117519, 0.04379919543862343, 0.06731487065553665, -0.1529233753681183, -0.13935747742652893, 0.08783125877380371, 0.03235098719596863, -0.08413852751255035, -0.03755033016204834, -0.04753224924206734, -0.01944955252110958, -0.10134696215391159, -0.026792608201503754, 0.007568717934191227, 0.06763772666454315, 0.07476577162742615, -0.07463622093200684, -0.03912898153066635, 0.023970019072294235, -0.012305404990911484, -0.0825788602232933, 0.07142758369445801, 0.04911847412586212, -0.12107104808092117, 0.08775153756141663, -0.03790557011961937, 0.05244438350200653, 0.07444600015878677, 0.03424406796693802, -0.1226036325097084, 0.013732665218412876, 0.07995206117630005, 0.01932600326836109, 0.1028876006603241, -0.009388631209731102, 0.017751159146428108, 0.0808364599943161, -0.011359005235135555, -0.017433226108551025, -0.0855335220694542, 0.07131277024745941, 0.02258915826678276, -0.0394556038081646, 0.013655307702720165, -0.022065088152885437, 0.09548524767160416, 0.09707716852426529, 0.07361723482608795, 0.10924381017684937, -0.05615406110882759, -0.07101595401763916, -0.08576331287622452, 0.13476979732513428, -0.021152600646018982, -0.25831136107444763, -0.07494805008172989, -0.05361581966280937, -0.05882406607270241, -0.018916534259915352, 0.02741759642958641, -0.009009208530187607, -0.08956316113471985, -0.09697648137807846, 0.05668627843260765, 0.04900762811303139, -0.09930258244276047, -0.10003312677145004, 0.041715700179338455, 0.005949671845883131, -0.08551973849534988, 0.0056724539026618, 0.01885177381336689, -0.04347915202379227, 0.00978035293519497, 0.04039476066827774, 0.12348326295614243, 0.06211191043257713, -0.029661359265446663, 0.0010106683475896716, 0.001784787978976965, 0.1928827464580536, -0.13870075345039368, 0.10090930759906769, 0.1504467874765396, 0.02776956930756569, 0.07945579290390015, 0.20442692935466766, -0.020248448476195335, -0.016884690150618553, 0.026627736166119576, 0.08575993776321411, -0.05007610470056534, -0.1972762942314148, -0.05397144332528114, -0.0389714278280735, 0.01565820723772049, 0.13196173310279846, 0.03693149611353874, 0.022032327950000763, 0.08062218129634857, -0.11408001184463501, 0.016319651156663895, 0.03303390368819237, 0.10199981182813644, 0.055319011211395264, 0.04433496668934822, 0.04383397474884987, -0.04543200135231018, -0.04041357710957527, 0.08492761105298996, 0.11975052207708359, 0.11835536360740662, -0.09032218158245087, 0.08984476327896118, 0.03362288326025009, 0.03684444725513458, -0.04581842198967934, 0.00005686920849257149, -0.03009755350649357, 0.05111096054315567, -0.005015657749027014, -0.09063077718019485, 0.019394326955080032, 0.07936624437570572, 0.14783982932567596, -0.011021528393030167, -0.0034307348541915417, -0.04201175272464752, 0.06824677437543869, 0.2582358419895172, 0.013620615005493164, -0.19149859249591827, 0.015691662207245827, 0.034115005284547806, 0.001516203861683607, -0.1232408806681633, -0.04650866985321045, 0.07165497541427612, -0.1669447273015976, 0.05522545054554939, -0.03126688301563263, 0.11499689519405365, -0.1177259236574173, -0.039450258016586304, 0.05488095432519913, 0.04884978011250496, -0.023087933659553528, 0.07158613204956055, -0.09095466136932373, 0.079509437084198, 0.027603361755609512, 0.03433816507458687, -0.07546429336071014, 0.03405049070715904, 0.0026476001366972923, -0.02620159275829792, 0.14773714542388916, -0.013736169785261154, 0.010927095077931881, -0.12454542517662048, -0.12019820511341095, -0.010519257746636868, 0.05445738509297371, -0.06474558264017105, 0.12004420906305313, 0.017017625272274017, -0.027016011998057365, -0.07650866359472275, -0.0070039513520896435, -0.07850705087184906, -0.1634581983089447, 0.03632698953151703, -0.03245394676923752, 0.013385213911533356, -0.01933729648590088, 0.01286512054502964, -0.010040650144219398, 0.13108740746974945, -0.04166344180703163, -0.09003862738609314, -0.12800098955631256, 0.03760134428739548, 0.11007767170667648, -0.01635724864900112, -0.011781447567045689, -0.10005038976669312, 0.17877361178398132, -0.02575439028441906, -0.06985320895910263, 0.022309960797429085, -0.06439422816038132, -0.1165219247341156, -0.05882128328084946, 0.0987447053194046, 0.03788915276527405, 0.0015485252952203155, 0.007622390519827604, 0.04795606806874275, -0.012085436843335629, -0.038831789046525955, 0.01766028441488743, 0.09937027096748352, 0.13762493431568146, 0.13303108513355255, 0.006509545724838972, -0.17551369965076447, -0.12851448357105255, -0.006782560143619776, 0.016829291358590126, 0.10161712765693665, -0.060962557792663574, 0.10531818866729736, 0.04739153012633324, -0.07350144535303116, -0.21612724661827087, 0.07308120280504227, 0.05365516245365143, -0.004262168426066637, -0.015912309288978577, -0.13366718590259552, 0.14283610880374908, 0.030057501047849655, -0.0026786127127707005, 0.07246524840593338, -0.2705695927143097, -0.07757141441106796, -0.017030827701091766, 0.02671043574810028, -0.2075764536857605, -0.17383605241775513, -0.04885292425751686, -0.0600326843559742, -0.18007226288318634, 0.06275779753923416, -0.003733766498044133, 0.04877830669283867, 0.038720253854990005, 0.06302440166473389, 0.058632273226976395, -0.04326801002025604, 0.10673388093709946, 0.018004272133111954, 0.027602411806583405, -0.07235538214445114, -0.09458520263433456, 0.022603491321206093, -0.09702164679765701, 0.15197399258613586, 0.06843714416027069, 0.019035208970308304, -0.05299459770321846, -0.01765224151313305, -0.052038952708244324, 0.0847753956913948, -0.02686924859881401, -0.038583770394325256, -0.09878070652484894, 0.051726870238780975, 0.1405174434185028, 0.028099149465560913, 0.0732213705778122, -0.03318911790847778, -0.012395970523357391, 0.1283128559589386, 0.10471883416175842, 0.010482647456228733, -0.13108235597610474, -0.03451018035411835, -0.0013307778863236308, 0.039767421782016754, -0.08932475000619888, 0.03437342867255211, 0.08816291391849518, 0.02439761720597744, 0.09355176240205765, -0.011074946261942387, -0.11080149561166763, 0.00010042573558166623, 0.0405728854238987, -0.08458512276411057, -0.12763506174087524, 0.04116377979516983, 0.10483866930007935, -0.12172317504882812, -0.10878352075815201, 0.0972357764840126, 0.0033919280394911766, -0.028109416365623474, 0.0005481464904733002, 0.07780088484287262, 0.04923364520072937, 0.05099686607718468, 0.026856141164898872, 0.039790526032447815, -0.07418499141931534, 0.12030237913131714, 0.14966470003128052, -0.12348537892103195, 0.0027388236485421658, 0.11142128705978394, -0.042270220816135406, -0.015421239659190178, -0.01734391413629055, 0.020410584285855293, -0.016349654644727707, -0.027189485728740692, 0.026237186044454575, -0.05964763090014458, 0.039441175758838654, 0.06989308446645737, 0.0008364138193428516, 0.05510233715176582, 0.046536002308130264, -0.006211237981915474, -0.1354418396949768, 0.12360507249832153, 0.0440409854054451, 0.04318826645612717, -0.09293365478515625, 0.005633751396089792, 0.024285975843667984, 0.013556113466620445, 0.010759057477116585, -0.054306760430336, -0.08494344353675842, 0.00677472585812211, -0.060565218329429626, 0.09946893900632858, -0.11574666202068329, -0.002306597772985697, -0.025453144684433937, 0.006284700240939856, -0.0177361611276865, 0.032112445682287216, -0.04388309642672539, -0.08616138994693756, -0.05095439404249191, 0.12770548462867737, -0.14605030417442322, -0.020934296771883965, 0.04845583438873291, -0.08306443691253662, 0.04672304913401604, 0.008185576647520065, -0.03200430050492287, -0.09689909964799881, -0.17694029211997986, -0.05969346687197685, 0.018341422080993652, 0.06267603486776352, 0.041115421801805496, -0.10275354981422424, 0.047319862991571426, -0.0004118316574022174, -0.09045729041099548, -0.01616789773106575, -0.023841379210352898, -0.11666945368051529, 0.015776479616761208, -0.09484697133302689, -0.0279166828840971, -0.0312715508043766, 0.13009057939052582, 0.057516638189554214, 0.003815297270193696, 0.08208157867193222, -0.04782366007566452, 0.09696614742279053, -0.14535638689994812, -0.039748918265104294, -0.014459613710641861, -0.022792939096689224, -0.06399689614772797, 0.004836555570363998, 0.07252383232116699, -0.021611543372273445, 0.1259302943944931, 0.1307801902294159, 0.045712340623140335, 0.04405144974589348, -0.004492610227316618, 0.05163738876581192, 0.07123909890651703, -0.008007101714611053, -0.017145603895187378, -0.019614553079009056, 0.06928706914186478, 0.006967267021536827, 0.011403383687138557, 0.08687422424554825, 0.06057143956422806, 0.24239756166934967, 0.14853249490261078, 0.0265789981931448, 0.06140146404504776, -0.08487135171890259, -0.05756673961877823, 0.10608062893152237, -0.06039498746395111, 0.07633846998214722, -0.09922643005847931, 0.027330629527568817, 0.08785376697778702, -0.15023517608642578, 0.07075431197881699, -0.027908701449632645, -0.0030017909593880177, -0.02531963400542736, -0.11464601755142212, -0.06121472641825676, -0.012441066093742847, 0.0075752283446490765, -0.10835253447294235, 0.08678332716226578, 0.11551087349653244, 0.003397506894543767, 0.013478840701282024, 0.09433644264936447, -0.05555850267410278, -0.08436454087495804, 0.07925546914339066, 0.021014362573623657, 0.05567508190870285, 0.061550550162792206, 0.044500235468149185, 0.09934838861227036, 0.008190957829356194, 0.08721937984228134, 0.09316325932741165, 0.09118138253688812, 0.03377493843436241, -0.06483280658721924, -0.0800255686044693, 0.028123930096626282, -0.017001472413539886, -0.00032784565701149404, 0.15447470545768738, 0.07586579024791718, 0.015147573314607143, -0.023561127483844757, 0.15433458983898163, -0.014709552749991417, -0.03695913404226303, -0.14532113075256348, 0.023646457120776176, -0.04685891792178154, -0.01614663004875183, -0.011508372612297535, -0.1539609432220459, 0.004812059924006462, 0.14357098937034607, 0.0691874772310257, -0.04783391207456589, -0.018547480925917625, 0.002748757367953658, 0.001234877505339682, -0.03264009207487106, 0.031096089631319046, 0.029091106727719307, 0.20267793536186218, -0.060784947127103806, 0.020651794970035553, -0.03655776008963585, -0.03742134943604469, -0.06613318622112274, 0.06756611913442612, -0.0024383016861975193, 0.011894104070961475, -0.08834703266620636, 0.12010422348976135, -0.016609584912657738, -0.18783655762672424, 0.05076475813984871, -0.08665980398654938, -0.08923901617527008, 0.002822664100676775, -0.03078548051416874, 0.01331551093608141, 0.03352850303053856, 0.00015441502910107374, -0.04489915072917938, 0.08910344541072845, 0.017570335417985916, -0.05464973300695419, -0.01555440854281187, 0.007964538410305977, -0.06989645957946777, 0.27898380160331726, -0.02231190912425518, 0.03972325101494789, 0.07826678454875946, -0.02684737928211689, -0.13550105690956116, -0.03692622855305672, 0.08288495987653732, -0.03906170278787613, 0.021293917670845985, 0.12522105872631073, -0.005038490053266287, 0.12474507093429565, 0.08626400679349899, -0.0689764991402626, 0.05064825341105461, -0.00971664022654295, 0.03504570201039314, -0.1281573474407196, 0.024219544604420662, -0.09615851938724518, 0.1145477145910263, 0.13961082696914673, -0.009003615006804466, -0.005642329808324575, -0.03956901654601097, 0.00793396309018135, 0.011368761770427227, 0.09491703659296036, 0.006110221613198519, -0.0648619532585144, 0.011422784067690372, -0.16016273200511932, 0.08923843502998352, -0.1396988034248352, -0.06172670051455498, 0.03873973339796066, -0.021296873688697815, -0.006502870004624128, 0.08174770325422287, 0.0355464406311512, 0.010485250502824783, -0.05727904289960861, -0.10478247702121735, 0.02874174155294895, 0.16027922928333282, -0.014805304817855358, -0.03296474739909172 ]
c24e632e7181f02a09eba25aefd1a6c4ad8cbf73
# Dataset Card for peixos-fish ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/peixos-fish - **Point of Contact:** [email protected] ### Dataset Summary peixos-fish ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/peixos-fish ### Citation Information ``` @misc{ peixos-fish, title = { peixos fish Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/peixos-fish } }, url = { https://universe.roboflow.com/object-detection/peixos-fish }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/peixos-fish
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:16:13+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "peixos-fish", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "peixos", "1": "peix", "2": "taca"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:57+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for peixos-fish The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary peixos-fish ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for peixos-fish\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npeixos-fish", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for peixos-fish\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npeixos-fish", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for peixos-fish\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\npeixos-fish### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.015520259737968445, 0.1636265367269516, -0.008576185442507267, 0.022303510457277298, 0.10910183936357498, 0.0032241828739643097, 0.044211551547050476, 0.0857190266251564, 0.005190713331103325, 0.16206741333007812, -0.02214190550148487, 0.09343120455741882, 0.1252204030752182, 0.10484584420919418, -0.01783085986971855, -0.17205403745174408, 0.06460122019052505, -0.05622797831892967, 0.07298717647790909, 0.06663797795772552, 0.07664697617292404, -0.12784388661384583, 0.09351078420877457, -0.040552861988544464, -0.022915104404091835, 0.02687394618988037, -0.0414571687579155, -0.0438622310757637, 0.017349740490317345, 0.02851363644003868, 0.03959090635180473, 0.023344552144408226, 0.03464099392294884, -0.18885603547096252, 0.022833267226815224, 0.10827730596065521, 0.03432071581482887, 0.03115631826221943, 0.1475096344947815, -0.07560829818248749, 0.043484754860401154, -0.15051865577697754, 0.03826695308089256, 0.017544515430927277, -0.11713018268346786, -0.12428433448076248, -0.120393767952919, 0.0535050705075264, 0.11500657349824905, 0.040807534009218216, -0.012636068277060986, 0.07366885244846344, -0.004026215057820082, 0.05799351632595062, 0.1258392482995987, -0.0705939307808876, -0.043890491127967834, 0.09696438908576965, 0.02596336044371128, 0.109454445540905, -0.10737837105989456, -0.022770078852772713, -0.008467420935630798, -0.023822475224733353, -0.005958921741694212, -0.06690423935651779, -0.03225957602262497, -0.01570488139986992, -0.08753716200590134, -0.12809035181999207, 0.13790349662303925, 0.05770115926861763, -0.06049812585115433, -0.14270763099193573, -0.021387998014688492, 0.0498843677341938, -0.03471233323216438, -0.010500708594918251, 0.05721445009112358, 0.0010622007539495826, 0.07357048243284225, -0.06847291439771652, -0.10456053912639618, 0.045658912509679794, 0.010098586790263653, 0.03167136013507843, -0.022104943171143532, 0.03610027953982353, -0.0018033386440947652, 0.06554452329874039, -0.014396783895790577, -0.09368579834699631, -0.02890101820230484, -0.03855903074145317, -0.0709836483001709, -0.04110344126820564, 0.07614587247371674, -0.1450137048959732, 0.07002803683280945, 0.049396123737096786, -0.07400377839803696, 0.04548872634768486, -0.14589622616767883, 0.01720886304974556, 0.11269804835319519, 0.18706130981445312, -0.08970510214567184, -0.06432271003723145, -0.0004313844256103039, 0.029078330844640732, 0.0188307948410511, -0.03227301687002182, -0.018719887360930443, 0.00238635647110641, 0.04956098273396492, 0.02684236690402031, 0.11383544653654099, 0.039475955069065094, -0.07467334717512131, -0.06113124638795853, 0.12500964105129242, -0.1001470759510994, 0.05808725208044052, 0.061476316303014755, -0.04467831179499626, 0.09992419928312302, 0.005418165121227503, 0.010686319321393967, -0.09997197985649109, 0.0998401865363121, -0.03322058171033859, 0.020818373188376427, -0.08779005706310272, -0.10322985798120499, 0.05156345292925835, -0.10241257399320602, -0.08646340668201447, -0.0893053337931633, -0.05962633341550827, -0.08924030512571335, 0.038690730929374695, -0.04768797382712364, 0.017084872350096703, 0.023029131814837456, -0.04260146617889404, -0.01884775608778, 0.0038630494382232428, 0.04086550325155258, -0.04729717597365379, 0.03845969960093498, -0.10203484445810318, 0.03447955101728439, 0.08868055045604706, 0.03472617641091347, -0.08478064835071564, 0.057133302092552185, -0.18987204134464264, 0.13859786093235016, -0.04285595566034317, 0.021944759413599968, -0.13968025147914886, 0.0034973411820828915, -0.030405478551983833, -0.04034113883972168, 0.0038262095768004656, 0.1476336568593979, -0.11337084323167801, 0.022433588281273842, 0.08577367663383484, -0.05703408643603325, -0.0344335176050663, 0.04553264006972313, -0.041367076337337494, 0.009636393748223782, 0.09747567027807236, 0.11405590921640396, -0.044593293219804764, -0.11381903290748596, -0.10734999924898148, -0.044625334441661835, -0.04614813253283501, 0.14904244244098663, 0.05967886373400688, -0.03333239629864693, 0.10123910009860992, -0.008539634756743908, -0.014926048927009106, -0.032757364213466644, 0.01579919643700123, -0.02729438990354538, 0.02300422638654709, -0.0006213625310920179, -0.08870331197977066, 0.014176785945892334, -0.10160455852746964, 0.017622264102101326, -0.07433163374662399, -0.03027183748781681, 0.006475354079157114, -0.024088624864816666, 0.025440581142902374, -0.04051230102777481, 0.10015097260475159, -0.11432493478059769, -0.0009804399451240897, -0.15923099219799042, -0.09824594110250473, 0.06351254880428314, -0.023510785773396492, 0.04184636101126671, -0.06049206480383873, -0.0016871353145688772, 0.005043915938585997, 0.038591183722019196, -0.017408503219485283, 0.05227341875433922, -0.019498009234666824, -0.033446528017520905, -0.11982827633619308, -0.024060236290097237, -0.022085649892687798, 0.10678906738758087, -0.1233702152967453, -0.018417557701468468, 0.17328070104122162, 0.10930683463811874, 0.04321244731545448, -0.05220469459891319, 0.07471385598182678, -0.029907802119851112, -0.016351919621229172, -0.08369121700525284, -0.013013587333261967, -0.002875425387173891, 0.015170584432780743, 0.09032610058784485, -0.1594936102628708, -0.10095527023077011, 0.08308132737874985, 0.022508157417178154, -0.0781749039888382, -0.036310989409685135, -0.05191495269536972, -0.012830499559640884, -0.09897208213806152, -0.035741887986660004, 0.03504319116473198, 0.0838911384344101, 0.08263080567121506, -0.06402039527893066, -0.014937839470803738, 0.031859394162893295, -0.02240494079887867, -0.07584793120622635, 0.06030942499637604, 0.02320069447159767, -0.1101316586136818, 0.0934658795595169, -0.04390273988246918, 0.04933439940214157, 0.09233660995960236, 0.038640815764665604, -0.09947697073221207, 0.009316714480519295, 0.08388576656579971, 0.03023686632514, 0.098579540848732, -0.011519712395966053, 0.01975497603416443, 0.08104923367500305, 0.00944081787019968, -0.016923021525144577, -0.08814170956611633, 0.07969538122415543, 0.03388018533587456, -0.03445947542786598, 0.026781519874930382, -0.020347822457551956, 0.08984746038913727, 0.10632588714361191, 0.049835968762636185, 0.1115744411945343, -0.05497445911169052, -0.05912444368004799, -0.08326074481010437, 0.12691089510917664, -0.02295834571123123, -0.26137855648994446, -0.08427315205335617, -0.06453216820955276, -0.04868733882904053, -0.012427344918251038, 0.025174688547849655, -0.0046714898198843, -0.07684633135795593, -0.08353456854820251, 0.04384605213999748, 0.0724354088306427, -0.09920069575309753, -0.10950029641389847, 0.020940061658620834, 0.010364467278122902, -0.0770784318447113, -0.009698856621980667, 0.01124160923063755, -0.07326611876487732, 0.022105716168880463, 0.037474460899829865, 0.12853948771953583, 0.05931059643626213, -0.030708877369761467, 0.004779028706252575, -0.011166644282639027, 0.17622719705104828, -0.138497993350029, 0.12496886402368546, 0.1560909003019333, 0.025406502187252045, 0.08396461606025696, 0.18909874558448792, -0.012173769995570183, -0.023842433467507362, 0.014738021418452263, 0.08373825997114182, -0.0593053363263607, -0.20204852521419525, -0.043426502496004105, -0.04862726107239723, 0.03623078018426895, 0.1241220086812973, 0.044981177896261215, 0.015911580994725227, 0.08498911559581757, -0.0861072689294815, 0.026695044711232185, 0.04588921368122101, 0.10498829185962677, 0.05184595659375191, 0.03371935337781906, 0.045693956315517426, -0.03997340425848961, -0.029438070952892303, 0.10425755381584167, 0.1339588165283203, 0.1095648780465126, -0.09695186465978622, 0.11143987625837326, 0.025170816108584404, 0.006690760608762503, -0.053218770772218704, 0.014535220339894295, -0.04092683270573616, 0.06027737632393837, -0.014873930253088474, -0.08783619850873947, -0.012278527952730656, 0.0682825818657875, 0.13452358543872833, -0.007971285842359066, 0.022804824635386467, -0.01871444471180439, 0.0909171774983406, 0.21313491463661194, 0.003015396883711219, -0.18000325560569763, 0.026101624593138695, 0.038277849555015564, 0.02500178851187229, -0.13513556122779846, -0.04091838374733925, 0.08610601723194122, -0.1672040969133377, 0.06335502117872238, -0.05465362221002579, 0.11519988626241684, -0.15621572732925415, -0.03020494058728218, 0.04143490269780159, 0.036373596638441086, -0.01586690917611122, 0.0787593424320221, -0.13566936552524567, 0.08542361110448837, 0.03493679687380791, 0.03750940412282944, -0.07861114293336868, 0.03557807207107544, -0.005222916603088379, -0.017195824533700943, 0.1570267528295517, -0.010575649328529835, -0.017391281202435493, -0.13757282495498657, -0.12044300884008408, -0.007259623147547245, 0.03910284861922264, -0.05106689780950546, 0.09931478649377823, 0.015925655141472816, -0.028878159821033478, -0.08235526084899902, -0.04672475531697273, -0.06274422258138657, -0.18433663249015808, 0.039590854197740555, -0.011172673664987087, 0.014095437712967396, -0.014803157187998295, 0.026931004598736763, 0.01971443183720112, 0.11523948609828949, -0.07843907922506332, -0.08688338100910187, -0.14844664931297302, 0.05201495438814163, 0.07052621990442276, -0.027886008843779564, -0.04028185084462166, -0.09200675785541534, 0.16990263760089874, -0.041492972522974014, -0.05250511318445206, 0.03652329370379448, -0.05794692039489746, -0.10572274774312973, -0.059157419949769974, 0.09432356804609299, 0.03669131547212601, -0.0072416928596794605, 0.0052163125947117805, 0.05298716202378273, 0.013843359425663948, -0.05711999163031578, 0.032210104167461395, 0.10150673985481262, 0.11943890154361725, 0.13706760108470917, 0.01575811393558979, -0.16048316657543182, -0.13414175808429718, 0.014932074584066868, 0.03823032230138779, 0.09679511189460754, -0.07322294265031815, 0.10379902273416519, 0.02386055327951908, -0.096676304936409, -0.20942729711532593, 0.08676403015851974, 0.05207620561122894, -0.01682741567492485, -0.0057662674225866795, -0.15310388803482056, 0.11752323061227798, 0.04891730844974518, -0.00434846943244338, 0.054270800203084946, -0.25652560591697693, -0.07672085613012314, -0.017283106222748756, 0.04985112324357033, -0.18822218477725983, -0.1749700903892517, -0.03964242711663246, -0.054103609174489975, -0.16821536421775818, 0.07863130420446396, 0.003936008550226688, 0.035894718021154404, 0.04768693074584007, 0.06037316843867302, 0.0667407363653183, -0.05002164468169212, 0.10309480130672455, 0.023721804842352867, 0.03934803977608681, -0.058577440679073334, -0.09296989440917969, 0.03813185542821884, -0.0903397724032402, 0.13755756616592407, 0.06052762642502785, 0.0009780732216313481, -0.07389423996210098, -0.013566507957875729, -0.045650165528059006, 0.08140689879655838, -0.02308979444205761, -0.04549718275666237, -0.07450705021619797, 0.046810735017061234, 0.13691091537475586, 0.02707994170486927, 0.0819447860121727, -0.0490511991083622, -0.01788243092596531, 0.14171716570854187, 0.10681004077196121, -0.0026731500402092934, -0.1495160162448883, -0.04007788747549057, 0.010757372714579105, 0.029325436800718307, -0.10401371121406555, 0.04679061099886894, 0.08489618450403214, 0.0105573246255517, 0.11116113513708115, -0.007357333321124315, -0.11188049614429474, 0.01081070490181446, 0.04538162425160408, -0.09199411422014236, -0.13552570343017578, 0.03163233771920204, 0.10727906227111816, -0.09054221957921982, -0.1106211245059967, 0.11269132047891617, 0.0010529939318075776, -0.019458390772342682, 0.008709732443094254, 0.0911010280251503, 0.05434241518378258, 0.05478877201676369, 0.018119050189852715, 0.04021880775690079, -0.06773563474416733, 0.11052744835615158, 0.14896896481513977, -0.15522640943527222, 0.0012621852802112699, 0.10992445796728134, -0.04005633294582367, -0.006785270757973194, -0.03280704841017723, 0.0482475608587265, -0.005977589171379805, -0.040581367909908295, 0.024284809827804565, -0.048981525003910065, 0.024695685133337975, 0.0774400532245636, 0.0032143464777618647, 0.06315203756093979, 0.020785970613360405, -0.017150569707155228, -0.13748010993003845, 0.11905312538146973, 0.02737298607826233, 0.05202418938279152, -0.1084756851196289, 0.0046568321995437145, 0.026622621342539787, 0.009895598515868187, 0.012602503411471844, -0.06112094596028328, -0.07884271442890167, -0.004953734576702118, -0.013786610215902328, 0.11696438491344452, -0.09118209034204483, -0.007468298077583313, -0.020798254758119583, 0.01960074156522751, -0.015009957365691662, 0.022540604695677757, -0.04220634326338768, -0.06983844935894012, -0.04250136390328407, 0.1257433295249939, -0.1523617058992386, -0.024313349276781082, 0.051292534917593, -0.08947762101888657, 0.0592002235352993, 0.002738578012213111, -0.041244618594646454, -0.08288510143756866, -0.18850335478782654, -0.03161673620343208, 0.037542425096035004, 0.04895858094096184, 0.04871051385998726, -0.10615631937980652, 0.05457695946097374, -0.0004646754532586783, -0.08333064615726471, -0.019685037434101105, -0.0047368514351546764, -0.11197119206190109, 0.054279670119285583, -0.08096660673618317, -0.028099944815039635, -0.03986109048128128, 0.12833350896835327, 0.0583750382065773, 0.01650981232523918, 0.07625540345907211, -0.05190218240022659, 0.09452364593744278, -0.1428825557231903, -0.03838725760579109, -0.004018882289528847, -0.03982515260577202, -0.05225162208080292, -0.006051336880773306, 0.07317353039979935, -0.021706480532884598, 0.12752199172973633, 0.1332206279039383, 0.03797582909464836, 0.04420130327343941, -0.016620337963104248, 0.02606379985809326, 0.05524791032075882, -0.03717804700136185, -0.02233673259615898, -0.019186057150363922, 0.08206452429294586, 0.011565715074539185, 0.008472021669149399, 0.1304469108581543, 0.0802774429321289, 0.23559753596782684, 0.127510204911232, 0.022031476721167564, 0.04979318752884865, -0.0632767602801323, -0.0697222575545311, 0.10622694343328476, -0.07134656608104706, 0.07290564477443695, -0.10392022132873535, 0.036703117191791534, 0.08685043454170227, -0.16825467348098755, 0.06950141489505768, -0.012183126993477345, -0.012864377349615097, -0.043580230325460434, -0.12020422518253326, -0.059353310614824295, -0.01729644648730755, -0.0047553181648254395, -0.10841049998998642, 0.07453961670398712, 0.1163610890507698, -0.005573293659836054, 0.01665225252509117, 0.08888379484415054, -0.08269958198070526, -0.0701962485909462, 0.08227942883968353, 0.01873404160141945, 0.051374420523643494, 0.04863464832305908, 0.04035942628979683, 0.06704344600439072, 0.008745907805860043, 0.10469360649585724, 0.09157443046569824, 0.11245402693748474, 0.04139217361807823, -0.07857333868741989, -0.07230197638273239, 0.02965507097542286, -0.010053803212940693, -0.019159730523824692, 0.14600969851016998, 0.07301163673400879, 0.0038457526825368404, -0.026829294860363007, 0.1741579920053482, -0.009421039372682571, -0.02140115015208721, -0.14354197680950165, 0.04191048815846443, -0.03694586083292961, -0.0053298743441700935, -0.01316054817289114, -0.14957933127880096, 0.007922778837382793, 0.12522658705711365, 0.06837975978851318, -0.04006749764084816, -0.01697506196796894, -0.011996163055300713, 0.00932956300675869, -0.008882510475814342, 0.04704716056585312, 0.02148943580687046, 0.2061767280101776, -0.05308247357606888, 0.023450452834367752, -0.03900269791483879, -0.03552888706326485, -0.06618605554103851, 0.09010209143161774, -0.01040121540427208, 0.018424877896904945, -0.07792970538139343, 0.11729006469249725, -0.009718390181660652, -0.20414327085018158, 0.05746721476316452, -0.10624057799577713, -0.08158079534769058, 0.005615775939077139, -0.009093782864511013, 0.0024713436141610146, 0.036914993077516556, 0.0059415376745164394, -0.06186213716864586, 0.08284465223550797, 0.023002929985523224, -0.06409980356693268, 0.005208704154938459, -0.004067712929099798, -0.09492327272891998, 0.26078325510025024, -0.024866940453648567, 0.03089827671647072, 0.09264958649873734, -0.034808866679668427, -0.14024630188941956, -0.028588062152266502, 0.06575892865657806, -0.031584955751895905, 0.0015426874160766602, 0.13263437151908875, -0.008655537851154804, 0.12201275676488876, 0.08664093166589737, -0.1083466038107872, 0.04728184640407562, -0.038796305656433105, 0.01261847373098135, -0.11732586473226547, 0.015607619658112526, -0.09767312556505203, 0.09925338625907898, 0.14217498898506165, 0.0014783113729208708, 0.005827465560287237, -0.047609373927116394, -0.005787164904177189, 0.006233762484043837, 0.10127312690019608, -0.007370771374553442, -0.05386580899357796, -0.004670185036957264, -0.1225140392780304, 0.08533462882041931, -0.11743010580539703, -0.05074262619018555, 0.028457634150981903, -0.017686350271105766, -0.016632409766316414, 0.0822451263666153, 0.020477354526519775, 0.012485547922551632, -0.05680545046925545, -0.12310265004634857, 0.030744783580303192, 0.17361615598201752, -0.0028770838398486376, -0.01990470290184021 ]
040828dedabe342b06fbddba93ca0d8400358472
# Dataset Card for aquarium-qlnqy ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/aquarium-qlnqy - **Point of Contact:** [email protected] ### Dataset Summary aquarium-qlnqy ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/aquarium-qlnqy ### Citation Information ``` @misc{ aquarium-qlnqy, title = { aquarium qlnqy Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/aquarium-qlnqy } }, url = { https://universe.roboflow.com/object-detection/aquarium-qlnqy }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/aquarium-qlnqy
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:16:16+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aquarium-qlnqy", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aquarium", "1": "fish", "2": "jellyfish", "3": "penguin", "4": "puffin", "5": "shark", "6": "starfish", "7": "stingray"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:41+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for aquarium-qlnqy The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary aquarium-qlnqy ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for aquarium-qlnqy\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naquarium-qlnqy", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for aquarium-qlnqy\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naquarium-qlnqy", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for aquarium-qlnqy\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\naquarium-qlnqy### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01681525446474552, 0.19021432101726532, -0.007900853641331196, 0.014138482511043549, 0.09172928333282471, 0.004531553480774164, 0.05687956511974335, 0.08995514363050461, 0.012791353277862072, 0.17863744497299194, -0.018285231664776802, 0.07152301073074341, 0.11951886862516403, 0.08746960014104843, -0.020291060209274292, -0.15797409415245056, 0.057087626308202744, -0.049157027155160904, 0.05082195997238159, 0.07314873486757278, 0.07298122346401215, -0.14137299358844757, 0.08459898084402084, -0.03639310970902443, -0.0036306590773165226, 0.01848936825990677, -0.06412943452596664, -0.044940315186977386, 0.013216470368206501, 0.045109376311302185, 0.02070431411266327, 0.03698991239070892, 0.040173083543777466, -0.1948380172252655, 0.022448917850852013, 0.1042039543390274, 0.0346415676176548, 0.023759137839078903, 0.15830715000629425, -0.0776013731956482, 0.045684829354286194, -0.13863486051559448, 0.04375986382365227, 0.012145649641752243, -0.11289981007575989, -0.1245247945189476, -0.12079303711652756, 0.058874305337667465, 0.11363489180803299, 0.049002066254615784, -0.01549084484577179, 0.08996080607175827, -0.013490204699337482, 0.05518360808491707, 0.10445848852396011, -0.09117184579372406, -0.0411217100918293, 0.08166440576314926, 0.0401228666305542, 0.10255573689937592, -0.11764383316040039, -0.012002728879451752, -0.007764188107103109, -0.01937067322432995, 0.0002703432983253151, -0.05811348557472229, -0.03916878253221512, -0.010647211223840714, -0.09591303020715714, -0.13271185755729675, 0.13666236400604248, 0.05645647644996643, -0.05623972788453102, -0.1422741562128067, -0.0020469699520617723, 0.05848585441708565, -0.04172995314002037, -0.004604920279234648, 0.054625000804662704, -0.00806906446814537, 0.06243734061717987, -0.06757654249668121, -0.10995600372552872, 0.05727718025445938, 0.026040377095341682, 0.04005451872944832, -0.012678021565079689, 0.0428386852145195, 0.0014205886982381344, 0.0709361582994461, -0.005812834948301315, -0.09862075746059418, -0.023300040513277054, -0.03555995225906372, -0.06682945787906647, -0.043823063373565674, 0.06377489864826202, -0.1615757942199707, 0.06622886657714844, 0.05699537694454193, -0.06644921004772186, 0.04037470743060112, -0.12723611295223236, 0.02242693491280079, 0.10729782283306122, 0.18934591114521027, -0.094591423869133, -0.0850842222571373, 0.009298224002122879, 0.04629707336425781, 0.011331526562571526, -0.03133196756243706, -0.019732579588890076, -0.00556160369887948, 0.033698324114084244, 0.03045322746038437, 0.11564131826162338, 0.04039406403899193, -0.05972876399755478, -0.0696536973118782, 0.1301286667585373, -0.09150518476963043, 0.053667645901441574, 0.06992919743061066, -0.05337383970618248, 0.07460998743772507, 0.006126719992607832, 0.015923114493489265, -0.10233131051063538, 0.0983835831284523, -0.026574989780783653, 0.014487318694591522, -0.07973930984735489, -0.10024423152208328, 0.051090627908706665, -0.06631014496088028, -0.07903221994638443, -0.08401032537221909, -0.04121365025639534, -0.08470079302787781, 0.046833038330078125, -0.04430004954338074, 0.02010795846581459, 0.03587467595934868, -0.02610955387353897, -0.022275801748037338, 0.01383769791573286, 0.043328024446964264, -0.05219496786594391, 0.03938724473118782, -0.09077715128660202, 0.03477072715759277, 0.09099773317575455, 0.04122089967131615, -0.09310521930456161, 0.06580162793397903, -0.17794036865234375, 0.13486535847187042, -0.04896099120378494, 0.018648747354745865, -0.14178641140460968, 0.004645806271582842, -0.01865590177476406, -0.041712723672389984, 0.010650218464434147, 0.13915303349494934, -0.09195899218320847, 0.02304840087890625, 0.06229539215564728, -0.04577687010169029, -0.05616629123687744, 0.04068423807621002, -0.04293135553598404, -0.0025909149553626776, 0.08201087266206741, 0.11820744723081589, -0.04334836080670357, -0.11405550688505173, -0.11184679716825485, -0.047772545367479324, -0.032189905643463135, 0.15222443640232086, 0.06415405869483948, -0.02077760361135006, 0.1087850034236908, -0.0017590961651876569, -0.024734176695346832, -0.03880665451288223, 0.013412262313067913, -0.03799150884151459, 0.02087656781077385, -0.011732206679880619, -0.07302117347717285, 0.009094893001019955, -0.08914816379547119, 0.022644221782684326, -0.07963328063488007, -0.040961071848869324, 0.009356938302516937, -0.030669840052723885, 0.021802062168717384, -0.03467573970556259, 0.10839547961950302, -0.11687023192644119, 0.0019470863044261932, -0.1613777130842209, -0.10071791708469391, 0.06772799044847488, -0.05217023566365242, 0.05734989792108536, -0.0698404535651207, -0.00293515482917428, 0.021018333733081818, 0.033532027155160904, -0.012265974655747414, 0.046208709478378296, -0.019705742597579956, -0.05289057269692421, -0.11971063911914825, -0.03574913740158081, -0.018693795427680016, 0.1155741885304451, -0.1341397762298584, -0.017751630395650864, 0.15169736742973328, 0.10869430750608444, 0.03562028706073761, -0.045038674026727676, 0.08475527912378311, -0.031996794044971466, -0.012751717120409012, -0.07606524974107742, -0.009739288128912449, 0.0037100063636898994, 0.009575472213327885, 0.07722789794206619, -0.17326360940933228, -0.13582737743854523, 0.08277473598718643, 0.03988631069660187, -0.07907256484031677, -0.057224091142416, -0.05348801985383034, -0.023128919303417206, -0.08775821328163147, -0.015645558014512062, 0.03868782892823219, 0.08498678356409073, 0.08118478953838348, -0.06609055399894714, -0.031186122447252274, 0.030567437410354614, -0.014083372429013252, -0.0707584097981453, 0.06902884691953659, 0.040019333362579346, -0.1176573857665062, 0.0928012803196907, -0.027285564690828323, 0.030237236991524696, 0.06530077755451202, 0.04119240865111351, -0.11564493924379349, 0.022783173248171806, 0.08200036734342575, 0.027278834953904152, 0.1086759865283966, -0.02076604776084423, 0.026562638580799103, 0.08118417114019394, -0.018448807299137115, -0.0196685791015625, -0.09657494723796844, 0.0756239965558052, 0.03669942170381546, -0.024697868153452873, 0.03031362220644951, -0.015123828314244747, 0.08963436633348465, 0.1033085361123085, 0.06323910504579544, 0.1173727884888649, -0.05337833985686302, -0.060689155012369156, -0.08489075303077698, 0.13867227733135223, -0.016198815777897835, -0.2715643048286438, -0.06876639276742935, -0.06539630144834518, -0.0496608130633831, -0.028128428384661674, 0.03488096967339516, 0.0030701274517923594, -0.07808422297239304, -0.09133639186620712, 0.031412556767463684, 0.06254706531763077, -0.09535259753465652, -0.12387783825397491, 0.03415539860725403, 0.007443785667419434, -0.0774635523557663, 0.00005031306136515923, 0.01082264631986618, -0.047605402767658234, 0.022845525294542313, 0.05775716155767441, 0.12043754011392593, 0.06659863889217377, -0.04292899742722511, 0.0014477605000138283, -0.006491325795650482, 0.19700194895267487, -0.14996901154518127, 0.10641925781965256, 0.14956483244895935, 0.012086242437362671, 0.07848277688026428, 0.1980798840522766, -0.006625342182815075, -0.024066798388957977, 0.015283428132534027, 0.07759623974561691, -0.05640499293804169, -0.20897531509399414, -0.05487219616770744, -0.048373233526945114, 0.024257589131593704, 0.12714731693267822, 0.04189762473106384, 0.022054577246308327, 0.08265209943056107, -0.09787015616893768, 0.03813248872756958, 0.029581984505057335, 0.10768898576498032, 0.05565614998340607, 0.04848306253552437, 0.04485486447811127, -0.03708374500274658, -0.03175082430243492, 0.09161020815372467, 0.13778738677501678, 0.10882562398910522, -0.09494823962450027, 0.09781073033809662, 0.024167602881789207, 0.019867176190018654, -0.03855106234550476, -0.008570139296352863, -0.04767647013068199, 0.05155104398727417, -0.004792877472937107, -0.09718769043684006, 0.006952754687517881, 0.08423672616481781, 0.14192937314510345, -0.02392960712313652, 0.012807224877178669, -0.04085097834467888, 0.07446431368589401, 0.2329045534133911, -0.000778447778429836, -0.1847534477710724, 0.018012631684541702, 0.036898043006658554, 0.02370190992951393, -0.12430897355079651, -0.046851996332407, 0.07102219760417938, -0.1669672429561615, 0.05221449211239815, -0.04966585338115692, 0.11405647546052933, -0.14474762976169586, -0.03727087005972862, 0.057279571890830994, 0.027727218344807625, -0.01832749880850315, 0.0774599015712738, -0.11545023322105408, 0.08310430496931076, 0.04158521071076393, 0.02912946790456772, -0.07709599286317825, 0.03159570321440697, -0.0021998060401529074, -0.006851021200418472, 0.1542707234621048, -0.015835348516702652, -0.004523391369730234, -0.14018365740776062, -0.12634609639644623, -0.005543356295675039, 0.036441873759031296, -0.057908639311790466, 0.10080815106630325, 0.025395015254616737, -0.0330321379005909, -0.08400525152683258, -0.021718069911003113, -0.06401822715997696, -0.19660699367523193, 0.04727470502257347, -0.01245767343789339, 0.0176746416836977, -0.009891340509057045, 0.022197280079126358, 0.022206144407391548, 0.12797464430332184, -0.055781036615371704, -0.0898941159248352, -0.13880841434001923, 0.057343315333127975, 0.0916658267378807, -0.026832612231373787, -0.0290870051831007, -0.09676623344421387, 0.1689317375421524, -0.03739691153168678, -0.06122256815433502, 0.024432312697172165, -0.053538333624601364, -0.11638766527175903, -0.06548859924077988, 0.09693710505962372, 0.029811957851052284, 0.010496030561625957, 0.007209322415292263, 0.05552277714014053, 0.0004386122745927423, -0.045053623616695404, 0.029185686260461807, 0.09046212583780289, 0.13088755309581757, 0.10480614006519318, 0.00035745176137425005, -0.1403675377368927, -0.1410556584596634, 0.002703374018892646, 0.0431295782327652, 0.11483687162399292, -0.07394915819168091, 0.10899171233177185, 0.04329526051878929, -0.08654160052537918, -0.20594939589500427, 0.08705581724643707, 0.058360904455184937, -0.007253456860780716, -0.005414143204689026, -0.14873041212558746, 0.12532556056976318, 0.037889014929533005, -0.00787423923611641, 0.07935556769371033, -0.26077166199684143, -0.07581159472465515, -0.01095561496913433, 0.04290420934557915, -0.23503617942333221, -0.19076991081237793, -0.04545554518699646, -0.04507220908999443, -0.15606988966464996, 0.07254396378993988, 0.008032182231545448, 0.04569576680660248, 0.036610811948776245, 0.04656052961945534, 0.06456473469734192, -0.048715561628341675, 0.10783996433019638, 0.010745622217655182, 0.029483582824468613, -0.04750778153538704, -0.09516357630491257, 0.032177429646253586, -0.08862762153148651, 0.14051100611686707, 0.049083903431892395, 0.007228007540106773, -0.06351599097251892, -0.012732554227113724, -0.04423820599913597, 0.0792594701051712, -0.02558552846312523, -0.04578106850385666, -0.08172853291034698, 0.05098312348127365, 0.13844725489616394, 0.02677534893155098, 0.08254151791334152, -0.04488383233547211, -0.008946128189563751, 0.15463009476661682, 0.10680320113897324, 0.023108933120965958, -0.166474848985672, -0.039903946220874786, 0.0074285599403083324, 0.036986008286476135, -0.11407266557216644, 0.03794952481985092, 0.09295258671045303, 0.019463658332824707, 0.10472270101308823, -0.008345024660229683, -0.1063435971736908, 0.012502350844442844, 0.038563936948776245, -0.09744126349687576, -0.13048787415027618, 0.032850198447704315, 0.1402943879365921, -0.10231606662273407, -0.12242991477251053, 0.10138369351625443, -0.009962107986211777, -0.030337052419781685, 0.007770884782075882, 0.07373131066560745, 0.05703871324658394, 0.06065434217453003, 0.01806819625198841, 0.041513774544000626, -0.06248603016138077, 0.09811778366565704, 0.1597312092781067, -0.15994183719158173, -0.0005377071211114526, 0.12271510064601898, -0.04452022910118103, -0.01619935967028141, -0.018661117181181908, 0.009551449678838253, 0.005214899778366089, -0.026953961700201035, 0.027151061221957207, -0.04307287186384201, 0.02186347171664238, 0.08180205523967743, 0.00046432585804723203, 0.049774765968322754, 0.023534750565886497, -0.020120250061154366, -0.1353188455104828, 0.12959279119968414, 0.019439004361629486, 0.049564115703105927, -0.08908835053443909, -0.00008626671478850767, 0.03157975524663925, 0.00984282698482275, 0.012137744575738907, -0.06769242882728577, -0.07666290551424026, -0.001423381152562797, -0.038357559591531754, 0.11527473479509354, -0.08550241589546204, -0.007355029229074717, -0.027975216507911682, 0.012606732547283173, -0.009488997980952263, 0.025128154084086418, -0.04967459291219711, -0.0748550295829773, -0.049082301557064056, 0.12043393403291702, -0.14435334503650665, -0.028755715116858482, 0.0485309362411499, -0.09054511040449142, 0.055892203003168106, 0.005224384367465973, -0.03739757835865021, -0.09667184948921204, -0.17843805253505707, -0.042789898812770844, 0.021481839939951897, 0.06476667523384094, 0.04450429975986481, -0.0926813930273056, 0.04537501558661461, -0.012266113422811031, -0.09062039852142334, -0.018886936828494072, -0.005576928146183491, -0.1130896732211113, 0.0320136696100235, -0.08894602954387665, -0.024048997089266777, -0.03266768157482147, 0.12267936766147614, 0.04842046648263931, 0.019483869895339012, 0.06157292053103447, -0.04972178488969803, 0.10190027952194214, -0.13665686547756195, -0.040651582181453705, -0.002724881051108241, -0.02890888787806034, -0.08131273835897446, -0.0019350379006937146, 0.07875781506299973, -0.02268480695784092, 0.12536345422267914, 0.1278640180826187, 0.041292574256658554, 0.045242369174957275, -0.004962415434420109, 0.04869714751839638, 0.06025061383843422, -0.029274318367242813, -0.01689200848340988, -0.013940067030489445, 0.08178464323282242, 0.015047791413962841, 0.0047113411128520966, 0.1132245808839798, 0.06755530834197998, 0.23317372798919678, 0.14815619587898254, 0.01628457009792328, 0.048089466989040375, -0.0691833347082138, -0.0683673620223999, 0.1114029660820961, -0.061838798224925995, 0.08590216934680939, -0.1089925616979599, 0.0736297070980072, 0.08654884994029999, -0.1602763533592224, 0.07018069177865982, -0.020453857257962227, -0.014111910946667194, -0.03603397309780121, -0.10968165844678879, -0.05629079043865204, -0.0137556167319417, 0.0015107630752027035, -0.10424475371837616, 0.0771283432841301, 0.1030619889497757, 0.0029367776587605476, 0.01488680299371481, 0.08391878008842468, -0.044861312955617905, -0.07220626622438431, 0.07733853906393051, 0.027666041627526283, 0.05378761142492294, 0.04689806327223778, 0.051311198621988297, 0.0797453299164772, -0.009528063237667084, 0.09176656603813171, 0.09205476939678192, 0.09586410224437714, 0.03858933970332146, -0.06722889840602875, -0.07956832647323608, 0.030622169375419617, -0.015002219006419182, -0.0004621937114279717, 0.1455508917570114, 0.07295672595500946, 0.012585106305778027, -0.03036366030573845, 0.1763630509376526, -0.008043661713600159, -0.00541776092723012, -0.13717997074127197, 0.04894717037677765, -0.047431763261556625, -0.015328321605920792, -0.008529605343937874, -0.15206687152385712, 0.007236380595713854, 0.1455354392528534, 0.06476455181837082, -0.05220014974474907, -0.014111295342445374, 0.004599652253091335, 0.005450056865811348, -0.028111224994063377, 0.039002738893032074, 0.015032099559903145, 0.2149236500263214, -0.07291270792484283, 0.01590963453054428, -0.043909430503845215, -0.04373680055141449, -0.068596750497818, 0.09406564384698868, -0.011196870356798172, 0.011338967829942703, -0.08097174763679504, 0.11411537230014801, -0.021279292181134224, -0.20115047693252563, 0.049009449779987335, -0.1148347407579422, -0.09011001139879227, 0.0013816871214658022, -0.030547672882676125, 0.006072203628718853, 0.02807156927883625, -0.0010597702348604798, -0.05998678877949715, 0.0712319016456604, 0.022347459569573402, -0.057875946164131165, 0.0010349053191021085, 0.007991546764969826, -0.07530289888381958, 0.25919467210769653, -0.026349743828177452, 0.04257012903690338, 0.07935486733913422, -0.017549309879541397, -0.13162016868591309, -0.04259434714913368, 0.08082137256860733, -0.050856731832027435, 0.011548376642167568, 0.13685034215450287, -0.005315134301781654, 0.13802117109298706, 0.08742061257362366, -0.08611511439085007, 0.057289641350507736, -0.0481550358235836, 0.009854689240455627, -0.11410094797611237, 0.00918811559677124, -0.08610241860151291, 0.10791141539812088, 0.13910402357578278, -0.008087432943284512, -0.007444797549396753, -0.03805045038461685, -0.006204007659107447, 0.01561792567372322, 0.09421654790639877, -0.005328751169145107, -0.06087096780538559, 0.011619017459452152, -0.14911319315433502, 0.09204721450805664, -0.14118675887584686, -0.05948713421821594, 0.04087047651410103, -0.015531037002801895, -0.007976219989359379, 0.08066871017217636, 0.03900749236345291, -0.00523074995726347, -0.06467921286821365, -0.13172438740730286, 0.03130437061190605, 0.15421247482299805, -0.016201389953494072, -0.02437524124979973 ]
c8685b5cdb5d505fe9e79286a8c532729bcac470
# Dataset Card for vehicles-q0x2v ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/vehicles-q0x2v - **Point of Contact:** [email protected] ### Dataset Summary vehicles-q0x2v ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/vehicles-q0x2v ### Citation Information ``` @misc{ vehicles-q0x2v, title = { vehicles q0x2v Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/vehicles-q0x2v } }, url = { https://universe.roboflow.com/object-detection/vehicles-q0x2v }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/vehicles-q0x2v
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:16:17+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "vehicles-q0x2v", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "vehicles", "1": "big bus", "2": "big truck", "3": "bus-l-", "4": "bus-s-", "5": "car", "6": "mid truck", "7": "small bus", "8": "small truck", "9": "truck-l-", "10": "truck-m-", "11": "truck-s-", "12": "truck-xl-"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:17:19+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for vehicles-q0x2v The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary vehicles-q0x2v ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for vehicles-q0x2v\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nvehicles-q0x2v", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for vehicles-q0x2v\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nvehicles-q0x2v", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for vehicles-q0x2v\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nvehicles-q0x2v### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.016105568036437035, 0.17057257890701294, -0.007308594416826963, 0.02599693275988102, 0.10307967662811279, -0.001716136233881116, 0.0710258036851883, 0.08591960370540619, -0.01183174829930067, 0.16372442245483398, 0.011022995226085186, 0.05866130068898201, 0.11378969252109528, 0.08700672537088394, -0.012261427007615566, -0.17325380444526672, 0.05931778997182846, -0.07503356784582138, 0.07072341442108154, 0.07063575834035873, 0.07631093263626099, -0.13950294256210327, 0.08859653025865555, -0.0367593914270401, -0.01607770100235939, 0.034870196133852005, -0.05872664973139763, -0.04249981790781021, 0.00391903193667531, 0.05437846854329109, 0.013080756179988384, 0.03673231974244118, 0.05711532011628151, -0.20127643644809723, 0.019924871623516083, 0.10512056946754456, 0.025962628424167633, 0.02085910364985466, 0.16274967789649963, -0.08857595175504684, 0.06553120911121368, -0.1086350604891777, 0.03507254272699356, 0.012746079824864864, -0.10980741679668427, -0.1143830418586731, -0.11549412459135056, 0.06693094968795776, 0.09803938865661621, 0.05960213765501976, -0.020481662824749947, 0.09115254133939743, -0.02816915139555931, 0.06566230952739716, 0.1273476928472519, -0.0494193434715271, -0.04147944226861, 0.08513104170560837, 0.04272831976413727, 0.09857050329446793, -0.11913040280342102, -0.02222985215485096, 0.010081109590828419, -0.02500796504318714, 0.0032578264363110065, -0.04309261590242386, -0.06114708632230759, 0.005721915513277054, -0.1037505567073822, -0.15280656516551971, 0.13750481605529785, 0.047525353729724884, -0.04829205572605133, -0.132669597864151, -0.0005563768208958209, 0.05332127586007118, -0.02908966690301895, -0.0060046217404305935, 0.04374178126454353, -0.008087675087153912, 0.046253450214862823, -0.0601801835000515, -0.1038242056965828, 0.044855717569589615, 0.032255157828330994, 0.02604844979941845, -0.01667112112045288, 0.04472433030605316, 0.01414261944591999, 0.08087415248155594, 0.0068459236063063145, -0.11741279065608978, -0.02946491912007332, -0.04525592178106308, -0.0489322654902935, -0.04977316036820412, 0.06543347239494324, -0.13330788910388947, 0.06285987049341202, 0.05925099551677704, -0.061055462807416916, 0.027640024200081825, -0.11658017337322235, 0.006114743184298277, 0.1122920960187912, 0.18000566959381104, -0.08218497037887573, -0.07415610551834106, -0.0035629982594400644, 0.04644059017300606, 0.0197653379291296, -0.0262580718845129, -0.03291159123182297, 0.002199222333729267, 0.022626888006925583, 0.05089990049600601, 0.11626648902893066, 0.045666687190532684, -0.06239503622055054, -0.06600591540336609, 0.13263055682182312, -0.0927094891667366, 0.04846283048391342, 0.05780534818768501, -0.055210601538419724, 0.07080702483654022, 0.009102530777454376, 0.016590941697359085, -0.113294318318367, 0.09712192416191101, -0.023036329075694084, 0.020558329299092293, -0.0936988815665245, -0.09629383683204651, 0.05746317654848099, -0.07238690555095673, -0.07839188724756241, -0.08519402891397476, -0.05526503548026085, -0.08387143164873123, 0.03586288169026375, -0.04224919527769089, 0.01993352547287941, 0.01757124811410904, -0.04201275855302811, -0.014376276172697544, 0.0053922999650239944, 0.05386161059141159, -0.06225370243191719, 0.03474130854010582, -0.09610167145729065, 0.03546836972236633, 0.11793820559978485, 0.04444358870387077, -0.10853129625320435, 0.06018388643860817, -0.1855648308992386, 0.13805434107780457, -0.05035392567515373, 0.027991121634840965, -0.12749245762825012, 0.013989172875881195, -0.008796123787760735, -0.040085021406412125, -0.0056872679851949215, 0.14431942999362946, -0.08896082639694214, 0.011167443357408047, 0.0474320724606514, -0.06022964417934418, -0.05549941584467888, 0.03181163966655731, -0.044044677168130875, -0.010713204741477966, 0.08078566193580627, 0.12137757986783981, -0.026637502014636993, -0.1247236430644989, -0.11939085274934769, -0.02900785766541958, -0.04423028603196144, 0.15091276168823242, 0.08332069963216782, -0.035361818969249725, 0.09833552688360214, -0.007737955544143915, -0.004808729514479637, -0.04121246933937073, 0.00711083086207509, -0.037606168538331985, 0.00907354336231947, -0.0008067458984442055, -0.09527373313903809, 0.02427750639617443, -0.0954032763838768, 0.005727699492126703, -0.082938551902771, -0.032198432832956314, 0.02106863632798195, -0.0272065382450819, 0.014321348629891872, -0.027445627376437187, 0.09078070521354675, -0.13141874969005585, -0.0007036159513518214, -0.15822499990463257, -0.12405271083116531, 0.05561802536249161, -0.04931873828172684, 0.028376776725053787, -0.07957927137613297, -0.012568274512887001, 0.028006844222545624, 0.03278322517871857, -0.015662407502532005, 0.04512609541416168, -0.020543009042739868, -0.048101864755153656, -0.13454173505306244, -0.049394622445106506, -0.0253177247941494, 0.08514845371246338, -0.12297527492046356, -0.0332891047000885, 0.13445597887039185, 0.12927594780921936, 0.03668859228491783, -0.04445664584636688, 0.07735900580883026, -0.02691015787422657, -0.028292769566178322, -0.08696986734867096, -0.0075119552202522755, -0.003199527971446514, 0.04827994853258133, 0.0898493304848671, -0.15803048014640808, -0.13465124368667603, 0.09248146414756775, 0.03237060457468033, -0.0831955149769783, -0.05438984930515289, -0.04673048108816147, -0.015248059295117855, -0.10761278122663498, -0.021237080916762352, 0.024631351232528687, 0.060943447053432465, 0.08480250090360641, -0.07563536614179611, -0.035586562007665634, 0.021244121715426445, -0.01404331810772419, -0.0786563903093338, 0.07988299429416656, 0.07497064024209976, -0.11244481801986694, 0.10936538130044937, -0.022896427661180496, 0.040538087487220764, 0.09558195620775223, 0.03132486343383789, -0.1221267580986023, 0.018102165311574936, 0.057183608412742615, 0.022392500191926956, 0.08573316037654877, -0.00894289929419756, 0.023913005366921425, 0.08136096596717834, -0.019760726019740105, -0.023105889558792114, -0.08260252326726913, 0.0728505477309227, 0.03961857408285141, -0.0405878983438015, 0.015214058570563793, -0.012936062179505825, 0.07852312177419662, 0.09335876256227493, 0.05791110917925835, 0.112172432243824, -0.03951789811253548, -0.05899490788578987, -0.09838074445724487, 0.12767983973026276, -0.015067154541611671, -0.25549787282943726, -0.0870068296790123, -0.06601093709468842, -0.05752073973417282, -0.006725072395056486, 0.04134387895464897, -0.0033893787767738104, -0.09192036092281342, -0.10628993809223175, 0.06813490390777588, 0.05862163379788399, -0.09694503247737885, -0.1342468559741974, 0.044526007026433945, 0.008062181994318962, -0.07538436353206635, 0.0035509841982275248, 0.02676357701420784, -0.04036540538072586, 0.006481251213699579, 0.04284725338220596, 0.1254749447107315, 0.04724776744842529, -0.018248066306114197, 0.005045957863330841, -0.0060381232760846615, 0.18375223875045776, -0.14604994654655457, 0.08721942454576492, 0.1655411273241043, 0.011539049446582794, 0.07424823939800262, 0.2078695446252823, -0.02121545374393463, -0.007786551024764776, 0.02864650823175907, 0.07371566444635391, -0.06774850189685822, -0.1973269134759903, -0.055588413029909134, -0.04224209487438202, 0.017952699214220047, 0.14218035340309143, 0.03424415737390518, 0.02066425047814846, 0.09567669034004211, -0.11929351091384888, 0.02855304442346096, 0.006972596049308777, 0.10850652307271957, 0.05840720236301422, 0.04932662844657898, 0.053950220346450806, -0.05275832861661911, -0.03850051388144493, 0.09848063439130783, 0.09090785682201385, 0.12897901237010956, -0.10190408676862717, 0.08694574981927872, 0.026007963344454765, 0.03405618667602539, -0.023053890094161034, -0.006716073025017977, -0.021670639514923096, 0.051229268312454224, -0.0007614568457938731, -0.10670061409473419, 0.010115434415638447, 0.09410976618528366, 0.1437332183122635, -0.010821533389389515, -0.006246996112167835, -0.036249417811632156, 0.06209488585591316, 0.25784894824028015, 0.003250756999477744, -0.219065859913826, 0.017452090978622437, 0.034727003425359726, 0.013557438738644123, -0.1140463650226593, -0.04341805353760719, 0.08260203897953033, -0.17575445771217346, 0.055847641080617905, -0.03098389320075512, 0.11218508332967758, -0.1351056694984436, -0.03130069747567177, 0.060578156262636185, 0.04391680657863617, -0.03067202679812908, 0.088777095079422, -0.11654188483953476, 0.08509519696235657, 0.033869292587041855, 0.024876708164811134, -0.0833095833659172, 0.03900965303182602, 0.013116898015141487, -0.007333332672715187, 0.14515838027000427, -0.024294136092066765, -0.004828873556107283, -0.1346815973520279, -0.11697553843259811, -0.012803278863430023, 0.04868809133768082, -0.0705607607960701, 0.10747964680194855, 0.009331079199910164, -0.03021661937236786, -0.07740135490894318, -0.03332383185625076, -0.06859248876571655, -0.18654079735279083, 0.03377571329474449, -0.013141199015080929, 0.023323992267251015, -0.015072832815349102, 0.008347776718437672, 0.025912193581461906, 0.11854390799999237, -0.03413992375135422, -0.09580492228269577, -0.14423607289791107, 0.05676223710179329, 0.09751660376787186, -0.023525504395365715, -0.02279716357588768, -0.09695759415626526, 0.18516837060451508, -0.02184329181909561, -0.08061498403549194, 0.02252865768969059, -0.07485175132751465, -0.12535476684570312, -0.06332630664110184, 0.10323270410299301, 0.01764882542192936, 0.0005445430870167911, -0.0022576050832867622, 0.061892904341220856, -0.0010759420692920685, -0.04468171298503876, 0.02021430991590023, 0.11058885604143143, 0.14489835500717163, 0.11919466406106949, 0.011396572925150394, -0.1415552794933319, -0.11749756336212158, -0.014190522022545338, 0.02204384282231331, 0.10237115621566772, -0.07469773292541504, 0.12231618911027908, 0.03373201563954353, -0.08214466273784637, -0.2281693071126938, 0.0789002776145935, 0.07650579512119293, -0.006407533772289753, 0.001250610570423305, -0.13843941688537598, 0.1414078027009964, 0.034238751977682114, -0.0025968309491872787, 0.0637393593788147, -0.2628706097602844, -0.07827086746692657, -0.01253895927220583, 0.019528798758983612, -0.23983632028102875, -0.16407208144664764, -0.054578397423028946, -0.06804749369621277, -0.14414344727993011, 0.05437928065657616, 0.0071808756329119205, 0.04737485945224762, 0.03594405576586723, 0.030872348695993423, 0.06822601705789566, -0.043867215514183044, 0.1068311557173729, 0.012534995563328266, 0.038369469344615936, -0.08131761848926544, -0.08154141157865524, 0.011976290494203568, -0.09692731499671936, 0.14263638854026794, 0.03805110603570938, 0.028000032529234886, -0.04955471307039261, -0.028329867869615555, -0.03127637133002281, 0.08600681275129318, -0.023550715297460556, -0.04308541491627693, -0.09655778855085373, 0.027313239872455597, 0.1291584074497223, 0.021789902821183205, 0.08584006875753403, -0.04571922495961189, -0.02043955773115158, 0.16171139478683472, 0.10480500012636185, 0.011225797235965729, -0.15521124005317688, -0.04523789510130882, -0.001337695517577231, 0.049718841910362244, -0.12494079023599625, 0.03779106214642525, 0.08447138220071793, 0.01508993748575449, 0.10424492508172989, -0.01177219394594431, -0.09444843977689743, 0.0033213249407708645, 0.040037356317043304, -0.10153204202651978, -0.10797880589962006, 0.017041612416505814, 0.11093690246343613, -0.11152908205986023, -0.12460779398679733, 0.10782928019762039, -0.009626629762351513, -0.013677960261702538, -0.0022010805550962687, 0.07199794799089432, 0.06347450613975525, 0.06237392872571945, 0.02068936638534069, 0.03795985132455826, -0.07246256619691849, 0.11088662594556808, 0.14952997863292694, -0.14291533827781677, 0.00472934590652585, 0.10975159704685211, -0.05040115863084793, -0.02343197725713253, -0.016337130218744278, 0.04009082913398743, -0.026762142777442932, -0.03693534433841705, 0.031797900795936584, -0.04598712548613548, 0.046379830688238144, 0.08837447315454483, 0.0071984631940722466, 0.04991716518998146, 0.026184795424342155, -0.018981188535690308, -0.1445881575345993, 0.13929490745067596, 0.022686460986733437, 0.05317258462309837, -0.0977071076631546, 0.004083134699612856, 0.0339980311691761, 0.008238554000854492, 0.00830895360559225, -0.057515133172273636, -0.08090659976005554, 0.0041808378882706165, -0.049694471061229706, 0.10658719390630722, -0.08900327235460281, -0.005727511830627918, -0.014283385127782822, 0.0011170998914167285, -0.013094805181026459, 0.034732069820165634, -0.04734161123633385, -0.0807039886713028, -0.04984094202518463, 0.1351930797100067, -0.1498153954744339, -0.02348296344280243, 0.053486187011003494, -0.08705482631921768, 0.05838489532470703, 0.01685788668692112, -0.035770297050476074, -0.09384249895811081, -0.17636127769947052, -0.04058678820729256, 0.024971341714262962, 0.06949003785848618, 0.040191177278757095, -0.07789651304483414, 0.05365101993083954, 0.0014011526945978403, -0.09989442676305771, -0.012575667351484299, -0.017693134024739265, -0.11860570311546326, 0.04902281612157822, -0.07331156730651855, -0.036348868161439896, -0.0324370302259922, 0.1358473002910614, 0.04704378545284271, 0.0022233743220567703, 0.09736032783985138, -0.05504527688026428, 0.09589581191539764, -0.13692165911197662, -0.03648744896054268, -0.01383244339376688, -0.0266446340829134, -0.09175366908311844, -0.0043068211525678635, 0.07291730493307114, -0.030524462461471558, 0.12937453389167786, 0.14610536396503448, 0.053473252803087234, 0.047390468418598175, 0.005773460026830435, 0.09913307428359985, 0.06095949932932854, -0.015301733277738094, 0.0029352775309234858, -0.011848138645291328, 0.07288002222776413, 0.01846502721309662, 0.023386124521493912, 0.08692000806331635, 0.05219370499253273, 0.23341883718967438, 0.12817735970020294, 0.01588219217956066, 0.049784108996391296, -0.0898047462105751, -0.04646354541182518, 0.08962946385145187, -0.04887393116950989, 0.0830087885260582, -0.09898045659065247, 0.04071246460080147, 0.09657194465398788, -0.14247100055217743, 0.061273593455553055, -0.015360048972070217, -0.00022551146685145795, -0.04163403809070587, -0.10452110320329666, -0.06627203524112701, -0.03564636781811714, 0.004731385037302971, -0.10472611337900162, 0.09350746870040894, 0.14352622628211975, 0.0063244192861020565, 0.015475542284548283, 0.08975396305322647, -0.05257248505949974, -0.08422695845365524, 0.061539020389318466, 0.011993755586445332, 0.05879838764667511, 0.032738056033849716, 0.046770043671131134, 0.09259511530399323, -0.011909175664186478, 0.07227759808301926, 0.08955927193164825, 0.10015133023262024, 0.030004113912582397, -0.06877019256353378, -0.07475817948579788, 0.030303269624710083, -0.01202358491718769, -0.010576068423688412, 0.16241610050201416, 0.07897745817899704, 0.024052347987890244, -0.018984034657478333, 0.1724730283021927, -0.014887751080095768, -0.02931000106036663, -0.1395738571882248, 0.04840920493006706, -0.042344313114881516, -0.005893074907362461, -0.015701811760663986, -0.1498040109872818, 0.0007448235992342234, 0.1300065964460373, 0.08048361539840698, -0.04504765197634697, -0.013254784047603607, -0.018122300505638123, 0.002537456573918462, -0.021841663867235184, 0.036238763481378555, 0.014744607731699944, 0.19814904034137726, -0.06449057906866074, 0.017037557438015938, -0.04112081974744797, -0.02954218164086342, -0.059050269424915314, 0.09687494486570358, -0.019628411158919334, -0.0023587977048009634, -0.0770714208483696, 0.11018507927656174, -0.012242645025253296, -0.1770697683095932, 0.056993208825588226, -0.08592887967824936, -0.08436806499958038, 0.01361052691936493, -0.01699507050216198, 0.022262008860707283, 0.021457724273204803, -0.00044418193283490837, -0.06590807437896729, 0.07702222466468811, 0.02316913567483425, -0.08367852866649628, -0.027007469907402992, 0.00990341231226921, -0.08955500274896622, 0.2673700153827667, -0.03700033947825432, 0.05226219817996025, 0.07948572933673859, -0.019340842962265015, -0.14253424108028412, -0.026984747499227524, 0.0865304172039032, -0.07030351459980011, 0.028477737680077553, 0.11054936796426773, -0.009797098115086555, 0.1611064225435257, 0.08013927191495895, -0.0739673599600792, 0.05483727529644966, -0.0279350858181715, 0.019893106073141098, -0.11622375249862671, 0.0027531092055141926, -0.09082633256912231, 0.11365976184606552, 0.14598137140274048, -0.008583243004977703, -0.01547039020806551, -0.03967970237135887, 0.012813444249331951, 0.004158554133027792, 0.08116381615400314, 0.013595432974398136, -0.05777775123715401, 0.016763202846050262, -0.13523729145526886, 0.08838708698749542, -0.14453978836536407, -0.05804285779595375, 0.04304813966155052, -0.022247619926929474, -0.0035234272945672274, 0.07495062053203583, 0.03711184859275818, 0.01054674293845892, -0.06250640749931335, -0.1029074490070343, 0.03152115270495415, 0.15434084832668304, -0.012378410436213017, -0.03432564064860344 ]
dd97f75cd7b06473b857af722230b7e530607b19
# Dataset Card for secondary-chains ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/secondary-chains - **Point of Contact:** [email protected] ### Dataset Summary secondary-chains ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/secondary-chains ### Citation Information ``` @misc{ secondary-chains, title = { secondary chains Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/secondary-chains } }, url = { https://universe.roboflow.com/object-detection/secondary-chains }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/secondary-chains
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:16:34+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "secondary-chains", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "secondary-chains", "1": "chain"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:16:54+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for secondary-chains The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary secondary-chains ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for secondary-chains\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsecondary-chains", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for secondary-chains\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsecondary-chains", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for secondary-chains\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nsecondary-chains### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.012480717152357101, 0.15485960245132446, -0.008450882509350777, 0.028523249551653862, 0.11116562783718109, 0.008470950648188591, 0.044869549572467804, 0.07392395287752151, 0.0007521652732975781, 0.15793482959270477, -0.013469022698700428, 0.08463288843631744, 0.12081196159124374, 0.08929641544818878, -0.017874756827950478, -0.16970710456371307, 0.0605190135538578, -0.06818332523107529, 0.08377815037965775, 0.06124056875705719, 0.07825592160224915, -0.1276593804359436, 0.08721105754375458, -0.04058379679918289, -0.042499590665102005, 0.02770254760980606, -0.03605705872178078, -0.03874586522579193, 0.02207050658762455, 0.03738921508193016, 0.03402033820748329, 0.02426934987306595, 0.03878908231854439, -0.18617811799049377, 0.023446524515748024, 0.10002487152814865, 0.03197489306330681, 0.02772626094520092, 0.13978450000286102, -0.08765356242656708, 0.04863108694553375, -0.12707340717315674, 0.0354326106607914, 0.017139144241809845, -0.11755010485649109, -0.11750664561986923, -0.1275426745414734, 0.057892076671123505, 0.10964883118867874, 0.03317143768072128, -0.008325428701937199, 0.06855905801057816, -0.009273157455027103, 0.057247161865234375, 0.11493158340454102, -0.0774204209446907, -0.039626043289899826, 0.10480526834726334, 0.030528921633958817, 0.1025075614452362, -0.10551788657903671, -0.026140742003917694, -0.003021559212356806, -0.026041634380817413, 0.004824088886380196, -0.06487265229225159, -0.049780599772930145, -0.008919092826545238, -0.0877126082777977, -0.13591676950454712, 0.1386333405971527, 0.052835866808891296, -0.05010950565338135, -0.13784123957157135, -0.019273297861218452, 0.06732752174139023, -0.03039604425430298, -0.010680869221687317, 0.047666069120168686, 0.004515907261520624, 0.06857454031705856, -0.06841646134853363, -0.10072538256645203, 0.04262487590312958, 0.012371224351227283, 0.02116992138326168, -0.02365465648472309, 0.035565536469221115, 0.012791560031473637, 0.07602645456790924, -0.013533389195799828, -0.10229907929897308, -0.023678326979279518, -0.04561964049935341, -0.06679390370845795, -0.04054765775799751, 0.070801742374897, -0.135035440325737, 0.06936539709568024, 0.04649932682514191, -0.0792926475405693, 0.04143407195806503, -0.13808131217956543, 0.018459785729646683, 0.1087263897061348, 0.18712767958641052, -0.08343089371919632, -0.07777463644742966, -0.0029828331898897886, 0.028657348826527596, 0.026887070387601852, -0.03158062696456909, -0.026431746780872345, 0.002882180968299508, 0.04490287974476814, 0.03706410899758339, 0.10580628365278244, 0.039419855922460556, -0.07500877231359482, -0.05579262599349022, 0.13837170600891113, -0.10281173139810562, 0.05256999284029007, 0.052129361778497696, -0.041638270020484924, 0.085511714220047, 0.003498062724247575, 0.015680018812417984, -0.10406669229269028, 0.09800995886325836, -0.031909435987472534, 0.02065638266503811, -0.09276284277439117, -0.09487633407115936, 0.04833017662167549, -0.09351316839456558, -0.08515317738056183, -0.08846381306648254, -0.06500811129808426, -0.08457234501838684, 0.03992506489157677, -0.04466693475842476, 0.020381348207592964, 0.020875899121165276, -0.046491511166095734, -0.007683782372623682, 0.0020651414524763823, 0.034856654703617096, -0.04982845112681389, 0.03670074790716171, -0.10061324387788773, 0.031151585280895233, 0.09092763066291809, 0.02966918982565403, -0.08890560269355774, 0.061517756432294846, -0.20759627223014832, 0.13588683307170868, -0.041491735726594925, 0.032191794365644455, -0.13129423558712006, 0.014100327156484127, -0.026449045166373253, -0.04300616681575775, -0.002388551365584135, 0.14136283099651337, -0.10765787214040756, 0.018887342885136604, 0.08355235308408737, -0.06526020914316177, -0.04387957602739334, 0.03971906751394272, -0.044387537986040115, 0.003674337174743414, 0.09078968316316605, 0.12043462693691254, -0.04716462641954422, -0.11006509512662888, -0.11180706322193146, -0.041843824088573456, -0.05365901067852974, 0.1581057608127594, 0.05912218242883682, -0.03590333089232445, 0.08943391591310501, -0.006693972274661064, -0.009041744284331799, -0.0347055085003376, 0.01614086888730526, -0.027418086305260658, 0.012326274067163467, -0.0015823061112314463, -0.07494568079710007, 0.021612560376524925, -0.10317640006542206, 0.011635025031864643, -0.0763409286737442, -0.03259291872382164, 0.01300759706646204, -0.026979411020874977, 0.02034527063369751, -0.040972162038087845, 0.08708144724369049, -0.11608007550239563, -0.004496993031352758, -0.16182692348957062, -0.10426922142505646, 0.0655192956328392, -0.01793123595416546, 0.03950958326458931, -0.06753446161746979, -0.006974168587476015, 0.008623660542070866, 0.028400244191288948, -0.018798014149069786, 0.04517557471990585, -0.020093970000743866, -0.026790210977196693, -0.1300194412469864, -0.037805184721946716, -0.027065252885222435, 0.11234010010957718, -0.12517504394054413, -0.026626409962773323, 0.15627528727054596, 0.11889132112264633, 0.04704059660434723, -0.04298579692840576, 0.06600653380155563, -0.02783522568643093, -0.02446775510907173, -0.08243036270141602, -0.013831047341227531, -0.0009506894857622683, 0.022317182272672653, 0.09462358057498932, -0.15860047936439514, -0.10793820023536682, 0.08049251139163971, 0.014384627342224121, -0.08073683083057404, -0.04316866770386696, -0.04861794412136078, -0.013816675171256065, -0.09172169119119644, -0.049304526299238205, 0.03489285707473755, 0.07308599352836609, 0.08432828634977341, -0.06321101635694504, -0.026513544842600822, 0.026416385546326637, -0.022354992106556892, -0.07970370352268219, 0.051766034215688705, 0.037706710398197174, -0.11338882148265839, 0.09087521582841873, -0.021534116938710213, 0.044286273419857025, 0.10034335404634476, 0.039363663643598557, -0.09693298488855362, 0.005793463904410601, 0.07075653225183487, 0.031301435083150864, 0.09322298318147659, -0.01587783917784691, 0.010742370039224625, 0.07697702944278717, 0.002805181546136737, -0.015588034875690937, -0.08179958909749985, 0.08531436324119568, 0.029589440673589706, -0.03335126116871834, 0.044994257390499115, -0.022893954068422318, 0.08353663980960846, 0.10738111287355423, 0.04842618480324745, 0.11229975521564484, -0.04878873750567436, -0.05756945535540581, -0.08852796256542206, 0.12153521925210953, -0.027575669810175896, -0.25073063373565674, -0.07849732786417007, -0.0658019557595253, -0.053530361503362656, -0.006228392943739891, 0.023466110229492188, 0.0015983970370143652, -0.07865437120199203, -0.09227773547172546, 0.04887460172176361, 0.06561782956123352, -0.10759474337100983, -0.11399248987436295, 0.022093188017606735, 0.00421846704557538, -0.07786090672016144, -0.006976946257054806, 0.022855661809444427, -0.07825171202421188, 0.017842095345258713, 0.03750259429216385, 0.12888292968273163, 0.07267682254314423, -0.0199151448905468, 0.0019289299380034208, -0.01102821622043848, 0.162628173828125, -0.14188244938850403, 0.127986878156662, 0.15986712276935577, 0.012621905654668808, 0.08357001841068268, 0.1978396475315094, -0.012651985511183739, -0.018623050302267075, 0.022821996361017227, 0.07256033271551132, -0.05913303792476654, -0.19830872118473053, -0.05423806235194206, -0.048993565142154694, 0.02451661229133606, 0.11549314111471176, 0.04224426671862602, 0.014354345388710499, 0.08827456086874008, -0.09598173946142197, 0.025445682927966118, 0.03438480570912361, 0.10213041305541992, 0.05405557155609131, 0.03461245074868202, 0.046093568205833435, -0.04603089392185211, -0.0296077448874712, 0.10367155820131302, 0.1293436735868454, 0.11668263375759125, -0.10094303637742996, 0.09615667909383774, 0.030121466144919395, 0.01727130077779293, -0.046242959797382355, 0.004192018881440163, -0.0326823964715004, 0.060160279273986816, -0.010998358018696308, -0.08886917680501938, -0.011308973655104637, 0.06814979761838913, 0.13066869974136353, -0.0036505653988569975, 0.013780752196907997, -0.0235960241407156, 0.09878798574209213, 0.21468426287174225, 0.008828478865325451, -0.18419504165649414, 0.017201166599988937, 0.04268382489681244, 0.016863219439983368, -0.13151304423809052, -0.03820374980568886, 0.09351552277803421, -0.16876302659511566, 0.06448058784008026, -0.044325340539216995, 0.1076187938451767, -0.1573323756456375, -0.03302108123898506, 0.04195975884795189, 0.035537056624889374, -0.01477751974016428, 0.07859551161527634, -0.12464577704668045, 0.08600810915231705, 0.04175560548901558, 0.04013308510184288, -0.08163275569677353, 0.03842822089791298, 0.006702789571136236, -0.014665696769952774, 0.14527957141399384, -0.014451716095209122, -0.017551349475979805, -0.12347151339054108, -0.10195223242044449, -0.010956350713968277, 0.05241674557328224, -0.059264861047267914, 0.10094492882490158, 0.010420373640954494, -0.02857840061187744, -0.08170291781425476, -0.05070129409432411, -0.07367933541536331, -0.1851636916399002, 0.044328924268484116, -0.011716851964592934, 0.0021681818179786205, -0.01692543737590313, 0.03249729797244072, 0.02247672528028488, 0.11946110427379608, -0.07689215242862701, -0.08305864036083221, -0.14600582420825958, 0.047502100467681885, 0.07511307299137115, -0.02423347719013691, -0.03158074617385864, -0.08810469508171082, 0.1720191091299057, -0.036504827439785004, -0.05888993293046951, 0.029860107228159904, -0.060409065335989, -0.10648800432682037, -0.061525218188762665, 0.10476565361022949, 0.03209015354514122, -0.01254830788820982, 0.01280534453690052, 0.05407341942191124, 0.013848264701664448, -0.06315533816814423, 0.04154568538069725, 0.11121197789907455, 0.126841202378273, 0.13545344769954681, 0.014588660560548306, -0.15736983716487885, -0.11542442440986633, 0.01189024280756712, 0.0418722964823246, 0.09398675709962845, -0.08288310468196869, 0.09769877046346664, 0.040469326078891754, -0.09697755426168442, -0.22208544611930847, 0.08689112961292267, 0.05840140953660011, -0.016425874084234238, -0.001366974669508636, -0.1461307853460312, 0.12599915266036987, 0.046269841492176056, -0.0049659740179777145, 0.047906432300806046, -0.2583155333995819, -0.07074736058712006, -0.025086088106036186, 0.045757975429296494, -0.19723789393901825, -0.1644599884748459, -0.04515983909368515, -0.06006936356425285, -0.1862979531288147, 0.059112053364515305, -0.011673458851873875, 0.03558944910764694, 0.04790867865085602, 0.051845066249370575, 0.0659400075674057, -0.050974879413843155, 0.10505802184343338, 0.02488807775080204, 0.04865492880344391, -0.06848540157079697, -0.09127302467823029, 0.056572023779153824, -0.09437323361635208, 0.13565222918987274, 0.053571201860904694, 0.016559381037950516, -0.05472434312105179, -0.016155952587723732, -0.034269217401742935, 0.08489473909139633, -0.026636242866516113, -0.0424748994410038, -0.08092810213565826, 0.04434068873524666, 0.12982815504074097, 0.025804948061704636, 0.06621382385492325, -0.050849802792072296, -0.013324282132089138, 0.15291766822338104, 0.1122124195098877, -0.015639685094356537, -0.12211544066667557, -0.040403444319963455, 0.004527743440121412, 0.030460001900792122, -0.11031363904476166, 0.05785556510090828, 0.08739684522151947, 0.008770315907895565, 0.10905391722917557, -0.008874684572219849, -0.10232242941856384, 0.017236271873116493, 0.05185682699084282, -0.09729364514350891, -0.13396592438220978, 0.0227883942425251, 0.10639489442110062, -0.09393095225095749, -0.10202404856681824, 0.11851023137569427, 0.005148397758603096, -0.018537580966949463, 0.0050704157911241055, 0.08229848742485046, 0.05488486588001251, 0.053800009191036224, 0.011310992762446404, 0.03887186944484711, -0.06565320491790771, 0.11757912486791611, 0.14966635406017303, -0.1546446830034256, -0.006450215354561806, 0.10960639268159866, -0.045865681022405624, -0.012592518702149391, -0.0492127425968647, 0.0476321205496788, -0.011833341792225838, -0.039017610251903534, 0.03180265426635742, -0.05110310763120651, 0.018179038539528847, 0.08647041022777557, -0.0036182536277920008, 0.0675245001912117, 0.023444712162017822, -0.01157163642346859, -0.13733722269535065, 0.12688075006008148, 0.02807481214404106, 0.05696283280849457, -0.10538963973522186, 0.014404943212866783, 0.027542900294065475, 0.01593308337032795, 0.01007521990686655, -0.05896966531872749, -0.07428634911775589, -0.00747219193726778, -0.02450505457818508, 0.11109253764152527, -0.08156601339578629, -0.007239447440952063, -0.016562065109610558, 0.02068781852722168, -0.015419870615005493, 0.027819251641631126, -0.045958179980516434, -0.07172001153230667, -0.0410366915166378, 0.1319275200366974, -0.1452368050813675, -0.020247796550393105, 0.05795440822839737, -0.08745384216308594, 0.07539593428373337, 0.009514016099274158, -0.041546378284692764, -0.07536795735359192, -0.18835023045539856, -0.03806226700544357, 0.03126033395528793, 0.05646190419793129, 0.04869905486702919, -0.09191249310970306, 0.05682283267378807, 0.0002967070904560387, -0.09059903025627136, -0.020297493785619736, -0.0063398489728569984, -0.11035256087779999, 0.0602976493537426, -0.08077485114336014, -0.033705126494169235, -0.0438910648226738, 0.13132040202617645, 0.06058279052376747, 0.013338804244995117, 0.07235942035913467, -0.051118262112140656, 0.08420836925506592, -0.14195556938648224, -0.038017019629478455, -0.0065858750604093075, -0.038639117032289505, -0.06225929409265518, -0.005899179261177778, 0.07108276337385178, -0.02504369616508484, 0.14004439115524292, 0.12416099011898041, 0.04295247048139572, 0.039877135306596756, -0.013743873685598373, 0.0364927276968956, 0.053378891199827194, -0.0363750122487545, -0.021524829789996147, -0.017787320539355278, 0.07200834155082703, 0.013393388129770756, 0.0061685689724981785, 0.11137140542268753, 0.08317212760448456, 0.22534625232219696, 0.13235889375209808, 0.014205663464963436, 0.04663490504026413, -0.06755917519330978, -0.06373488157987595, 0.1050119400024414, -0.06386522203683853, 0.0728694275021553, -0.10785460472106934, 0.026190632954239845, 0.11108886450529099, -0.15906547009944916, 0.06494084000587463, -0.012801089324057102, -0.01272604800760746, -0.03567851334810257, -0.11523699760437012, -0.06353530287742615, -0.024535782635211945, -0.0032636935357004404, -0.1116543784737587, 0.07451668381690979, 0.12790216505527496, -0.012254273518919945, 0.014785584062337875, 0.08802951872348785, -0.07565004378557205, -0.06634721159934998, 0.08511357009410858, 0.014927957206964493, 0.05291565880179405, 0.04705379158258438, 0.041159916669130325, 0.06595689058303833, 0.011233104392886162, 0.09596709907054901, 0.09169421344995499, 0.10788917541503906, 0.035737209022045135, -0.07972035557031631, -0.0657370388507843, 0.033213626593351364, -0.007242735009640455, -0.024797674268484116, 0.1424381136894226, 0.07471559941768646, 0.006369448732584715, -0.023534417152404785, 0.18537893891334534, -0.016752207651734352, -0.02680733986198902, -0.14536236226558685, 0.03584227338433266, -0.0325891338288784, -0.006695928983390331, -0.012118232436478138, -0.15167781710624695, 0.011498241685330868, 0.11328538507223129, 0.07084280997514725, -0.04728606715798378, -0.012243267148733139, -0.019477125257253647, 0.009780033491551876, -0.00962313637137413, 0.05341092124581337, 0.020297743380069733, 0.21069219708442688, -0.04862454906105995, 0.01169364620000124, -0.04375741630792618, -0.02762073650956154, -0.058193858712911606, 0.0970943421125412, -0.026693010702729225, 0.006735110189765692, -0.07277598232030869, 0.11623231321573257, -0.005844815634191036, -0.1942719966173172, 0.04987228661775589, -0.0976407378911972, -0.07828942686319351, 0.016866428777575493, -0.0034028321970254183, 0.000014796512004977558, 0.029214315116405487, 0.005282900296151638, -0.06338287144899368, 0.08859261125326157, 0.024753784760832787, -0.062068872153759, 0.0010481044882908463, -0.0036803775001317263, -0.09442050009965897, 0.2716163098812103, -0.02984863892197609, 0.030266257002949715, 0.0946480855345726, -0.024816950783133507, -0.1418784260749817, -0.016876375302672386, 0.07317568361759186, -0.04689222201704979, 0.013052812777459621, 0.128116175532341, -0.002085872460156679, 0.1329592764377594, 0.08741501718759537, -0.10324189066886902, 0.0540153905749321, -0.023356644436717033, 0.01071610115468502, -0.11938676983118057, 0.01455991342663765, -0.09434005618095398, 0.10593310743570328, 0.1424866020679474, -0.00028301795828156173, 0.0057560657151043415, -0.046167634427547455, -0.003965624142438173, 0.001694001373834908, 0.11011164635419846, -0.009549126029014587, -0.056190889328718185, 0.008403778076171875, -0.11983180791139603, 0.07869324088096619, -0.09845893830060959, -0.05403800681233406, 0.0343642383813858, -0.011641595512628555, -0.017699522897601128, 0.08729303628206253, 0.033760976046323776, 0.013303220272064209, -0.058114998042583466, -0.12035253643989563, 0.02726602740585804, 0.17729298770427704, -0.009626789949834347, -0.02500750683248043 ]
db4bda29e30d7f56fa7648dd13784ac7acdaf69c
# Dataset Card for underwater-pipes-4ng4t ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t - **Point of Contact:** [email protected] ### Dataset Summary underwater-pipes-4ng4t ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t ### Citation Information ``` @misc{ underwater-pipes-4ng4t, title = { underwater pipes 4ng4t Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t } }, url = { https://universe.roboflow.com/object-detection/underwater-pipes-4ng4t }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/underwater-pipes-4ng4t
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:16:54+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "underwater-pipes-4ng4t", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "underwater-pipes", "1": "pipe"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:18:16+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for underwater-pipes-4ng4t The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary underwater-pipes-4ng4t ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for underwater-pipes-4ng4t\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nunderwater-pipes-4ng4t", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for underwater-pipes-4ng4t\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nunderwater-pipes-4ng4t", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for underwater-pipes-4ng4t\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nunderwater-pipes-4ng4t### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.012063933536410332, 0.15394318103790283, -0.008139600045979023, 0.013813779689371586, 0.0905522033572197, 0.0015350531321018934, 0.06241504102945328, 0.07540971785783768, -0.00020438151841517538, 0.16349086165428162, -0.01449491549283266, 0.05394813045859337, 0.13572509586811066, 0.0766056552529335, -0.008184380829334259, -0.15535826981067657, 0.061086833477020264, -0.06372935324907303, 0.09848328679800034, 0.06387145817279816, 0.07589434087276459, -0.14194954931735992, 0.08644049614667892, -0.03135628625750542, -0.0204460546374321, 0.03582734242081642, -0.06725961714982986, -0.020340239629149437, 0.006972142960876226, 0.024945519864559174, 0.03275826945900917, 0.03552519530057907, 0.06039435788989067, -0.18736998736858368, 0.018199637532234192, 0.08971080183982849, 0.02953658252954483, 0.02474272809922695, 0.14973627030849457, -0.07096713781356812, 0.004778063856065273, -0.15265117585659027, 0.025418788194656372, 0.002318465616554022, -0.10397803783416748, -0.08482731133699417, -0.1256306916475296, 0.0709654837846756, 0.11670512706041336, 0.04652387648820877, -0.022330855950713158, 0.05792441591620445, -0.036187056452035904, 0.044381801038980484, 0.1324349194765091, -0.10156082361936569, -0.03467009589076042, 0.09543546289205551, 0.046606242656707764, 0.0808003693819046, -0.10670918226242065, -0.019518408924341202, 0.004801093600690365, -0.007117276079952717, -0.010985379107296467, -0.03393225744366646, -0.01062834169715643, -0.010104441083967686, -0.10466844588518143, -0.11950989812612534, 0.13135668635368347, 0.05967080965638161, -0.0649738684296608, -0.14607354998588562, -0.00635147001594305, 0.03826091066002846, -0.03647961467504501, -0.011760923080146313, 0.06586634367704391, -0.005368935409933329, 0.07905451953411102, -0.05482570454478264, -0.11788386851549149, 0.058219317346811295, -0.0014246401842683554, 0.037692077457904816, -0.01729668118059635, 0.045283474028110504, 0.021650036796927452, 0.0841989666223526, 0.033354584127664566, -0.11379216611385345, -0.03224886953830719, -0.03370196372270584, -0.042629607021808624, -0.059224050492048264, 0.0558682344853878, -0.09927375614643097, 0.05852270498871803, 0.07883228361606598, -0.052801959216594696, 0.019063156098127365, -0.10283374786376953, 0.015760257840156555, 0.1351395845413208, 0.18346795439720154, -0.10772781819105148, -0.0740155577659607, 0.006069773342460394, 0.03314846009016037, 0.023241253569722176, -0.023064853623509407, -0.03501541540026665, -0.0033478501718491316, 0.03380729258060455, 0.039672765880823135, 0.10477028042078018, 0.028747007250785828, -0.07111824303865433, -0.06521821022033691, 0.1490819901227951, -0.10485813766717911, 0.05462750419974327, 0.052693188190460205, -0.06298832595348358, 0.10309281200170517, 0.013730643317103386, 0.026686055585741997, -0.1155155599117279, 0.08150305598974228, -0.018909774720668793, 0.012997127138078213, -0.08514788746833801, -0.09204410761594772, 0.058720339089632034, -0.07830310612916946, -0.07716221362352371, -0.08622673153877258, -0.045009974390268326, -0.08511790633201599, 0.046123020350933075, -0.05001479387283325, 0.009814239107072353, 0.022528644651174545, -0.04261919856071472, -0.017635658383369446, 0.008891136385500431, 0.03045274317264557, -0.06034420430660248, 0.018292274326086044, -0.10719189792871475, 0.041084520518779755, 0.0964435562491417, 0.040228430181741714, -0.0839727446436882, 0.0602516271173954, -0.18414628505706787, 0.12251581996679306, -0.026393653824925423, 0.02671634592115879, -0.12609556317329407, 0.00008650820382172242, -0.02223961614072323, -0.033094506710767746, -0.00721311429515481, 0.1447555124759674, -0.09620974212884903, 0.02854127436876297, 0.04394311085343361, -0.048476945608854294, -0.04385855793952942, 0.035758018493652344, -0.03703242540359497, 0.005037509836256504, 0.08508344739675522, 0.1027781069278717, -0.03574676811695099, -0.12910692393779755, -0.12131412327289581, -0.02416042424738407, -0.05301760882139206, 0.15630966424942017, 0.06875759363174438, -0.015528284013271332, 0.10375076532363892, -0.00933818519115448, -0.0023612892255187035, -0.053303349763154984, 0.008266754448413849, -0.04161367937922478, 0.015661535784602165, -0.0034110897686332464, -0.09730067849159241, 0.007273162715137005, -0.08764573186635971, 0.024713758379220963, -0.073432058095932, -0.02334544248878956, 0.013508292846381664, -0.018729420378804207, 0.016660397872328758, -0.04716286435723305, 0.075101338326931, -0.11124388873577118, 0.0014665746130049229, -0.14789380133152008, -0.0996808335185051, 0.06616652756929398, -0.028592972084879875, 0.03338143974542618, -0.04912861809134483, -0.0037778096739202738, 0.012930250726640224, 0.038653913885354996, -0.014742329716682434, 0.0595577098429203, -0.026267068460583687, -0.03534705936908722, -0.12596061825752258, -0.054654307663440704, -0.016685176640748978, 0.10030511766672134, -0.1285545527935028, -0.030535414814949036, 0.12750986218452454, 0.12032896280288696, 0.021789580583572388, -0.03509949892759323, 0.05610791966319084, -0.04674135148525238, -0.019809868186712265, -0.06824249774217606, -0.016425486654043198, -0.003332204418256879, 0.04177211597561836, 0.06940589100122452, -0.13139641284942627, -0.11589691042900085, 0.08084212243556976, 0.026403537020087242, -0.07860936969518661, -0.036795902997255325, -0.05706948786973953, -0.02451261505484581, -0.08657442778348923, -0.038433536887168884, 0.03321877866983414, 0.06863551586866379, 0.07074423879384995, -0.06810519844293594, -0.057731371372938156, 0.023791585117578506, -0.014123516157269478, -0.08133844286203384, 0.06044794246554375, 0.04040912538766861, -0.13187158107757568, 0.0798569768667221, -0.02947789803147316, 0.058033592998981476, 0.06979283690452576, 0.029847536236047745, -0.1171550452709198, 0.006097220815718174, 0.07930086553096771, 0.011488162912428379, 0.10508742183446884, 0.0006239071954041719, 0.017189722508192062, 0.07530117779970169, 0.00022876638104207814, -0.010721107013523579, -0.08529599010944366, 0.07648979127407074, 0.02200784906744957, -0.04024697095155716, 0.012332867830991745, -0.0329802967607975, 0.09430431574583054, 0.1028602346777916, 0.079766184091568, 0.12081658840179443, -0.05146137624979019, -0.06626620143651962, -0.09442015737295151, 0.13455577194690704, -0.024479439482092857, -0.2576412558555603, -0.0752006247639656, -0.07196918874979019, -0.0405835397541523, -0.01109452173113823, 0.02289082109928131, -0.010620122775435448, -0.08919328451156616, -0.10010100901126862, 0.06305205821990967, 0.050707899034023285, -0.10482022911310196, -0.09898500144481659, 0.031058859080076218, 0.0022405600175261497, -0.08271896839141846, -0.000100448087323457, 0.018801981583237648, -0.050250209867954254, 0.007045682054013014, 0.04237360134720802, 0.11014494299888611, 0.06971623748540878, -0.034635990858078, -0.007980075664818287, 0.005874591413885355, 0.1938115656375885, -0.1318158209323883, 0.1222376897931099, 0.15076321363449097, 0.005261783488094807, 0.0787857249379158, 0.21234756708145142, -0.01255021896213293, -0.018117748200893402, 0.016979478299617767, 0.0772038921713829, -0.04304945841431618, -0.20240411162376404, -0.04576568305492401, -0.03271965682506561, 0.009073668159544468, 0.13309596478939056, 0.04568123817443848, 0.00349422381259501, 0.07599814981222153, -0.10379334539175034, 0.016081755980849266, 0.03351620212197304, 0.09461865574121475, 0.04404294863343239, 0.027733251452445984, 0.046421606093645096, -0.046795643866062164, -0.051322516053915024, 0.09153030067682266, 0.12364986538887024, 0.11275330185890198, -0.08719088137149811, 0.08451128751039505, 0.03879523649811745, 0.030833134427666664, -0.05064375698566437, 0.005378786474466324, -0.028189053758978844, 0.04515981301665306, -0.003464882494881749, -0.09043800085783005, 0.02883671224117279, 0.07333093881607056, 0.1317395567893982, -0.002239063149318099, 0.005469766911119223, -0.035405129194259644, 0.06449229270219803, 0.2744179964065552, 0.018529897555708885, -0.17991159856319427, 0.02231205254793167, 0.040286432951688766, 0.0033711609430611134, -0.13012507557868958, -0.045281268656253815, 0.07871454209089279, -0.15342772006988525, 0.053916338831186295, -0.021760819479823112, 0.10633409023284912, -0.13525041937828064, -0.03784167394042015, 0.07810045778751373, 0.030631495639681816, -0.00960363820195198, 0.067395880818367, -0.08144047111272812, 0.05865537002682686, 0.03493738919496536, 0.039533793926239014, -0.0830957219004631, 0.042809925973415375, -0.011522192507982254, -0.009565039537847042, 0.13910000026226044, -0.00393668981269002, 0.016143664717674255, -0.1290237307548523, -0.12612031400203705, -0.007570668123662472, 0.05971360206604004, -0.08508139848709106, 0.10881467908620834, 0.013953922316432, -0.03303222358226776, -0.0773145854473114, -0.0604754276573658, -0.07456079125404358, -0.16948296129703522, 0.048114676028490067, -0.043859850615262985, 0.011241678148508072, -0.01702902838587761, 0.012511326931416988, -0.003553721122443676, 0.14542452991008759, -0.05631488189101219, -0.08890930563211441, -0.12630519270896912, 0.03480272740125656, 0.08465173095464706, -0.010073663666844368, -0.012928345240652561, -0.08833371102809906, 0.17862585186958313, -0.020761892199516296, -0.08589888364076614, 0.019806617870926857, -0.05980086699128151, -0.0977199450135231, -0.05528683587908745, 0.11165552586317062, 0.045258529484272, -0.011391425505280495, 0.009142564609646797, 0.04274764284491539, -0.010150699876248837, -0.04378671944141388, 0.03085409663617611, 0.09937385469675064, 0.13942860066890717, 0.12822061777114868, -0.006570399738848209, -0.158430814743042, -0.10867449641227722, 0.004407462663948536, 0.02759048156440258, 0.11850341409444809, -0.07607478648424149, 0.10099497437477112, 0.04113588109612465, -0.07991401851177216, -0.2256740927696228, 0.08212757110595703, 0.05717020109295845, -0.002688370877876878, -0.015754206106066704, -0.14514122903347015, 0.1701861321926117, 0.033527445048093796, -0.004567267838865519, 0.10020671039819717, -0.2583858072757721, -0.0708678737282753, -0.01931612752377987, 0.025394150987267494, -0.16652490198612213, -0.1590348482131958, -0.04321858659386635, -0.0526396781206131, -0.18046560883522034, 0.053544435650110245, 0.001269061816856265, 0.04503406584262848, 0.03926153481006622, 0.06098117306828499, 0.05844736099243164, -0.036420222371816635, 0.10721242427825928, 0.018795782700181007, 0.04152730107307434, -0.06909089535474777, -0.08658292889595032, 0.017055844888091087, -0.0980139896273613, 0.15227720141410828, 0.07369430363178253, 0.023976938799023628, -0.04988906532526016, -0.018573608249425888, -0.04145849123597145, 0.07656443119049072, -0.029727406799793243, -0.03282906487584114, -0.08991573005914688, 0.04198012501001358, 0.1278677135705948, 0.023164421319961548, 0.07474678009748459, -0.04015178978443146, -0.03453173488378525, 0.10053153336048126, 0.12114547938108444, -0.005027257837355137, -0.12485475838184357, -0.03545357659459114, -0.007887488231062889, 0.037261806428432465, -0.09917894750833511, 0.050139207392930984, 0.09194164723157883, 0.018126584589481354, 0.08668697625398636, -0.008680613711476326, -0.09351962804794312, -0.022816622629761696, 0.05605398863554001, -0.09137075394392014, -0.12705551087856293, 0.03161286190152168, 0.10345649719238281, -0.1200089156627655, -0.09493216872215271, 0.10850177705287933, 0.010372893884778023, -0.030153965577483177, 0.006936380174010992, 0.07775312662124634, 0.040515609085559845, 0.03400206193327904, 0.01558244600892067, 0.035029321908950806, -0.07521577924489975, 0.12871266901493073, 0.14190270006656647, -0.11357614398002625, -0.007280326448380947, 0.10757943242788315, -0.04175927862524986, -0.021622804924845695, -0.020804472267627716, 0.028602614998817444, 0.0063948603346943855, -0.024529313668608665, 0.039299238473176956, -0.07564098387956619, 0.03856297954916954, 0.07172983884811401, -0.006742935627698898, 0.06770534068346024, 0.036467574536800385, 0.001205174601636827, -0.1295594573020935, 0.12130724638700485, 0.02829049341380596, 0.04992363974452019, -0.1052154004573822, -0.007055520545691252, 0.02056625671684742, 0.023072751238942146, 0.007310665212571621, -0.04635922610759735, -0.0784127414226532, -0.007854917086660862, -0.06321831792593002, 0.10282384604215622, -0.09253642708063126, 0.002181507181376219, -0.014674943871796131, 0.020361753180623055, -0.020815223455429077, 0.029657257720828056, -0.039000798016786575, -0.0739038810133934, -0.04777820408344269, 0.11868502199649811, -0.12479232996702194, -0.02395879290997982, 0.04582051932811737, -0.09763732552528381, 0.06520537286996841, 0.011663143523037434, -0.02969292551279068, -0.09997480362653732, -0.1661556363105774, -0.04760901629924774, 0.03578199818730354, 0.06595171988010406, 0.04092192277312279, -0.09541921317577362, 0.05175897106528282, 0.002429734682664275, -0.0922195240855217, -0.019296204671263695, -0.016808295622467995, -0.11015409976243973, 0.0407588928937912, -0.11347207427024841, -0.025727901607751846, -0.05010339245200157, 0.11758559197187424, 0.055682506412267685, 0.009669618681073189, 0.0742640495300293, -0.04556354135274887, 0.08785470575094223, -0.1434723287820816, -0.04116399958729744, -0.007892017252743244, -0.018580269068479538, -0.0663389265537262, -0.010796944610774517, 0.06556783616542816, -0.024231765419244766, 0.13573086261749268, 0.11841145157814026, 0.03444911912083626, 0.040838588029146194, -0.010093601420521736, 0.045245662331581116, 0.07388635724782944, -0.00548350578173995, -0.021412543952465057, -0.024234872311353683, 0.06206173449754715, 0.012699754908680916, -0.0012370944023132324, 0.07498936355113983, 0.057516831904649734, 0.23845738172531128, 0.13770535588264465, 0.02836678922176361, 0.054875168949365616, -0.09685900807380676, -0.0699203759431839, 0.10773557424545288, -0.06149279326200485, 0.06357546895742416, -0.10583464801311493, 0.03625607118010521, 0.08009438961744308, -0.14504100382328033, 0.058082010596990585, -0.027447223663330078, -0.0027387470472604036, -0.033517252653837204, -0.09982970356941223, -0.05231250450015068, -0.006998725235462189, 0.0015325441490858793, -0.11633776128292084, 0.07588072866201401, 0.10831399261951447, -0.0016661164117977023, 0.010594348423182964, 0.08384506404399872, -0.061733320355415344, -0.07730036973953247, 0.08217977732419968, 0.017542632296681404, 0.06783302128314972, 0.05208579823374748, 0.04565271735191345, 0.09832451492547989, 0.012717424891889095, 0.0888722836971283, 0.08855234086513519, 0.10026382654905319, 0.03311696648597717, -0.07318352907896042, -0.08234130591154099, 0.029530394822359085, -0.009290289133787155, -0.005166362505406141, 0.16034041345119476, 0.06824076175689697, 0.0114079425111413, -0.02270292304456234, 0.1609342247247696, -0.01696678437292576, -0.03742775321006775, -0.1372663527727127, 0.03223026543855667, -0.04623297601938248, -0.0017273721750825644, -0.019436651840806007, -0.1526338905096054, -0.009205957874655724, 0.14177516102790833, 0.062298089265823364, -0.041148841381073, -0.02096637710928917, 0.008896257728338242, 0.005620050709694624, -0.023469487205147743, 0.03017238713800907, 0.03358866274356842, 0.21087421476840973, -0.05958584323525429, 0.00552952429279685, -0.033103056252002716, -0.02011934295296669, -0.06338807940483093, 0.08362559229135513, -0.012725304812192917, 0.024130456149578094, -0.0876603052020073, 0.10401305556297302, -0.003969424404203892, -0.17985612154006958, 0.056842267513275146, -0.08278339356184006, -0.08310870081186295, 0.011848273687064648, -0.023196332156658173, -0.005624272860586643, 0.03257376328110695, 0.0020664569456130266, -0.05805400758981705, 0.10958679020404816, 0.014417189173400402, -0.05546672269701958, 0.01298485416918993, 0.00881032645702362, -0.08447933197021484, 0.27163514494895935, -0.028642119839787483, 0.04703156650066376, 0.0774259865283966, -0.012458715587854385, -0.1487589329481125, -0.04925822466611862, 0.060078542679548264, -0.06086711958050728, 0.015867168083786964, 0.12611906230449677, -0.0016990494914352894, 0.11299747973680496, 0.08990228176116943, -0.08763638138771057, 0.04060017317533493, -0.007029403001070023, 0.025355445221066475, -0.12290971726179123, 0.01493130810558796, -0.08340442925691605, 0.10633443295955658, 0.12815897166728973, -0.000980467302724719, -0.0024821108672767878, -0.0422106496989727, 0.003790604881942272, 0.013900182209908962, 0.10241083055734634, 0.009826083667576313, -0.06402406841516495, 0.013263854198157787, -0.1377135068178177, 0.08874781429767609, -0.13129203021526337, -0.0633864775300026, 0.04570550099015236, -0.014577281661331654, -0.022168340161442757, 0.08202402293682098, 0.03235055133700371, 0.02780633233487606, -0.05455285310745239, -0.12829940021038055, 0.02997664548456669, 0.15900231897830963, -0.014083238318562508, -0.029264958575367928 ]
b5f525d30ee0b55113e6a23ca75cd292f4fbd150
# Dataset Card for activity-diagrams-qdobr ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/activity-diagrams-qdobr - **Point of Contact:** [email protected] ### Dataset Summary activity-diagrams-qdobr ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/activity-diagrams-qdobr ### Citation Information ``` @misc{ activity-diagrams-qdobr, title = { activity diagrams qdobr Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/activity-diagrams-qdobr } }, url = { https://universe.roboflow.com/object-detection/activity-diagrams-qdobr }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/activity-diagrams-qdobr
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:17:19+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "activity-diagrams-qdobr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "activity-diagrams", "1": "action", "2": "activity", "3": "commeent", "4": "control_flow", "5": "control_flowcontrol_flow", "6": "decision_node", "7": "exit_node", "8": "final_flow_node", "9": "final_node", "10": "fork", "11": "merge", "12": "merge_noode", "14": "object", "15": "object_flow", "16": "signal_recept", "17": "signal_send", "18": "start_node", "19": "text"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:17:38+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for activity-diagrams-qdobr The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary activity-diagrams-qdobr ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for activity-diagrams-qdobr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nactivity-diagrams-qdobr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for activity-diagrams-qdobr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nactivity-diagrams-qdobr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for activity-diagrams-qdobr\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nactivity-diagrams-qdobr### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.019525427371263504, 0.1572953760623932, -0.008073541335761547, 0.016665466129779816, 0.0935898944735527, 0.0029019967187196016, 0.05413052439689636, 0.08023183047771454, 0.008800890296697617, 0.16114488244056702, -0.020178765058517456, 0.05303412675857544, 0.1357089877128601, 0.08263734728097916, -0.011300125159323215, -0.14828431606292725, 0.0564613901078701, -0.05746591463685036, 0.0838913843035698, 0.0612650141119957, 0.07450086623430252, -0.13680411875247955, 0.0795157253742218, -0.02028406597673893, -0.024794207885861397, 0.02898653782904148, -0.06685037910938263, -0.022851157933473587, 0.01364090945571661, 0.0259797815233469, 0.025273436680436134, 0.03935958817601204, 0.06167745962738991, -0.19005034863948822, 0.021522002294659615, 0.07930225878953934, 0.02578906901180744, 0.02325303852558136, 0.15020239353179932, -0.07261737436056137, 0.000989955966360867, -0.1449933648109436, 0.021137528121471405, 0.006956963799893856, -0.10047723352909088, -0.08105046302080154, -0.13304084539413452, 0.07052566111087799, 0.10084462910890579, 0.04922160878777504, -0.019014859572052956, 0.052805595099925995, -0.03849855437874794, 0.0380089245736599, 0.13387639820575714, -0.09833195060491562, -0.03263295069336891, 0.09444249421358109, 0.0498272068798542, 0.07548099011182785, -0.11601603031158447, -0.03002094477415085, 0.0051934910006821156, -0.009905998595058918, -0.007734907325357199, -0.03312895447015762, 0.011236805468797684, -0.0060218204744160175, -0.10244722664356232, -0.12416038662195206, 0.1243625283241272, 0.05615770444273949, -0.05673527345061302, -0.1416626125574112, -0.00719858193770051, 0.038507163524627686, -0.03710360452532768, -0.01614009030163288, 0.05769208446145058, -0.00035329139791429043, 0.07551050931215286, -0.05900274217128754, -0.11040360480546951, 0.05460843816399574, -0.00012046123447362334, 0.0192544087767601, -0.021144956350326538, 0.03627629205584526, 0.021573027595877647, 0.08370107412338257, 0.03259533643722534, -0.11215300858020782, -0.03352997079491615, -0.03975171223282814, -0.04970812425017357, -0.05681131035089493, 0.058316558599472046, -0.09145504236221313, 0.06431262940168381, 0.07725916057825089, -0.05530158802866936, 0.012777498923242092, -0.10566410422325134, 0.009754443541169167, 0.13071492314338684, 0.19620689749717712, -0.0913412868976593, -0.08812219649553299, 0.0037936002481728792, 0.04270860552787781, 0.017892444506287575, -0.015486685559153557, -0.03402156010270119, -0.011547775007784367, 0.04216335341334343, 0.03674450144171715, 0.09880608320236206, 0.0319286473095417, -0.0716470256447792, -0.06061854958534241, 0.16934169828891754, -0.09797768294811249, 0.04703109338879585, 0.05723870173096657, -0.0630580484867096, 0.08432932943105698, 0.011415979824960232, 0.029661772772669792, -0.10640126466751099, 0.07366400212049484, -0.017003824934363365, 0.01077526155859232, -0.0842546746134758, -0.08855357021093369, 0.05412884056568146, -0.07571470737457275, -0.07458214461803436, -0.0870109498500824, -0.045330729335546494, -0.0849398598074913, 0.03454436734318733, -0.04546194151043892, 0.008746383711695671, 0.019432345405220985, -0.0411888062953949, -0.011333308182656765, 0.008949635550379753, 0.034132372587919235, -0.06020006537437439, 0.029855849221348763, -0.1028643250465393, 0.03737257048487663, 0.10143067687749863, 0.04089406132698059, -0.08529641479253769, 0.06491375714540482, -0.18050022423267365, 0.127255380153656, -0.028891397640109062, 0.0194901954382658, -0.11971859633922577, 0.009879293851554394, -0.014798152260482311, -0.039331525564193726, -0.006438558921217918, 0.1433180570602417, -0.09535074979066849, 0.025213971734046936, 0.04611368477344513, -0.04427001625299454, -0.05520555004477501, 0.032335616648197174, -0.044075097888708115, 0.009021284990012646, 0.07623746246099472, 0.10424897074699402, -0.01721128076314926, -0.13624413311481476, -0.13355642557144165, -0.026261266320943832, -0.05414833128452301, 0.14681464433670044, 0.07028032839298248, -0.013309309259057045, 0.09904235601425171, -0.008504634723067284, -0.009497039020061493, -0.04473971202969551, 0.011422242969274521, -0.03966982662677765, 0.011165148578584194, -0.009856846183538437, -0.08044541627168655, 0.006377947051078081, -0.08205807209014893, 0.03361796587705612, -0.07047586888074875, -0.029145944863557816, 0.01533767394721508, -0.011164860799908638, 0.009632808156311512, -0.04742472991347313, 0.06501542776823044, -0.12541142106056213, 0.0009783366695046425, -0.15246760845184326, -0.10233688354492188, 0.07031876593828201, -0.03573305159807205, 0.03441498801112175, -0.057042140513658524, -0.005877090618014336, 0.00550775695592165, 0.038374822586774826, -0.019152982160449028, 0.04691796377301216, -0.023959768936038017, -0.03982790932059288, -0.1115880161523819, -0.057654865086078644, -0.02299351431429386, 0.10382159799337387, -0.11918682605028152, -0.03141498193144798, 0.11828581988811493, 0.11357180774211884, 0.02340729348361492, -0.027221228927373886, 0.05359155684709549, -0.04641897976398468, -0.021209191530942917, -0.062419671565294266, -0.015677466988563538, 0.005573669448494911, 0.04131447151303291, 0.06480497866868973, -0.1281527578830719, -0.12269461154937744, 0.07922978699207306, 0.04732103645801544, -0.07360713183879852, -0.057145580649375916, -0.06165419891476631, -0.023175951093435287, -0.08599153161048889, -0.04674368351697922, 0.030752209946513176, 0.07204945385456085, 0.07343972474336624, -0.06882849335670471, -0.059700097888708115, 0.019589779898524284, -0.010638786479830742, -0.08585843443870544, 0.06404279172420502, 0.06295555830001831, -0.12409426271915436, 0.08304828405380249, -0.023345962166786194, 0.06280912458896637, 0.07988521456718445, 0.03303613141179085, -0.10758044570684433, 0.00455221114680171, 0.06922999024391174, 0.012461715377867222, 0.10363910347223282, 0.004661454353481531, 0.017225133255124092, 0.07338450103998184, -0.0024293612223118544, -0.010102195665240288, -0.0850619524717331, 0.0755336806178093, 0.014863915741443634, -0.040470898151397705, 0.018102040514349937, -0.03025052510201931, 0.09585308283567429, 0.10428234189748764, 0.08361147344112396, 0.1164315938949585, -0.04768789932131767, -0.06366121023893356, -0.09464944154024124, 0.11627281457185745, -0.029619330540299416, -0.24650512635707855, -0.06998837739229202, -0.06766479462385178, -0.046459946781396866, -0.0071440874598920345, 0.022380856797099113, -0.011146790347993374, -0.07777725160121918, -0.09097570180892944, 0.0775626003742218, 0.059828076511621475, -0.10829000174999237, -0.0906616672873497, 0.03358467295765877, -0.003921928815543652, -0.0813913494348526, -0.0011167983757331967, 0.015062758699059486, -0.04555880278348923, 0.001984058413654566, 0.02918393537402153, 0.1206929013133049, 0.061677370220422745, -0.022686101496219635, -0.009833242744207382, 0.0017662118189036846, 0.1978870928287506, -0.13909491896629333, 0.12336251139640808, 0.15898820757865906, 0.01163231860846281, 0.07527370005846024, 0.21294590830802917, -0.013576165772974491, -0.008361061103641987, 0.023527169600129128, 0.07465314120054245, -0.04489198699593544, -0.19123922288417816, -0.05239587649703026, -0.036949798464775085, 0.006450407672673464, 0.13065041601657867, 0.04449943080544472, -0.008438467979431152, 0.07907284796237946, -0.1048944890499115, 0.010231361724436283, 0.025611646473407745, 0.08786190301179886, 0.04032423347234726, 0.03532066568732262, 0.04041590169072151, -0.044058773666620255, -0.05391233414411545, 0.08854545652866364, 0.14796733856201172, 0.10920684039592743, -0.09746736288070679, 0.08738742768764496, 0.03252726048231125, 0.04696112126111984, -0.04072752967476845, -0.0014062619302421808, -0.027627255767583847, 0.05046054348349571, -0.002601817948743701, -0.08276459574699402, 0.019043417647480965, 0.07698459178209305, 0.14167214930057526, -0.0004002508067060262, -0.0046726372092962265, -0.03656242787837982, 0.06868265569210052, 0.2698403000831604, 0.008364757522940636, -0.1683783233165741, 0.015625255182385445, 0.03781069442629814, 0.0053568086586892605, -0.12531910836696625, -0.039332471787929535, 0.0694175511598587, -0.15964916348457336, 0.04704336076974869, -0.02374756522476673, 0.10420633107423782, -0.12885792553424835, -0.0369766540825367, 0.07278842478990555, 0.02349836751818657, -0.0137688172981143, 0.0687507912516594, -0.0992092490196228, 0.052174199372529984, 0.03293607011437416, 0.040422383695840836, -0.086307093501091, 0.04252283647656441, 0.00010527364793233573, -0.03190204128623009, 0.13427187502384186, -0.01602018065750599, 0.03641708567738533, -0.13725689053535461, -0.11820067465305328, -0.008859935216605663, 0.05587131530046463, -0.08941753208637238, 0.11851103603839874, 0.010626732371747494, -0.031807925552129745, -0.07595061510801315, -0.04894121363759041, -0.06082677096128464, -0.17255763709545135, 0.04896657541394234, -0.04404893144965172, 0.01827479898929596, -0.016667606309056282, 0.01799294538795948, -0.021956667304039, 0.12393416464328766, -0.06549525260925293, -0.0909743681550026, -0.12456304579973221, 0.035350002348423004, 0.08126074075698853, -0.01541582215577364, -0.01444348506629467, -0.08068158477544785, 0.1877700686454773, -0.03522847965359688, -0.09014945477247238, 0.01020920928567648, -0.06362196803092957, -0.10844913870096207, -0.05418366938829422, 0.11185607314109802, 0.04349493607878685, -0.004944887477904558, 0.013223198242485523, 0.03873714804649353, -0.014949416741728783, -0.04194635525345802, 0.03079007938504219, 0.08489001542329788, 0.13239319622516632, 0.11688172817230225, -0.009798035956919193, -0.1581125408411026, -0.11383577436208725, -0.00020756633603014052, 0.03301949054002762, 0.11156751215457916, -0.07963299006223679, 0.10251973569393158, 0.03220520168542862, -0.0761575847864151, -0.22408847510814667, 0.0780068188905716, 0.074984610080719, -0.0025704337749630213, -0.017718104645609856, -0.13830015063285828, 0.16636750102043152, 0.04064363241195679, -0.007458923384547234, 0.07795682549476624, -0.25643426179885864, -0.06261994689702988, -0.02116745337843895, 0.019664952531456947, -0.18944627046585083, -0.15779466927051544, -0.042971182614564896, -0.044446542859077454, -0.18001605570316315, 0.0673060491681099, 0.01749713532626629, 0.041921466588974, 0.03851468488574028, 0.06378684192895889, 0.05964908376336098, -0.0371728241443634, 0.1058771088719368, 0.022653106600046158, 0.03919380530714989, -0.06463375687599182, -0.10192105174064636, 0.008079132996499538, -0.10333576053380966, 0.14123912155628204, 0.07917097955942154, 0.027477595955133438, -0.04942239820957184, -0.022264668717980385, -0.04990256205201149, 0.0728776827454567, -0.031225526705384254, -0.037067919969558716, -0.09124676138162613, 0.04595214128494263, 0.12820109724998474, 0.021874835714697838, 0.07563604414463043, -0.040429532527923584, -0.03223211318254471, 0.10776208341121674, 0.11413431912660599, -0.0021070900838822126, -0.12396737933158875, -0.03647160530090332, -0.004981948062777519, 0.03507598862051964, -0.08522210270166397, 0.053821906447410583, 0.09962483495473862, 0.02198254130780697, 0.09746342152357101, -0.00862223282456398, -0.08708193898200989, -0.00672865379601717, 0.04877026751637459, -0.07960572838783264, -0.131983682513237, 0.026214370504021645, 0.11127843707799911, -0.1261199712753296, -0.09506259858608246, 0.11179075390100479, 0.01654733344912529, -0.03563065826892853, 0.0059992182068526745, 0.08081980794668198, 0.04873136430978775, 0.038522690534591675, 0.016591819003224373, 0.03584356606006622, -0.07241378724575043, 0.1223347932100296, 0.14623039960861206, -0.11827753484249115, -0.008767066523432732, 0.0994735062122345, -0.04368510842323303, -0.01651478186249733, -0.030218256637454033, 0.04172179847955704, -0.014134209603071213, -0.01864319108426571, 0.037062615156173706, -0.08160797506570816, 0.039947930723428726, 0.07843723148107529, -0.01058550737798214, 0.0645519495010376, 0.029544897377490997, 0.005676374305039644, -0.13701996207237244, 0.1274843066930771, 0.028092537075281143, 0.05064677447080612, -0.09594318270683289, -0.013019331730902195, 0.015964346006512642, 0.0403529591858387, 0.008386798202991486, -0.045204903930425644, -0.07842769473791122, -0.004533747211098671, -0.0696927160024643, 0.10861574858427048, -0.09574324637651443, 0.008253403939306736, -0.022601572796702385, 0.023115742951631546, -0.01668870635330677, 0.027599189430475235, -0.04331713169813156, -0.07531388103961945, -0.04935157671570778, 0.1258016675710678, -0.12217430770397186, -0.017955023795366287, 0.049289461225271225, -0.09414482116699219, 0.0721370056271553, 0.011763275600969791, -0.02744995802640915, -0.09945344179868698, -0.16065628826618195, -0.0487368106842041, 0.029836380854249, 0.07244087010622025, 0.044116318225860596, -0.08513464778661728, 0.05494650453329086, -0.00009183512156596407, -0.10784853994846344, -0.022813377901911736, -0.0208533126860857, -0.10860986262559891, 0.04686075821518898, -0.10605090111494064, -0.01434403844177723, -0.051617302000522614, 0.1213005855679512, 0.04894181713461876, 0.01049753837287426, 0.06547978520393372, -0.04278172552585602, 0.08620792627334595, -0.14194869995117188, -0.04483705386519432, -0.012724402360618114, -0.01805511862039566, -0.0719832256436348, -0.013423786498606205, 0.06836768239736557, -0.015594813041388988, 0.13357381522655487, 0.114425890147686, 0.045302942395210266, 0.035628173500299454, -0.01323355920612812, 0.0384875051677227, 0.061448872089385986, -0.003600509837269783, -0.01780414953827858, -0.01869157887995243, 0.07863427698612213, 0.018607722595334053, 0.00123937230091542, 0.08597198873758316, 0.057962533086538315, 0.24027550220489502, 0.14817681908607483, 0.02017395570874214, 0.0572894923388958, -0.10411814600229263, -0.06185043230652809, 0.1022663339972496, -0.06241270899772644, 0.05578457564115524, -0.10599984973669052, 0.032385848462581635, 0.0798168033361435, -0.14515799283981323, 0.059214334934949875, -0.02650563046336174, 0.0022555061150342226, -0.020594924688339233, -0.08043558150529861, -0.05315835773944855, -0.009065013378858566, 0.002311010379344225, -0.12221702188253403, 0.06582479178905487, 0.11343532055616379, -0.0079955430701375, 0.006642594467848539, 0.07822202146053314, -0.06328094005584717, -0.08747494965791702, 0.082532599568367, 0.017322298139333725, 0.06591615825891495, 0.03840410336852074, 0.04567791894078255, 0.10041693598031998, 0.01981457695364952, 0.08946642279624939, 0.08896736055612564, 0.09539764374494553, 0.02211686410009861, -0.07254406809806824, -0.07260153442621231, 0.031821779906749725, -0.011822205036878586, -0.008357261307537556, 0.16868220269680023, 0.06795847415924072, 0.01800210401415825, -0.021936507895588875, 0.16656935214996338, -0.011061623692512512, -0.0365472137928009, -0.13954131305217743, 0.026155347004532814, -0.04628759250044823, -0.00791260227560997, -0.017531905323266983, -0.15635716915130615, -0.011265063658356667, 0.13646267354488373, 0.06194412335753441, -0.06110883131623268, -0.018861660733819008, 0.00009769738971954212, 0.008982247672975063, -0.01811034418642521, 0.030955668538808823, 0.041382789611816406, 0.2318088412284851, -0.06075988709926605, 0.008473031222820282, -0.0376066230237484, -0.014055322855710983, -0.04199080541729927, 0.10137264430522919, -0.020797837525606155, 0.02482355572283268, -0.08793239295482635, 0.09738841652870178, -0.007668010890483856, -0.19042111933231354, 0.03942306339740753, -0.08228785544633865, -0.08912189304828644, 0.018348541110754013, -0.03266480565071106, -0.005405686795711517, 0.027110924944281578, 0.010460855439305305, -0.05272607505321503, 0.10632924735546112, 0.009195748716592789, -0.04739278182387352, 0.02179097756743431, 0.011419837363064289, -0.07695143669843674, 0.2761459946632385, -0.03103383630514145, 0.030121365562081337, 0.07962200045585632, -0.007661471609026194, -0.15294450521469116, -0.03573267534375191, 0.07099507749080658, -0.06629738211631775, 0.021291552111506462, 0.11613458395004272, 0.00388296227902174, 0.12596234679222107, 0.09498412907123566, -0.09836451709270477, 0.04870224744081497, 0.006214127875864506, 0.0231731366366148, -0.12849709391593933, 0.02276591956615448, -0.08307518064975739, 0.11254912614822388, 0.1259136199951172, -0.001229636836796999, 0.003008897416293621, -0.03637828305363655, 0.011262747459113598, 0.0075253755785524845, 0.12416433542966843, 0.003046221099793911, -0.06908803433179855, 0.016863694414496422, -0.14231085777282715, 0.07770974189043045, -0.12862519919872284, -0.06877598911523819, 0.0396614596247673, -0.011037159711122513, -0.014389288611710072, 0.08293864876031876, 0.027059268206357956, 0.024250589311122894, -0.054295312613248825, -0.1082570031285286, 0.022134624421596527, 0.16412365436553955, -0.01803887076675892, -0.028140950947999954 ]
0f63b9c16e63cef3ffc263b21793f93523d58877
# Dataset Card for tweeter-profile ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/tweeter-profile - **Point of Contact:** [email protected] ### Dataset Summary tweeter-profile ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/tweeter-profile ### Citation Information ``` @misc{ tweeter-profile, title = { tweeter profile Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/tweeter-profile } }, url = { https://universe.roboflow.com/object-detection/tweeter-profile }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/tweeter-profile
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:17:39+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "tweeter-profile", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "tweeter-profile", "1": "profile_info"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:18:01+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for tweeter-profile The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary tweeter-profile ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for tweeter-profile\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ntweeter-profile", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for tweeter-profile\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ntweeter-profile", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for tweeter-profile\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ntweeter-profile### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.007571167778223753, 0.14657817780971527, -0.008426192216575146, 0.03292497247457504, 0.11109033972024918, 0.0093379570171237, 0.04410140588879585, 0.07794328033924103, -0.0008693506242707372, 0.15552592277526855, -0.009601733647286892, 0.08706507086753845, 0.11570379137992859, 0.10627927631139755, -0.011598208919167519, -0.1767268031835556, 0.049449119716882706, -0.06675487011671066, 0.08221005648374557, 0.07295908778905869, 0.08068857342004776, -0.12320362776517868, 0.09395530819892883, -0.03698105365037918, -0.042610809206962585, 0.033471908420324326, -0.028707735240459442, -0.04914258047938347, 0.023249207064509392, 0.03572666645050049, 0.027245325967669487, 0.02864253520965576, 0.03170114383101463, -0.1781001091003418, 0.026706965640187263, 0.10952648520469666, 0.019481290131807327, 0.028550071641802788, 0.143055722117424, -0.0959840938448906, 0.06708941608667374, -0.12958122789859772, 0.03837605193257332, 0.023688821122050285, -0.12368433177471161, -0.10469260066747665, -0.12783202528953552, 0.06308450549840927, 0.10775380581617355, 0.03794543072581291, -0.012407094240188599, 0.08100016415119171, -0.00816966500133276, 0.061164434999227524, 0.12015066295862198, -0.08474301546812057, -0.0408833846449852, 0.08224640786647797, 0.02250095270574093, 0.10381807386875153, -0.10735897719860077, -0.022273968905210495, -0.0015554900746792555, -0.022485533729195595, 0.009942442178726196, -0.067969910800457, -0.04166529327630997, -0.00986861065030098, -0.08897382766008377, -0.13224594295024872, 0.13847917318344116, 0.058832526206970215, -0.05195404961705208, -0.13650469481945038, -0.019317304715514183, 0.06120306998491287, -0.027983780950307846, -0.015027576126158237, 0.042628686875104904, 0.0036866185255348682, 0.051181450486183167, -0.07091741263866425, -0.10185311734676361, 0.05257266014814377, 0.005592283792793751, 0.013774784281849861, -0.025677256286144257, 0.0333399698138237, -0.0006075417040847242, 0.07687090337276459, -0.008275385946035385, -0.10549109429121017, -0.018065957352519035, -0.04292425140738487, -0.07405552268028259, -0.04800516366958618, 0.07129521667957306, -0.1342979073524475, 0.06874269992113113, 0.05896336957812309, -0.0734819546341896, 0.03864671662449837, -0.13498853147029877, 0.012860185466706753, 0.11252956092357635, 0.17945344746112823, -0.08901450037956238, -0.09024107456207275, 0.0039959256537258625, 0.024316763505339622, 0.015120779164135456, -0.032178785651922226, -0.016453152522444725, 0.00046789992484264076, 0.04464064911007881, 0.03313885256648064, 0.11321582645177841, 0.05024617537856102, -0.07420085370540619, -0.05623316019773483, 0.13329334557056427, -0.10541149973869324, 0.04667630046606064, 0.048760246485471725, -0.04816720262169838, 0.0862957313656807, 0.0075135366059839725, 0.008887823671102524, -0.10737040638923645, 0.08817025274038315, -0.04232867434620857, 0.01607869751751423, -0.0808049663901329, -0.09353191405534744, 0.04976828023791313, -0.09340083599090576, -0.0906185731291771, -0.096188984811306, -0.06042371690273285, -0.08592896163463593, 0.0370245985686779, -0.043702203780412674, 0.019946463406085968, 0.016045236960053444, -0.04575061798095703, -0.0032185623422265053, 0.007516731042414904, 0.0215425007045269, -0.0501159206032753, 0.04644645005464554, -0.11114571988582611, 0.03485087677836418, 0.09528212249279022, 0.03302360326051712, -0.09601785242557526, 0.053814712911844254, -0.21361477673053741, 0.14260801672935486, -0.034523263573646545, 0.044739652425050735, -0.13789528608322144, 0.007352000568062067, -0.025328895077109337, -0.04455239325761795, -0.00566389225423336, 0.145656019449234, -0.10069349408149719, 0.007834832184016705, 0.07760933041572571, -0.0595640204846859, -0.047998037189245224, 0.049287598580121994, -0.04622679576277733, 0.013572892174124718, 0.09879123419523239, 0.1210879310965538, -0.02023334987461567, -0.11656362563371658, -0.1062750443816185, -0.05079955235123634, -0.0685126930475235, 0.15944986045360565, 0.05037500709295273, -0.03717247396707535, 0.08636733144521713, -0.014120826497673988, -0.00046114102588035166, -0.023855265229940414, 0.009332028217613697, -0.021395284682512283, 0.017776744440197945, -0.0019119302742183208, -0.0702284500002861, 0.015176224522292614, -0.10482747107744217, 0.003897503949701786, -0.08089547604322433, -0.03419205918908119, 0.009559985250234604, -0.02085963822901249, 0.018698185682296753, -0.04599083214998245, 0.08376770466566086, -0.10075990110635757, -0.003728217678144574, -0.15522922575473785, -0.10454793274402618, 0.0617305263876915, -0.007959185168147087, 0.054097484797239304, -0.07088351249694824, -0.004198587499558926, 0.0035866457037627697, 0.026335962116718292, -0.021848462522029877, 0.041404128074645996, -0.020622940734028816, -0.027821635827422142, -0.1280864179134369, -0.027538921684026718, -0.024191180244088173, 0.10409694164991379, -0.11537627130746841, -0.024685151875019073, 0.15991900861263275, 0.1175016239285469, 0.05269214138388634, -0.04211978241801262, 0.0711987316608429, -0.03156369924545288, -0.021968984976410866, -0.08334290236234665, -0.02352232299745083, -0.0050237905234098434, 0.021829994395375252, 0.10235543549060822, -0.1636514663696289, -0.1040550246834755, 0.08344737440347672, 0.007947536185383797, -0.09405109286308289, -0.03245807811617851, -0.05381493270397186, -0.012616603635251522, -0.09325922280550003, -0.04687225818634033, 0.03946240618824959, 0.06650883704423904, 0.0854329764842987, -0.0649888813495636, -0.0359790176153183, 0.028131745755672455, -0.0223397146910429, -0.08182910084724426, 0.05241228640079498, 0.02909991703927517, -0.13142772018909454, 0.09345995634794235, -0.015237255953252316, 0.05515838414430618, 0.11241722851991653, 0.04286183789372444, -0.09966078400611877, 0.006305685266852379, 0.0667319968342781, 0.02926808036863804, 0.08581670373678207, -0.012898663990199566, 0.012685859575867653, 0.07426142692565918, 0.00003198167905793525, -0.02054908685386181, -0.0723477229475975, 0.07757631689310074, 0.030112627893686295, -0.03601176664233208, 0.03154129907488823, -0.017014114186167717, 0.09061325341463089, 0.11485573649406433, 0.042630355805158615, 0.11113635450601578, -0.04706830531358719, -0.04929789528250694, -0.09388095885515213, 0.11777755618095398, -0.03492889553308487, -0.2669122815132141, -0.07430341839790344, -0.056947216391563416, -0.041827719658613205, -0.010471289046108723, 0.02487785741686821, -0.008719279430806637, -0.07475563883781433, -0.09339337050914764, 0.05355279520153999, 0.07173904776573181, -0.09422187507152557, -0.11493564397096634, 0.022931165993213654, 0.006209121085703373, -0.0754484161734581, -0.005264903884381056, 0.023430082947015762, -0.08564159274101257, 0.029242660850286484, 0.02911415509879589, 0.12888915836811066, 0.07065917551517487, -0.03189754858613014, 0.008400051854550838, -0.019773097708821297, 0.17110919952392578, -0.15402893722057343, 0.1413961797952652, 0.1547214835882187, 0.03080718405544758, 0.08450739830732346, 0.18843278288841248, -0.019657254219055176, -0.02127353474497795, 0.03697449341416359, 0.07746228575706482, -0.056894700974226, -0.19673393666744232, -0.04946526512503624, -0.04512924328446388, 0.027896098792552948, 0.1279301792383194, 0.044563762843608856, 0.025740325450897217, 0.0825951024889946, -0.1003340557217598, 0.025195518508553505, 0.04097139090299606, 0.09875115007162094, 0.038778647780418396, 0.042626671493053436, 0.04236017167568207, -0.04812280088663101, -0.030880706384778023, 0.11814150959253311, 0.11280982196331024, 0.10800641030073166, -0.10685643553733826, 0.0965832844376564, 0.027285389602184296, 0.03039257973432541, -0.04691805690526962, 0.004247625824064016, -0.03372145816683769, 0.062185514718294144, -0.010167053900659084, -0.0860443040728569, -0.009776853956282139, 0.0625629872083664, 0.13984520733356476, -0.014484661631286144, 0.011303769424557686, -0.019113091751933098, 0.10603788495063782, 0.2137552946805954, 0.013236711733043194, -0.19004720449447632, 0.01503198966383934, 0.02775305137038231, 0.007459913846105337, -0.12184803932905197, -0.03407562896609306, 0.10960667580366135, -0.16812549531459808, 0.07981952279806137, -0.040313754230737686, 0.10767515748739243, -0.14035698771476746, -0.03252067416906357, 0.05293671414256096, 0.038699567317962646, -0.030373811721801758, 0.07761009782552719, -0.14940762519836426, 0.08317577093839645, 0.036964353173971176, 0.03742929920554161, -0.08235707134008408, 0.025306710973381996, 0.00862875021994114, -0.01602640002965927, 0.14368127286434174, -0.008571525104343891, 0.003095770487561822, -0.12362538278102875, -0.10445596277713776, -0.015213784761726856, 0.05262691155076027, -0.0573318786919117, 0.1031099334359169, 0.00956499669700861, -0.03201728314161301, -0.07864165306091309, -0.061517342925071716, -0.07686759531497955, -0.18076056241989136, 0.03783227130770683, -0.015254701487720013, 0.008564542047679424, -0.015025914646685123, 0.03285818547010422, 0.027426356449723244, 0.1018851026892662, -0.059779684990644455, -0.0832662582397461, -0.1527215838432312, 0.05614965036511421, 0.0745866596698761, -0.03143821284174919, -0.028962181881070137, -0.07869890332221985, 0.1570790559053421, -0.03651353344321251, -0.06855104863643646, 0.03283872455358505, -0.05793396756052971, -0.11176083981990814, -0.055507633835077286, 0.10934313386678696, 0.041380055248737335, -0.01003189291805029, 0.016095809638500214, 0.04963701590895653, 0.012073746882379055, -0.0644683688879013, 0.04379834234714508, 0.08202832192182541, 0.11606092005968094, 0.13599595427513123, 0.028559556230902672, -0.168668732047081, -0.12828905880451202, 0.017129210755228996, 0.04007035493850708, 0.08848466724157333, -0.08262883871793747, 0.10727955400943756, 0.031022990122437477, -0.09225710481405258, -0.21657532453536987, 0.08172831684350967, 0.05672117695212364, -0.020369915291666985, 0.005099394358694553, -0.14544300734996796, 0.11845477670431137, 0.048256874084472656, 0.004575133323669434, 0.047953177243471146, -0.26206669211387634, -0.07598572224378586, -0.024684185162186623, 0.040100350975990295, -0.1913784295320511, -0.16173449158668518, -0.04215079918503761, -0.05300716683268547, -0.1659388542175293, 0.0774913877248764, -0.01787944883108139, 0.031522154808044434, 0.05165282264351845, 0.06312866508960724, 0.06178547441959381, -0.04531781002879143, 0.09095406532287598, 0.03114406019449234, 0.04981153830885887, -0.0764738991856575, -0.08857450634241104, 0.06364256888628006, -0.09136459231376648, 0.13730090856552124, 0.057548511773347855, 0.017604414373636246, -0.0646812915802002, -0.014169133268296719, -0.04808216914534569, 0.09079519659280777, -0.027044307440519333, -0.04367069900035858, -0.07898272573947906, 0.04359598085284233, 0.1335073858499527, 0.018106358125805855, 0.055264782160520554, -0.0493384450674057, -0.009047498926520348, 0.13808415830135345, 0.11625804752111435, -0.011607456021010876, -0.12495722621679306, -0.04393503814935684, 0.006061463616788387, 0.027586784213781357, -0.11565789580345154, 0.05620038881897926, 0.08146263659000397, 0.011604836210608482, 0.112175352871418, -0.012722909450531006, -0.10270380973815918, 0.02236941084265709, 0.05750682204961777, -0.10525045543909073, -0.12612047791481018, 0.018875185400247574, 0.0886915847659111, -0.08774925023317337, -0.10251681506633759, 0.12053725123405457, -0.0007712568622082472, -0.01947230100631714, 0.005657851696014404, 0.07903125882148743, 0.05098624527454376, 0.05927069112658501, 0.01897125504910946, 0.0344330333173275, -0.06534503400325775, 0.11333725601434708, 0.15066970884799957, -0.14973469078540802, 0.003779110498726368, 0.12119706720113754, -0.05138522759079933, -0.012858211994171143, -0.043871160596609116, 0.03268129751086235, -0.012797920033335686, -0.028831029310822487, 0.033808279782533646, -0.04176759719848633, 0.026931654661893845, 0.10316071659326553, -0.013179132714867592, 0.06817269325256348, 0.0276119876652956, -0.012879075482487679, -0.1302408128976822, 0.12227783352136612, 0.03223710134625435, 0.04904533177614212, -0.10504961013793945, 0.034525949507951736, 0.026676654815673828, 0.028160473331809044, 0.004007923882454634, -0.06001851707696915, -0.07289323955774307, -0.00752206752076745, -0.009093795903027058, 0.10732301324605942, -0.08686891943216324, -0.006499409209936857, -0.019096437841653824, 0.012469937093555927, -0.015017173252999783, 0.022923270240426064, -0.04656738042831421, -0.0703645646572113, -0.033056557178497314, 0.1314675658941269, -0.1529586762189865, -0.018948007375001907, 0.06354209780693054, -0.08345220237970352, 0.08722769469022751, 0.009748375974595547, -0.05446161329746246, -0.07552347332239151, -0.1917370855808258, -0.045242127031087875, 0.029639070853590965, 0.05235481262207031, 0.052483074367046356, -0.07941953092813492, 0.06004161760210991, -0.0059430343098938465, -0.08870681375265121, -0.016127364709973335, -0.005177931394428015, -0.11355260759592056, 0.06651585549116135, -0.07566029578447342, -0.036429714411497116, -0.05085476487874985, 0.12729257345199585, 0.04813800007104874, -0.0003287960425950587, 0.07895586639642715, -0.05791036784648895, 0.08387346565723419, -0.15483751893043518, -0.043895602226257324, -0.0030597494915127754, -0.03389380872249603, -0.05820528790354729, -0.001000234275124967, 0.07817355543375015, -0.023174207657575607, 0.12278185039758682, 0.12601406872272491, 0.030997643247246742, 0.0445045605301857, -0.005543641746044159, 0.025801848620176315, 0.04833062365651131, -0.038879506289958954, -0.026346342638134956, -0.021471405401825905, 0.06744983792304993, 0.0033807456493377686, 0.008842084556818008, 0.09728839993476868, 0.08788403123617172, 0.21828094124794006, 0.1313806176185608, 0.005503005813807249, 0.04873677343130112, -0.06439923495054245, -0.05479816347360611, 0.09288444370031357, -0.06874958425760269, 0.0743432492017746, -0.09473652392625809, 0.022227700799703598, 0.11512389034032822, -0.15752430260181427, 0.06471461802721024, -0.0033053874503821135, -0.010349621996283531, -0.030116165056824684, -0.12419125437736511, -0.06213021278381348, -0.030330391600728035, -0.0017158950213342905, -0.11268499493598938, 0.07861655205488205, 0.12241426855325699, 0.00020879408111795783, 0.010262452997267246, 0.0882742628455162, -0.07899767905473709, -0.08143296837806702, 0.09539268910884857, 0.0173195768147707, 0.0557255819439888, 0.04851802811026573, 0.039696525782346725, 0.06024273857474327, 0.019726671278476715, 0.09432293474674225, 0.08864715695381165, 0.10506224632263184, 0.042022705078125, -0.08962786942720413, -0.07162937521934509, 0.03519023209810257, -0.008998577482998371, -0.031834300607442856, 0.1199292317032814, 0.07936876267194748, 0.008627284318208694, -0.023556118831038475, 0.18711510300636292, -0.012097992934286594, -0.03124316781759262, -0.15125757455825806, 0.031236013397574425, -0.032144900411367416, -0.011850301176309586, -0.01166163943707943, -0.15521380305290222, 0.01365854125469923, 0.11954924464225769, 0.0851278081536293, -0.047580599784851074, -0.009903237223625183, -0.03177272900938988, 0.012208342552185059, 0.00857255794107914, 0.05981169641017914, 0.021717825904488564, 0.20699475705623627, -0.04586964473128319, 0.01526665035635233, -0.0465543270111084, -0.02563418075442314, -0.05461791530251503, 0.09442897886037827, -0.023524193093180656, 0.006996184587478638, -0.06785719841718674, 0.12931467592716217, -0.009627223946154118, -0.20452530682086945, 0.044743165373802185, -0.0957549586892128, -0.07905925065279007, 0.011467826552689075, -0.008988057263195515, 0.009771764278411865, 0.032860662788152695, 0.015312325209379196, -0.057948820292949677, 0.08085379749536514, 0.02757766842842102, -0.07561934739351273, 0.000918578589335084, 0.0023456185590475798, -0.10720667988061905, 0.2591133415699005, -0.030496831983327866, 0.025784917175769806, 0.09452905505895615, -0.02685045637190342, -0.13681915402412415, -0.014537539333105087, 0.0721159428358078, -0.03204258158802986, 0.010619120672345161, 0.12463714927434921, 0.004814906511455774, 0.12403932213783264, 0.08871743083000183, -0.1025790423154831, 0.048907067626714706, -0.0364072322845459, 0.019519781693816185, -0.12166960537433624, 0.024902403354644775, -0.08567225188016891, 0.1062895730137825, 0.14649705588817596, -0.007763928268104792, 0.013075401075184345, -0.05231489986181259, -0.013818972744047642, 0.005185448098927736, 0.09441455453634262, -0.011649389751255512, -0.05559771507978439, -0.00034859031438827515, -0.13079681992530823, 0.07434485852718353, -0.09933237731456757, -0.041524555534124374, 0.027025843039155006, -0.013393240049481392, -0.02326393499970436, 0.10241340100765228, 0.03070848062634468, 0.015883464366197586, -0.053274426609277725, -0.09497106820344925, 0.03335212543606758, 0.1825677454471588, -0.01697109453380108, -0.015820497646927834 ]
63ecbe06216eb6e37bd6e714f917db3be3267414
# Dataset Card for circuit-voltages ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/circuit-voltages - **Point of Contact:** [email protected] ### Dataset Summary circuit-voltages ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/circuit-voltages ### Citation Information ``` @misc{ circuit-voltages, title = { circuit voltages Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/circuit-voltages } }, url = { https://universe.roboflow.com/object-detection/circuit-voltages }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/circuit-voltages
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:18:01+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "circuit-voltages", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "circuit-voltages", "1": "GND", "2": "IDC", "3": "IDC_I", "4": "R", "5": "VDC", "6": "VDC_I"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:18:18+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for circuit-voltages The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary circuit-voltages ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for circuit-voltages\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncircuit-voltages", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for circuit-voltages\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncircuit-voltages", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for circuit-voltages\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncircuit-voltages### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.028519470244646072, 0.14931277930736542, -0.008286360651254654, 0.021588744595646858, 0.11039570719003677, 0.0033710880670696497, 0.05839761346578598, 0.07512246072292328, 0.01619652286171913, 0.16535431146621704, -0.01602734625339508, 0.08308643847703934, 0.13234364986419678, 0.10990660637617111, -0.020138196647167206, -0.14210166037082672, 0.06849247217178345, -0.058292206376791, 0.06391056627035141, 0.06907034665346146, 0.07193917036056519, -0.13475766777992249, 0.09697361290454865, -0.04131830856204033, -0.05601435899734497, 0.010736225172877312, -0.025449905544519424, -0.04505281150341034, 0.03252723440527916, 0.03614392876625061, 0.0362718440592289, 0.010957213118672371, 0.04254317656159401, -0.19087153673171997, 0.026082471013069153, 0.11887127161026001, 0.015460365451872349, 0.044167760759592056, 0.1291867047548294, -0.07873521745204926, 0.04772723466157913, -0.11961293965578079, 0.03065374679863453, 0.02055712789297104, -0.12420134246349335, -0.09164626896381378, -0.12175194919109344, 0.05871827155351639, 0.12088003009557724, 0.0484490804374218, -0.008195075206458569, 0.06795761734247208, 0.0025944472290575504, 0.062209516763687134, 0.11928074061870575, -0.06711167097091675, -0.0454886220395565, 0.09995667636394501, 0.029805442318320274, 0.11198366433382034, -0.11277945339679718, -0.016851089894771576, 0.0023243390023708344, -0.0332513302564621, 0.012802948243916035, -0.07076237350702286, -0.02956978976726532, 0.006567017640918493, -0.09828872978687286, -0.12980860471725464, 0.13718000054359436, 0.054358333349227905, -0.045481208711862564, -0.1088184043765068, -0.039301954209804535, 0.03596509248018265, -0.022746868431568146, -0.01056069415062666, 0.03703711926937103, 0.0033708540722727776, 0.07549672573804855, -0.05550551414489746, -0.10341187566518784, 0.028018197044730186, -0.009199418127536774, 0.05215822905302048, -0.024050841107964516, 0.04948493838310242, 0.009491022676229477, 0.08148059248924255, -0.002747927326709032, -0.11077529937028885, -0.028092999011278152, -0.0380527637898922, -0.07971280068159103, -0.0402953177690506, 0.058883871883153915, -0.10950996726751328, 0.05285690724849701, 0.05400880426168442, -0.087771475315094, 0.03907148167490959, -0.11055406183004379, 0.01959354057908058, 0.09916011989116669, 0.17626531422138214, -0.09443702548742294, -0.079885333776474, -0.011376257054507732, 0.0323319174349308, 0.01986934430897236, -0.04697125777602196, -0.039736755192279816, -0.0026114443317055702, 0.03391820564866066, 0.03429872915148735, 0.10096777230501175, 0.030010303482413292, -0.0708298534154892, -0.05878235399723053, 0.10559481382369995, -0.10791880637407303, 0.06515702605247498, 0.055923428386449814, -0.030663445591926575, 0.07893930375576019, 0.009783643297851086, 0.009768686257302761, -0.1068919375538826, 0.07848099619150162, -0.049651991575956345, 0.02172972820699215, -0.10434981435537338, -0.08900400251150131, 0.043529339134693146, -0.09127134084701538, -0.08919206261634827, -0.08558734506368637, -0.05420350283384323, -0.08117598295211792, 0.04074081778526306, -0.0394163578748703, 0.030266927555203438, 0.021089710295200348, -0.04351598769426346, 0.001362691866233945, 0.009454594925045967, 0.0370546393096447, -0.05028565227985382, 0.04502679035067558, -0.09618394076824188, 0.03708042576909065, 0.08272033929824829, 0.03235949948430061, -0.07372046262025833, 0.05369362607598305, -0.19363000988960266, 0.1111602708697319, -0.03729052469134331, 0.03392462804913521, -0.143138587474823, 0.022423386573791504, -0.026439249515533447, -0.034004777669906616, 0.0011381212389096618, 0.12693318724632263, -0.10336896777153015, 0.017612550407648087, 0.08419260382652283, -0.06002936139702797, -0.047117311507463455, 0.04331578314304352, -0.040549151599407196, 0.020706569775938988, 0.07772256433963776, 0.09314166009426117, -0.021945837885141373, -0.13017477095127106, -0.10778246819972992, -0.05080052465200424, -0.048402782529592514, 0.13117417693138123, 0.05769304931163788, -0.03598938509821892, 0.07015963643789291, -0.013104576617479324, -0.02782565727829933, -0.029824113473296165, 0.015505350194871426, -0.03411708027124405, 0.014538859017193317, 0.0048202043399214745, -0.06540577858686447, 0.018176360055804253, -0.10278856009244919, 0.020479831844568253, -0.08398076891899109, -0.039180971682071686, 0.017174944281578064, -0.020990191027522087, 0.027307331562042236, -0.05142734572291374, 0.09721909463405609, -0.1045575961470604, -0.0012488256907090545, -0.1471165269613266, -0.07753409445285797, 0.06545594334602356, 0.013618526980280876, 0.04274320229887962, -0.07030823826789856, -0.003536490723490715, 0.013602038845419884, 0.035690028220415115, -0.014341644011437893, 0.04426731914281845, -0.023727186024188995, -0.031991858035326004, -0.14306414127349854, -0.016852546483278275, -0.022928202524781227, 0.09988924115896225, -0.11961445957422256, -0.021577898412942886, 0.17476344108581543, 0.11557281017303467, 0.043355997651815414, -0.048658475279808044, 0.0535481758415699, -0.015461580827832222, -0.03836927190423012, -0.06927802413702011, -0.013220900669693947, -0.008979757316410542, 0.029388198629021645, 0.08704328536987305, -0.2126539796590805, -0.11282353103160858, 0.08709080517292023, -0.0034522181376814842, -0.08170737326145172, -0.0572260357439518, -0.03352395072579384, -0.015226484276354313, -0.08842547982931137, -0.06459001451730728, 0.04957761615514755, 0.05620124191045761, 0.07890725135803223, -0.06290379166603088, -0.033494699746370316, 0.029841143637895584, -0.00713680824264884, -0.07592283189296722, 0.03645993396639824, 0.07151928544044495, -0.09993403404951096, 0.09483597427606583, 0.008989539928734303, 0.03424668684601784, 0.11433243006467819, 0.029662946239113808, -0.10281220078468323, -0.013481475412845612, 0.06969057768583298, 0.030119556933641434, 0.11698105931282043, -0.0378970131278038, 0.00861877016723156, 0.07008697837591171, 0.0028396216221153736, -0.029756072908639908, -0.09827354550361633, 0.08786746859550476, 0.031023092567920685, -0.032702941447496414, 0.05565519630908966, -0.03536832332611084, 0.07399939000606537, 0.10063410550355911, 0.04315346106886864, 0.08080761134624481, -0.045691102743148804, -0.059805747121572495, -0.09872640669345856, 0.12663400173187256, -0.04770439863204956, -0.23794792592525482, -0.09360122680664062, -0.06469470262527466, -0.04282394424080849, 0.00011842644744319841, 0.021127473562955856, 0.005201599095016718, -0.08331312984228134, -0.08682510256767273, 0.05588237941265106, 0.06743034720420837, -0.09298816323280334, -0.08105786144733429, 0.021763071417808533, -0.009438610635697842, -0.08419263362884521, 0.0015332259936258197, 0.025841353461146355, -0.07492199540138245, 0.016188208013772964, 0.046633586287498474, 0.13535840809345245, 0.09412794560194016, -0.017440106719732285, 0.006349207833409309, -0.017699146643280983, 0.1677769273519516, -0.15615911781787872, 0.14191190898418427, 0.1594843864440918, 0.00950371753424406, 0.08729007840156555, 0.2121574431657791, -0.01258484274148941, -0.0053594354540109634, 0.015915825963020325, 0.06244366243481636, -0.06294000893831253, -0.19129231572151184, -0.04855949059128761, -0.05949720740318298, 0.022718675434589386, 0.10712139308452606, 0.036974016577005386, 0.0456017404794693, 0.08554379642009735, -0.09799905866384506, 0.02233823761343956, 0.03936402127146721, 0.09813045710325241, 0.04136553406715393, 0.03232536464929581, 0.05160300433635712, -0.044992320239543915, -0.02034567855298519, 0.10103295743465424, 0.14608758687973022, 0.13059407472610474, -0.09270519018173218, 0.11712691187858582, 0.024139488115906715, 0.014336933381855488, -0.039252106100320816, 0.015183488838374615, -0.04031042382121086, 0.05735374987125397, -0.00807240605354309, -0.08936016261577606, -0.007207704707980156, 0.08066791296005249, 0.11767309904098511, -0.0023393710143864155, 0.015294197015464306, -0.0030272630974650383, 0.09162545204162598, 0.19576697051525116, 0.018408318981528282, -0.18408413231372833, 0.021513041108846664, 0.029893284663558006, 0.01872950606048107, -0.12979966402053833, -0.02671305276453495, 0.12066738307476044, -0.14987792074680328, 0.048567622900009155, -0.04244021326303482, 0.10578375309705734, -0.13617543876171112, -0.031786829233169556, 0.04290226101875305, 0.04992761090397835, -0.027737390249967575, 0.06936203688383102, -0.12334834784269333, 0.10481109470129013, 0.042323317378759384, 0.04231550171971321, -0.0807175561785698, 0.045111365616321564, 0.009551163762807846, -0.005326626356691122, 0.12743158638477325, -0.008028003387153149, -0.05547265708446503, -0.14809899032115936, -0.10046680271625519, -0.01720924861729145, 0.06060212105512619, -0.056715380400419235, 0.10097760707139969, -0.002323348307982087, -0.030765732750296593, -0.06029635667800903, -0.04785441979765892, -0.04966748505830765, -0.18159009516239166, 0.05296659842133522, -0.001631488325074315, 0.015399232506752014, -0.024832701310515404, 0.0307608712464571, 0.006835923530161381, 0.07359277456998825, -0.10438653826713562, -0.07148431241512299, -0.15127266943454742, 0.015749454498291016, 0.05863950029015541, -0.03534114360809326, -0.020207230001688004, -0.08700016885995865, 0.17067846655845642, -0.03552761673927307, -0.05832721292972565, 0.04408115893602371, -0.050278440117836, -0.10228380560874939, -0.07787742465734482, 0.11017598956823349, 0.03299802914261818, -0.005056075286120176, 0.0042763990350067616, 0.05534455552697182, 0.0033526672050356865, -0.061099838465452194, 0.04839450120925903, 0.11483767628669739, 0.10422968864440918, 0.14086508750915527, 0.017047787085175514, -0.1585521250963211, -0.10485894978046417, 0.003721471643075347, 0.03455300256609917, 0.09133903682231903, -0.08594536781311035, 0.09392178058624268, 0.050792090594768524, -0.09971485286951065, -0.2449684590101242, 0.08627011626958847, 0.04876473546028137, -0.011555532924830914, -0.017309261485934258, -0.14870698750019073, 0.121467225253582, 0.04420778527855873, -0.0031281353440135717, 0.07059858739376068, -0.24805442988872528, -0.07010158896446228, -0.021786708384752274, 0.05304544046521187, -0.15901309251785278, -0.1615392118692398, -0.04210614040493965, -0.02615385502576828, -0.18567146360874176, 0.062265075743198395, -0.02036411501467228, 0.03857769817113876, 0.048114024102687836, 0.06139126047492027, 0.058717407286167145, -0.04874774068593979, 0.10959194600582123, 0.014620257541537285, 0.04406385496258736, -0.07017092406749725, -0.09406597167253494, 0.07091081887483597, -0.10184822231531143, 0.114035964012146, 0.03529705852270126, 0.01894187554717064, -0.04817604646086693, -0.013459094800055027, -0.0347864106297493, 0.07403639703989029, -0.03710884973406792, -0.04998164251446724, -0.0827936977148056, 0.034859973937273026, 0.11571593582630157, 0.012001881375908852, 0.0703592449426651, -0.03649064525961876, -0.010725130327045918, 0.1816854178905487, 0.11377794295549393, -0.031872790306806564, -0.12472185492515564, -0.04398766905069351, 0.00479313638061285, 0.047373928129673004, -0.114806167781353, 0.05656914785504341, 0.08941109478473663, 0.019103730097413063, 0.10148891061544418, -0.0037625401746481657, -0.10351283103227615, 0.004804541356861591, 0.059268731623888016, -0.09573687613010406, -0.15784884989261627, 0.007107200101017952, 0.10390213876962662, -0.10181723535060883, -0.08882267028093338, 0.12818069756031036, 0.009619532153010368, -0.009130921214818954, 0.011937460862100124, 0.0828145444393158, 0.052809152752161026, 0.05647685378789902, 0.015031159855425358, 0.04286259040236473, -0.06525646150112152, 0.10793283581733704, 0.14287233352661133, -0.1327292025089264, 0.004074541386216879, 0.12095942348241806, -0.048187270760536194, -0.01743023283779621, -0.04613304138183594, 0.05632492154836655, -0.039151787757873535, -0.039964884519577026, 0.02567094936966896, -0.07042038440704346, 0.02304423414170742, 0.1275320053100586, -0.013356613926589489, 0.05964767560362816, 0.029270675033330917, -0.0037291101180016994, -0.12950295209884644, 0.1373966783285141, -0.009250630624592304, 0.05568965896964073, -0.1094362735748291, 0.03572464734315872, 0.017113354057073593, 0.013759663328528404, 0.006193436216562986, -0.07185665518045425, -0.08068450540304184, 0.00013320513244252652, -0.05149063095450401, 0.09603886306285858, -0.08193501830101013, -0.0161154642701149, -0.005863012280315161, 0.011518464423716068, -0.01351928897202015, 0.03132486715912819, -0.04270873963832855, -0.057492077350616455, -0.04157108813524246, 0.12374426424503326, -0.1417427808046341, -0.013529346324503422, 0.06422419100999832, -0.08340441435575485, 0.06981059163808823, -0.004266500473022461, -0.03931315243244171, -0.06989513337612152, -0.18592914938926697, -0.020504416897892952, 0.022566359490156174, 0.057810794562101364, 0.04706243798136711, -0.09544889628887177, 0.05748526006937027, -0.014303444884717464, -0.08848217129707336, -0.023895150050520897, -0.0015192029532045126, -0.10270499438047409, 0.06479362398386002, -0.07962020486593246, -0.03241931274533272, -0.043910883367061615, 0.13671283423900604, 0.05123647674918175, 0.0009541493491269648, 0.05905428156256676, -0.040353357791900635, 0.08341914415359497, -0.14329560101032257, -0.03160175308585167, 0.0020478800870478153, -0.032802511006593704, -0.06947636604309082, -0.016352053731679916, 0.07217243313789368, -0.028910338878631592, 0.10776492953300476, 0.118708036839962, 0.025141317397356033, 0.04051537066698074, -0.03292400389909744, 0.035166170448064804, 0.05255619436502457, -0.011501112952828407, -0.01527381781488657, -0.015611161477863789, 0.06273769587278366, 0.009286366403102875, 0.0195507500320673, 0.11003119498491287, 0.08893561363220215, 0.2189599871635437, 0.1504184603691101, 0.025684108957648277, 0.0521196573972702, -0.08681673556566238, -0.08307307958602905, 0.08307120949029922, -0.08188574761152267, 0.05875959247350693, -0.10329390317201614, 0.014683305285871029, 0.12129733711481094, -0.16497665643692017, 0.05924874171614647, -0.016674146056175232, -0.016127271577715874, -0.030581995844841003, -0.117527537047863, -0.050067152827978134, -0.044465065002441406, -0.00790177471935749, -0.11009325087070465, 0.0706716775894165, 0.1082717627286911, -0.007163543254137039, 0.0157717764377594, 0.09882587939500809, -0.08245304226875305, -0.05552862584590912, 0.08085861802101135, 0.029420142993330956, 0.07064439356327057, 0.05088440328836441, 0.030254123732447624, 0.06346429884433746, -0.0027827038429677486, 0.09922465682029724, 0.08168084174394608, 0.10689923167228699, 0.04924733564257622, -0.0665648952126503, -0.06315478682518005, 0.038866546005010605, -0.019811518490314484, -0.03947090730071068, 0.1554841846227646, 0.06778471916913986, 0.0173819437623024, -0.015529189258813858, 0.1753542572259903, -0.02760092355310917, -0.02898036316037178, -0.15018494427204132, 0.04804757982492447, -0.029619745910167694, 0.0015934004914015532, -0.017731517553329468, -0.1588989496231079, -0.0060451459139585495, 0.13467226922512054, 0.058878615498542786, -0.04639596864581108, -0.011249261908233166, -0.011677195318043232, 0.012882082723081112, -0.0041919588111341, 0.054454948753118515, 0.020530791953206062, 0.23486587405204773, -0.047102198004722595, 0.0013651271583512425, -0.025188127532601357, -0.020154526457190514, -0.06929607689380646, 0.0807836651802063, -0.024628009647130966, 0.0037129183765500784, -0.07168352603912354, 0.0958230271935463, 0.007919586263597012, -0.19753974676132202, 0.05685317516326904, -0.10599230229854584, -0.07553747296333313, 0.00930254627019167, 0.02507849596440792, -0.007590416353195906, 0.01584218442440033, 0.01400806475430727, -0.057304996997117996, 0.10699673742055893, 0.027725575491786003, -0.06644678115844727, -0.011485463008284569, 0.00013380806194618344, -0.12607109546661377, 0.2762260138988495, -0.031572550535202026, 0.011214476078748703, 0.10539084672927856, -0.013035992160439491, -0.14208121597766876, -0.013138734735548496, 0.0750071182847023, -0.06311293691396713, -0.007825448177754879, 0.1233731061220169, -0.0029517197981476784, 0.14990746974945068, 0.08539494127035141, -0.07636017352342606, 0.04422696307301521, -0.03392723202705383, 0.011953026056289673, -0.10606449842453003, 0.007660119794309139, -0.08441680669784546, 0.11246056854724884, 0.14344659447669983, -0.0005408228607848287, -0.006969409994781017, -0.044264309108257294, -0.014398274011909962, 0.00567503971979022, 0.10237434506416321, -0.0071716587990522385, -0.060360729694366455, 0.01574241928756237, -0.10653847455978394, 0.0862969383597374, -0.10337292402982712, -0.06514585763216019, 0.03203730285167694, -0.011051975190639496, -0.03174682706594467, 0.08823252469301224, 0.06304551661014557, 0.02083170786499977, -0.05439171567559242, -0.11754082888364792, 0.01408385206013918, 0.17509756982326508, -0.018299583345651627, -0.029448173940181732 ]
34188fb46437ad7f926c2c213ab8ee4aa776d658
# Dataset Card for hand-gestures-jps7z ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/hand-gestures-jps7z - **Point of Contact:** [email protected] ### Dataset Summary hand-gestures-jps7z ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/hand-gestures-jps7z ### Citation Information ``` @misc{ hand-gestures-jps7z, title = { hand gestures jps7z Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/hand-gestures-jps7z } }, url = { https://universe.roboflow.com/object-detection/hand-gestures-jps7z }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/hand-gestures-jps7z
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:18:16+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "hand-gestures-jps7z", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "hand-gestures", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9, "11": 10, "12": 11, "13": 12, "14": 13}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:18:38+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for hand-gestures-jps7z The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary hand-gestures-jps7z ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for hand-gestures-jps7z\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nhand-gestures-jps7z", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for hand-gestures-jps7z\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nhand-gestures-jps7z", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for hand-gestures-jps7z\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nhand-gestures-jps7z### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.010154210962355137, 0.15180560946464539, -0.007738518062978983, 0.014596126042306423, 0.08804485201835632, 0.00494447210803628, 0.06357318162918091, 0.08359014987945557, 0.011215988546609879, 0.1612776815891266, -0.01272695604711771, 0.06136779487133026, 0.13947883248329163, 0.0843769833445549, -0.009023979306221008, -0.1482355296611786, 0.06063230335712433, -0.056002140045166016, 0.10119694471359253, 0.06478427350521088, 0.07649733126163483, -0.1422247439622879, 0.08022183179855347, -0.022935405373573303, -0.03500629588961601, 0.028943324461579323, -0.06555572897195816, -0.026261599734425545, 0.007290670648217201, 0.024005858227610588, 0.025911672040820122, 0.035695724189281464, 0.058954786509275436, -0.19224505126476288, 0.01904861256480217, 0.08625605702400208, 0.031640149652957916, 0.024612588807940483, 0.15839770436286926, -0.06851521134376526, 0.01660335808992386, -0.1535850614309311, 0.022605564445257187, 0.004304077941924334, -0.09921004623174667, -0.09016154706478119, -0.1332586258649826, 0.07429976761341095, 0.11001155525445938, 0.04319664090871811, -0.01940031535923481, 0.05720018595457077, -0.03273744136095047, 0.041386011987924576, 0.1340315192937851, -0.08478952944278717, -0.03426802530884743, 0.08681223541498184, 0.03725390508770943, 0.07443420588970184, -0.10918854922056198, -0.025151150301098824, 0.0084703229367733, -0.016705377027392387, -0.0028614122420549393, -0.03499332070350647, -0.004305838141590357, -0.007073376793414354, -0.10246170312166214, -0.13009947538375854, 0.13914741575717926, 0.054208528250455856, -0.05708441510796547, -0.14985054731369019, -0.0017001399537548423, 0.05120712146162987, -0.034938886761665344, -0.011169728823006153, 0.05454418435692787, -0.008723456412553787, 0.07386625558137894, -0.05085349455475807, -0.11424493044614792, 0.056334082037210464, 0.005829507019370794, 0.03716515377163887, -0.016400791704654694, 0.0414426289498806, 0.029681654646992683, 0.0818093791604042, 0.032111864537000656, -0.11532359570264816, -0.03384153172373772, -0.03179837018251419, -0.043051209300756454, -0.06084325164556503, 0.06403093785047531, -0.10763203352689743, 0.06089019775390625, 0.06570111215114594, -0.0589134506881237, 0.01321957353502512, -0.10543346405029297, 0.012659262865781784, 0.14089271426200867, 0.1830441802740097, -0.09739208966493607, -0.07340903580188751, -0.002727458020672202, 0.03669137507677078, 0.021838868036866188, -0.020807329565286636, -0.02956588938832283, -0.009966542944312096, 0.04246506094932556, 0.034845054149627686, 0.10086852312088013, 0.03304965794086456, -0.06856616586446762, -0.06312992423772812, 0.16441255807876587, -0.10015390813350677, 0.05099988356232643, 0.05288602039217949, -0.0709974616765976, 0.101352259516716, 0.005472149699926376, 0.0258285254240036, -0.11611693352460861, 0.08140232414007187, -0.01715105026960373, 0.017474254593253136, -0.09014102071523666, -0.08967796713113785, 0.06181115657091141, -0.07594111561775208, -0.07741443812847137, -0.08998861163854599, -0.05156967416405678, -0.08860451728105545, 0.03858112916350365, -0.04629463329911232, 0.017099294811487198, 0.022974317893385887, -0.04147364944219589, -0.009500658139586449, 0.003552000969648361, 0.034103456884622574, -0.06256408244371414, 0.029811887070536613, -0.11264429241418839, 0.04021867364645004, 0.11101079732179642, 0.04113801568746567, -0.08693397790193558, 0.05585525184869766, -0.1845477968454361, 0.11596833169460297, -0.0280461423099041, 0.02681763470172882, -0.12458322942256927, 0.0031865048222243786, -0.008537310175597668, -0.03706730157136917, -0.009674640372395515, 0.14055144786834717, -0.09424125403165817, 0.027431372553110123, 0.03544027358293533, -0.05113745108246803, -0.05098910257220268, 0.03473169356584549, -0.03946932777762413, 0.009777013212442398, 0.07785990834236145, 0.11742164194583893, -0.03503628075122833, -0.13079237937927246, -0.1267896294593811, -0.026515429839491844, -0.051120925694704056, 0.14842553436756134, 0.07011433690786362, -0.013270259834825993, 0.09277167916297913, -0.008720091544091702, -0.006575595121830702, -0.04565300792455673, 0.00983767956495285, -0.03748120740056038, 0.01527925580739975, -0.008302906528115273, -0.08664736896753311, 0.016097594052553177, -0.08325985074043274, 0.021455394104123116, -0.06778817623853683, -0.02078927680850029, 0.022811008617281914, -0.01779051311314106, 0.007741166744381189, -0.04020312428474426, 0.06552810966968536, -0.12215299904346466, 0.00007770467345835641, -0.14391891658306122, -0.09428532421588898, 0.07456066459417343, -0.03504667803645134, 0.025847380980849266, -0.055217329412698746, -0.006614937912672758, 0.008305772207677364, 0.03969647362828255, -0.016485122963786125, 0.059534087777137756, -0.0240781307220459, -0.03708987683057785, -0.12047188729047775, -0.061393097043037415, -0.017906803637742996, 0.09740732610225677, -0.11694203317165375, -0.035403136163949966, 0.12251511216163635, 0.11961621046066284, 0.021988438442349434, -0.0313374288380146, 0.057337820529937744, -0.041322652250528336, -0.02351674810051918, -0.06643304973840714, -0.014555457979440689, 0.0012780133401975036, 0.05591711401939392, 0.0727030336856842, -0.1324467808008194, -0.11916758120059967, 0.08006341010332108, 0.0323900431394577, -0.08102832734584808, -0.046466898173093796, -0.05692621320486069, -0.02533801645040512, -0.09246329218149185, -0.03982952609658241, 0.024561060592532158, 0.06326553225517273, 0.0724177211523056, -0.07025981694459915, -0.062029290944337845, 0.021400639787316322, -0.01709911786019802, -0.08810339123010635, 0.060885366052389145, 0.05680253729224205, -0.13475336134433746, 0.0862986221909523, -0.03200698271393776, 0.05530642718076706, 0.08398658782243729, 0.03151543065905571, -0.11313214153051376, 0.004627811256796122, 0.07387149333953857, 0.012235588394105434, 0.10220766812562943, -0.00401470297947526, 0.010605006478726864, 0.0791151225566864, -0.008610749617218971, -0.011188921518623829, -0.08774952590465546, 0.07568886876106262, 0.02079942636191845, -0.04136176034808159, 0.02379431575536728, -0.031439024955034256, 0.09148721396923065, 0.10529405623674393, 0.07844691723585129, 0.11991714686155319, -0.05192079022526741, -0.06611119210720062, -0.09752272069454193, 0.11963092535734177, -0.028250958770513535, -0.25542548298835754, -0.06803753226995468, -0.06028890609741211, -0.04439856484532356, -0.0076988195069134235, 0.02054540067911148, -0.0075952475890517235, -0.08651462197303772, -0.09973090887069702, 0.0626407042145729, 0.05022718012332916, -0.11132516711950302, -0.0973794013261795, 0.029869617894291878, -0.00890685711055994, -0.07978102564811707, -0.00193022598978132, 0.021841522306203842, -0.044656332582235336, 0.00878848135471344, 0.036266010254621506, 0.11964113265275955, 0.06677959114313126, -0.026417743414640427, -0.0059269266203045845, -0.00023539211542811245, 0.16843242943286896, -0.1405573934316635, 0.12075430154800415, 0.1613609492778778, 0.014125755988061428, 0.07329586148262024, 0.20990687608718872, -0.015590842813253403, -0.005665243603289127, 0.022795122116804123, 0.06588464230298996, -0.04514150321483612, -0.19054487347602844, -0.05161319300532341, -0.03643561899662018, 0.012997652404010296, 0.1461254358291626, 0.04332495108246803, 0.012398606166243553, 0.08233487606048584, -0.1077076643705368, 0.014665303751826286, 0.03154134005308151, 0.0925140306353569, 0.0365057997405529, 0.03233053535223007, 0.04115218669176102, -0.047110024839639664, -0.05470002815127373, 0.0899190753698349, 0.12243492901325226, 0.10851027071475983, -0.10361339151859283, 0.0914578065276146, 0.03603580966591835, 0.04543134570121765, -0.043084681034088135, 0.006573833059519529, -0.02326192893087864, 0.051128044724464417, -0.0031460728496313095, -0.08982709050178528, 0.01441261451691389, 0.07819008082151413, 0.14149175584316254, 0.0006659402279183269, -0.0011495199287310243, -0.04939458519220352, 0.0688815638422966, 0.2682923376560211, 0.012459569610655308, -0.17938880622386932, 0.019767897203564644, 0.03731568902730942, 0.0026442266535013914, -0.1292877197265625, -0.042940206825733185, 0.07998968660831451, -0.1613604873418808, 0.05400308594107628, -0.0189768448472023, 0.10134590417146683, -0.14474020898342133, -0.04110343009233475, 0.07781016081571579, 0.02626928500831127, -0.012690202333033085, 0.07065364718437195, -0.09806176275014877, 0.05873388797044754, 0.034079864621162415, 0.045081160962581635, -0.09346462041139603, 0.03907084837555885, -0.00067616265732795, -0.030351508408784866, 0.13069897890090942, -0.012330909259617329, 0.021525869145989418, -0.1353338211774826, -0.113509401679039, -0.012820534408092499, 0.054075937718153, -0.08193276822566986, 0.11036638170480728, 0.00937049649655819, -0.031203696504235268, -0.07628738880157471, -0.05884820222854614, -0.0706118568778038, -0.16932441294193268, 0.054805997759103775, -0.042449869215488434, 0.005668623838573694, -0.01866459846496582, 0.014280715957283974, -0.012869434431195259, 0.1331365555524826, -0.03919550031423569, -0.08944406360387802, -0.1295003592967987, 0.03278686851263046, 0.08667916059494019, -0.013225790113210678, -0.01695500873029232, -0.08415766805410385, 0.18429362773895264, -0.030028218403458595, -0.08596044033765793, 0.006172104738652706, -0.06275175511837006, -0.10004079341888428, -0.05276906117796898, 0.10234237462282181, 0.043679721653461456, -0.011382046155631542, 0.014274411834776402, 0.04543045535683632, -0.009512477554380894, -0.0395931638777256, 0.032116781920194626, 0.10229142010211945, 0.1335582137107849, 0.12390445917844772, 0.003832613816484809, -0.15598049759864807, -0.11080942302942276, -0.007669962011277676, 0.02262136898934841, 0.11100059002637863, -0.07661523669958115, 0.09823466092348099, 0.038693930953741074, -0.07865609973669052, -0.2302815020084381, 0.08063925057649612, 0.0676029697060585, -0.006207053549587727, -0.028271030634641647, -0.13812540471553802, 0.16195614635944366, 0.039954740554094315, -0.005567858461290598, 0.07948455214500427, -0.2647550106048584, -0.06504902988672256, -0.024152107536792755, 0.0300429780036211, -0.18059739470481873, -0.15851058065891266, -0.0435318723320961, -0.050589337944984436, -0.18543902039527893, 0.061220262199640274, 0.009351507760584354, 0.0438271127641201, 0.036675162613391876, 0.057854730635881424, 0.06272249668836594, -0.04353946074843407, 0.10730783641338348, 0.023877445608377457, 0.04622597619891167, -0.07340481132268906, -0.09124397486448288, -0.002374178497120738, -0.10268675535917282, 0.15660060942173004, 0.07626199722290039, 0.021139828488230705, -0.04585446044802666, -0.020511774346232414, -0.044171180576086044, 0.0795987993478775, -0.02787727676331997, -0.03569047525525093, -0.09575381129980087, 0.04241315275430679, 0.1268552839756012, 0.023837922140955925, 0.07707283645868301, -0.03268176689743996, -0.023310543969273567, 0.1094648689031601, 0.11227818578481674, -0.012134257704019547, -0.114487424492836, -0.040198005735874176, -0.00841200165450573, 0.0361577644944191, -0.09967375546693802, 0.0497073270380497, 0.09583894908428192, 0.02689298242330551, 0.0997927337884903, -0.012407771311700344, -0.09029168635606766, -0.018240006640553474, 0.049380864948034286, -0.08666101843118668, -0.12837688624858856, 0.028974439948797226, 0.1109493225812912, -0.11286626756191254, -0.10181190073490143, 0.10958875715732574, 0.006718856282532215, -0.031340342015028, 0.0036578511353582144, 0.08011974394321442, 0.0497710183262825, 0.04442587122321129, 0.014864706434309483, 0.03521421179175377, -0.0734398290514946, 0.1268225461244583, 0.14695985615253448, -0.11448398977518082, -0.005467030685395002, 0.09892719238996506, -0.0431714691221714, -0.022137239575386047, -0.02166728675365448, 0.03038698248565197, -0.006757501512765884, -0.024954423308372498, 0.04177682101726532, -0.08089657127857208, 0.036260705441236496, 0.07637384533882141, -0.0066187079064548016, 0.06652691960334778, 0.03739040344953537, 0.004547728691250086, -0.14053507149219513, 0.12570899724960327, 0.03257488086819649, 0.05193103849887848, -0.09163910150527954, 0.00834160577505827, 0.020758332684636116, 0.029401451349258423, 0.008367257192730904, -0.043746255338191986, -0.07874740660190582, -0.003837947268038988, -0.055094774812459946, 0.10537846386432648, -0.10477957874536514, 0.001689881319180131, -0.010972101241350174, 0.022314630448818207, -0.015863245353102684, 0.03003641776740551, -0.044975101947784424, -0.07461197674274445, -0.0451420433819294, 0.12805065512657166, -0.12156914919614792, -0.025699632242321968, 0.048910923302173615, -0.09541279822587967, 0.06387083977460861, 0.011848710477352142, -0.029556090012192726, -0.09707160294055939, -0.17273211479187012, -0.04911651834845543, 0.032353710383176804, 0.07044994086027145, 0.03973570093512535, -0.09133943170309067, 0.05626709759235382, 0.006050371564924717, -0.1026775985956192, -0.018386658281087875, -0.030624495819211006, -0.10834728926420212, 0.04474940896034241, -0.11234258860349655, -0.02271890453994274, -0.05475420132279396, 0.13184358179569244, 0.05609560012817383, 0.008228309452533722, 0.06403236091136932, -0.04407777637243271, 0.0868249461054802, -0.13405749201774597, -0.03940651938319206, -0.01478513516485691, -0.02750328928232193, -0.06913438439369202, -0.00814714003354311, 0.06682207435369492, -0.020757650956511497, 0.13248245418071747, 0.1268160045146942, 0.030598368495702744, 0.034220557659864426, -0.016318218782544136, 0.05103287473320961, 0.06594184786081314, 0.0010920745553448796, -0.025284240022301674, -0.021770307794213295, 0.06901369988918304, 0.019267860800027847, -0.00001085146504919976, 0.07663940638303757, 0.052386749535799026, 0.23948025703430176, 0.13779842853546143, 0.02143646776676178, 0.04870067536830902, -0.10813680291175842, -0.05171864852309227, 0.10560623556375504, -0.06246991083025932, 0.06471643596887589, -0.10608113557100296, 0.0380990169942379, 0.08546373248100281, -0.14532284438610077, 0.056128792464733124, -0.02289479784667492, 0.0001909420097945258, -0.022073322907090187, -0.09382898360490799, -0.05419136583805084, -0.012613512575626373, 0.0016581261297687888, -0.11728016287088394, 0.07437743246555328, 0.11723905801773071, -0.0024354523047804832, 0.008475974202156067, 0.07246220856904984, -0.05447245389223099, -0.0819307267665863, 0.09110154956579208, 0.014013528823852539, 0.05810118466615677, 0.03206343948841095, 0.04485851526260376, 0.09658651053905487, 0.014306709170341492, 0.09257666766643524, 0.08675001561641693, 0.09414596110582352, 0.026981353759765625, -0.06664647907018661, -0.0761483684182167, 0.03254948928952217, -0.017223799601197243, -0.0020821383222937584, 0.16403381526470184, 0.07144367694854736, 0.01564420387148857, -0.02123919129371643, 0.16222959756851196, -0.0095572704449296, -0.0375843271613121, -0.13570867478847504, 0.033299874514341354, -0.04335172101855278, -0.012536482885479927, -0.012121426872909069, -0.15029500424861908, -0.007388676516711712, 0.13700217008590698, 0.05854925885796547, -0.04049510881304741, -0.01852588728070259, -0.004054113291203976, 0.0062319813296198845, -0.022618109360337257, 0.0342465378344059, 0.03068927861750126, 0.21029873192310333, -0.056389931589365005, 0.012259668670594692, -0.037158407270908356, -0.016210926696658134, -0.05021613463759422, 0.08362579345703125, -0.014067888259887695, 0.018536916002631187, -0.08682163059711456, 0.09753163158893585, -0.0032840806525200605, -0.1821775585412979, 0.05105176195502281, -0.07590712606906891, -0.08174069225788116, 0.025426309555768967, -0.024058766663074493, -0.00414406880736351, 0.029071299359202385, 0.002007583389058709, -0.05075244605541229, 0.1056709811091423, 0.01614454761147499, -0.05662677437067032, 0.01961461640894413, 0.0075822980143129826, -0.08384735882282257, 0.27816352248191833, -0.03393760323524475, 0.04000403359532356, 0.07889754325151443, -0.01332401018589735, -0.15384574234485626, -0.04002935439348221, 0.06932447850704193, -0.06443028897047043, 0.025026962161064148, 0.12528133392333984, 0.0006890380172990263, 0.12594960629940033, 0.0946228951215744, -0.09581556916236877, 0.045157961547374725, 0.002992243506014347, 0.029935000464320183, -0.12719114124774933, 0.014912363141775131, -0.0815059170126915, 0.11332584172487259, 0.12845966219902039, -0.0011841956293210387, -0.00441211462020874, -0.0415075346827507, 0.005805760156363249, 0.005480729974806309, 0.1148202121257782, 0.006132873240858316, -0.06659600883722305, 0.014744206331670284, -0.15775682032108307, 0.08529167622327805, -0.11732162535190582, -0.06111421063542366, 0.039771001785993576, -0.022521205246448517, -0.019575556740164757, 0.0803556814789772, 0.028976717963814735, 0.025054870173335075, -0.055254992097616196, -0.12779338657855988, 0.027684027329087257, 0.1622409224510193, -0.011658086441457272, -0.025095075368881226 ]
4abd6b78f94e949b53922c5cb7fd0934ff5500c6
# Dataset Card for paper-parts ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/paper-parts - **Point of Contact:** [email protected] ### Dataset Summary paper-parts ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/paper-parts ### Citation Information ``` @misc{ paper-parts, title = { paper parts Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/paper-parts } }, url = { https://universe.roboflow.com/object-detection/paper-parts }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/paper-parts
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:18:19+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "paper-parts", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "paper-parts", "1": "author", "2": "chapter", "3": "equation", "4": "equation number", "5": "figure", "6": "figure caption", "7": "footnote", "8": "list of content heading", "9": "list of content text", "10": "page number", "11": "paragraph", "12": "reference text", "13": "section", "14": "subsection", "15": "subsubsection", "16": "table", "17": "table caption", "18": "table of contents text", "19": "title"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:20:46+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for paper-parts The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary paper-parts ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for paper-parts\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npaper-parts", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for paper-parts\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npaper-parts", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for paper-parts\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\npaper-parts### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.014189116656780243, 0.15722297132015228, -0.008670625276863575, 0.021166859194636345, 0.11009719222784042, 0.001619013026356697, 0.054161470383405685, 0.08059816807508469, 0.002209818223491311, 0.16237413883209229, -0.012316478416323662, 0.08065037429332733, 0.12927982211112976, 0.0995124876499176, -0.024494800716638565, -0.1609920710325241, 0.05867661163210869, -0.062479592859745026, 0.07466556131839752, 0.06820791214704514, 0.06960774958133698, -0.13263224065303802, 0.0971551164984703, -0.03576316684484482, -0.0438956655561924, 0.011668648570775986, -0.027949372306466103, -0.04484814777970314, 0.02073928527534008, 0.03437986224889755, 0.03374603018164635, 0.017480898648500443, 0.04154767841100693, -0.18800245225429535, 0.026162782683968544, 0.11037395149469376, 0.01784558966755867, 0.040302734822034836, 0.1279456615447998, -0.08650898933410645, 0.05718002840876579, -0.13390140235424042, 0.02227669022977352, 0.01727072335779667, -0.12439826130867004, -0.09927280247211456, -0.127456933259964, 0.041799601167440414, 0.11405448615550995, 0.051250800490379333, -0.0117573793977499, 0.0665314793586731, 0.0043704574927687645, 0.05706017091870308, 0.12839408218860626, -0.08234335482120514, -0.05562369525432587, 0.09449780732393265, 0.028652718290686607, 0.10991965234279633, -0.1094311997294426, -0.010334324091672897, -0.006971933878958225, -0.029496144503355026, 0.010551555082201958, -0.07337300479412079, -0.03519025444984436, 0.004074831958860159, -0.09476032108068466, -0.12561437487602234, 0.14070682227611542, 0.05459417402744293, -0.051751308143138885, -0.12476976960897446, -0.032440006732940674, 0.055976174771785736, -0.027618689462542534, -0.013591037131845951, 0.04972725361585617, -0.0005254079005680978, 0.07542980462312698, -0.06491564959287643, -0.1063450425863266, 0.04830463230609894, 0.0015281171072274446, 0.03044217824935913, -0.03562904894351959, 0.042978230863809586, 0.007945298217236996, 0.08217552304267883, -0.01985805481672287, -0.11495630443096161, -0.03417491167783737, -0.044983167201280594, -0.0635330080986023, -0.0368817038834095, 0.06413429230451584, -0.13406246900558472, 0.06129906326532364, 0.05250326544046402, -0.07759453356266022, 0.03392315283417702, -0.1210491731762886, 0.023800082504749298, 0.09860960394144058, 0.19316282868385315, -0.08126173913478851, -0.09379416704177856, -0.009017287753522396, 0.025920361280441284, 0.029016518965363503, -0.04266967251896858, -0.03491751104593277, -0.013559955172240734, 0.022801993414759636, 0.029939409345388412, 0.10180068761110306, 0.027913784608244896, -0.06582516431808472, -0.04825801029801369, 0.110414519906044, -0.1066519021987915, 0.05896399915218353, 0.042642537504434586, -0.031326744705438614, 0.08705981075763702, 0.022396789863705635, 0.012118568643927574, -0.10569260269403458, 0.08940082788467407, -0.04196175932884216, 0.02509879134595394, -0.09593761712312698, -0.08729307353496552, 0.04250233620405197, -0.0990276113152504, -0.08952607214450836, -0.08070933073759079, -0.058626431971788406, -0.0882171243429184, 0.04287876933813095, -0.04522055387496948, 0.0313328392803669, 0.014046883210539818, -0.04168444126844406, -0.0021736163180321455, 0.012484044767916203, 0.03651663661003113, -0.049159493297338486, 0.03810468316078186, -0.10213909298181534, 0.03960174322128296, 0.0828045979142189, 0.03349993750452995, -0.07685224711894989, 0.05739549919962883, -0.20191147923469543, 0.12050195783376694, -0.0305198784917593, 0.03282700479030609, -0.1361933797597885, 0.016135521233081818, -0.02960732765495777, -0.03824803978204727, -0.0022396494168788195, 0.12961798906326294, -0.09663763642311096, 0.015042428858578205, 0.08709061145782471, -0.05280173942446709, -0.04460734874010086, 0.03356127440929413, -0.0406784787774086, 0.025977082550525665, 0.08207587897777557, 0.10221325606107712, -0.020589279010891914, -0.12228672206401825, -0.10961674898862839, -0.04468107968568802, -0.05191832780838013, 0.13585436344146729, 0.05551180988550186, -0.044503103941679, 0.08019022643566132, -0.009171168319880962, -0.027829475700855255, -0.03283205255866051, 0.016859501600265503, -0.0325622484087944, 0.013371322304010391, 0.008923215791583061, -0.06889507174491882, 0.014256913214921951, -0.10318605601787567, 0.017307698726654053, -0.08417820930480957, -0.03778955712914467, 0.004801814444363117, -0.01889995113015175, 0.025924870744347572, -0.03235681354999542, 0.09481652081012726, -0.10403618216514587, -0.002911865944042802, -0.15035246312618256, -0.08347764611244202, 0.05629170686006546, 0.013977623544633389, 0.04979962110519409, -0.07006040960550308, 0.0012888116762042046, 0.011973940767347813, 0.03192161023616791, -0.012979419901967049, 0.04682308807969093, -0.027340399101376534, -0.030514398589730263, -0.1298186480998993, -0.011972714215517044, -0.02502313256263733, 0.09936090558767319, -0.12421093136072159, -0.02220167964696884, 0.15117378532886505, 0.10572443157434464, 0.050774138420820236, -0.044669050723314285, 0.06304484605789185, -0.018848858773708344, -0.03257394954562187, -0.07170767337083817, -0.011873219162225723, -0.010402379557490349, 0.023655587807297707, 0.08609762787818909, -0.19674861431121826, -0.1216769814491272, 0.0784895196557045, 0.005548099987208843, -0.08431454747915268, -0.05413645878434181, -0.042669713497161865, -0.01141348946839571, -0.10287890583276749, -0.052378274500370026, 0.044889897108078, 0.059534452855587006, 0.0842430368065834, -0.06368687003850937, -0.03437775745987892, 0.0235410388559103, -0.01458652876317501, -0.08134137094020844, 0.04250585660338402, 0.054656725376844406, -0.0950033962726593, 0.09440333396196365, 0.024025218561291695, 0.03860728070139885, 0.12282027304172516, 0.037344761192798615, -0.10296163707971573, -0.011708734557032585, 0.07559411227703094, 0.02979995124042034, 0.09766916185617447, -0.03778295964002609, 0.012698633596301079, 0.07634500414133072, 0.0037490897811949253, -0.03261726722121239, -0.09480078518390656, 0.076975516974926, 0.03061961755156517, -0.036373890936374664, 0.054551467299461365, -0.023157650604844093, 0.07827353477478027, 0.10495218634605408, 0.04631531611084938, 0.09297039359807968, -0.052810605615377426, -0.06110594421625137, -0.0924118384718895, 0.12283936142921448, -0.041809264570474625, -0.2436676174402237, -0.09335736185312271, -0.06913734972476959, -0.045116521418094635, -0.0010741911828517914, 0.02710139751434326, 0.004201764240860939, -0.08115297555923462, -0.09124884009361267, 0.050044767558574677, 0.0775674507021904, -0.09941773116588593, -0.09401795268058777, 0.022439410910010338, -0.005379641428589821, -0.08282783627510071, -0.0055894930846989155, 0.022541048005223274, -0.06900215893983841, 0.02038469910621643, 0.04368578642606735, 0.13475504517555237, 0.08385583758354187, -0.02443598583340645, 0.008490831591188908, -0.014058083295822144, 0.17365524172782898, -0.1568784862756729, 0.14064784348011017, 0.16576257348060608, 0.01347645279020071, 0.09210864454507828, 0.20728206634521484, -0.01071132905781269, -0.0023899662774056196, 0.013122396543622017, 0.061597976833581924, -0.06213924288749695, -0.1971139758825302, -0.041017331182956696, -0.056073226034641266, 0.023870037868618965, 0.1023714691400528, 0.039552800357341766, 0.02970837987959385, 0.08429371565580368, -0.0940636619925499, 0.01881192810833454, 0.04898166283965111, 0.09722577035427094, 0.04247823357582092, 0.0291748046875, 0.050805263221263885, -0.046636149287223816, -0.031573813408613205, 0.10274481028318405, 0.1347767859697342, 0.12971697747707367, -0.09108379483222961, 0.10591410100460052, 0.026768967509269714, 0.004710223525762558, -0.040055468678474426, 0.005549891851842403, -0.031721554696559906, 0.055227622389793396, -0.014847288839519024, -0.09525693207979202, 0.0020608350168913603, 0.07672321051359177, 0.11296488344669342, 0.001969072502106428, 0.022731736302375793, -0.005625612568110228, 0.09574728459119797, 0.20628708600997925, 0.029124045744538307, -0.17849649488925934, 0.029565637931227684, 0.03412199765443802, 0.02125159464776516, -0.13059933483600616, -0.037408020347356796, 0.11295037716627121, -0.1647680103778839, 0.06484324485063553, -0.046583957970142365, 0.10730444639921188, -0.1320839673280716, -0.03216344863176346, 0.03766660392284393, 0.043015506118535995, -0.03140169009566307, 0.07175388187170029, -0.11042603850364685, 0.0994410514831543, 0.04276071488857269, 0.038581982254981995, -0.07983049005270004, 0.04565678536891937, 0.01458901260048151, -0.0037669427692890167, 0.14354442059993744, -0.007165254559367895, -0.04270710051059723, -0.13063161075115204, -0.09772783517837524, -0.016447724774479866, 0.05873844027519226, -0.05613712593913078, 0.10227566957473755, 0.00351828895509243, -0.039907198399305344, -0.06641818583011627, -0.049536190927028656, -0.051717717200517654, -0.1811632364988327, 0.04775819182395935, -0.009557925164699554, 0.014423933811485767, -0.015831749886274338, 0.034574128687381744, 0.00943681225180626, 0.08959770947694778, -0.0787786990404129, -0.07793363928794861, -0.14549265801906586, 0.02490629442036152, 0.048927370458841324, -0.03268076851963997, -0.02660522609949112, -0.08811450749635696, 0.1687069535255432, -0.036615293473005295, -0.05742017552256584, 0.03317441791296005, -0.04286855086684227, -0.09892355650663376, -0.07260497659444809, 0.10912130773067474, 0.028365246951580048, -0.008258285000920296, 0.0017977164825424552, 0.0591694638133049, 0.002035144716501236, -0.061306703835725784, 0.0498969741165638, 0.12105894088745117, 0.11807090044021606, 0.14726965129375458, 0.015759237110614777, -0.16213341057300568, -0.11112098395824432, 0.00819446425884962, 0.04543745145201683, 0.08804818987846375, -0.08532928675413132, 0.09756647050380707, 0.031482093036174774, -0.10436096042394638, -0.2367127239704132, 0.08758767694234848, 0.05360478162765503, -0.01067862194031477, -0.0072450945153832436, -0.14038844406604767, 0.1287693977355957, 0.05763489007949829, 0.0011100789997726679, 0.07611250132322311, -0.25435999035835266, -0.07082346081733704, -0.03072972409427166, 0.05014556646347046, -0.16356578469276428, -0.1570233404636383, -0.042243678122758865, -0.035767193883657455, -0.17046263813972473, 0.05286358296871185, -0.02655315026640892, 0.03948444128036499, 0.0432903990149498, 0.05252622812986374, 0.05889081209897995, -0.046225596219301224, 0.11133056879043579, 0.016978180035948753, 0.04754064232110977, -0.07608892768621445, -0.0920369103550911, 0.06921817362308502, -0.10602717846632004, 0.1264025866985321, 0.03415088728070259, 0.013749824836850166, -0.050932008773088455, -0.015050514601171017, -0.035396821796894073, 0.07758668065071106, -0.03244355320930481, -0.04654702916741371, -0.08390027284622192, 0.035134654492139816, 0.11496607214212418, 0.016206739470362663, 0.08419247716665268, -0.04939945042133331, -0.010073184967041016, 0.16991391777992249, 0.11624627560377121, -0.0187069084495306, -0.12427780777215958, -0.044135287404060364, 0.007578357122838497, 0.03260146826505661, -0.1203315258026123, 0.04754358530044556, 0.08962789177894592, 0.01670870929956436, 0.1092437207698822, -0.008134636096656322, -0.09741796553134918, 0.01369218248873949, 0.06012203171849251, -0.09793265163898468, -0.1609330177307129, 0.0017733636777848005, 0.07780127227306366, -0.1096176952123642, -0.10351302474737167, 0.12803789973258972, 0.008157609030604362, -0.009265294298529625, 0.017018767073750496, 0.08123689889907837, 0.05658552050590515, 0.04941433668136597, 0.012269671075046062, 0.034455858170986176, -0.05846429616212845, 0.10604521632194519, 0.14822238683700562, -0.12420471012592316, -0.003077300963923335, 0.12692144513130188, -0.04696193337440491, -0.016463154926896095, -0.04061299189925194, 0.06613264977931976, -0.028540216386318207, -0.028911901637911797, 0.03352365642786026, -0.06989435106515884, 0.02510029636323452, 0.11489541083574295, -0.010269182734191418, 0.050202637910842896, 0.03030981682240963, -0.013024164363741875, -0.11911912262439728, 0.14053696393966675, 0.0015319952508434653, 0.05754602327942848, -0.09890253096818924, 0.019871678203344345, 0.01823156327009201, 0.023592602461576462, 0.008389294147491455, -0.07534395158290863, -0.07121580094099045, -0.0026517631486058235, -0.05029859393835068, 0.10559853166341782, -0.08957145363092422, -0.014895319007337093, -0.015428144484758377, 0.01992977410554886, -0.016962677240371704, 0.02254425920546055, -0.04252386465668678, -0.06258220970630646, -0.044603247195482254, 0.12723299860954285, -0.13897225260734558, -0.019889285787940025, 0.05585490167140961, -0.08336995542049408, 0.06774280965328217, -0.005109405145049095, -0.04141600802540779, -0.07031655311584473, -0.18104378879070282, -0.0294899120926857, 0.034367091953754425, 0.05558226257562637, 0.0476282574236393, -0.08598745614290237, 0.05382774397730827, -0.01592441461980343, -0.09206376224756241, -0.02083292044699192, -0.0122189586982131, -0.10914304107427597, 0.07066062092781067, -0.07831858843564987, -0.03379352018237114, -0.048208627849817276, 0.13832363486289978, 0.04700297862291336, 0.001916426350362599, 0.06587918847799301, -0.04934674873948097, 0.0961579829454422, -0.15315142273902893, -0.030974306166172028, -0.00036219373578205705, -0.042946409434080124, -0.06568554043769836, -0.01789422146975994, 0.06940720975399017, -0.03331230953335762, 0.10533542931079865, 0.12977713346481323, 0.036948300898075104, 0.0383242666721344, -0.027925679460167885, 0.034538596868515015, 0.0492236353456974, -0.025010624900460243, -0.0117904432117939, -0.02390323206782341, 0.06350400298833847, 0.012865204364061356, 0.01782454177737236, 0.10350623726844788, 0.10079357773065567, 0.2229190319776535, 0.15034355223178864, 0.03239176422357559, 0.04770607501268387, -0.07584317028522491, -0.08674108982086182, 0.09183523058891296, -0.0666925385594368, 0.06823510676622391, -0.1011156514286995, 0.007404852192848921, 0.12082569301128387, -0.1695326417684555, 0.061130207031965256, -0.012940114364027977, -0.01080167107284069, -0.03630603849887848, -0.13020643591880798, -0.05768648162484169, -0.03419281542301178, -0.0073311165906488895, -0.11486362665891647, 0.07707199454307556, 0.10605175793170929, -0.008149081841111183, 0.013270728290081024, 0.08758099377155304, -0.0853506401181221, -0.06775084137916565, 0.09285621345043182, 0.024388261139392853, 0.07824916392564774, 0.04289645329117775, 0.03796407952904701, 0.06510646641254425, -0.0007718918495811522, 0.09403906762599945, 0.08847955614328384, 0.11702311038970947, 0.03647062927484512, -0.08074549585580826, -0.07002583891153336, 0.03721935302019119, -0.004283289425075054, -0.03190253674983978, 0.13575054705142975, 0.0712469220161438, 0.01325917150825262, -0.01605989784002304, 0.17432840168476105, -0.024818729609251022, -0.027994483709335327, -0.1465931385755539, 0.04605197533965111, -0.028716038912534714, -0.002550566103309393, -0.018127327784895897, -0.1565052568912506, 0.0020044702105224133, 0.12931640446186066, 0.07575101405382156, -0.04006022587418556, -0.007013425696641207, -0.014761274680495262, 0.013888601213693619, 0.006154051516205072, 0.04723566770553589, 0.021073516458272934, 0.2293718308210373, -0.04900608956813812, 0.004171703010797501, -0.03165581077337265, -0.02133108302950859, -0.06736627966165543, 0.08573923259973526, -0.01424608938395977, -0.0006385611486621201, -0.06481853872537613, 0.1087159514427185, 0.0019726171158254147, -0.1839238554239273, 0.06050543859601021, -0.10914136469364166, -0.08847954124212265, 0.008539820089936256, 0.004274182952940464, -0.006707128137350082, 0.020887356251478195, 0.01338123343884945, -0.06639639288187027, 0.11052707582712173, 0.02751476690173149, -0.06644270569086075, -0.0055331578478217125, -0.0023862975649535656, -0.12437828630208969, 0.2650567889213562, -0.024019880220294, -0.0010840268805623055, 0.1006852313876152, -0.014150497503578663, -0.13484753668308258, -0.010274681262671947, 0.0707944929599762, -0.043348297476768494, 0.002072447445243597, 0.12026727199554443, -0.004784255754202604, 0.14198346436023712, 0.09388658404350281, -0.08136647939682007, 0.04743018373847008, -0.022181494161486626, 0.00850925873965025, -0.10515458881855011, 0.015210107900202274, -0.08767680823802948, 0.10426171123981476, 0.15498048067092896, 0.007692590355873108, -0.0029248222708702087, -0.03732813894748688, -0.016929496079683304, 0.00890424381941557, 0.1039586216211319, -0.005575174931436777, -0.039963629096746445, 0.010553193278610706, -0.10631934553384781, 0.08133897930383682, -0.1122344583272934, -0.06413052976131439, 0.031537823379039764, -0.009281648322939873, -0.02288108319044113, 0.0907849445939064, 0.05683257803320885, 0.015570774674415588, -0.05294990912079811, -0.10864797234535217, 0.023170778527855873, 0.17880401015281677, -0.013424059376120567, -0.019807863980531693 ]
e375556ab6cb6dfb8ea46030ee19625449c9fb13
# Dataset Card for bacteria-ptywi ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/bacteria-ptywi - **Point of Contact:** [email protected] ### Dataset Summary bacteria-ptywi ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/bacteria-ptywi ### Citation Information ``` @misc{ bacteria-ptywi, title = { bacteria ptywi Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/bacteria-ptywi } }, url = { https://universe.roboflow.com/object-detection/bacteria-ptywi }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/bacteria-ptywi
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:18:38+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "bacteria-ptywi", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "bacteria", "1": "Str_pne"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:18:56+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for bacteria-ptywi The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary bacteria-ptywi ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for bacteria-ptywi\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbacteria-ptywi", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for bacteria-ptywi\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nbacteria-ptywi", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for bacteria-ptywi\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nbacteria-ptywi### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01826082356274128, 0.1641330122947693, -0.007281715516000986, -0.002521947491914034, 0.07539785653352737, 0.021224074065685272, 0.0494692325592041, 0.10424333065748215, 0.040731556713581085, 0.1848776787519455, -0.03153882920742035, 0.04667453095316887, 0.1303810179233551, 0.10785479098558426, -0.0008935059304349124, -0.12473200261592865, 0.0876312106847763, -0.046949561685323715, 0.06465203315019608, 0.060233864933252335, 0.0742592141032219, -0.13325262069702148, 0.0788433700799942, -0.05684281140565872, -0.01925099454820156, 0.03376225754618645, -0.021562006324529648, -0.04127786308526993, 0.03654240816831589, 0.022790562361478806, 0.04408612474799156, 0.030489828437566757, 0.03845565393567085, -0.174223393201828, 0.030517857521772385, 0.09547781944274902, 0.011905339546501637, 0.024701546877622604, 0.12436383217573166, -0.09094134718179703, 0.05499311164021492, -0.13348183035850525, 0.03172973915934563, 0.012062803842127323, -0.1437264382839203, -0.1343860775232315, -0.09993215650320053, 0.06978131830692291, 0.08033837378025055, 0.033777229487895966, 0.004151847679167986, 0.03451251983642578, -0.023103801533579826, 0.04730192571878433, 0.1252082884311676, -0.02109728567302227, -0.020528698340058327, 0.0882980152964592, 0.08663631975650787, 0.07305751740932465, -0.11528947949409485, -0.018465813249349594, -0.023720545694231987, -0.027623744681477547, -0.0033569077495485544, -0.0712701603770256, 0.011133433319628239, -0.017169080674648285, -0.0711735263466835, -0.14376279711723328, 0.11585665494203568, 0.03766792267560959, -0.05729031562805176, -0.14497753977775574, -0.009961402975022793, 0.07651589810848236, -0.039712093770504, -0.001505182241089642, 0.03198647126555443, 0.010059812106192112, 0.07035034149885178, -0.04705149307847023, -0.07435698062181473, 0.03670058399438858, 0.017269793897867203, 0.10746170580387115, -0.014053395949304104, 0.02111053839325905, -0.00469460291787982, 0.07348905503749847, -0.03515772894024849, -0.10661516338586807, -0.02515728399157524, -0.015881119295954704, -0.05417051166296005, -0.04995293542742729, 0.05633915960788727, -0.1374220848083496, 0.11018869280815125, 0.07709577679634094, -0.10520735383033752, 0.012015408836305141, -0.10265503078699112, 0.000364055042155087, 0.12186656892299652, 0.12885397672653198, -0.10663747787475586, -0.06461454927921295, 0.020558634772896767, 0.04749519005417824, 0.006484659388661385, -0.01995459757745266, 0.008002186194062233, 0.003846040926873684, 0.05260973796248436, 0.048701610416173935, 0.1200706884264946, 0.01644221693277359, -0.08301051706075668, -0.06674015522003174, 0.11811184883117676, -0.11572975665330887, 0.06078430637717247, 0.06432581692934036, -0.024442918598651886, 0.09320951253175735, -0.0012504532933235168, -0.022434208542108536, -0.1255430281162262, 0.08247382193803787, -0.04136425256729126, -0.003576728980988264, -0.09882193058729172, -0.10632885247468948, 0.060993846505880356, -0.07146135717630386, -0.07351256906986237, -0.08230773359537125, -0.03976203501224518, -0.07368084788322449, 0.03943883627653122, -0.04175736755132675, 0.02677680179476738, 0.055702630430459976, -0.023548591881990433, 0.004888789728283882, 0.002048723865300417, 0.03214354068040848, -0.05165991932153702, 0.03831587731838226, -0.10007781535387039, 0.05287989228963852, 0.06372241675853729, 0.038736458867788315, -0.07961609959602356, 0.0783330425620079, -0.22866129875183105, 0.07777330279350281, -0.04582024738192558, -0.008383887819945812, -0.16889292001724243, -0.008623930625617504, -0.045171815901994705, -0.042594749480485916, 0.0236342903226614, 0.14462557435035706, -0.05437545105814934, 0.014872761443257332, 0.1345715969800949, -0.04811235889792442, -0.042480312287807465, 0.04183662682771683, -0.022755121812224388, 0.017106452956795692, 0.08390696346759796, 0.11289221793413162, -0.049364931881427765, -0.1664653718471527, -0.11153993010520935, -0.054351259022951126, -0.024419797584414482, 0.1763196438550949, 0.061065223067998886, -0.0400569774210453, 0.11034520715475082, -0.0025958677288144827, -0.00038366144872270525, -0.015988243743777275, 0.012454289011657238, -0.012093120254576206, 0.008877696469426155, -0.007692429237067699, -0.07477179914712906, 0.0027093375101685524, -0.10497578233480453, 0.028147561475634575, -0.07283876836299896, -0.04153211787343025, 0.03461022302508354, -0.06923465430736542, 0.029564885422587395, -0.064351886510849, 0.1280859261751175, -0.08881794661283493, 0.02126569300889969, -0.16459521651268005, -0.10055004805326462, 0.07223726063966751, -0.09322072565555573, 0.03134843334555626, -0.07670816034078598, -0.0121408486738801, -0.0003051829698961228, 0.00689502852037549, -0.0106841791421175, -0.0019800846930593252, -0.02282162383198738, -0.033069055527448654, -0.131613627076149, -0.04290836676955223, -0.0202654916793108, 0.10456893593072891, -0.10618818551301956, -0.021852223202586174, 0.16274376213550568, 0.1319197714328766, 0.04600897803902626, -0.06022893637418747, 0.07870138436555862, -0.014119784347712994, -0.02599845454096794, -0.061365604400634766, -0.03384026139974594, -0.04329391196370125, 0.026889419183135033, 0.08269388228654861, -0.16826176643371582, -0.1122954711318016, 0.06393400579690933, 0.047438740730285645, -0.07196838408708572, -0.030256658792495728, -0.03753279894590378, -0.012790278531610966, -0.09732584655284882, -0.06727752834558487, 0.033922210335731506, 0.05979221686720848, 0.07359226047992706, -0.052846670150756836, -0.005668809171766043, 0.037926968187093735, -0.013439537025988102, -0.06123147904872894, 0.06126566231250763, 0.05375591665506363, -0.09165462851524353, 0.06380606442689896, -0.012940180487930775, 0.04309363290667534, 0.0653696283698082, 0.03626803681254387, -0.12418987601995468, 0.022757796570658684, 0.06994345784187317, 0.05123788118362427, 0.1262550801038742, -0.025597477331757545, 0.018056388944387436, 0.08179230988025665, 0.0012700087390840054, -0.016731420531868935, -0.05630805343389511, 0.09468255192041397, 0.013879853300750256, -0.04540040343999863, 0.03601605445146561, -0.02619009092450142, 0.0750814899802208, 0.13357453048229218, 0.04163116589188576, 0.10626354068517685, -0.06673194468021393, -0.05186646431684494, -0.08425413072109222, 0.1517699807882309, -0.004505797289311886, -0.28171539306640625, -0.08370931446552277, -0.08125784993171692, -0.04007283225655556, -0.02474452741444111, 0.009058589115738869, 0.033663854002952576, -0.10562973469495773, -0.1091156080365181, 0.06167341768741608, 0.06956307590007782, -0.10320866852998734, -0.11302364617586136, 0.04124947264790535, 0.02043800987303257, -0.09075646102428436, 0.002383992774412036, 0.041771404445171356, -0.05019761621952057, 0.03964623436331749, 0.05209314078092575, 0.13662630319595337, 0.07091669738292694, -0.030016204342246056, -0.020753327757120132, -0.005270719528198242, 0.16765716671943665, -0.15375198423862457, 0.14255714416503906, 0.1907234787940979, 0.013379691168665886, 0.06762407720088959, 0.18738283216953278, -0.011571554467082024, -0.039520617574453354, 0.014656184241175652, 0.054569415748119354, -0.06109034642577171, -0.19643476605415344, -0.06186538562178612, -0.06904283910989761, 0.008455854840576649, 0.13471141457557678, 0.04757683351635933, 0.032249536365270615, 0.06126829609274864, -0.09957399219274521, 0.03430991992354393, 0.026672447100281715, 0.08761025965213776, 0.03207801282405853, 0.04002567008137703, 0.024358654394745827, -0.041537489742040634, -0.016016269102692604, 0.1189788356423378, 0.14619459211826324, 0.1091032475233078, -0.09670324623584747, 0.12250551581382751, 0.028230229392647743, 0.006144835613667965, -0.04459972679615021, 0.03015286847949028, -0.044386908411979675, 0.05744507163763046, -0.009147992357611656, -0.06964690238237381, -0.004434674046933651, 0.050096526741981506, 0.11734355986118317, -0.015166684053838253, 0.011999724432826042, -0.059651948511600494, 0.0763123482465744, 0.17995764315128326, 0.041670508682727814, -0.1580384373664856, 0.015607492066919804, 0.036235079169273376, -0.012089340016245842, -0.14915834367275238, -0.06092323362827301, 0.11628568917512894, -0.15257981419563293, 0.03215711563825607, -0.026011116802692413, 0.11414216458797455, -0.11845142394304276, -0.03044242039322853, 0.0005232448456808925, 0.04028785601258278, -0.03732060641050339, 0.08555679023265839, -0.15716670453548431, 0.07435480505228043, 0.03928769379854202, 0.05125345289707184, -0.10384523123502731, 0.02277478761970997, -0.013839725404977798, -0.012716619297862053, 0.1381838470697403, 0.0014170331414788961, -0.008914649486541748, -0.11809169501066208, -0.15099205076694489, -0.005239180289208889, 0.06249608099460602, -0.055399250239133835, 0.11389032751321793, 0.022901784628629684, -0.014221111312508583, -0.08154193311929703, -0.018406908959150314, -0.06870286166667938, -0.14866416156291962, 0.06984318047761917, -0.04520340636372566, 0.04164877161383629, -0.02303825132548809, 0.04216371476650238, 0.03993602469563484, 0.12508238852024078, -0.08310719579458237, -0.06516758352518082, -0.18621835112571716, 0.06430961191654205, 0.08961544185876846, -0.036692701280117035, -0.02983817644417286, -0.08074437081813812, 0.14805462956428528, -0.052362050861120224, -0.07644274830818176, 0.04762817546725273, -0.04867354407906532, -0.11711537092924118, -0.08434291929006577, 0.07840056717395782, 0.044840965420007706, 0.004911051131784916, 0.028708772733807564, 0.03732362017035484, -0.0029443069361150265, -0.05100924149155617, 0.05656956508755684, 0.09391236305236816, 0.10860557854175568, 0.13863055408000946, -0.023865707218647003, -0.17588280141353607, -0.10157021135091782, -0.0049469852820038795, 0.04169224202632904, 0.11357057839632034, -0.06332321465015411, 0.09837239235639572, 0.044354286044836044, -0.09348629415035248, -0.2717180848121643, 0.06994234025478363, 0.050219763070344925, 0.005367689300328493, -0.03002239391207695, -0.1814136803150177, 0.15187962353229523, 0.06538499891757965, 0.0010370201198384166, 0.09051740169525146, -0.22028404474258423, -0.08902408182621002, -0.020969701930880547, 0.050595831125974655, -0.17961756885051727, -0.1880893111228943, -0.031778089702129364, -0.053373176604509354, -0.17956572771072388, 0.05450378730893135, -0.034196045249700546, 0.03015378676354885, 0.037653304636478424, 0.05999185889959335, 0.047126419842243195, -0.060663286596536636, 0.10575631260871887, 0.026529518887400627, 0.030262257903814316, -0.030787328258156776, -0.08025649189949036, 0.051695432513952255, -0.08692321926355362, 0.12451478838920593, 0.053138066083192825, -0.003446386195719242, -0.08631695061922073, -0.016928648576140404, -0.05632404610514641, 0.1303892731666565, -0.027480987831950188, -0.0463796891272068, -0.06813764572143555, 0.04573730751872063, 0.12276186794042587, 0.026960575953125954, 0.07276919484138489, -0.07452526688575745, 0.0016205196734517813, 0.13526684045791626, 0.13034802675247192, 0.013727349229156971, -0.11147388070821762, -0.013308024033904076, -0.0035497278440743685, 0.03241458907723427, -0.12189631164073944, 0.06824751198291779, 0.05975181236863136, 0.036567799746990204, 0.1083017960190773, -0.020223403349518776, -0.09607578814029694, 0.020972466096282005, 0.05495455116033554, -0.1092081367969513, -0.09266562759876251, 0.03157680481672287, 0.12479972839355469, -0.1282946616411209, -0.0958336666226387, 0.119723841547966, 0.01603892259299755, -0.03191104903817177, -0.010157362557947636, 0.09870787709951401, 0.033158011734485626, 0.083419069647789, 0.029044004157185555, 0.0456121452152729, -0.06209876760840416, 0.09309622645378113, 0.1546912044286728, -0.19993431866168976, 0.007254388649016619, 0.10709565132856369, -0.04451592639088631, -0.014463597908616066, -0.05010892450809479, 0.026164354756474495, 0.00491707120090723, -0.04010029509663582, 0.007056485395878553, -0.046383872628211975, 0.02531713992357254, 0.11102568358182907, -0.034462012350559235, 0.05602989345788956, 0.043876416981220245, -0.024737326428294182, -0.14392322301864624, 0.12453845143318176, 0.007327582221478224, 0.05375237390398979, -0.026632459834218025, 0.03607881814241409, 0.024832356721162796, 0.014621512033045292, -0.0020727997180074453, -0.043819256126880646, -0.1158287450671196, -0.01310304831713438, -0.03366365656256676, 0.09986567497253418, -0.08429794013500214, -0.028467755764722824, -0.02316383272409439, 0.002657312201336026, -0.003720934735611081, 0.023615380749106407, -0.062840037047863, -0.06794071942567825, -0.047805167734622955, 0.13785050809383392, -0.12993088364601135, -0.01911076344549656, 0.06014465540647507, -0.09237470477819443, 0.0763741210103035, 0.011208045296370983, -0.039631448686122894, -0.08015206456184387, -0.19162727892398834, -0.033281855285167694, 0.013578328303992748, 0.07768058776855469, 0.028492571786046028, -0.13039377331733704, 0.052614085376262665, 0.006818337831646204, -0.10400640219449997, -0.021513404324650764, -0.044860389083623886, -0.10042942315340042, 0.08245830237865448, -0.09751621633768082, -0.029872454702854156, -0.032043877989053726, 0.1304159164428711, 0.0619618259370327, -0.017970168963074684, 0.03144650533795357, -0.04078780487179756, 0.08615458756685257, -0.15044254064559937, -0.04094415530562401, 0.002129605505615473, -0.030071360990405083, -0.07522711902856827, 0.0021587912924587727, 0.08899565786123276, 0.003517651231959462, 0.1450299620628357, 0.12350133061408997, 0.0033909203484654427, 0.046401556581258774, -0.022771557793021202, 0.05317685753107071, 0.07291755080223083, -0.00825466401875019, -0.016954783350229263, -0.0005280099576339126, 0.06257680803537369, -0.00006725831917719916, -0.0018446592148393393, 0.1475098431110382, 0.08777939528226852, 0.2726189196109772, 0.15010777115821838, -0.00026969637838192284, 0.01354412455111742, -0.08877337723970413, -0.03430052474141121, 0.09670361876487732, -0.05336073786020279, 0.07203147560358047, -0.08785193413496017, 0.04083512723445892, 0.07299403101205826, -0.1691797822713852, 0.06544490903615952, -0.009335393086075783, -0.02169058285653591, -0.013913671486079693, -0.10723541676998138, -0.050116166472435, -0.014086692593991756, -0.009494919329881668, -0.13213275372982025, 0.06701837480068207, 0.12751036882400513, -0.016139648854732513, 0.02459634654223919, 0.08354146033525467, -0.07090139389038086, -0.061415791511535645, 0.08506892621517181, 0.036032065749168396, 0.045885201543569565, 0.04672657698392868, 0.03499110788106918, 0.04814142361283302, 0.03456659987568855, 0.1354628950357437, 0.10053198784589767, 0.10158593207597733, 0.02892293594777584, -0.08910972625017166, -0.06875476241111755, 0.029768934473395348, -0.0291996281594038, -0.05472884327173233, 0.15232345461845398, 0.07198690623044968, 0.001308263512328267, -0.02089354582130909, 0.16233037412166595, 0.0013452558778226376, -0.03009769134223461, -0.13391713798046112, 0.062436167150735855, -0.02746991068124771, -0.017770104110240936, -0.019556473940610886, -0.15443474054336548, 0.01887095719575882, 0.14521652460098267, 0.01873389072716236, -0.0539584718644619, -0.009678379632532597, -0.01013038121163845, 0.01040454301983118, 0.029099086299538612, 0.05689632147550583, 0.027130087837576866, 0.22239996492862701, -0.059482552111148834, 0.013289106078445911, -0.030657880008220673, -0.041330981999635696, -0.10198380798101425, 0.07482149451971054, -0.025623636320233345, -0.017027556896209717, -0.0976627767086029, 0.1030784398317337, -0.01392511185258627, -0.1983031928539276, 0.03683703392744064, -0.0934448167681694, -0.07447315752506256, -0.030227383598685265, -0.021952755749225616, -0.001112140715122223, 0.020471882075071335, -0.0051109096966683865, -0.02141786739230156, 0.08806835860013962, 0.022793281823396683, -0.04840195178985596, 0.012222650460898876, 0.015435258857905865, -0.10869800299406052, 0.23265963792800903, -0.02776724100112915, 0.03425467014312744, 0.0941212996840477, -0.03851770609617233, -0.1362023651599884, -0.02192658931016922, 0.0684024840593338, -0.06403464823961258, 0.005250558722764254, 0.1499294638633728, -0.0037397120613604784, 0.10103615373373032, 0.07002632319927216, -0.06449254602193832, 0.040989622473716736, 0.002807061420753598, -0.007401805836707354, -0.09936010092496872, 0.011171549558639526, -0.0820690169930458, 0.12311747670173645, 0.15265467762947083, -0.019996820017695427, -0.004434619564563036, -0.06546042114496231, 0.016286561265587807, 0.01381759624928236, 0.08827335387468338, -0.02571553736925125, -0.09095995873212814, 0.011803886853158474, -0.16221043467521667, 0.060208894312381744, -0.1514100432395935, -0.038749177008867264, 0.029088713228702545, 0.0021654313895851374, -0.035072822123765945, 0.0990707203745842, 0.041680123656988144, 0.003432712284848094, -0.058082833886146545, -0.1264985054731369, 0.05762572959065437, 0.17613264918327332, 0.0021440316922962666, -0.03572755306959152 ]
86f8f00ceec516618a280eef24ff9bb2d9c7a2a5
# Dataset Card for thermal-dogs-and-people-x6ejw ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw - **Point of Contact:** [email protected] ### Dataset Summary thermal-dogs-and-people-x6ejw ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw ### Citation Information ``` @misc{ thermal-dogs-and-people-x6ejw, title = { thermal dogs and people x6ejw Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw } }, url = { https://universe.roboflow.com/object-detection/thermal-dogs-and-people-x6ejw }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/thermal-dogs-and-people-x6ejw
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:18:56+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "thermal-dogs-and-people-x6ejw", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "thermal-dogs-n-people", "1": "dog", "2": "person"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:19:15+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for thermal-dogs-and-people-x6ejw The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary thermal-dogs-and-people-x6ejw ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for thermal-dogs-and-people-x6ejw\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nthermal-dogs-and-people-x6ejw", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for thermal-dogs-and-people-x6ejw\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nthermal-dogs-and-people-x6ejw", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 33, 22, 21, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for thermal-dogs-and-people-x6ejw\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nthermal-dogs-and-people-x6ejw### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 0.0069877393543720245, 0.18102611601352692, -0.007498374208807945, 0.018975095823407173, 0.1040341779589653, -0.002276807790622115, 0.028290241956710815, 0.08115900307893753, -0.03776855394244194, 0.17804858088493347, -0.01552435103803873, 0.07378965616226196, 0.10123533755540848, 0.06390254199504852, -0.015808027237653732, -0.16647015511989594, 0.03521663695573807, -0.06664586067199707, 0.03935876488685608, 0.04745416343212128, 0.09310688078403473, -0.1297421157360077, 0.08927686512470245, -0.05080553889274597, 0.015685148537158966, 0.031202003359794617, -0.04755847528576851, -0.0446651391685009, 0.014702890999615192, 0.05656884238123894, 0.0018497045384719968, 0.0022773277014493942, 0.04476011544466019, -0.18372300267219543, 0.013631283305585384, 0.09635405987501144, 0.01128080952912569, 0.025247447192668915, 0.14004787802696228, -0.10622796416282654, 0.09682968258857727, -0.14509542286396027, 0.031215718016028404, 0.03721782565116882, -0.0956534743309021, -0.173402339220047, -0.11526022106409073, 0.043449606746435165, 0.1274441033601761, 0.02700779400765896, -0.016185348853468895, 0.025577250868082047, -0.04623480141162872, 0.07105521857738495, 0.1374356895685196, -0.05195300653576851, -0.0243512112647295, 0.08670259267091751, 0.012366198934614658, 0.07824275642633438, -0.0942307561635971, -0.023664012551307678, -0.003514158772304654, -0.013709623366594315, 0.021688489243388176, -0.05165909230709076, -0.05109037086367607, 0.0014841981464996934, -0.06991210579872131, -0.1231520026922226, 0.14173807203769684, 0.057694051414728165, -0.04454421252012253, -0.1625259518623352, -0.01153416745364666, 0.07499377429485321, -0.03684024512767792, 0.011618764139711857, 0.047759439796209335, -0.020395927131175995, 0.021975018084049225, -0.04975225776433945, -0.09616624563932419, 0.04375448077917099, -0.010109997354447842, 0.038260530680418015, -0.016100574284791946, 0.024905700236558914, 0.025598011910915375, 0.07997660338878632, -0.007324875798076391, -0.08212478458881378, -0.014420355670154095, 0.002828312572091818, -0.06896453350782394, -0.018865352496504784, 0.0475180558860302, -0.13065217435359955, 0.08458611369132996, 0.10686001926660538, -0.04249478504061699, 0.020306406542658806, -0.10346203297376633, -0.0030107994098216295, 0.1014399603009224, 0.1411142647266388, -0.0856815055012703, -0.12415823340415955, 0.003509935224428773, 0.02460259199142456, 0.0385301448404789, -0.014668910764157772, -0.033350493758916855, 0.019250325858592987, 0.03695549815893173, 0.039129532873630524, 0.10420959442853928, 0.027366306632757187, -0.07500764727592468, -0.03677380830049515, 0.14344020187854767, -0.10836639255285263, 0.053697943687438965, 0.053609661757946014, -0.06074705347418785, 0.06719058752059937, -0.01515946350991726, -0.0009358772076666355, -0.10297384113073349, 0.11297699809074402, -0.022445358335971832, 0.0025649070739746094, -0.08015283942222595, -0.11965236812829971, 0.047195542603731155, -0.09632310271263123, -0.06778816133737564, -0.084656722843647, -0.0910712257027626, -0.087798111140728, 0.034675974398851395, -0.04932079464197159, 0.021458031609654427, 0.0012898857239633799, -0.04635145515203476, 0.0007547207060270011, -0.000014946341252652928, 0.04857058823108673, -0.05411938205361366, 0.053753916174173355, -0.10168710350990295, 0.05874605476856232, 0.11593273282051086, 0.0490896999835968, -0.0798444077372551, 0.05091742426156998, -0.1886531263589859, 0.15819640457630157, -0.06972222775220871, 0.04691784083843231, -0.14606967568397522, 0.004609682131558657, 0.019590694457292557, -0.01914055272936821, -0.014963502064347267, 0.12337444722652435, -0.09291782230138779, -0.02220812439918518, 0.08836330473423004, -0.03271729126572609, -0.023418761789798737, 0.06811323761940002, -0.047455672174692154, -0.02463516965508461, 0.12344333529472351, 0.12313404679298401, -0.004633060656487942, -0.06924161314964294, -0.09721598029136658, -0.01325986534357071, -0.01000108104199171, 0.14835986495018005, 0.08839671313762665, -0.06336063146591187, 0.10280361026525497, -0.0000757005182094872, 0.0031045828945934772, -0.025193287059664726, 0.019861804321408272, -0.0367732010781765, 0.032148074358701706, -0.02498912811279297, -0.07858286798000336, -0.011790256947278976, -0.07792576402425766, -0.015509064309298992, -0.0716157928109169, -0.026513496413826942, 0.04840638488531113, -0.021591246128082275, 0.0004624250577762723, -0.03223811089992523, 0.07572361826896667, -0.09866279363632202, 0.01592480204999447, -0.15516112744808197, -0.06874991208314896, 0.03899224102497101, -0.09592747688293457, 0.03478774428367615, -0.032153934240341187, 0.003770458744838834, -0.002550920471549034, 0.018919264897704124, -0.01665135659277439, 0.07295820862054825, -0.029141275212168694, -0.025503989309072495, -0.11104942113161087, -0.04301120340824127, -0.025951426476240158, 0.07241137325763702, -0.09369276463985443, -0.013291802257299423, 0.1485247164964676, 0.1258341372013092, 0.056114405393600464, -0.04695670306682587, 0.07100236415863037, -0.019346855580806732, -0.011754422448575497, -0.07581914216279984, -0.025730952620506287, -0.042194265872240067, -0.004053017590194941, 0.08919879049062729, -0.14831039309501648, -0.058920811861753464, 0.08453845232725143, 0.07536239922046661, -0.07864930480718613, -0.012793655507266521, -0.029876941815018654, -0.014094529673457146, -0.07686156034469604, -0.07368939369916916, 0.0248365830630064, 0.06208397075533867, 0.08965543657541275, -0.057921480387449265, -0.055880364030599594, 0.010764149017632008, 0.0008113285293802619, -0.06022053584456444, 0.10238227993249893, 0.01119812298566103, -0.09521543979644775, 0.08645317703485489, -0.03494606912136078, 0.0221201553940773, 0.07916310429573059, 0.028551513329148293, -0.10744547843933105, 0.009757614694535732, 0.06545381993055344, 0.02978222630918026, 0.042741768062114716, -0.005621092859655619, -0.01573864184319973, 0.08300112932920456, 0.00910292286425829, -0.017376836389303207, -0.05674581229686737, 0.07914559543132782, 0.039005111902952194, -0.029958240687847137, 0.038022421300411224, -0.02141415886580944, 0.06426621973514557, 0.11125541478395462, 0.049200188368558884, 0.1188654825091362, -0.04022425040602684, -0.047510404139757156, -0.08268341422080994, 0.1499786376953125, -0.04724983870983124, -0.2595979571342468, -0.09658108651638031, -0.06927581876516342, -0.05340385437011719, -0.020794518291950226, 0.03531492501497269, -0.02343459241092205, -0.10925830155611038, -0.10155346989631653, 0.06127716973423958, 0.05931192263960838, -0.10862866789102554, -0.09463857859373093, 0.01223974023014307, 0.01756272464990616, -0.11492857336997986, 0.0020132693462073803, 0.042281027883291245, -0.08384231477975845, 0.01228736899793148, 0.05887714400887489, 0.12851519882678986, 0.032583776861429214, -0.013062098063528538, -0.014260370284318924, -0.0028733215294778347, 0.15937533974647522, -0.12565912306308746, 0.11733049899339676, 0.14970387518405914, 0.03836208954453468, 0.06773760914802551, 0.1619376391172409, 0.008484242483973503, -0.017603999003767967, 0.025829661637544632, 0.09481219947338104, -0.053792305290699005, -0.1915697306394577, -0.06910032778978348, -0.035816993564367294, 0.019651908427476883, 0.15221692621707916, 0.053211260586977005, -0.015432526357471943, 0.06998971849679947, -0.10719913244247437, 0.04028433561325073, 0.0290677510201931, 0.08257536590099335, 0.055340543389320374, 0.0189431831240654, 0.04466845095157623, -0.04977170005440712, -0.04290121793746948, 0.1214846670627594, 0.10117283463478088, 0.1259189248085022, -0.11477068811655045, 0.13528026640415192, 0.010841873474419117, -0.011295322328805923, -0.06998377293348312, 0.027975013479590416, -0.044164784252643585, 0.06927572935819626, -0.014928978867828846, -0.07548154890537262, 0.01884162612259388, 0.08994511514902115, 0.1631067842245102, -0.032095734030008316, 0.01165347546339035, -0.04265304654836655, 0.1116359680891037, 0.20592346787452698, 0.016483033075928688, -0.18352141976356506, 0.012731315568089485, 0.05370858684182167, -0.015986308455467224, -0.1007370725274086, -0.010474962182343006, 0.12242202460765839, -0.14455467462539673, 0.06829909980297089, -0.014677076600492, 0.10934708267450333, -0.14851072430610657, -0.04766414687037468, 0.025727571919560432, 0.0664820447564125, -0.02186811901628971, 0.08916566520929337, -0.15693259239196777, 0.05470318719744682, 0.03430061414837837, 0.05101426690816879, -0.07444459199905396, 0.028596030548214912, 0.02701336145401001, -0.07963963598012924, 0.13604357838630676, -0.006432174704968929, 0.01155703142285347, -0.10563180595636368, -0.11546651273965836, 0.0038504127878695726, 0.03657468035817146, -0.07720436155796051, 0.10049502551555634, 0.023818794637918472, -0.04446925222873688, -0.08188706636428833, -0.10369012504816055, -0.016755878925323486, -0.1834142506122589, 0.0025681874249130487, 0.01102681364864111, 0.038075096905231476, -0.03913053125143051, 0.03538909927010536, -0.004885639529675245, 0.10041607916355133, -0.08559911698102951, -0.10323530435562134, -0.13406753540039062, 0.04968861863017082, 0.10693136602640152, -0.03848851099610329, -0.0011238285806030035, -0.06500586867332458, 0.1402168720960617, -0.037312302738428116, -0.0725589320063591, 0.025889752432703972, -0.06927387416362762, -0.13150693476200104, -0.04645022749900818, 0.09991127252578735, 0.04652615636587143, 0.01819152571260929, -0.011748058721423149, 0.05026959627866745, -0.020509818568825722, -0.0688556432723999, 0.03249816969037056, 0.12204350531101227, 0.10595088452100754, 0.16277672350406647, 0.02882322482764721, -0.2138001024723053, -0.10784570872783661, -0.010931422933936119, 0.07348041981458664, 0.10174241662025452, -0.08726400882005692, 0.1196591705083847, 0.09860728681087494, -0.0719962790608406, -0.23625622689723969, 0.0471770279109478, 0.042427822947502136, -0.009254875592887402, 0.017719602212309837, -0.18502038717269897, 0.13710632920265198, 0.06887970119714737, -0.0003495952987577766, 0.09410469233989716, -0.25926417112350464, -0.09942587465047836, 0.012148622423410416, 0.025855684652924538, -0.18342715501785278, -0.16085471212863922, -0.05074367672204971, -0.0833396464586258, -0.17537997663021088, 0.052882470190525055, -0.001893711043521762, 0.03469320014119148, 0.03235218673944473, 0.09064289927482605, 0.053025368601083755, -0.05076908320188522, 0.11330476403236389, 0.04114497825503349, 0.0535491518676281, -0.06760212779045105, -0.09370697289705276, 0.029176482930779457, -0.07815296202898026, 0.14603783190250397, -0.04385994002223015, 0.03458108380436897, -0.06509701907634735, -0.005185497459024191, -0.04853597283363342, 0.08548110723495483, -0.022032132372260094, -0.03285055607557297, -0.11221686005592346, 0.04341694712638855, 0.14216777682304382, 0.016632629558444023, 0.06326844543218613, -0.027301698923110962, -0.01502249762415886, 0.11102244257926941, 0.09927981346845627, 0.00794969405978918, -0.1205560490489006, -0.05552016571164131, -0.010958943516016006, 0.04234784096479416, -0.1518464982509613, 0.037239622324705124, 0.09461335092782974, 0.0332893505692482, 0.12935411930084229, -0.0324748158454895, -0.10567857325077057, 0.032211944460868835, 0.04876162111759186, -0.0737367644906044, -0.1392577588558197, 0.02500254474580288, 0.07210506498813629, -0.12374541163444519, -0.09120646864175797, 0.0951346829533577, 0.0015781992115080357, -0.015013547614216805, 0.005217647645622492, 0.09693458676338196, 0.03537532687187195, 0.09874096512794495, 0.003694338258355856, 0.05139973387122154, -0.08099114894866943, 0.10208278894424438, 0.1309034377336502, -0.16027697920799255, 0.015429187566041946, 0.09889644384384155, -0.04946151003241539, -0.020350372418761253, -0.05387597903609276, 0.03719131648540497, -0.010045411065220833, -0.020705848932266235, 0.04062356427311897, -0.06999087333679199, 0.05703466758131981, 0.059906553477048874, 0.0001421167835360393, 0.06291132420301437, 0.014914881438016891, -0.01855289749801159, -0.10469865053892136, 0.13351769745349884, 0.029920632019639015, 0.03835422545671463, -0.07068702578544617, 0.023473849520087242, 0.015675339847803116, -0.020910652354359627, 0.019656021147966385, -0.05150662362575531, -0.07220473140478134, -0.0028990188147872686, -0.09817767143249512, 0.06890919804573059, -0.12922751903533936, 0.005374511703848839, -0.013244543224573135, 0.02378215454518795, 0.00553765706717968, 0.02489950880408287, -0.05836939066648483, -0.08691807836294174, -0.041511766612529755, 0.133354052901268, -0.14867785573005676, -0.015278288163244724, 0.03632517158985138, -0.07739502936601639, 0.0834815502166748, 0.017536738887429237, -0.03405241295695305, -0.07295536994934082, -0.18084612488746643, -0.05875331535935402, 0.02358178049325943, 0.06213022768497467, 0.03976060450077057, -0.10134592652320862, 0.04578715190291405, -0.0034910638350993395, -0.09142307192087173, -0.0200881939381361, -0.02351413294672966, -0.12371545284986496, 0.09876692295074463, -0.10920071601867676, -0.0314883217215538, -0.06817851215600967, 0.11372853070497513, 0.05723249167203903, -0.006357909645885229, 0.11040572822093964, -0.05638758838176727, 0.07372341305017471, -0.11725833266973495, -0.033279791474342346, -0.022735584527254105, -0.047591682523489, -0.10594470053911209, 0.015439368784427643, 0.06690473109483719, -0.034578535705804825, 0.15946191549301147, 0.09959270060062408, -0.05016859620809555, 0.030238229781389236, -0.009819746017456055, 0.0146082304418087, 0.03729189187288284, -0.016934646293520927, -0.01816585846245289, -0.03195900470018387, 0.012969558127224445, 0.016471680253744125, 0.01191886980086565, 0.07734496891498566, 0.029812369495630264, 0.21475322544574738, 0.11741099506616592, -0.0018109908560290933, 0.046307265758514404, -0.1060817763209343, -0.09003094583749771, 0.10893383622169495, -0.06354957818984985, 0.10359250009059906, -0.08079782128334045, 0.029307426884770393, 0.11296942085027695, -0.14857593178749084, 0.06739367544651031, -0.004326622933149338, 0.008985326625406742, -0.012673038057982922, -0.11970967054367065, -0.06420230120420456, -0.01306766364723444, -0.011679054237902164, -0.1019071489572525, 0.07501938194036484, 0.09984182566404343, 0.011223522946238518, 0.008331408724188805, 0.09867732226848602, -0.09402529895305634, -0.07745971530675888, 0.08569133281707764, 0.00885955709964037, 0.024301918223500252, 0.09098020195960999, 0.026726100593805313, 0.0718245655298233, 0.005323406774550676, 0.09222768992185593, 0.09302466362714767, 0.0685393363237381, 0.035343486815690994, -0.07790526002645493, -0.07121890038251877, 0.023067401722073555, 0.0009206624235957861, -0.02261122688651085, 0.1713397204875946, 0.08174408227205276, -0.011183938942849636, -0.022388117387890816, 0.13020974397659302, -0.03991759568452835, -0.029056431725621223, -0.1312684863805771, 0.057362981140613556, -0.024353597313165665, -0.021148374304175377, 0.005485799163579941, -0.1524609625339508, 0.014910301193594933, 0.11378075927495956, 0.12272156029939651, -0.011809444054961205, -0.01038677804172039, -0.022683871909976006, 0.007352096494287252, -0.0030661658383905888, 0.040619414299726486, 0.03184127435088158, 0.26576513051986694, -0.052662283182144165, 0.02504005841910839, -0.03878312185406685, -0.04615427926182747, -0.056066907942295074, 0.06880629062652588, -0.016040552407503128, 0.002266231458634138, -0.05555928125977516, 0.09997708350419998, -0.0180829968303442, -0.22060416638851166, 0.08432841300964355, -0.08257049322128296, -0.06888063251972198, 0.010716116987168789, -0.01026751659810543, 0.04008836671710014, 0.02977903001010418, 0.013960858806967735, -0.047266893088817596, 0.08717532455921173, 0.00047859351616352797, -0.08491721749305725, -0.0007758197607472539, 0.00725210877135396, -0.0469701774418354, 0.2126723974943161, -0.016093922778964043, 0.02159213274717331, 0.10531210154294968, -0.02890731766819954, -0.12225189059972763, 0.02036895789206028, 0.07418642193078995, -0.04633725807070732, 0.03640017658472061, 0.12260537594556808, -0.0032591414637863636, 0.16973300278186798, 0.07590315490961075, -0.06251572072505951, 0.049689460545778275, 0.018076732754707336, -0.007476929575204849, -0.13960179686546326, 0.023653937503695488, -0.08307044953107834, 0.11101322621107101, 0.16086874902248383, -0.0032075848430395126, -0.007253843359649181, -0.03709956258535385, -0.0008284672512672842, 0.0132889524102211, 0.08784084767103195, -0.010045920498669147, -0.06758446246385574, 0.013754085637629032, -0.10727525502443314, 0.09371000528335571, -0.1531112939119339, -0.02687053009867668, 0.027479708194732666, -0.014109085313975811, 0.0012832119828090072, 0.07836397737264633, 0.04089076817035675, 0.016940249130129814, -0.04482663795351982, -0.11552385240793228, 0.03602730482816696, 0.1649019867181778, -0.02473580464720726, -0.01979195699095726 ]
93e8ccea7a18f0d0173be9d04da24fea9f607ead
# Dataset Card for road-signs-6ih4y ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/road-signs-6ih4y - **Point of Contact:** [email protected] ### Dataset Summary road-signs-6ih4y ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/road-signs-6ih4y ### Citation Information ``` @misc{ road-signs-6ih4y, title = { road signs 6ih4y Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/road-signs-6ih4y } }, url = { https://universe.roboflow.com/object-detection/road-signs-6ih4y }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/road-signs-6ih4y
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:19:15+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "road-signs-6ih4y", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "road-signs", "1": "bus_stop", "2": "do_not_enter", "3": "do_not_stop", "4": "do_not_turn_l", "5": "do_not_turn_r", "6": "do_not_u_turn", "7": "enter_left_lane", "8": "green_light", "9": "left_right_lane", "10": "no_parking", "11": "parking", "12": "ped_crossing", "13": "ped_zebra_cross", "14": "railway_crossing", "15": "red_light", "16": "stop", "17": "t_intersection_l", "18": "traffic_light", "19": "u_turn", "20": "warning", "21": "yellow_light"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:19:50+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for road-signs-6ih4y The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary road-signs-6ih4y ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for road-signs-6ih4y\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nroad-signs-6ih4y", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for road-signs-6ih4y\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nroad-signs-6ih4y", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for road-signs-6ih4y\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nroad-signs-6ih4y### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.014476832933723927, 0.18121466040611267, -0.007620657328516245, 0.02777167782187462, 0.09515847265720367, -0.004730695392936468, 0.06215856969356537, 0.08049901574850082, 0.0005084418226033449, 0.16942062973976135, 0.0008813584572635591, 0.06477205455303192, 0.1269543617963791, 0.06929220259189606, -0.014670169912278652, -0.15819157660007477, 0.05990836024284363, -0.07811333984136581, 0.08746245503425598, 0.07099710404872894, 0.07421208173036575, -0.1380711942911148, 0.09068721532821655, -0.022477660328149796, -0.022271383553743362, 0.02890118956565857, -0.06705348938703537, -0.027211466804146767, 0.007605148945003748, 0.03234999626874924, 0.024908991530537605, 0.033216413110494614, 0.0636928454041481, -0.18611271679401398, 0.018232695758342743, 0.09714759886264801, 0.0277407243847847, 0.020697366446256638, 0.15939092636108398, -0.07548995316028595, 0.017999883741140366, -0.11976323276758194, 0.022550009191036224, 0.015412277542054653, -0.10954613983631134, -0.08455096930265427, -0.13314516842365265, 0.06478796899318695, 0.09586771577596664, 0.056252460926771164, -0.02378862537443638, 0.08068575710058212, -0.034417908638715744, 0.05558774620294571, 0.14777885377407074, -0.06646184623241425, -0.037703223526477814, 0.09386903792619705, 0.053410809487104416, 0.08166855573654175, -0.1162382960319519, -0.017909716814756393, 0.01403109636157751, -0.01499180682003498, -0.010627707466483116, -0.03778796270489693, -0.038141123950481415, -0.0016784712206572294, -0.10898052901029587, -0.13669393956661224, 0.1345331072807312, 0.0602102093398571, -0.05966249853372574, -0.12674623727798462, -0.00870443694293499, 0.0582270510494709, -0.03233661875128746, -0.006215396802872419, 0.049011509865522385, -0.004865571390837431, 0.059652380645275116, -0.05660594254732132, -0.10806932300329208, 0.05106936767697334, 0.01614273153245449, 0.021941080689430237, -0.012337288819253445, 0.040805116295814514, 0.028554948046803474, 0.08016099780797958, 0.0009029317297972739, -0.11184849590063095, -0.021532298997044563, -0.040906816720962524, -0.042190175503492355, -0.04635602980852127, 0.06071513146162033, -0.11426103115081787, 0.07528260350227356, 0.05398385226726532, -0.05610936880111694, 0.017397725954651833, -0.11187999695539474, 0.00966918095946312, 0.1269952654838562, 0.1776318997144699, -0.09641128033399582, -0.0771632269024849, -0.005178625229746103, 0.04897092655301094, 0.012241066433489323, -0.01797783188521862, -0.03484302759170532, -0.007761640939861536, 0.04259144514799118, 0.04451186582446098, 0.11465529352426529, 0.04117222875356674, -0.06956461817026138, -0.06088656187057495, 0.15818236768245697, -0.09447214752435684, 0.05023267865180969, 0.05216341093182564, -0.06773395091295242, 0.07439858466386795, 0.01077643595635891, 0.02838108129799366, -0.11700224876403809, 0.06895767152309418, -0.022658387199044228, 0.011775288730859756, -0.08889567852020264, -0.10002625733613968, 0.05772639438509941, -0.08151177316904068, -0.07932393252849579, -0.07972192764282227, -0.06286662071943283, -0.09530506283044815, 0.03288103640079498, -0.044932179152965546, 0.014295417815446854, 0.013708150014281273, -0.04589849337935448, -0.012610139325261116, 0.006186376791447401, 0.03859363868832588, -0.05927980691194534, 0.03523220494389534, -0.10062653571367264, 0.037325404584407806, 0.10917031019926071, 0.04460439831018448, -0.0926981046795845, 0.0635935440659523, -0.18451988697052002, 0.12613660097122192, -0.037201177328825, 0.03829545900225639, -0.13217565417289734, 0.007213829085230827, -0.007874175906181335, -0.03595586493611336, 0.0037308931350708008, 0.15159723162651062, -0.09478861838579178, 0.022114364430308342, 0.04930977523326874, -0.04296278581023216, -0.06476175040006638, 0.049936044961214066, -0.044051315635442734, -0.000989775639027357, 0.08147823810577393, 0.11814376711845398, -0.030801748856902122, -0.1322104036808014, -0.12158329039812088, -0.041689444333314896, -0.046097591519355774, 0.14517946541309357, 0.06821517646312714, -0.04327327385544777, 0.09634391218423843, -0.007556821219623089, -0.0009569974499754608, -0.05315091833472252, 0.002012318931519985, -0.03619734197854996, 0.0076291244477033615, -0.00820641778409481, -0.07829680293798447, 0.01632929965853691, -0.09781783074140549, 0.0016746817855164409, -0.07808489352464676, -0.04731082171201706, 0.017917022109031677, -0.015195542015135288, 0.012468870729207993, -0.02597416751086712, 0.07491765916347504, -0.12342005968093872, -0.005151333753019571, -0.14828529953956604, -0.11314140260219574, 0.059094782918691635, -0.051088232547044754, 0.03980505093932152, -0.07462326437234879, -0.012112461030483246, 0.012182816863059998, 0.03696969524025917, -0.01847831904888153, 0.0494631752371788, -0.022504819557070732, -0.05063648894429207, -0.12408564984798431, -0.049815915524959564, -0.019875628873705864, 0.07446015626192093, -0.12073827534914017, -0.03105568140745163, 0.11532443761825562, 0.12689560651779175, 0.021879779174923897, -0.03860210254788399, 0.0681409165263176, -0.04046249017119408, -0.01952376961708069, -0.07318548858165741, -0.011823435313999653, -0.006018920335918665, 0.054283007979393005, 0.07512401789426804, -0.1447158306837082, -0.1390201300382614, 0.0890350267291069, 0.022107288241386414, -0.08080612868070602, -0.052232831716537476, -0.04654419422149658, -0.0221350509673357, -0.09514366835355759, -0.03755394369363785, 0.016597047448158264, 0.0601300485432148, 0.07833755761384964, -0.0779356136918068, -0.040460649877786636, 0.01820635050535202, -0.021976687014102936, -0.08283577114343643, 0.07580458372831345, 0.06685947626829147, -0.12663452327251434, 0.09690313041210175, -0.017808057367801666, 0.05370325967669487, 0.07872653752565384, 0.03346715494990349, -0.11461488902568817, 0.010939927771687508, 0.07333175092935562, 0.016358746215701103, 0.0813269168138504, -0.014569452032446861, 0.012480078265070915, 0.0784498006105423, -0.004602567758411169, -0.01628189906477928, -0.08951342850923538, 0.0764666199684143, 0.02531534619629383, -0.03762016072869301, 0.017879486083984375, -0.022399215027689934, 0.08742063492536545, 0.1000412181019783, 0.07569673657417297, 0.10431133210659027, -0.045647989958524704, -0.06437363475561142, -0.09472423791885376, 0.1259044110774994, -0.027698159217834473, -0.2503807544708252, -0.0764864906668663, -0.07374828308820724, -0.06391434371471405, -0.00496732909232378, 0.030083851888775826, -0.016466541215777397, -0.09135863184928894, -0.09651347249746323, 0.07316294312477112, 0.048940517008304596, -0.10477866977453232, -0.11771119385957718, 0.04002904146909714, 0.0009917314164340496, -0.08429526537656784, 0.001961658475920558, 0.02543075941503048, -0.039226800203323364, 0.0009792086202651262, 0.03112286515533924, 0.12740324437618256, 0.05427032336592674, -0.018762262538075447, 0.0018106799107044935, 0.005750423762947321, 0.19246996939182281, -0.13920791447162628, 0.10717326402664185, 0.1595965027809143, 0.02652488462626934, 0.08460399508476257, 0.2094978541135788, -0.018614619970321655, -0.012183848768472672, 0.035632651299238205, 0.08114810287952423, -0.04965473711490631, -0.1967257708311081, -0.056240249425172806, -0.03988677263259888, 0.006422554142773151, 0.13773436844348907, 0.04112366959452629, 0.025384044274687767, 0.0896231085062027, -0.11143581569194794, 0.014703525230288506, 0.012008782476186752, 0.09764048457145691, 0.04641256853938103, 0.03850935027003288, 0.04676350951194763, -0.048463452607393265, -0.04659011587500572, 0.09189888089895248, 0.12107543647289276, 0.12112092226743698, -0.09327683597803116, 0.09531126171350479, 0.03779402747750282, 0.054568976163864136, -0.038426097482442856, -0.005131133832037449, -0.013214431703090668, 0.0443342961370945, -0.00227563688531518, -0.09351377189159393, 0.02235567383468151, 0.0906037837266922, 0.14838387072086334, -0.012032942846417427, -0.0066528222523629665, -0.04501207917928696, 0.06434335559606552, 0.2637379467487335, 0.024044711142778397, -0.2017509490251541, 0.025316251441836357, 0.03675825893878937, 0.004744191654026508, -0.12422667443752289, -0.03665660321712494, 0.0637957751750946, -0.16493159532546997, 0.05003063753247261, -0.024521807208657265, 0.1155214011669159, -0.1295148730278015, -0.037246428430080414, 0.05197775363922119, 0.04539824277162552, -0.030773907899856567, 0.07077097147703171, -0.09153547883033752, 0.08029155433177948, 0.03425690531730652, 0.0292171910405159, -0.08368887007236481, 0.03734637424349785, 0.01540361251682043, -0.02030266262590885, 0.1453162580728531, -0.016753720119595528, 0.022132154554128647, -0.11822698265314102, -0.11126609891653061, -0.018862590193748474, 0.0664355605840683, -0.07058653980493546, 0.11356203258037567, 0.011060726828873158, -0.02924196980893612, -0.07013451308012009, -0.02948952466249466, -0.08041275292634964, -0.16506128013134003, 0.03430727496743202, -0.0194866880774498, 0.011926195584237576, -0.01497043389827013, 0.013159753754734993, -0.023152826353907585, 0.1298362761735916, -0.024186674505472183, -0.09599006175994873, -0.13623592257499695, 0.04136350005865097, 0.10359650105237961, -0.017744841054081917, -0.011089053004980087, -0.09927379339933395, 0.1701159030199051, -0.020603789016604424, -0.07402870059013367, 0.02942013368010521, -0.07024899870157242, -0.1175212487578392, -0.061817824840545654, 0.10727168619632721, 0.041898462921381, -0.005916935857385397, 0.000816147425211966, 0.05341455712914467, -0.017910439521074295, -0.04149501398205757, 0.030216284096240997, 0.09054318815469742, 0.14464914798736572, 0.13862505555152893, 0.007984710857272148, -0.15187066793441772, -0.11644399166107178, -0.013930758461356163, 0.022749314084649086, 0.10014086961746216, -0.06649249792098999, 0.1000123843550682, 0.05411146208643913, -0.07508855313062668, -0.23262855410575867, 0.08093457669019699, 0.0703166052699089, -0.007018107455223799, -0.013177864253520966, -0.1257016509771347, 0.148517906665802, 0.03562568500638008, -0.006399086210876703, 0.078028604388237, -0.2698087990283966, -0.07373809814453125, -0.017326103523373604, 0.0229088943451643, -0.20849083364009857, -0.1658666878938675, -0.050991639494895935, -0.05498397722840309, -0.1813666820526123, 0.040194425731897354, 0.012564800679683685, 0.044196564704179764, 0.03480103611946106, 0.058967288583517075, 0.0594937801361084, -0.04251521825790405, 0.10822542756795883, 0.022949406877160072, 0.04131579399108887, -0.08398179709911346, -0.09131056070327759, 0.01577996276319027, -0.09867722541093826, 0.1541426032781601, 0.06367291510105133, 0.03408823162317276, -0.04845401644706726, -0.01885395310819149, -0.05389375239610672, 0.07728371769189835, -0.029037289321422577, -0.03983765095472336, -0.10198386013507843, 0.03832621872425079, 0.12559190392494202, 0.027294732630252838, 0.0778278335928917, -0.04221584275364876, -0.02517799660563469, 0.14666827023029327, 0.10230765491724014, 0.00521206296980381, -0.13104963302612305, -0.03500786051154137, -0.0062357839196920395, 0.03651386871933937, -0.11087032407522202, 0.040657054632902145, 0.09364760667085648, 0.02192673832178116, 0.09742967784404755, -0.010461462661623955, -0.09928096830844879, -0.002033316297456622, 0.03853132948279381, -0.08276289701461792, -0.12577970325946808, 0.02700180560350418, 0.09926918894052505, -0.12472756952047348, -0.09501270204782486, 0.10430271178483963, 0.005138398613780737, -0.02191983163356781, -0.006308403331786394, 0.07854942232370377, 0.05215482786297798, 0.04930458962917328, 0.033629823476076126, 0.032238271087408066, -0.07544992119073868, 0.1221190094947815, 0.142938494682312, -0.11807093769311905, -0.0000346960368915461, 0.11170274764299393, -0.04643123224377632, -0.022771036252379417, -0.009966311044991016, 0.032037388533353806, -0.031124236062169075, -0.029470518231391907, 0.03619604557752609, -0.06178055331110954, 0.04520975053310394, 0.07264228910207748, 0.001368256751447916, 0.05462271347641945, 0.03906777873635292, -0.012266267091035843, -0.14054717123508453, 0.12963196635246277, 0.03304436057806015, 0.054005470126867294, -0.09655110538005829, -0.015512201935052872, 0.01861356385052204, 0.018637511879205704, 0.010726423002779484, -0.04961365833878517, -0.0778588205575943, 0.00762967299669981, -0.0729173868894577, 0.09521555155515671, -0.10085698962211609, -0.0019337787525728345, -0.019055869430303574, -0.0013446552911773324, -0.012065114453434944, 0.03262666240334511, -0.04847873002290726, -0.08617033809423447, -0.04241875931620598, 0.13322065770626068, -0.1397644430398941, -0.02576783485710621, 0.058047495782375336, -0.08115487545728683, 0.058241430670022964, 0.007178260013461113, -0.03636762872338295, -0.09167391061782837, -0.1679132580757141, -0.05343378335237503, 0.024867376312613487, 0.06733912229537964, 0.04706543684005737, -0.08337657898664474, 0.04557075724005699, 0.0002945882733911276, -0.09386947751045227, -0.017601054161787033, -0.017182055860757828, -0.11454380303621292, 0.046204760670661926, -0.09437575936317444, -0.030611013993620872, -0.042106833308935165, 0.1360132098197937, 0.05487770959734917, 0.0025404691696166992, 0.07911427319049835, -0.04595596343278885, 0.0898607075214386, -0.13675124943256378, -0.03650323674082756, -0.016304079443216324, -0.024789558723568916, -0.06177576258778572, -0.0004602419212460518, 0.06975653022527695, -0.025479760020971298, 0.12364157289266586, 0.12237759679555893, 0.045459359884262085, 0.03882842883467674, 0.00898265652358532, 0.0634850561618805, 0.060059040784835815, -0.015707921236753464, -0.018812764436006546, -0.023108141496777534, 0.0697503387928009, 0.02405652403831482, 0.016855495050549507, 0.06746330857276917, 0.05355539917945862, 0.23725390434265137, 0.14292974770069122, 0.024636169895529747, 0.05852797254920006, -0.09359082579612732, -0.06381168216466904, 0.09718938171863556, -0.050258368253707886, 0.07339529693126678, -0.10350457578897476, 0.02000628225505352, 0.09777837246656418, -0.1379907876253128, 0.06561173498630524, -0.021736079826951027, -0.0018237712793052197, -0.02419281005859375, -0.10162021964788437, -0.06575842946767807, -0.018845248967409134, 0.006075120065361261, -0.10875086486339569, 0.08895689994096756, 0.13043048977851868, 0.004352846182882786, 0.01144619844853878, 0.0848492756485939, -0.04938969388604164, -0.08946140110492706, 0.07390458136796951, 0.007492700591683388, 0.06722018122673035, 0.04905008524656296, 0.04468289762735367, 0.09679927676916122, 0.009017462842166424, 0.07824528962373734, 0.09447375684976578, 0.08435897529125214, 0.028047608211636543, -0.0717959776520729, -0.08121775090694427, 0.025285454466938972, -0.008122468367218971, -0.007680170703679323, 0.16086751222610474, 0.07527296990156174, 0.01778526045382023, -0.01990080624818802, 0.1581931710243225, -0.02319798618555069, -0.030104421079158783, -0.13853494822978973, 0.02965417318046093, -0.04262320697307587, -0.012592521496117115, -0.013243759982287884, -0.1577298790216446, 0.003367942525073886, 0.1366882026195526, 0.08248084038496017, -0.0536796897649765, -0.01641806587576866, -0.007724256720393896, 0.0022751137148588896, -0.025260865688323975, 0.03494936600327492, 0.031242812052369118, 0.2082386463880539, -0.06565911322832108, 0.016217295080423355, -0.04116988927125931, -0.028390085324645042, -0.06128866225481033, 0.08234430849552155, -0.010086269117891788, 0.007072568405419588, -0.08408675342798233, 0.11763826757669449, -0.0021096637938171625, -0.17816607654094696, 0.0500013493001461, -0.07859216630458832, -0.08814027905464172, 0.015538979321718216, -0.028536371886730194, 0.018615979701280594, 0.03197851777076721, 0.0013470164267346263, -0.04999237507581711, 0.09025192260742188, 0.011610007844865322, -0.06409911066293716, -0.013114276342093945, 0.008947154507040977, -0.07671711593866348, 0.27171993255615234, -0.025044571608304977, 0.03988897055387497, 0.08280208706855774, -0.026158180087804794, -0.14567328989505768, -0.025793615728616714, 0.08139090240001678, -0.051736313849687576, 0.02688119001686573, 0.10596824437379837, 0.0007735181716270745, 0.12959589064121246, 0.08451759815216064, -0.07786738872528076, 0.049821943044662476, -0.008109387010335922, 0.03051435574889183, -0.1372448354959488, 0.02136973850429058, -0.09581495076417923, 0.1152912974357605, 0.1315377652645111, -0.00473363883793354, -0.0049738166853785515, -0.03312941640615463, 0.008562158793210983, 0.004510729573667049, 0.09244361519813538, 0.008386031724512577, -0.06132616475224495, 0.021665798500180244, -0.14027296006679535, 0.0845603495836258, -0.13896268606185913, -0.05930338427424431, 0.040907710790634155, -0.018359482288360596, -0.009129977785050869, 0.0786806121468544, 0.03293978050351143, 0.014995831064879894, -0.05573316663503647, -0.106463223695755, 0.02276333048939705, 0.16120412945747375, -0.014732465147972107, -0.03509015962481499 ]
8322549c0463710ad2f78ec10c2f712ff38dab6a
# Dataset Card for cotton-20xz5 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cotton-20xz5 - **Point of Contact:** [email protected] ### Dataset Summary cotton-20xz5 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cotton-20xz5 ### Citation Information ``` @misc{ cotton-20xz5, title = { cotton 20xz5 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cotton-20xz5 } }, url = { https://universe.roboflow.com/object-detection/cotton-20xz5 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cotton-20xz5
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:19:50+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cotton-20xz5", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cotton", "1": "G-arboreum", "2": "G-barbadense", "3": "G-herbaceum", "4": "G-hirsitum"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:20:12+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cotton-20xz5 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cotton-20xz5 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cotton-20xz5\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncotton-20xz5", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cotton-20xz5\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncotton-20xz5", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cotton-20xz5\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncotton-20xz5### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.02061714604496956, 0.17054405808448792, -0.008184824138879776, 0.027685387060046196, 0.0992601066827774, -0.005945764947682619, 0.02568994276225567, 0.07765435427427292, 0.0009076151764020324, 0.16740649938583374, 0.000836254854220897, 0.10874538123607635, 0.12756246328353882, 0.09338663518428802, -0.01432760525494814, -0.14949683845043182, 0.05564606562256813, -0.0544484443962574, 0.056400366127491, 0.0674213096499443, 0.07590540498495102, -0.12506113946437836, 0.08812745660543442, -0.04581650719046593, -0.055537231266498566, 0.03226665407419205, -0.04658810421824455, -0.04436277970671654, 0.025019649416208267, 0.043248917907476425, 0.026800941675901413, 0.033691342920064926, 0.0359325036406517, -0.20621547102928162, 0.02140328846871853, 0.08799926936626434, 0.021647198125720024, 0.03480863198637962, 0.1512237936258316, -0.07375876605510712, 0.044674646109342575, -0.14065106213092804, 0.03172681853175163, 0.024319695308804512, -0.11477930098772049, -0.12404737621545792, -0.12317406386137009, 0.07472027093172073, 0.10971684008836746, 0.024464618414640427, -0.004678870085626841, 0.07334264367818832, -0.0022224239073693752, 0.062033094465732574, 0.1325572431087494, -0.08704198896884918, -0.03345533832907677, 0.12656107544898987, 0.041473906487226486, 0.09494832158088684, -0.1137302964925766, -0.023299263790249825, -0.0010788176441565156, -0.02147023193538189, 0.009167617186903954, -0.0771096870303154, -0.04229528084397316, -0.003891507862135768, -0.08817610889673233, -0.13152144849300385, 0.155905619263649, 0.05933977663516998, -0.04921448975801468, -0.1344408094882965, -0.009985473938286304, 0.07208501547574997, -0.03427976742386818, -0.019244806841015816, 0.06464903801679611, 0.008558477275073528, 0.057729847729206085, -0.07381906360387802, -0.10362186282873154, 0.04882315173745155, 0.012238523922860622, -0.0023854528553783894, -0.027765518054366112, 0.02797458879649639, 0.007767955306917429, 0.05893979221582413, -0.015171120874583721, -0.10410531610250473, -0.023059368133544922, -0.04593569412827492, -0.05576428398489952, -0.0512843057513237, 0.07282295823097229, -0.13959580659866333, 0.07999960333108902, 0.0373123437166214, -0.07163235545158386, 0.051432374864816666, -0.12104430049657822, 0.0179000087082386, 0.11483882367610931, 0.1846632957458496, -0.0846778005361557, -0.09269048273563385, 0.01298434566706419, 0.025385668501257896, 0.02167205885052681, -0.025936851277947426, -0.027523349970579147, 0.001411512028425932, 0.051003288477659225, 0.03391530364751816, 0.11679113656282425, 0.030295168980956078, -0.08291666954755783, -0.05188755318522453, 0.12406773865222931, -0.10503030568361282, 0.04416132718324661, 0.045590512454509735, -0.0406784862279892, 0.08735565841197968, 0.005259185563772917, 0.0201549232006073, -0.10385338962078094, 0.06930170953273773, -0.04180664196610451, 0.02159283496439457, -0.07552754133939743, -0.08801198750734329, 0.055944185703992844, -0.09011181443929672, -0.07554224133491516, -0.07951801270246506, -0.06633482128381729, -0.09424354135990143, 0.03443725407123566, -0.03859942778944969, -0.00358026335015893, 0.013948027975857258, -0.0512547567486763, -0.014145988039672375, 0.010881767608225346, 0.03684943541884422, -0.03735720366239548, 0.04631869122385979, -0.10780370980501175, 0.04036581143736839, 0.11360716819763184, 0.03787631168961525, -0.09293507039546967, 0.06460682302713394, -0.19911471009254456, 0.14937379956245422, -0.04990396648645401, 0.05577636510133743, -0.15428301692008972, 0.014235732145607471, -0.020989637821912766, -0.04163014143705368, -0.016130542382597923, 0.13895359635353088, -0.12112012505531311, 0.005240589380264282, 0.10905399173498154, -0.055801019072532654, -0.04669197276234627, 0.035237863659858704, -0.03886349871754646, 0.012624110095202923, 0.09336478263139725, 0.13161739706993103, -0.05382898077368736, -0.10585816949605942, -0.12062239646911621, -0.025944408029317856, -0.05181240662932396, 0.1429073065519333, 0.06004991754889488, -0.04203004017472267, 0.09542112052440643, -0.012574485503137112, -0.0021135660354048014, -0.04042061045765877, 0.022214416414499283, -0.027883492410182953, 0.012791063636541367, -0.007516795303672552, -0.08509062230587006, 0.01936361752450466, -0.10706473886966705, 0.0170137956738472, -0.07073664665222168, -0.04273400455713272, 0.01066194474697113, -0.02499190904200077, 0.01622290350496769, -0.04048939421772957, 0.09147980809211731, -0.11780309677124023, -0.0005227156216278672, -0.1608685553073883, -0.09130831062793732, 0.06479884684085846, -0.02851194143295288, 0.03898746520280838, -0.061718787997961044, -0.015292291529476643, 0.006841583177447319, 0.03632168844342232, -0.0192125104367733, 0.052244361490011215, -0.027481205761432648, -0.03760259225964546, -0.13667802512645721, -0.033054959028959274, -0.03151009976863861, 0.1063709408044815, -0.13342025876045227, -0.027753520756959915, 0.1588505655527115, 0.10885117202997208, 0.05031941458582878, -0.046015460044145584, 0.08972271531820297, -0.022193368524312973, -0.019480722025036812, -0.09074997901916504, -0.008737114258110523, -0.0018833569483831525, 0.020954251289367676, 0.0838455855846405, -0.16108077764511108, -0.10503185540437698, 0.07732804864645004, 0.0033220748882740736, -0.09304600208997726, -0.0451250784099102, -0.040997933596372604, -0.011818965896964073, -0.08879709243774414, -0.03279661014676094, 0.054970692843198776, 0.06930959969758987, 0.09216400980949402, -0.07595519721508026, -0.03361054137349129, 0.021873032674193382, -0.03799821436405182, -0.08628770709037781, 0.059937454760074615, 0.02329568937420845, -0.1303807646036148, 0.09294375777244568, -0.024460894986987114, 0.05085887014865875, 0.09775182604789734, 0.03698449581861496, -0.09368845820426941, -0.0004003455105703324, 0.07337462157011032, 0.026090523228049278, 0.07379185408353806, 0.003419930813834071, 0.010456123389303684, 0.0721617117524147, -0.01240228395909071, -0.01567920669913292, -0.0802486389875412, 0.08401389420032501, 0.03230700641870499, -0.03620974346995354, 0.052477870136499405, -0.01856091246008873, 0.07474485784769058, 0.09835227578878403, 0.04409893974661827, 0.11028826981782913, -0.04374690353870392, -0.050219591706991196, -0.09567273408174515, 0.1260903924703598, -0.025492016226053238, -0.25884655117988586, -0.08313226699829102, -0.06687416881322861, -0.03337744250893593, -0.00817370880395174, 0.026920266449451447, -0.005583126563578844, -0.08354749530553818, -0.09730048477649689, 0.04135100170969963, 0.057160042226314545, -0.11347748339176178, -0.08979032188653946, 0.03019505925476551, 0.01182944979518652, -0.07467261701822281, 0.0005402705282904208, 0.017817070707678795, -0.07545410096645355, 0.026795217767357826, 0.0320577509701252, 0.1228625476360321, 0.0654265508055687, -0.006813053507357836, -0.0027451200876384974, -0.00798868015408516, 0.18095608055591583, -0.1301044523715973, 0.13537512719631195, 0.15337178111076355, 0.02383297309279442, 0.08882474899291992, 0.20365728437900543, -0.012232990935444832, -0.02091328240931034, 0.01784762181341648, 0.06790756434202194, -0.05743870884180069, -0.2101731300354004, -0.04410058632493019, -0.04288085550069809, 0.009883344173431396, 0.11558277159929276, 0.04330534487962723, 0.010379645973443985, 0.09076441079378128, -0.08427688479423523, 0.048576418310403824, 0.024975895881652832, 0.10341616719961166, 0.06304561346769333, 0.03817903622984886, 0.042178764939308167, -0.05213731527328491, -0.020843200385570526, 0.09318625926971436, 0.12431970238685608, 0.11176109313964844, -0.09338507801294327, 0.11531190574169159, 0.022329779341816902, 0.025674570351839066, -0.04074760153889656, -0.010490858927369118, -0.03867342695593834, 0.06120140850543976, -0.010225152596831322, -0.08290174603462219, -0.015665236860513687, 0.06122332438826561, 0.14607183635234833, -0.011586395092308521, 0.023855557665228844, -0.012783455662429333, 0.08414949476718903, 0.20649519562721252, -0.000686329382006079, -0.17880716919898987, 0.015853572636842728, 0.045055873692035675, 0.012161743827164173, -0.12312068790197372, -0.035704754292964935, 0.09390225261449814, -0.17221809923648834, 0.0719168484210968, -0.0395284965634346, 0.10951141268014908, -0.1453242301940918, -0.032986920326948166, 0.020524470135569572, 0.04296763241291046, -0.0177571140229702, 0.07762039452791214, -0.12802448868751526, 0.08621890097856522, 0.04848291724920273, 0.027684222906827927, -0.07059098780155182, 0.04252948611974716, 0.004422866273671389, -0.02675541117787361, 0.1549345999956131, -0.010625890456140041, -0.0189837533980608, -0.14795084297657013, -0.10336484760046005, -0.011301719583570957, 0.0397287979722023, -0.05452834069728851, 0.10175181925296783, 0.009887808933854103, -0.031956180930137634, -0.09257810562849045, -0.04592747613787651, -0.04920169338583946, -0.17457374930381775, 0.04441765323281288, -0.019390076398849487, 0.01574774459004402, -0.021705226972699165, 0.03562530502676964, -0.00274016079492867, 0.10983941704034805, -0.0974767655134201, -0.09315770119428635, -0.1421118527650833, 0.05541318282485008, 0.0825769230723381, -0.03776958957314491, -0.026850001886487007, -0.08956211060285568, 0.16966064274311066, -0.04615750163793564, -0.055426280945539474, 0.029710320755839348, -0.06314317882061005, -0.1071336418390274, -0.05755407735705376, 0.11114857345819473, 0.026338620111346245, -0.005174692254513502, 0.021023845300078392, 0.05602913349866867, 0.003819006262347102, -0.06205684319138527, 0.05185085907578468, 0.10535059124231339, 0.11330129951238632, 0.12426544725894928, 0.018857216462492943, -0.16503401100635529, -0.11718033254146576, 0.0015644110972061753, 0.06535615772008896, 0.10753878951072693, -0.08186198770999908, 0.11130915582180023, 0.04866193234920502, -0.10352890193462372, -0.22509756684303284, 0.07085712999105453, 0.07088114321231842, -0.020644661039114, 0.015546652488410473, -0.16270676255226135, 0.12738962471485138, 0.0461430661380291, 0.000930700043682009, 0.04304038733243942, -0.25268417596817017, -0.0610998272895813, -0.013162940740585327, 0.038671739399433136, -0.18197622895240784, -0.1701771318912506, -0.059458255767822266, -0.04995563253760338, -0.16853946447372437, 0.05460471287369728, 0.011454543098807335, 0.03522473946213722, 0.04561774060130119, 0.061005331575870514, 0.0704098790884018, -0.048910219222307205, 0.10831654816865921, 0.028774866834282875, 0.050164174288511276, -0.06925387680530548, -0.08829507976770401, 0.04119616374373436, -0.09568766504526138, 0.13271628320217133, 0.053923312574625015, 0.018909089267253876, -0.046632491052150726, -0.015509383752942085, -0.041680652648210526, 0.08143684267997742, -0.03471535071730614, -0.034976355731487274, -0.07779847830533981, 0.03427403047680855, 0.13938423991203308, 0.024022292345762253, 0.07436878234148026, -0.05051790922880173, -0.007785903289914131, 0.1676025688648224, 0.11626933515071869, -0.014984329231083393, -0.14268818497657776, -0.04474930837750435, 0.0010316392872482538, 0.02673664130270481, -0.12271562963724136, 0.05409650132060051, 0.08987660706043243, 0.015467428602278233, 0.11351578682661057, -0.02274610474705696, -0.10649047046899796, 0.014334943145513535, 0.04380561783909798, -0.08390244096517563, -0.11644823849201202, 0.020794391632080078, 0.11616238951683044, -0.11512091755867004, -0.12067928165197372, 0.10925707966089249, 0.010299338027834892, -0.0294230617582798, 0.006647100206464529, 0.08753620833158493, 0.06584630161523819, 0.05989080294966698, 0.0227203369140625, 0.04055677354335785, -0.06946096569299698, 0.11193477362394333, 0.14877872169017792, -0.14481191337108612, 0.00300394743680954, 0.1083858460187912, -0.04351334273815155, -0.014694273471832275, -0.03592858463525772, 0.05686020106077194, -0.021415289491415024, -0.02717459574341774, 0.041508421301841736, -0.04653066396713257, 0.02608804777264595, 0.11134319007396698, -0.004633964505046606, 0.061617907136678696, 0.025670310482382774, -0.0280105359852314, -0.1364758461713791, 0.12889990210533142, 0.029776692390441895, 0.04589372128248215, -0.10853437334299088, 0.017092986032366753, 0.029178956523537636, 0.021037209779024124, 0.012521559372544289, -0.06194008141756058, -0.07096078991889954, -0.011758009903132915, -0.005677288863807917, 0.12836837768554688, -0.09710127860307693, -0.002267928561195731, -0.025580348446965218, 0.01755855605006218, -0.015072026289999485, 0.020307760685682297, -0.05147857591509819, -0.07499141246080399, -0.04079115763306618, 0.14361588656902313, -0.1395910233259201, -0.027950013056397438, 0.07009614259004593, -0.07921387255191803, 0.06960126012563705, -0.007268915884196758, -0.04072512313723564, -0.07449207454919815, -0.199283629655838, -0.0363076813519001, 0.03912990167737007, 0.05356316268444061, 0.04207632690668106, -0.09154437482357025, 0.04564717784523964, -0.014020553790032864, -0.09759379178285599, -0.020111296325922012, -0.01964840292930603, -0.11217769980430603, 0.05778612568974495, -0.09741943329572678, -0.036196257919073105, -0.05057959631085396, 0.12841561436653137, 0.06397955119609833, 0.0016409476520493627, 0.07836086302995682, -0.053269386291503906, 0.08212970197200775, -0.14512185752391815, -0.0365329273045063, -0.017191637307405472, -0.035143543034791946, -0.06387435644865036, -0.00435641547665, 0.0712703987956047, -0.027634620666503906, 0.13398228585720062, 0.11441724747419357, 0.025195427238941193, 0.03534189984202385, -0.004397715907543898, 0.03339987248182297, 0.0454273447394371, -0.026012035086750984, -0.011721761897206306, -0.013052505441009998, 0.08164575695991516, 0.014639711938798428, 0.009585573337972164, 0.10816799104213715, 0.0682462602853775, 0.21536709368228912, 0.12586350739002228, 0.012134071439504623, 0.03231912478804588, -0.07538812607526779, -0.043375883251428604, 0.12957008183002472, -0.06670022755861282, 0.061072323471307755, -0.08768782764673233, 0.02954246662557125, 0.11703488230705261, -0.1637106090784073, 0.0654267966747284, 0.005111659411340952, -0.011029941029846668, -0.04391711577773094, -0.11145277321338654, -0.06925757974386215, -0.008138577453792095, -0.003665776224806905, -0.11322838813066483, 0.07766144722700119, 0.12850384414196014, -0.018710775300860405, 0.02098502404987812, 0.07358889281749725, -0.07496190071105957, -0.08966396003961563, 0.07172385603189468, 0.01367671974003315, 0.03887772187590599, 0.03589464724063873, 0.05126948654651642, 0.07074273377656937, 0.016850408166646957, 0.09254242479801178, 0.08815242350101471, 0.11849084496498108, 0.04067812114953995, -0.09776975959539413, -0.07135368883609772, 0.032582804560661316, -0.0022281359415501356, -0.028382455930113792, 0.10561756044626236, 0.07687702029943466, 0.00023956882068887353, -0.021912265568971634, 0.17432337999343872, -0.00510229030624032, -0.01674247533082962, -0.12895166873931885, 0.017043283209204674, -0.034402020275592804, -0.01364714466035366, -0.011738794855773449, -0.14224456250667572, 0.028335101902484894, 0.11684262007474899, 0.06067194789648056, -0.03224458545446396, -0.012871521525084972, -0.0325588658452034, 0.009299376048147678, -0.002155955182388425, 0.03438970074057579, 0.030697373673319817, 0.2058996856212616, -0.06873966753482819, 0.013819617219269276, -0.05183402821421623, -0.023197907954454422, -0.07359079271554947, 0.08599254488945007, -0.02443230338394642, 0.006193982437252998, -0.061634596437215805, 0.11768607795238495, -0.015902245417237282, -0.19476352632045746, 0.06709640473127365, -0.09052714705467224, -0.0771937295794487, 0.013079597614705563, -0.0074006193317472935, 0.018081476911902428, 0.017421850934624672, 0.012367180548608303, -0.0564127080142498, 0.08584775775671005, 0.023108072578907013, -0.07762935757637024, 0.007230245973914862, -0.004262258764356375, -0.10210565477609634, 0.2562393248081207, -0.030964292585849762, 0.030946390703320503, 0.09682492911815643, -0.026128031313419342, -0.14267857372760773, -0.010880219750106335, 0.07763015478849411, -0.042032163590192795, 0.020273132249712944, 0.12396923452615738, 0.00818551518023014, 0.16022451221942902, 0.09201326966285706, -0.08484558761119843, 0.04171508923172951, -0.029926948249340057, 0.010960291139781475, -0.10570078343153, 0.01793539710342884, -0.09233011305332184, 0.1060926541686058, 0.12976765632629395, -0.013392380438745022, -0.00393968028947711, -0.047930654138326645, -0.011087280698120594, 0.007424529176205397, 0.09924919903278351, -0.01746685989201069, -0.060330938547849655, 0.023080378770828247, -0.13858912885189056, 0.07798624038696289, -0.08645810931921005, -0.05466355010867119, 0.028480462729930878, -0.011195008642971516, -0.029340123757719994, 0.0883348137140274, 0.03519100323319435, 0.0132497763261199, -0.05261894688010216, -0.07884318381547928, 0.01979243755340576, 0.17789262533187866, -0.01565908081829548, -0.025081520900130272 ]
41d65614ee3809b686b66bb57c1dc9ed2ce354aa
# Dataset Card for cloud-types ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cloud-types - **Point of Contact:** [email protected] ### Dataset Summary cloud-types ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cloud-types ### Citation Information ``` @misc{ cloud-types, title = { cloud types Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cloud-types } }, url = { https://universe.roboflow.com/object-detection/cloud-types }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cloud-types
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:23+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cloud-types", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cloud-types", "1": "Fish", "2": "Flower", "3": "Gravel", "4": "Sugar"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:56+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cloud-types The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cloud-types ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cloud-types\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncloud-types", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cloud-types\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncloud-types", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cloud-types\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncloud-types### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.018813874572515488, 0.1648005247116089, -0.00852611381560564, 0.025701917707920074, 0.10834982246160507, -0.000044058524508727714, 0.053883813321590424, 0.07345566153526306, 0.009024208411574364, 0.1614340990781784, -0.00740106450393796, 0.07286038249731064, 0.12992681562900543, 0.10790238529443741, -0.02569049969315529, -0.15975737571716309, 0.05862077325582504, -0.07188363373279572, 0.0615251250565052, 0.06906086206436157, 0.07342998683452606, -0.13138070702552795, 0.09970247745513916, -0.04057924076914787, -0.04493348300457001, 0.011526156216859818, -0.029329752549529076, -0.040620189160108566, 0.019941281527280807, 0.038882143795490265, 0.028929905965924263, 0.008273857645690441, 0.04193144664168358, -0.18942394852638245, 0.02716969884932041, 0.11009445786476135, 0.015019109472632408, 0.041158661246299744, 0.12676382064819336, -0.0834817960858345, 0.04824588820338249, -0.12905043363571167, 0.021740194410085678, 0.015010610222816467, -0.11693236231803894, -0.08758407086133957, -0.13620002567768097, 0.03949262574315071, 0.11722777038812637, 0.04760625585913658, -0.004102411679923534, 0.06925595551729202, -0.006482101511210203, 0.0619552806019783, 0.11151495575904846, -0.07563475519418716, -0.05755280703306198, 0.09613913297653198, 0.02606816031038761, 0.11301609128713608, -0.11260923743247986, -0.014984731562435627, -0.008249550126492977, -0.02669312059879303, 0.01565675437450409, -0.06994051486253738, -0.04299933463335037, 0.0011070964392274618, -0.09337488561868668, -0.1304570883512497, 0.1562083214521408, 0.062298987060785294, -0.04985307529568672, -0.1204688772559166, -0.03563981503248215, 0.05706163868308067, -0.025012793019413948, -0.012300601229071617, 0.054370831698179245, -0.00041277051786892116, 0.07975419610738754, -0.062060993164777756, -0.10389325022697449, 0.046550411731004715, 0.001168826362118125, 0.02931026741862297, -0.03418230637907982, 0.04694289714097977, 0.011084666475653648, 0.07476916909217834, -0.008375265635550022, -0.11656399071216583, -0.0343603640794754, -0.04290212690830231, -0.0660831406712532, -0.03734757751226425, 0.057672806084156036, -0.13002169132232666, 0.06236753240227699, 0.06020410358905792, -0.06823307275772095, 0.03245503082871437, -0.11980360001325607, 0.02312450110912323, 0.10126768797636032, 0.1983850747346878, -0.07857353985309601, -0.11055795848369598, 0.0034074813593178988, 0.016277112066745758, 0.0338081493973732, -0.04348205029964447, -0.03516281023621559, -0.011264062486588955, 0.026739774271845818, 0.031132686883211136, 0.10271042585372925, 0.02923670783638954, -0.06524122506380081, -0.05176572874188423, 0.12435711920261383, -0.1055106669664383, 0.06149651110172272, 0.047647397965192795, -0.03423541784286499, 0.07488559931516647, 0.023128362372517586, 0.014119479805231094, -0.10572239011526108, 0.08263327181339264, -0.04005355387926102, 0.02516069822013378, -0.09151763468980789, -0.08425173908472061, 0.05103630945086479, -0.08808045089244843, -0.08600565046072006, -0.08488456159830093, -0.05731167644262314, -0.08799363672733307, 0.04296175763010979, -0.04034343361854553, 0.021430455148220062, 0.021073976531624794, -0.04720544070005417, -0.00030318263452500105, 0.006297701969742775, 0.039659805595874786, -0.05193280428647995, 0.03513649106025696, -0.11358403414487839, 0.02950000762939453, 0.07051320374011993, 0.033175647258758545, -0.07897581905126572, 0.053222041577100754, -0.2181393951177597, 0.11795122921466827, -0.03710640221834183, 0.03194655105471611, -0.1381712108850479, 0.02346513606607914, -0.01660965010523796, -0.043750371783971786, -0.006077745463699102, 0.12815451622009277, -0.10465153306722641, 0.025314338505268097, 0.07073787599802017, -0.04874824732542038, -0.04294629395008087, 0.03794359788298607, -0.03975287079811096, 0.009269818663597107, 0.08054749667644501, 0.10836704820394516, -0.017940837889909744, -0.11913521587848663, -0.10466253012418747, -0.04046449810266495, -0.04778377711772919, 0.12627281248569489, 0.05875644087791443, -0.04187706857919693, 0.07661602646112442, -0.008556119166314602, -0.03214125707745552, -0.02755078859627247, 0.01891385205090046, -0.03389693796634674, 0.01351058017462492, 0.003558825235813856, -0.07900732010602951, 0.01317736878991127, -0.10683246701955795, 0.019132381305098534, -0.07757184654474258, -0.045477885752916336, 0.0056265234015882015, -0.02017035149037838, 0.029086150228977203, -0.03080996498465538, 0.09450776129961014, -0.11100329458713531, -0.006511709187179804, -0.14170943200588226, -0.09963035583496094, 0.06461545079946518, 0.01029511634260416, 0.04300203546881676, -0.07626039534807205, 0.00041515982593409717, 0.01374070905148983, 0.03307996317744255, -0.010678919032216072, 0.05430637672543526, -0.024366730824112892, -0.03692144155502319, -0.1341094970703125, -0.017475228756666183, -0.022167062386870384, 0.09495016187429428, -0.12300021946430206, -0.026479382067918777, 0.15269926190376282, 0.10629478096961975, 0.04561392962932587, -0.05012531206011772, 0.06084761768579483, -0.023775305598974228, -0.03343667834997177, -0.07644316554069519, -0.021063776686787605, -0.004983717110008001, 0.020107174292206764, 0.09994122385978699, -0.18993759155273438, -0.1015816405415535, 0.07602144777774811, 0.014769039116799831, -0.07969609647989273, -0.05462183430790901, -0.04282190650701523, -0.014946532435715199, -0.0939687117934227, -0.04841591417789459, 0.04062189534306526, 0.060876134783029556, 0.0846223458647728, -0.06349105387926102, -0.039655651897192, 0.02913195826113224, -0.012855535373091698, -0.0764947310090065, 0.043907858431339264, 0.0473027341067791, -0.09331636875867844, 0.09586592763662338, 0.02578083425760269, 0.03612473979592323, 0.11350619047880173, 0.03388821706175804, -0.10008038580417633, -0.013335385359823704, 0.07383697479963303, 0.02327897399663925, 0.10757490992546082, -0.03560280054807663, 0.013934183865785599, 0.07688888162374496, 0.006806479766964912, -0.036409176886081696, -0.08701331168413162, 0.0780923143029213, 0.030684199184179306, -0.03846683353185654, 0.052177391946315765, -0.027120441198349, 0.07766921818256378, 0.10096142441034317, 0.04126125946640968, 0.08010563999414444, -0.048266224563121796, -0.06367223709821701, -0.09154436737298965, 0.12798446416854858, -0.041700176894664764, -0.2374245822429657, -0.0862952172756195, -0.0681498795747757, -0.052215803414583206, -0.002128581516444683, 0.02509671449661255, 0.01412180159240961, -0.07977224886417389, -0.0942358523607254, 0.0442943312227726, 0.07928336411714554, -0.09642080217599869, -0.10034067928791046, 0.010401247069239616, 0.001551744295284152, -0.08366913348436356, -0.006086547859013081, 0.022559335455298424, -0.07241608947515488, 0.0156475268304348, 0.05081247538328171, 0.14018087089061737, 0.07790467143058777, -0.028261877596378326, 0.006567866541445255, -0.01168484054505825, 0.1804317682981491, -0.153255894780159, 0.14668618142604828, 0.16258905827999115, 0.013158048503100872, 0.09186594188213348, 0.2040053755044937, -0.00940333865582943, -0.003490122966468334, 0.012508452869951725, 0.06152172014117241, -0.06125399097800255, -0.20195606350898743, -0.04989469051361084, -0.05352569371461868, 0.01548034232109785, 0.10008521378040314, 0.044195376336574554, 0.032420046627521515, 0.08501775562763214, -0.09764011204242706, 0.022937599569559097, 0.04111368581652641, 0.09548430144786835, 0.03211274370551109, 0.02957012690603733, 0.04849672690033913, -0.04193172603845596, -0.021550070494413376, 0.10583359003067017, 0.1454925835132599, 0.11504831910133362, -0.09278102219104767, 0.10582989454269409, 0.023223647847771645, 0.0258912555873394, -0.04885820671916008, 0.0022567412815988064, -0.025854315608739853, 0.05900987610220909, -0.016323179006576538, -0.09355571120977402, -0.006473303306847811, 0.07592294365167618, 0.12662561237812042, 0.00524018332362175, 0.020510269328951836, -0.011457808315753937, 0.09476365149021149, 0.21813827753067017, 0.01568770594894886, -0.1815285086631775, 0.02626822516322136, 0.03075779601931572, 0.012088979594409466, -0.1320427805185318, -0.03156053647398949, 0.1197894737124443, -0.16786432266235352, 0.062132880091667175, -0.04745028540492058, 0.10534581542015076, -0.12867788970470428, -0.0350637212395668, 0.0464290976524353, 0.042375508695840836, -0.027015965431928635, 0.07220596075057983, -0.11343304067850113, 0.09117134660482407, 0.04043830558657646, 0.03497074916958809, -0.08222147077322006, 0.04592546820640564, 0.013485521078109741, -0.003426293609663844, 0.14316172897815704, -0.002282140078023076, -0.03422291949391365, -0.12795904278755188, -0.10407906770706177, -0.011971043422818184, 0.05384451523423195, -0.06252187490463257, 0.09571310132741928, 0.008406899869441986, -0.03867340087890625, -0.06430870294570923, -0.047899629920721054, -0.051885493099689484, -0.17487835884094238, 0.03875337168574333, -0.004011611919850111, 0.013680921867489815, -0.019166769459843636, 0.0377141498029232, 0.0027866594027727842, 0.08252223581075668, -0.079426608979702, -0.07263078540563583, -0.14619621634483337, 0.016199160367250443, 0.05381091684103012, -0.03357892110943794, -0.024789942428469658, -0.09077656269073486, 0.16810505092144012, -0.031203005462884903, -0.05785823240876198, 0.037091560661792755, -0.05209890007972717, -0.09997718781232834, -0.0789649710059166, 0.11071841418743134, 0.03046511858701706, -0.009001214057207108, 0.004078736994415522, 0.05556023120880127, -0.0026712389662861824, -0.06415319442749023, 0.04777057468891144, 0.12027016282081604, 0.11900059133768082, 0.15011145174503326, 0.029450315982103348, -0.15191736817359924, -0.10140058398246765, 0.0141372699290514, 0.04256179928779602, 0.08277542144060135, -0.0880219116806984, 0.10345925390720367, 0.03676632046699524, -0.1009603813290596, -0.23892511427402496, 0.08741515874862671, 0.054631829261779785, -0.01471587736159563, -0.008016164414584637, -0.13555064797401428, 0.14002715051174164, 0.05767294019460678, -0.004288574680685997, 0.07039422541856766, -0.24543516337871552, -0.06653780490159988, -0.02850419655442238, 0.0468166209757328, -0.1636766642332077, -0.15612393617630005, -0.04182978346943855, -0.037858590483665466, -0.16161341965198517, 0.052950743585824966, -0.024843687191605568, 0.039111532270908356, 0.044838666915893555, 0.05495615676045418, 0.05716417357325554, -0.0479210689663887, 0.10970759391784668, 0.022119250148534775, 0.050503209233284, -0.07418841123580933, -0.08692996203899384, 0.07729494571685791, -0.10742508620023727, 0.12300112843513489, 0.029094964265823364, 0.01684640906751156, -0.050966206938028336, -0.01191888190805912, -0.03649039566516876, 0.08303454518318176, -0.03269493952393532, -0.04327957704663277, -0.08018063008785248, 0.02980864979326725, 0.12699057161808014, 0.018994953483343124, 0.08308234810829163, -0.03703351318836212, -0.024017537012696266, 0.17483948171138763, 0.10832157731056213, -0.013363820500671864, -0.13018828630447388, -0.04627272114157677, 0.003993683028966188, 0.039081424474716187, -0.11986548453569412, 0.05072552710771561, 0.08368737995624542, 0.012726330198347569, 0.09611955285072327, -0.012396812438964844, -0.0951198935508728, 0.008100169710814953, 0.04837046191096306, -0.09653402864933014, -0.1632053703069687, 0.007405314594507217, 0.06935182213783264, -0.10633979737758636, -0.0960284098982811, 0.12861844897270203, 0.002414512913674116, -0.007542049046605825, 0.010128260590136051, 0.080230213701725, 0.05615505576133728, 0.0505199059844017, 0.015474176965653896, 0.032001201063394547, -0.0665745958685875, 0.11389460414648056, 0.14300203323364258, -0.11818347871303558, -0.00008306992094730958, 0.11882062256336212, -0.044693220406770706, -0.017419440671801567, -0.041872765868902206, 0.05715004727244377, -0.025238456204533577, -0.031236516311764717, 0.03920447453856468, -0.06771831959486008, 0.02632181905210018, 0.12264147400856018, -0.00939492043107748, 0.05336936190724373, 0.025345811620354652, -0.014893200248479843, -0.11764411628246307, 0.1401892751455307, -0.003088894300162792, 0.05803629383444786, -0.10356903076171875, 0.014962753280997276, 0.0079936059191823, 0.021841146051883698, 0.009711622260510921, -0.0749371275305748, -0.0660674124956131, -0.003705080598592758, -0.05064082890748978, 0.10973148047924042, -0.08083675801753998, -0.00892903283238411, -0.015883104875683784, 0.01570947840809822, -0.012889774516224861, 0.029428482055664062, -0.04100592061877251, -0.06511829048395157, -0.04202688857913017, 0.13205282390117645, -0.13801375031471252, -0.023207485675811768, 0.05458854138851166, -0.08323881030082703, 0.07615340501070023, 0.0003701353562064469, -0.039929863065481186, -0.07626939564943314, -0.1966722011566162, -0.029631953686475754, 0.031973566859960556, 0.057444535195827484, 0.05017074570059776, -0.08474790304899216, 0.050283413380384445, -0.010701373219490051, -0.09511977434158325, -0.02275594137609005, -0.004168145824223757, -0.11334782838821411, 0.060958512127399445, -0.07463100552558899, -0.0374184288084507, -0.04859447851777077, 0.13252151012420654, 0.04544404149055481, 0.004146703518927097, 0.06819886714220047, -0.040916454046964645, 0.09176073968410492, -0.15597279369831085, -0.03112654574215412, 0.0010835506254807115, -0.04323435202240944, -0.09186902642250061, -0.009262553416192532, 0.0744323581457138, -0.02854553610086441, 0.11514293402433395, 0.12933555245399475, 0.03613521531224251, 0.033248476684093475, -0.016119496896862984, 0.033703431487083435, 0.051236532628536224, -0.0227431058883667, -0.017528336495161057, -0.022400936111807823, 0.07369901239871979, 0.008720112033188343, 0.01858064904808998, 0.10170704871416092, 0.08341231197118759, 0.22588512301445007, 0.15743577480316162, 0.03282548114657402, 0.044453077018260956, -0.07900509238243103, -0.08354995399713516, 0.08870681375265121, -0.06651439517736435, 0.07609505206346512, -0.10196269303560257, 0.005800384562462568, 0.10486941039562225, -0.17121130228042603, 0.05749846249818802, -0.018101658672094345, -0.012226978316903114, -0.03480973094701767, -0.13601845502853394, -0.05910155922174454, -0.03132627531886101, -0.005938288290053606, -0.11428419500589371, 0.08131194859743118, 0.11712862551212311, -0.0123811149969697, 0.013557170517742634, 0.08209396153688431, -0.09115134179592133, -0.06306755542755127, 0.0888669490814209, 0.024442026391625404, 0.07871533185243607, 0.053890641778707504, 0.02911032922565937, 0.06567437946796417, -0.0007997248903848231, 0.09631384164094925, 0.08790138363838196, 0.12634478509426117, 0.043498411774635315, -0.07900787889957428, -0.07340985536575317, 0.0392439030110836, -0.007945671677589417, -0.0335390567779541, 0.14236833155155182, 0.07195005565881729, 0.01794436387717724, -0.012342168018221855, 0.1817874014377594, -0.02553834766149521, -0.022377928718924522, -0.14716598391532898, 0.03705138713121414, -0.029285375028848648, 0.0011098209070041776, -0.016093725338578224, -0.15373638272285461, 0.005125741474330425, 0.11677520722150803, 0.07712952792644501, -0.047598522156476974, -0.00852628517895937, -0.01144003588706255, 0.006693531759083271, 0.000024429675249848515, 0.05342023819684982, 0.01977788656949997, 0.21671125292778015, -0.04704262316226959, 0.01297930721193552, -0.026413770392537117, -0.022865379229187965, -0.06693335622549057, 0.09009431302547455, -0.027950776740908623, -0.0027675351593643427, -0.06626544892787933, 0.10491975396871567, 0.007106699049472809, -0.1992427259683609, 0.06312043964862823, -0.10460873693227768, -0.08786048740148544, 0.01270008459687233, 0.004639738705009222, 0.003590929787606001, 0.017735959962010384, 0.013147552497684956, -0.06644865870475769, 0.11704123020172119, 0.01945703849196434, -0.06706587225198746, -0.006054800935089588, -0.0006353869684971869, -0.12847267091274261, 0.2781102657318115, -0.021423764526844025, 0.008481800556182861, 0.09532012045383453, -0.010116785764694214, -0.1396903246641159, -0.015917271375656128, 0.0752781480550766, -0.051024504005908966, 0.007057338021695614, 0.12046609818935394, -0.0037044526543468237, 0.1566779762506485, 0.09098207950592041, -0.07842865586280823, 0.0440361313521862, -0.024981742724776268, 0.00762608926743269, -0.10649777948856354, 0.00961484294384718, -0.08420216292142868, 0.10553941130638123, 0.14795243740081787, 0.004897736944258213, 0.00042519066482782364, -0.04050351306796074, -0.022632593289017677, 0.009440764784812927, 0.10292903333902359, -0.004998545162379742, -0.03642852231860161, 0.010500396601855755, -0.10723181068897247, 0.08678101748228073, -0.09185278415679932, -0.06568118184804916, 0.0271880105137825, -0.010290076024830341, -0.01889025792479515, 0.08905866742134094, 0.05230636149644852, 0.013422014191746712, -0.05179830640554428, -0.09381898492574692, 0.021279118955135345, 0.1737939715385437, -0.011320267803966999, -0.022095033898949623 ]
b598e4ecc1e6492450ca86af9f85867d395ecd95
# Dataset Card for cable-damage ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cable-damage - **Point of Contact:** [email protected] ### Dataset Summary cable-damage ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cable-damage ### Citation Information ``` @misc{ cable-damage, title = { cable damage Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cable-damage } }, url = { https://universe.roboflow.com/object-detection/cable-damage }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cable-damage
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:23+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cable-damage", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cable-damage", "1": "break", "2": "thunderbolt"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:29:47+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cable-damage The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cable-damage ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cable-damage\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncable-damage", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cable-damage\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncable-damage", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cable-damage\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncable-damage### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.021281834691762924, 0.15833896398544312, -0.008680189959704876, 0.021344946697354317, 0.11437831819057465, 0.00914054550230503, 0.058010533452034, 0.07925783097743988, 0.002220758469775319, 0.1576070785522461, -0.016274044290184975, 0.08694571256637573, 0.12988853454589844, 0.10372697561979294, -0.01964765414595604, -0.1487397998571396, 0.06089863181114197, -0.06288576871156693, 0.07033748924732208, 0.07382377982139587, 0.07204548269510269, -0.13152803480625153, 0.0978381410241127, -0.043728671967983246, -0.05626467615365982, 0.009904871694743633, -0.020346658304333687, -0.04358924552798271, 0.0232960544526577, 0.029799971729516983, 0.04192958027124405, 0.01246927585452795, 0.043249744921922684, -0.19549959897994995, 0.025979597121477127, 0.1187446117401123, 0.019535204395651817, 0.04329318925738335, 0.13385158777236938, -0.08385220915079117, 0.04700328782200813, -0.1275574415922165, 0.03263110667467117, 0.02387141063809395, -0.12413737922906876, -0.09499417990446091, -0.12379594147205353, 0.05046962946653366, 0.12219356745481491, 0.05376332253217697, -0.011044692248106003, 0.06312306970357895, -0.0030291264411062002, 0.06212550774216652, 0.12098780274391174, -0.08390504866838455, -0.04959886893630028, 0.10796798020601273, 0.02754213847219944, 0.12179610133171082, -0.10745949298143387, -0.012608758173882961, -0.0029335336294025183, -0.03047415055334568, 0.014308434911072254, -0.07250688970088959, -0.029220476746559143, 0.002873434219509363, -0.1008293405175209, -0.126702219247818, 0.14026015996932983, 0.057490553706884384, -0.04860203340649605, -0.1178722009062767, -0.030857931822538376, 0.03832990303635597, -0.027118312194943428, -0.00895565003156662, 0.04547516629099846, 0.00131953542586416, 0.07244797796010971, -0.05902513116598129, -0.1063104197382927, 0.03600664064288139, -0.0017798886401578784, 0.031879812479019165, -0.026664258912205696, 0.04777660220861435, 0.0026706981007009745, 0.07968883216381073, -0.0023404997773468494, -0.11191055923700333, -0.02946595288813114, -0.0455465130507946, -0.0795573815703392, -0.039860740303993225, 0.06135176122188568, -0.127739816904068, 0.05504084751009941, 0.05284793674945831, -0.07441505044698715, 0.043183669447898865, -0.11377650499343872, 0.025895023718476295, 0.09804990887641907, 0.18780900537967682, -0.08959197998046875, -0.09147754311561584, -0.008468212559819221, 0.028575539588928223, 0.022246651351451874, -0.04341708868741989, -0.03858859837055206, -0.004408543463796377, 0.024175427854061127, 0.039151355624198914, 0.10732690989971161, 0.03083348460495472, -0.07314290851354599, -0.05719785392284393, 0.09911633282899857, -0.10667393356561661, 0.06539086252450943, 0.05318329855799675, -0.03322851285338402, 0.08106604963541031, 0.01632259041070938, 0.013459872454404831, -0.10396462678909302, 0.0919736921787262, -0.04561828076839447, 0.026728330180048943, -0.09778454154729843, -0.09184568375349045, 0.044946733862161636, -0.09530822932720184, -0.09223529696464539, -0.08674948662519455, -0.047219302505254745, -0.08441337943077087, 0.04250163957476616, -0.038172464817762375, 0.029292434453964233, 0.014061070047318935, -0.04469970613718033, -0.0023548563476651907, 0.009344123303890228, 0.02887600101530552, -0.05202148109674454, 0.04097474738955498, -0.10278831422328949, 0.031124839559197426, 0.08394301682710648, 0.0294807031750679, -0.07281845062971115, 0.05275532230734825, -0.1938546746969223, 0.12081751227378845, -0.03433322161436081, 0.034988801926374435, -0.14171919226646423, 0.01978420838713646, -0.02484726533293724, -0.035868845880031586, -0.00257035787217319, 0.13247761130332947, -0.10981470346450806, 0.017150096595287323, 0.09160230308771133, -0.051129091531038284, -0.04832059517502785, 0.03801024332642555, -0.040988363325595856, 0.012201866135001183, 0.08737120032310486, 0.09685496985912323, -0.021275296807289124, -0.1250336468219757, -0.10408004373311996, -0.04888520762324333, -0.057100534439086914, 0.13587987422943115, 0.05976575240492821, -0.03932478651404381, 0.08362460881471634, -0.012537909671664238, -0.023909952491521835, -0.02838440053164959, 0.014729302376508713, -0.03657643124461174, 0.016507813706994057, 0.0037266556173563004, -0.07557813823223114, 0.012853522785007954, -0.10698957741260529, 0.019614115357398987, -0.08597416430711746, -0.04443559795618057, 0.011252209544181824, -0.017665985971689224, 0.02994610369205475, -0.0439007394015789, 0.09276805073022842, -0.10934361815452576, -0.0029268020298331976, -0.14539596438407898, -0.0930914431810379, 0.0585910826921463, 0.02053181640803814, 0.04864223301410675, -0.0751325860619545, 0.0011611836962401867, 0.008586057461798191, 0.0342131070792675, -0.018627792596817017, 0.04908901825547218, -0.02535511925816536, -0.03030545823276043, -0.13933807611465454, -0.0142335444688797, -0.021038619801402092, 0.09813955426216125, -0.12076617777347565, -0.021668314933776855, 0.15713149309158325, 0.11617009341716766, 0.04674457386136055, -0.0537789948284626, 0.05711417272686958, -0.020939840003848076, -0.034394845366477966, -0.07376495748758316, -0.015387450344860554, -0.013989576138556004, 0.019519688561558723, 0.08937180787324905, -0.20321275293827057, -0.11310160160064697, 0.0862041637301445, -0.006880154833197594, -0.0832463949918747, -0.04785028472542763, -0.03738459199666977, -0.009886517189443111, -0.08810853213071823, -0.05581125617027283, 0.04633551090955734, 0.06065819412469864, 0.08107239753007889, -0.06213952600955963, -0.03550757095217705, 0.028146442025899887, -0.013125757686793804, -0.07880043983459473, 0.041291508823633194, 0.05348697304725647, -0.10091616213321686, 0.09359527379274368, 0.014281905256211758, 0.03806190937757492, 0.11049578338861465, 0.03360210359096527, -0.10346327722072601, -0.013458885252475739, 0.07371409982442856, 0.03054705820977688, 0.10665679723024368, -0.022507203742861748, 0.007411830592900515, 0.07161200046539307, 0.009210452437400818, -0.031457286328077316, -0.09243742376565933, 0.07665453851222992, 0.03586779162287712, -0.035493697971105576, 0.04673156514763832, -0.03357628360390663, 0.0773911401629448, 0.1026318371295929, 0.046695053577423096, 0.08588925749063492, -0.045639388263225555, -0.06222674623131752, -0.09684329479932785, 0.12488915026187897, -0.05091762915253639, -0.2450258433818817, -0.08874721080064774, -0.07750261574983597, -0.041646309196949005, -0.000980682554654777, 0.025656722486019135, -0.005673740524798632, -0.07865399867296219, -0.08357734978199005, 0.0526115708053112, 0.059146203100681305, -0.09376739710569382, -0.09137868136167526, 0.02066974900662899, -0.0007485066307708621, -0.08348429203033447, 0.0004281665896996856, 0.021579444408416748, -0.0770987793803215, 0.015592494048178196, 0.04485849663615227, 0.13943544030189514, 0.09404436498880386, -0.021848546341061592, 0.0125264972448349, -0.013912958092987537, 0.17665432393550873, -0.15307371318340302, 0.13585305213928223, 0.1623993217945099, 0.008993098512291908, 0.08934831619262695, 0.20993192493915558, -0.007176522631198168, -0.0019064851803705096, 0.012617520987987518, 0.06628050655126572, -0.05827731639146805, -0.2002355307340622, -0.04444679617881775, -0.055687930434942245, 0.02362266182899475, 0.10355433076620102, 0.040587492287158966, 0.03441917523741722, 0.08289144188165665, -0.09781225025653839, 0.013906171545386314, 0.053311847150325775, 0.10421375185251236, 0.03175010904669762, 0.030731648206710815, 0.051596399396657944, -0.04220762848854065, -0.022839080542325974, 0.10143616795539856, 0.1363239884376526, 0.12337017804384232, -0.08963008970022202, 0.11281239241361618, 0.02967679873108864, 0.014603006653487682, -0.040630947798490524, 0.0001936003682203591, -0.03329157456755638, 0.055526476353406906, -0.006923937704414129, -0.09141522645950317, -0.003804821288213134, 0.07564139366149902, 0.12113631516695023, -0.0010286364704370499, 0.01995634287595749, -0.0021133709233254194, 0.0951540395617485, 0.19197233021259308, 0.024232588708400726, -0.18725697696208954, 0.035187724977731705, 0.03115200251340866, 0.02522769756615162, -0.13179369270801544, -0.0329519622027874, 0.11196382343769073, -0.15709622204303741, 0.05712634325027466, -0.04623964801430702, 0.11313410848379135, -0.13682852685451508, -0.03253628686070442, 0.04741169884800911, 0.04774065688252449, -0.028481990098953247, 0.06862764805555344, -0.13228429853916168, 0.08969215303659439, 0.04246390610933304, 0.04005526378750801, -0.07283032685518265, 0.042872607707977295, 0.008389347232878208, -0.0014070282923057675, 0.1386002004146576, -0.004856887273490429, -0.03679201379418373, -0.14456427097320557, -0.10393760353326797, -0.01647910103201866, 0.06471900641918182, -0.05805596709251404, 0.09934503585100174, 0.004260614980012178, -0.03661728650331497, -0.0603066012263298, -0.049947675317525864, -0.061795078217983246, -0.18037459254264832, 0.047577615827322006, 0.004264950752258301, 0.016329491510987282, -0.018758846446871758, 0.03624134510755539, -0.0006291648023761809, 0.09218696504831314, -0.09421146661043167, -0.07813612371683121, -0.14876894652843475, 0.014312483370304108, 0.05325685441493988, -0.03356485441327095, -0.019198903813958168, -0.0854671448469162, 0.16997969150543213, -0.033999454230070114, -0.06374533474445343, 0.03808207809925079, -0.04827803373336792, -0.09401912242174149, -0.08184762299060822, 0.11343459039926529, 0.033122237771749496, -0.007667213212698698, 0.0026103095151484013, 0.053050458431243896, 0.002967212349176407, -0.0596657395362854, 0.043749868869781494, 0.12572000920772552, 0.11634833365678787, 0.14814504981040955, 0.018204692751169205, -0.1589541733264923, -0.11558350920677185, 0.015164359472692013, 0.04180412366986275, 0.09428674727678299, -0.08854211121797562, 0.0954936295747757, 0.02864033542573452, -0.09929215162992477, -0.23360098898410797, 0.08384295552968979, 0.05414069443941116, -0.014768417924642563, -0.00704999640583992, -0.14135928452014923, 0.12391935288906097, 0.04590870067477226, -0.0011291104601696134, 0.07329388707876205, -0.2572677731513977, -0.0655464231967926, -0.03170112147927284, 0.05494632199406624, -0.16526822745800018, -0.1573493331670761, -0.0433623231947422, -0.03163750842213631, -0.18441946804523468, 0.06635268032550812, -0.02306221053004265, 0.03816017881035805, 0.047957129776477814, 0.058401770889759064, 0.058533646166324615, -0.04892180114984512, 0.10689757019281387, 0.015615993179380894, 0.04354235157370567, -0.07063993811607361, -0.09306064993143082, 0.07174403220415115, -0.10631820559501648, 0.11761474609375, 0.031902097165584564, 0.01599089242517948, -0.04959314316511154, -0.010252522304654121, -0.03431162238121033, 0.07229223847389221, -0.037206050008535385, -0.04726091027259827, -0.0797366201877594, 0.0317569263279438, 0.12186728417873383, 0.015694648027420044, 0.08694732189178467, -0.04451609402894974, -0.01446603424847126, 0.16042257845401764, 0.11008055508136749, -0.019260361790657043, -0.14104174077510834, -0.04916209354996681, 0.003877020673826337, 0.04026235267519951, -0.12109432369470596, 0.054965365678071976, 0.08990330249071121, 0.011826306581497192, 0.10522659868001938, -0.003354660701006651, -0.10521024465560913, 0.005130920559167862, 0.06068513169884682, -0.09224836528301239, -0.14619417488574982, 0.008323541842401028, 0.08447728306055069, -0.10471172630786896, -0.0954178124666214, 0.12788979709148407, 0.01082348357886076, -0.010060839354991913, 0.015698539093136787, 0.08099008351564407, 0.048207174986600876, 0.05202784016728401, 0.015307837165892124, 0.03708349168300629, -0.06696885079145432, 0.11286406219005585, 0.14292606711387634, -0.12010719627141953, -0.000666724459733814, 0.12540151178836823, -0.05093664675951004, -0.015100433491170406, -0.039713479578495026, 0.061818502843379974, -0.029182450845837593, -0.03444620221853256, 0.03239681199193001, -0.06999216228723526, 0.022474516183137894, 0.10445103049278259, -0.012983052991330624, 0.06146011874079704, 0.029896534979343414, -0.010187458246946335, -0.1251288503408432, 0.1381472945213318, 0.0013963107485324144, 0.056964531540870667, -0.1185377761721611, 0.0314461849629879, 0.015575993806123734, 0.01826641522347927, 0.0074965208768844604, -0.06797881424427032, -0.07433879375457764, 0.0023082918487489223, -0.05192607268691063, 0.10079792886972427, -0.07982666045427322, -0.014406291767954826, -0.012623334303498268, 0.016256578266620636, -0.015852399170398712, 0.029776552692055702, -0.041993312537670135, -0.06715710461139679, -0.04129444807767868, 0.12028361111879349, -0.14258192479610443, -0.020456509664654732, 0.05024111643433571, -0.08293097466230392, 0.06603854894638062, -0.0014687988441437483, -0.040462907403707504, -0.06944147497415543, -0.18458420038223267, -0.026151835918426514, 0.030288055539131165, 0.05446775630116463, 0.0484028197824955, -0.07992473989725113, 0.05458826944231987, -0.01562536507844925, -0.09498383849859238, -0.019490042701363564, -0.01154592540115118, -0.10845280438661575, 0.05807352438569069, -0.08069539070129395, -0.027977408841252327, -0.04312737286090851, 0.13478273153305054, 0.04691723734140396, 0.006020138505846262, 0.07012669742107391, -0.039418164640665054, 0.09215101599693298, -0.15206129848957062, -0.03376781567931175, 0.0014339995104819536, -0.03641444444656372, -0.07365117222070694, -0.010329440236091614, 0.07303844392299652, -0.03679836541414261, 0.09813645482063293, 0.12362167239189148, 0.025746891275048256, 0.037539198994636536, -0.022833431139588356, 0.036673981696367264, 0.05292656272649765, -0.01577424257993698, -0.015781084075570107, -0.023818328976631165, 0.06510955095291138, 0.010819991119205952, 0.023378396406769753, 0.10156696289777756, 0.08370267599821091, 0.2206522673368454, 0.15458379685878754, 0.02606840990483761, 0.04832044616341591, -0.08021056652069092, -0.08318143337965012, 0.08694253861904144, -0.07720150053501129, 0.06064620241522789, -0.09817557781934738, 0.01268074568361044, 0.11936060339212418, -0.1629067212343216, 0.05772019922733307, -0.011191925965249538, -0.016213469207286835, -0.03751758113503456, -0.12789250910282135, -0.05289405211806297, -0.036048710346221924, -0.006893067620694637, -0.11405441910028458, 0.07425712049007416, 0.10661071538925171, -0.007854982279241085, 0.016351019963622093, 0.09360708296298981, -0.07853981852531433, -0.06583002954721451, 0.08634210377931595, 0.02756045199930668, 0.07522594928741455, 0.05801650136709213, 0.03918109089136124, 0.06802879273891449, -0.0035716015845537186, 0.09854307025671005, 0.08373710513114929, 0.11175689846277237, 0.05025262013077736, -0.07473750412464142, -0.07286449521780014, 0.040550608187913895, -0.009870321489870548, -0.03143373504281044, 0.1458185762166977, 0.06986512243747711, 0.014376949518918991, -0.018266169354319572, 0.18755100667476654, -0.02796279266476631, -0.023482155054807663, -0.14270971715450287, 0.05644049867987633, -0.032790616154670715, 0.004553313832730055, -0.02362370677292347, -0.1619061976671219, -0.001021756324917078, 0.1359800547361374, 0.07369250059127808, -0.049271807074546814, -0.01182947214692831, -0.011740662157535553, 0.011721967719495296, -0.003761504776775837, 0.05292055383324623, 0.01706772856414318, 0.22703373432159424, -0.04721225053071976, 0.015075011178851128, -0.025263478979468346, -0.017170561477541924, -0.06623123586177826, 0.07627056539058685, -0.020020009949803352, 0.0015696255723014474, -0.0705283060669899, 0.10446415841579437, -0.00018772021576296538, -0.18077313899993896, 0.05950428918004036, -0.1044246107339859, -0.08078140765428543, 0.008226667530834675, 0.02272525243461132, -0.007346155121922493, 0.022893326357007027, 0.01377896685153246, -0.0643852949142456, 0.10711624473333359, 0.02180565521121025, -0.06544195860624313, -0.014890788123011589, -0.00372813967987895, -0.12712489068508148, 0.276185005903244, -0.022621240466833115, 0.012138763442635536, 0.10228446871042252, -0.015414994210004807, -0.13723264634609222, -0.018764857202768326, 0.07131337374448776, -0.05299093946814537, -0.003974867053329945, 0.1255977749824524, -0.006262470036745071, 0.14619334042072296, 0.09146813303232193, -0.08212359994649887, 0.04067813605070114, -0.03332490846514702, 0.010414166375994682, -0.10749195516109467, 0.008395657874643803, -0.08311006426811218, 0.10414684563875198, 0.14577984809875488, 0.002207965822890401, 0.00013509606651496142, -0.04135085269808769, -0.018839001655578613, 0.015103616751730442, 0.11201411485671997, -0.001370078301988542, -0.048615530133247375, 0.008059237152338028, -0.09934069961309433, 0.08641915023326874, -0.10029447078704834, -0.06391128897666931, 0.027963310480117798, -0.013405395671725273, -0.029198918491601944, 0.08897575736045837, 0.060599423944950104, 0.018137739971280098, -0.05462942644953728, -0.10801299661397934, 0.024628140032291412, 0.17843154072761536, -0.015549528412520885, -0.025110267102718353 ]
a6c08f77c87f0f518a5768f41d9949ef96da5bf8
# Dataset Card for sign-language-sokdr ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/sign-language-sokdr - **Point of Contact:** [email protected] ### Dataset Summary sign-language-sokdr ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/sign-language-sokdr ### Citation Information ``` @misc{ sign-language-sokdr, title = { sign language sokdr Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/sign-language-sokdr } }, url = { https://universe.roboflow.com/object-detection/sign-language-sokdr }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/sign-language-sokdr
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:23+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "sign-language-sokdr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "sign-language", "1": "A", "2": "B", "3": "C", "4": "D", "5": "E", "6": "F", "7": "G", "8": "H", "9": "I", "10": "J", "11": "K", "12": "L", "13": "M", "14": "N", "15": "O", "16": "P", "17": "Q", "18": "R", "19": "S", "20": "T", "21": "U", "22": "V", "23": "W", "24": "X", "25": "Y", "26": "Z"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:29:42+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for sign-language-sokdr The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary sign-language-sokdr ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for sign-language-sokdr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsign-language-sokdr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for sign-language-sokdr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsign-language-sokdr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for sign-language-sokdr\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nsign-language-sokdr### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.019428465515375137, 0.16599196195602417, -0.007696622051298618, 0.018092963844537735, 0.1027911826968193, -0.003324192250147462, 0.06532518565654755, 0.08354706317186356, 0.009888239204883575, 0.1755417287349701, -0.006520987022668123, 0.07963878661394119, 0.11704912781715393, 0.10593420267105103, -0.016463028267025948, -0.1618277132511139, 0.06197546049952507, -0.06583014875650406, 0.06417299062013626, 0.07192856818437576, 0.07196556031703949, -0.13307876884937286, 0.08240190893411636, -0.03636353835463524, -0.026949793100357056, 0.024647759273648262, -0.05370641127228737, -0.050442058593034744, 0.003084548283368349, 0.038067884743213654, 0.01976211741566658, 0.03089548647403717, 0.04142467677593231, -0.19285377860069275, 0.020284520462155342, 0.10277005285024643, 0.043274324387311935, 0.023913871496915817, 0.1568976789712906, -0.07982295006513596, 0.056783951818943024, -0.1356557011604309, 0.03425014764070511, 0.012999218888580799, -0.11480895429849625, -0.11026843637228012, -0.12447178363800049, 0.06524297595024109, 0.11552286893129349, 0.04896647483110428, -0.016205687075853348, 0.0756019651889801, -0.01846042461693287, 0.0563688650727272, 0.10515830665826797, -0.05585664138197899, -0.04103211313486099, 0.07716280966997147, 0.03311917558312416, 0.10170144587755203, -0.11603393405675888, -0.017701055854558945, -0.003182141575962305, -0.02931513451039791, -0.0015827241586521268, -0.06344664841890335, -0.04428083077073097, -0.0050568971782922745, -0.10018233954906464, -0.1429731398820877, 0.14529985189437866, 0.05336722731590271, -0.05364959314465523, -0.1444016396999359, -0.0069847870618104935, 0.06068326160311699, -0.03362445905804634, -0.010868935845792294, 0.04324747622013092, -0.005278484430164099, 0.06345543265342712, -0.07609823346138, -0.10199885070323944, 0.045008402317762375, 0.039088666439056396, 0.04810866713523865, -0.01891062967479229, 0.03641944378614426, 0.01535971648991108, 0.07422631978988647, 0.0013303352752700448, -0.10417964309453964, -0.019466230645775795, -0.044756047427654266, -0.06524555385112762, -0.0368608720600605, 0.06900813430547714, -0.14516019821166992, 0.06653250753879547, 0.05313791334629059, -0.06952754408121109, 0.03635421767830849, -0.12538917362689972, 0.01604904979467392, 0.10712691396474838, 0.18458199501037598, -0.07659353315830231, -0.08727574348449707, -0.002888779854401946, 0.045647770166397095, 0.023129766806960106, -0.03224498778581619, -0.019508516415953636, -0.000678948825225234, 0.024159355089068413, 0.026112830266356468, 0.1164490282535553, 0.04653447866439819, -0.06764664500951767, -0.062349334359169006, 0.1373419612646103, -0.10255707055330276, 0.05587444081902504, 0.05876658111810684, -0.05668730288743973, 0.07458670437335968, 0.00789736770093441, 0.0178235936909914, -0.12054986506700516, 0.10923922061920166, -0.021176975220441818, 0.01874127797782421, -0.08968591690063477, -0.08588507026433945, 0.054917458444833755, -0.08726851642131805, -0.07904575765132904, -0.07622399926185608, -0.05949223041534424, -0.0928211361169815, 0.03955512493848801, -0.039193689823150635, 0.022668972611427307, 0.016834406182169914, -0.04017113149166107, -0.0076749492436647415, 0.0032823090441524982, 0.030532224103808403, -0.05474105477333069, 0.03783303126692772, -0.09442616999149323, 0.029191479086875916, 0.10597259551286697, 0.03815602511167526, -0.10523494333028793, 0.06062139570713043, -0.20531556010246277, 0.1388709396123886, -0.05583765357732773, 0.024788817390799522, -0.12857235968112946, 0.014081252738833427, -0.024819964542984962, -0.031368717551231384, -0.0027160970494151115, 0.14873865246772766, -0.07209938019514084, 0.010326492600142956, 0.0650576576590538, -0.060804493725299835, -0.05332159250974655, 0.0380835235118866, -0.04056685417890549, -0.0024567372165620327, 0.08242680877447128, 0.1384190171957016, -0.03623153641819954, -0.10620146989822388, -0.11443672329187393, -0.038667693734169006, -0.0373125821352005, 0.15205684304237366, 0.07200046628713608, -0.045959267765283585, 0.10501054674386978, -0.004838978406041861, -0.016204316169023514, -0.04036837816238403, 0.017570072785019875, -0.03126352280378342, 0.015687134116888046, -0.0023674247786402702, -0.08234500139951706, 0.02364666759967804, -0.09437403082847595, 0.004254328086972237, -0.08042827248573303, -0.02785351499915123, 0.016132496297359467, -0.0288684144616127, 0.021024581044912338, -0.03579200804233551, 0.08838169276714325, -0.13163234293460846, 0.00033570200321264565, -0.16065523028373718, -0.10404917597770691, 0.05935284495353699, -0.038164861500263214, 0.04464228078722954, -0.07555022090673447, -0.005530277267098427, 0.02112749218940735, 0.03455255925655365, -0.023129118606448174, 0.042775869369506836, -0.018040280789136887, -0.04122357442975044, -0.12662650644779205, -0.0454980805516243, -0.022759025916457176, 0.11289889365434647, -0.11966000497341156, -0.01985614188015461, 0.14283797144889832, 0.12100876867771149, 0.036824505776166916, -0.05005454272031784, 0.07846780866384506, -0.02169398032128811, -0.017698146402835846, -0.07927047461271286, -0.012143172323703766, -0.002927937777712941, 0.033861223608255386, 0.08182178437709808, -0.1596537083387375, -0.14399836957454681, 0.0848350003361702, 0.024218402802944183, -0.0778251439332962, -0.05199804529547691, -0.05012197047472, -0.018741797655820847, -0.09245356917381287, -0.03522119298577309, 0.027479389682412148, 0.07020214945077896, 0.08010899275541306, -0.06545042991638184, -0.026394665241241455, 0.022191448137164116, -0.027465147897601128, -0.07008623331785202, 0.07243736833333969, 0.0500355064868927, -0.11452755331993103, 0.1114913672208786, -0.024920523166656494, 0.03908076509833336, 0.08903181552886963, 0.028081517666578293, -0.11577025055885315, 0.023366820067167282, 0.0752309039235115, 0.022367585450410843, 0.08929751813411713, -0.023778719827532768, 0.011338151060044765, 0.07701284438371658, -0.014208033680915833, -0.018914194777607918, -0.08710888028144836, 0.07874277234077454, 0.03180038183927536, -0.03222227469086647, 0.03578534349799156, -0.013580850325524807, 0.08249814808368683, 0.09835819900035858, 0.058540478348731995, 0.11703220009803772, -0.041797976940870285, -0.05868116393685341, -0.08445475995540619, 0.11986565589904785, -0.025254542008042336, -0.24889247119426727, -0.08056043833494186, -0.06149458512663841, -0.06512381136417389, -0.007786925416439772, 0.032815881073474884, -0.002722190460190177, -0.07760392874479294, -0.09647322446107864, 0.055339571088552475, 0.07097578048706055, -0.10399046540260315, -0.12194494903087616, 0.030526278540492058, 0.0009136057924479246, -0.06619348376989365, -0.004362757317721844, 0.026315882802009583, -0.045843739062547684, 0.011231562122702599, 0.0444997102022171, 0.129490926861763, 0.05742276832461357, -0.017515383660793304, 0.0020191434305161238, -0.00395612558349967, 0.15684278309345245, -0.15599432587623596, 0.10678660869598389, 0.1627919226884842, 0.01366504281759262, 0.07492218166589737, 0.18737612664699554, -0.018295302987098694, -0.009079535491764545, 0.026204299181699753, 0.07949689775705338, -0.06413452327251434, -0.1992962509393692, -0.060377996414899826, -0.048923250287771225, 0.027641592547297478, 0.13104861974716187, 0.0411984845995903, 0.016917388886213303, 0.09459874778985977, -0.11256785690784454, 0.02757025510072708, 0.031724151223897934, 0.10047253966331482, 0.04030592367053032, 0.04488769918680191, 0.04125472530722618, -0.04541390761733055, -0.036473363637924194, 0.0996326431632042, 0.11106322705745697, 0.10521919280290604, -0.10500741750001907, 0.09528234601020813, 0.02569522336125374, 0.0317324697971344, -0.0419776551425457, -0.0036363950930535793, -0.023279571905732155, 0.06112721189856529, -0.0025459735188633204, -0.09962781518697739, -0.010343613103032112, 0.09132232517004013, 0.13161727786064148, -0.019911061972379684, 0.007688785903155804, -0.03646967560052872, 0.08030267059803009, 0.23099736869335175, 0.007849061861634254, -0.19942238926887512, 0.020633887499570847, 0.044497959315776825, 0.022274086251854897, -0.12465018779039383, -0.03596968948841095, 0.08679825067520142, -0.1716679036617279, 0.06920356303453445, -0.04061661660671234, 0.11197815835475922, -0.1392746865749359, -0.03588113561272621, 0.05596223473548889, 0.03019469417631626, -0.019721699878573418, 0.08376620709896088, -0.11413426697254181, 0.07078873366117477, 0.03417143598198891, 0.037257540971040726, -0.08822435885667801, 0.038629449903964996, 0.00890420377254486, -0.00846048817038536, 0.1504669338464737, -0.02113332785665989, -0.007378817070275545, -0.13020473718643188, -0.11761081963777542, -0.017949048429727554, 0.051280032843351364, -0.07615750283002853, 0.09660686552524567, 0.01936309039592743, -0.031798042356967926, -0.08735267072916031, -0.05239497125148773, -0.06355398148298264, -0.18616454303264618, 0.043527159839868546, -0.011315137147903442, 0.02316930517554283, -0.012949337251484394, 0.031067639589309692, 0.025091951712965965, 0.13025201857089996, -0.03535785153508186, -0.08839471638202667, -0.14997167885303497, 0.05407986417412758, 0.08997120708227158, -0.022069428116083145, -0.030294355005025864, -0.08534632623195648, 0.1671297401189804, -0.024326182901859283, -0.06784985214471817, 0.023888789117336273, -0.05943726748228073, -0.12033963948488235, -0.05464685335755348, 0.10421539843082428, 0.031616296619176865, -0.00830728281289339, 0.0013233078643679619, 0.05612563341856003, 0.011384286917746067, -0.04978092759847641, 0.03641870245337486, 0.10906387120485306, 0.13953165709972382, 0.13207824528217316, 0.009790800511837006, -0.13130579888820648, -0.1264532059431076, -0.00040242160321213305, 0.025825774297118187, 0.10088400542736053, -0.06572815775871277, 0.11132630705833435, 0.03814178332686424, -0.08887571841478348, -0.22588953375816345, 0.08444778621196747, 0.06764409691095352, -0.002494578482583165, -0.011833772994577885, -0.14155131578445435, 0.13106797635555267, 0.04246243089437485, -0.005214271601289511, 0.057471517473459244, -0.2636300325393677, -0.07703637331724167, -0.014671915210783482, 0.0275606419891119, -0.22510430216789246, -0.18090668320655823, -0.05193191021680832, -0.05343225225806236, -0.14095601439476013, 0.061763446778059006, -0.011076734401285648, 0.03805810213088989, 0.044186756014823914, 0.03383343666791916, 0.06734222173690796, -0.04834001138806343, 0.10968206077814102, 0.01618936099112034, 0.03383827582001686, -0.07388924807310104, -0.08050557971000671, 0.04025362804532051, -0.09548090398311615, 0.1425817906856537, 0.051740340888500214, 0.016892172396183014, -0.06894669681787491, -0.01779039390385151, -0.04285423085093498, 0.08626729249954224, -0.02311543934047222, -0.04089583456516266, -0.09120196104049683, 0.037286583334207535, 0.13057005405426025, 0.02995952218770981, 0.09913595765829086, -0.05086095258593559, -0.013303869403898716, 0.15476371347904205, 0.10343363881111145, 0.01779673993587494, -0.1459682136774063, -0.04096207022666931, 0.004445033147931099, 0.03658823296427727, -0.12326372414827347, 0.04337192326784134, 0.08554540574550629, 0.014656796120107174, 0.10797935724258423, -0.01348218321800232, -0.10135245323181152, 0.011297491379082203, 0.04492734372615814, -0.1026642769575119, -0.1214892789721489, 0.02422248013317585, 0.10862492769956589, -0.09975852817296982, -0.11495810002088547, 0.11568491905927658, -0.004894291050732136, -0.019914429634809494, -0.000899519887752831, 0.0836440771818161, 0.04339515045285225, 0.06447586417198181, 0.017231358215212822, 0.03714901953935623, -0.0660383552312851, 0.11075421422719955, 0.1455625295639038, -0.1603449583053589, -0.0005320138297975063, 0.11967889219522476, -0.05360043793916702, -0.018757008016109467, -0.022122371941804886, 0.029094131663441658, -0.004556835629045963, -0.04188230633735657, 0.032391130924224854, -0.04642348363995552, 0.023284636437892914, 0.07055404782295227, -0.0035214743111282587, 0.05551839992403984, 0.027337808161973953, -0.01655098982155323, -0.13980454206466675, 0.12645621597766876, 0.028516096994280815, 0.05549537390470505, -0.09416025876998901, 0.005473267752677202, 0.022597309201955795, 0.011110302060842514, 0.008131332695484161, -0.054629135876894, -0.07500842958688736, 0.005241997539997101, -0.02898925170302391, 0.10345743596553802, -0.08809754252433777, -0.011330889537930489, -0.016856370493769646, 0.004877710249274969, -0.007766004651784897, 0.02293844148516655, -0.05039142817258835, -0.07729266583919525, -0.04500015452504158, 0.12736153602600098, -0.14399753510951996, -0.021718380972743034, 0.056600894778966904, -0.09369168430566788, 0.05726669728755951, 0.022208968177437782, -0.04132864996790886, -0.08857511729001999, -0.17333891987800598, -0.0369708277285099, 0.030350616201758385, 0.06597987562417984, 0.0352848581969738, -0.06827864795923233, 0.04814552143216133, -0.00024856621166691184, -0.09385675191879272, -0.01823054626584053, -0.005249571520835161, -0.11344688385725021, 0.04600868374109268, -0.08089877665042877, -0.03515101224184036, -0.03952855244278908, 0.13950522243976593, 0.06193296238780022, 0.021405406296253204, 0.07526981085538864, -0.04977504163980484, 0.09495938569307327, -0.12554605305194855, -0.03692947328090668, -0.0074342419393360615, -0.03538946807384491, -0.06380262970924377, -0.007262128870934248, 0.07952401041984558, -0.021818118169903755, 0.12049157917499542, 0.1244390532374382, 0.04017774388194084, 0.04301321133971214, -0.01872713677585125, 0.06967506557703018, 0.06573562324047089, -0.023201199248433113, -0.01115355733782053, -0.01824972778558731, 0.08126156032085419, 0.01667560078203678, 0.011138739064335823, 0.09748069196939468, 0.059333715587854385, 0.23723402619361877, 0.13578581809997559, 0.027310410514473915, 0.04492829367518425, -0.08136968314647675, -0.05453464761376381, 0.10404139012098312, -0.0667804405093193, 0.08027542382478714, -0.11006737500429153, 0.04830465093255043, 0.09154966473579407, -0.15130779147148132, 0.06117077171802521, -0.00977651122957468, -0.018597004935145378, -0.03699434548616409, -0.10773352533578873, -0.0586225800216198, -0.023916540667414665, 0.002344117034226656, -0.10557063668966293, 0.08440959453582764, 0.13599897921085358, -0.0032616457901895046, 0.012410065159201622, 0.10447115451097488, -0.06213488057255745, -0.07935456931591034, 0.08044033497571945, 0.013517534360289574, 0.052456147968769073, 0.03556540235877037, 0.035721275955438614, 0.0753023773431778, 0.004576227627694607, 0.09296687692403793, 0.08752058446407318, 0.09018424898386002, 0.04153180494904518, -0.07311180233955383, -0.07080039381980896, 0.03427162393927574, -0.014942513778805733, -0.0055734021589159966, 0.14644721150398254, 0.07847873121500015, 0.00993712805211544, -0.02614532969892025, 0.18260404467582703, -0.022271929308772087, -0.01589410938322544, -0.13924328982830048, 0.02959706261754036, -0.029988419264554977, -0.010994642041623592, -0.01674468070268631, -0.15652862191200256, 0.004259993322193623, 0.12497108429670334, 0.07602333277463913, -0.04090891778469086, -0.013810806907713413, -0.017644429579377174, 0.008422461338341236, -0.02841045707464218, 0.03954634070396423, 0.005528344307094812, 0.2016095072031021, -0.056239575147628784, 0.02109270915389061, -0.03283907100558281, -0.0355132557451725, -0.06090042367577553, 0.0953577309846878, -0.02346196584403515, -0.00260073971003294, -0.07368379086256027, 0.1131838709115982, -0.012913128361105919, -0.2037496566772461, 0.06656815111637115, -0.09234071522951126, -0.08518652617931366, 0.012768701650202274, -0.016707051545381546, 0.011403914541006088, 0.03032316267490387, 0.005218531470745802, -0.06321139633655548, 0.07104693353176117, 0.02716699056327343, -0.06324774026870728, -0.003239425364881754, -0.0065520815551280975, -0.10017983615398407, 0.25542160868644714, -0.029256924986839294, 0.04611007124185562, 0.08146589994430542, -0.025958526879549026, -0.1364869773387909, -0.03409899026155472, 0.08069784939289093, -0.05643396079540253, 0.018211020156741142, 0.12378435581922531, -0.009803823195397854, 0.1451440006494522, 0.08756132423877716, -0.08819592744112015, 0.050531055778265, -0.03200025111436844, 0.01317524816840887, -0.12039173394441605, 0.007204648572951555, -0.10269402712583542, 0.11531464010477066, 0.14101552963256836, -0.006639187689870596, -0.0006717105861753225, -0.038284990936517715, 0.009233278222382069, -0.003541401820257306, 0.09001524746417999, 0.0033620905596762896, -0.06174300238490105, 0.004240498878061771, -0.1403697431087494, 0.08845104277133942, -0.12653015553951263, -0.04398500174283981, 0.03728366270661354, -0.013397499918937683, -0.012379346415400505, 0.07844247668981552, 0.02853701449930668, -0.00023916567442938685, -0.062459852546453476, -0.12295942008495331, 0.03845767304301262, 0.16912800073623657, -0.011016139760613441, -0.0261771772056818 ]
14f318be607371ffa7c3366e09e6298af1bc683c
# Dataset Card for weed-crop-aerial ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/weed-crop-aerial - **Point of Contact:** [email protected] ### Dataset Summary weed-crop-aerial ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/weed-crop-aerial ### Citation Information ``` @misc{ weed-crop-aerial, title = { weed crop aerial Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/weed-crop-aerial } }, url = { https://universe.roboflow.com/object-detection/weed-crop-aerial }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/weed-crop-aerial
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:23+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "weed-crop-aerial", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "weed-crop-aerial", "1": "crop", "2": "weed"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:29:52+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for weed-crop-aerial The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary weed-crop-aerial ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for weed-crop-aerial\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nweed-crop-aerial", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for weed-crop-aerial\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nweed-crop-aerial", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for weed-crop-aerial\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nweed-crop-aerial### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.010074125602841377, 0.1519375443458557, -0.007974522188305855, 0.019534926861524582, 0.08940451592206955, -0.00414911238476634, 0.051197849214076996, 0.07501734793186188, 0.0053156279027462006, 0.16515520215034485, -0.008494270034134388, 0.07558208703994751, 0.13082465529441833, 0.07330892980098724, -0.008402572013437748, -0.14571739733219147, 0.05776795372366905, -0.059611398726701736, 0.09402810782194138, 0.06036821007728577, 0.08190744370222092, -0.14004459977149963, 0.08315426856279373, -0.018192419782280922, -0.04349713400006294, 0.030941693112254143, -0.06376500427722931, -0.02318950928747654, 0.016002574935555458, 0.027252787724137306, 0.02163565345108509, 0.033194221556186676, 0.05448576435446739, -0.19287174940109253, 0.020420778542757034, 0.085091732442379, 0.027602655813097954, 0.028957000002264977, 0.15162046253681183, -0.07291942089796066, 0.014504686929285526, -0.14638707041740417, 0.021222207695245743, 0.005800602957606316, -0.10447853803634644, -0.08146004378795624, -0.13263878226280212, 0.059554342180490494, 0.10298220813274384, 0.043626509606838226, -0.01602725312113762, 0.06123150512576103, -0.02724408730864525, 0.04256733879446983, 0.1248186007142067, -0.09090252965688705, -0.03575677424669266, 0.09076454490423203, 0.04563531652092934, 0.0799744725227356, -0.11972136795520782, -0.023640101775527, 0.00856603030115366, -0.010863577015697956, 0.0056068808771669865, -0.03434416651725769, -0.01856071874499321, -0.006323041394352913, -0.1053917333483696, -0.1291549801826477, 0.12515397369861603, 0.05872061848640442, -0.055113863199949265, -0.14092183113098145, -0.007126808166503906, 0.05227955803275108, -0.03762252256274223, -0.018951021134853363, 0.06096299737691879, -0.0006509775412268937, 0.08177203685045242, -0.060826729983091354, -0.11556220799684525, 0.06267589330673218, 0.007506330497562885, 0.028173532336950302, -0.018088987097144127, 0.040177322924137115, 0.02854182943701744, 0.07919693738222122, 0.04587150737643242, -0.11446019262075424, -0.03216119483113289, -0.03428743779659271, -0.04041734337806702, -0.06047187000513077, 0.06167105212807655, -0.09448535740375519, 0.06837470829486847, 0.07162972539663315, -0.05684802681207657, 0.011265205219388008, -0.1106799989938736, 0.011887128464877605, 0.13508839905261993, 0.1831493079662323, -0.09154119342565536, -0.07197151333093643, 0.012414945289492607, 0.04172908887267113, 0.021490097045898438, -0.018555372953414917, -0.03121412917971611, 0.0013272484065964818, 0.047455593943595886, 0.036789409816265106, 0.1034548431634903, 0.03042498044669628, -0.07315990328788757, -0.05871249735355377, 0.1696518510580063, -0.09862597286701202, 0.04668822139501572, 0.0489116795361042, -0.05888090282678604, 0.09642280638217926, 0.009134987369179726, 0.028352901339530945, -0.10872675478458405, 0.06353317201137543, -0.02602209895849228, 0.012264246121048927, -0.08169937133789062, -0.08559515327215195, 0.06055516004562378, -0.08124580979347229, -0.07646476477384567, -0.09390193969011307, -0.03611461818218231, -0.08970779925584793, 0.03670380637049675, -0.04255519062280655, 0.008685765787959099, 0.021467508748173714, -0.03900441154837608, -0.013227595947682858, 0.013477642089128494, 0.028140677139163017, -0.05815333127975464, 0.022575385868549347, -0.11493685841560364, 0.03883792459964752, 0.11417052894830704, 0.04271528497338295, -0.09039103984832764, 0.05992744863033295, -0.17733007669448853, 0.12643314898014069, -0.03273314610123634, 0.03512898087501526, -0.12658509612083435, 0.012294044718146324, -0.015543494373559952, -0.041765157133340836, -0.01525996532291174, 0.1366005539894104, -0.09358140081167221, 0.02828039415180683, 0.0412595309317112, -0.04453965276479721, -0.057568736374378204, 0.03810051456093788, -0.044355690479278564, 0.006182005163282156, 0.08302833884954453, 0.10995009541511536, -0.02637157216668129, -0.1337701976299286, -0.12316929548978806, -0.021459992974996567, -0.052769746631383896, 0.1561976820230484, 0.06497199088335037, -0.016686944290995598, 0.08679770678281784, -0.008795982226729393, -0.007278597913682461, -0.047404251992702484, 0.012545120902359486, -0.03828371688723564, 0.00940778199583292, -0.010331529192626476, -0.09234242141246796, 0.0099895428866148, -0.08717141300439835, 0.02441180869936943, -0.0699101909995079, -0.02997988648712635, 0.01783868484199047, -0.017010293900966644, 0.01228319015353918, -0.03748180717229843, 0.06617061793804169, -0.11974171549081802, 0.0006638691993430257, -0.15231439471244812, -0.10156300663948059, 0.07809602469205856, -0.03596039116382599, 0.036035388708114624, -0.05218330770730972, -0.01628558523952961, 0.008541824296116829, 0.04577196016907692, -0.012786675244569778, 0.060647714883089066, -0.023047083988785744, -0.03722100332379341, -0.12514963746070862, -0.05463576689362526, -0.02488820254802704, 0.09778421372175217, -0.12215494364500046, -0.03763885796070099, 0.12653739750385284, 0.11650609225034714, 0.021655907854437828, -0.03154231235384941, 0.056493669748306274, -0.050452955067157745, -0.02689797431230545, -0.0690067932009697, -0.01723359152674675, 0.0012750659370794892, 0.05176663398742676, 0.07504428923130035, -0.1257445514202118, -0.11965345591306686, 0.07817228138446808, 0.0288749597966671, -0.07629349082708359, -0.044731203466653824, -0.06314164400100708, -0.023582611232995987, -0.0885639488697052, -0.0458560548722744, 0.03653186187148094, 0.06294968724250793, 0.07762918621301651, -0.07229184359312057, -0.06424599140882492, 0.01692465879023075, -0.016122637316584587, -0.08917459100484848, 0.05704618617892265, 0.042820531874895096, -0.1333455890417099, 0.08395213633775711, -0.024662548676133156, 0.06311767548322678, 0.0723852887749672, 0.032615214586257935, -0.10683181881904602, 0.00007753342651994899, 0.0719376876950264, 0.012644384056329727, 0.0887598991394043, 0.0031051617115736008, 0.012066937051713467, 0.07381434738636017, -0.0063756606541574, -0.007830885238945484, -0.08769290149211884, 0.0803435742855072, 0.018679846078157425, -0.03977683559060097, 0.044210661202669144, -0.028820067644119263, 0.09041822701692581, 0.10168544948101044, 0.07461944967508316, 0.11394423991441727, -0.05129622295498848, -0.060935333371162415, -0.0941380187869072, 0.12221328914165497, -0.03363611176609993, -0.2648194432258606, -0.07103749364614487, -0.059517983347177505, -0.04127645492553711, -0.0023284584749490023, 0.02251541242003441, -0.005333977751433849, -0.08639039844274521, -0.09949527680873871, 0.06882926821708679, 0.0540522001683712, -0.11104249209165573, -0.0948188528418541, 0.03168746829032898, -0.004574182443320751, -0.0848241001367569, -0.0009374944493174553, 0.02444331720471382, -0.04368342086672783, 0.0019744723103940487, 0.03749406710267067, 0.120533786714077, 0.06553109735250473, -0.020771805197000504, -0.014212707057595253, 0.0021462170407176018, 0.19251792132854462, -0.1357492059469223, 0.13405250012874603, 0.1568036526441574, 0.009970848448574543, 0.07926812022924423, 0.20276202261447906, -0.014127600938081741, -0.01124165765941143, 0.02377314306795597, 0.06632591038942337, -0.04317290708422661, -0.20239189267158508, -0.049073725938797, -0.03432736545801163, -0.0037246732972562313, 0.14291860163211823, 0.04656709358096123, 0.010997088626027107, 0.08297798037528992, -0.10735797137022018, 0.023917589336633682, 0.02822752669453621, 0.08989971876144409, 0.04988885298371315, 0.028050310909748077, 0.04220343008637428, -0.0442667230963707, -0.05553422123193741, 0.08918695151805878, 0.1331566572189331, 0.10548427700996399, -0.08991526067256927, 0.09874999523162842, 0.0404275506734848, 0.04119689390063286, -0.050486769527196884, -0.00984053686261177, -0.023498425260186195, 0.0518973134458065, -0.005221955012530088, -0.08713554590940475, 0.021096065640449524, 0.0791831687092781, 0.14147083461284637, -0.004356138873845339, 0.0063952188938856125, -0.03296520560979843, 0.07444575428962708, 0.260324090719223, 0.012504239566624165, -0.17591387033462524, 0.017686540260910988, 0.039045996963977814, 0.004053377080708742, -0.1297491490840912, -0.03624353185296059, 0.07020124793052673, -0.15983447432518005, 0.046122439205646515, -0.022191157564520836, 0.104509137570858, -0.13764162361621857, -0.03838585689663887, 0.06871206313371658, 0.0362577922642231, -0.010696235112845898, 0.06776630133390427, -0.08896015584468842, 0.0544266402721405, 0.03442271798849106, 0.03436889871954918, -0.08993276953697205, 0.04460550472140312, -0.0009405416203662753, -0.024712782353162766, 0.13521385192871094, -0.012279673479497433, 0.011575468815863132, -0.12190931290388107, -0.11337850987911224, -0.014027615077793598, 0.056459397077560425, -0.09047342091798782, 0.10693828761577606, 0.007281352300196886, -0.03448360785841942, -0.07709634304046631, -0.07049699872732162, -0.0702686607837677, -0.1739121973514557, 0.05442088469862938, -0.03271394968032837, 0.009116035886108875, -0.018117837607860565, 0.017167147248983383, -0.020317699760198593, 0.1368134617805481, -0.050468482077121735, -0.08728870004415512, -0.12779726088047028, 0.04113847762346268, 0.08726035803556442, -0.012247917242348194, -0.009078496135771275, -0.09486404806375504, 0.18786217272281647, -0.034672509878873825, -0.08627739548683167, 0.009348577819764614, -0.06374605000019073, -0.09922999888658524, -0.05723419785499573, 0.11931181699037552, 0.04467511549592018, -0.011344068683683872, 0.0204786229878664, 0.04690226539969444, -0.014808067120611668, -0.043707363307476044, 0.032741013914346695, 0.093104787170887, 0.12359237670898438, 0.120677649974823, -0.005892976187169552, -0.15563414990901947, -0.11685868352651596, -0.004038115963339806, 0.031261805444955826, 0.11102495342493057, -0.08431001752614975, 0.101880744099617, 0.03901797905564308, -0.08794055879116058, -0.22847190499305725, 0.08330123871564865, 0.06916995346546173, -0.011433872394263744, -0.019691085442900658, -0.1393873691558838, 0.17110975086688995, 0.04133692756295204, -0.0045364308170974255, 0.08962774276733398, -0.2560322880744934, -0.0656580850481987, -0.017229927703738213, 0.01973951794207096, -0.1856992244720459, -0.15825098752975464, -0.04553398862481117, -0.0514177568256855, -0.16859428584575653, 0.05688347667455673, 0.02045363001525402, 0.0396120585501194, 0.03805975615978241, 0.05326429009437561, 0.0607355572283268, -0.038032278418540955, 0.11026718467473984, 0.032288242131471634, 0.052145957946777344, -0.0664784237742424, -0.0943438783288002, 0.015401473268866539, -0.10144975781440735, 0.1523759812116623, 0.07506614178419113, 0.028757169842720032, -0.033396799117326736, -0.018976960331201553, -0.04836596921086311, 0.08180636912584305, -0.030890600755810738, -0.03245963901281357, -0.10188370198011398, 0.04059484973549843, 0.13071511685848236, 0.024855410680174828, 0.07907257974147797, -0.032738346606492996, -0.02910197712481022, 0.11390771716833115, 0.10369312018156052, -0.009434490464627743, -0.12429742515087128, -0.037418998777866364, -0.006275249179452658, 0.03211141750216484, -0.09907516092061996, 0.050204455852508545, 0.0980011522769928, 0.021507523953914642, 0.09446576982736588, -0.015755431726574898, -0.09303595125675201, -0.01935555413365364, 0.04785754531621933, -0.08535491675138474, -0.12919825315475464, 0.024119552224874496, 0.10745052248239517, -0.11956245452165604, -0.10582061111927032, 0.11539723724126816, 0.013800473883748055, -0.03191014379262924, 0.004778766073286533, 0.07893119752407074, 0.056919198483228683, 0.03564460948109627, 0.02132348157465458, 0.03320711851119995, -0.06860040128231049, 0.12400957196950912, 0.1501195877790451, -0.12381932139396667, -0.012432686984539032, 0.09236882627010345, -0.042383257299661636, -0.021572843194007874, -0.02505509927868843, 0.020131811499595642, -0.006792750209569931, -0.016668323427438736, 0.045761145651340485, -0.07903692871332169, 0.03805296868085861, 0.08355347067117691, -0.004898523911833763, 0.07273080199956894, 0.03299100324511528, 0.001045350218191743, -0.14005696773529053, 0.13051730394363403, 0.02562853693962097, 0.05381855368614197, -0.09670108556747437, 0.000452680658781901, 0.020138060674071312, 0.03320619836449623, 0.009710554033517838, -0.04675523191690445, -0.0718342512845993, -0.012610796838998795, -0.05913858115673065, 0.11378686130046844, -0.09904542565345764, 0.00369799486361444, -0.012760414741933346, 0.02231832593679428, -0.013100597076117992, 0.03288480266928673, -0.04025600850582123, -0.0772423967719078, -0.044855739921331406, 0.13046474754810333, -0.12389682233333588, -0.03133363649249077, 0.05545157939195633, -0.09714677184820175, 0.06639034301042557, 0.009374228306114674, -0.02863864041864872, -0.09999532997608185, -0.17269675433635712, -0.04468574747443199, 0.04353664815425873, 0.07247807085514069, 0.042164139449596405, -0.09764605015516281, 0.052658647298812866, 0.0004744909529108554, -0.10026104748249054, -0.021459849551320076, -0.021417949348688126, -0.11148998141288757, 0.04242905229330063, -0.10756339132785797, -0.023953555151820183, -0.04993591457605362, 0.11833952367305756, 0.0509805902838707, 0.002238790737465024, 0.06746290624141693, -0.04270688816905022, 0.09123340994119644, -0.14223946630954742, -0.03840147703886032, -0.0202538650482893, -0.028562452644109726, -0.07179009914398193, -0.010397226549685001, 0.06457164883613586, -0.021314090117812157, 0.14308707416057587, 0.1208953857421875, 0.04215902462601662, 0.03820750489830971, -0.003766481764614582, 0.03972937539219856, 0.06791064888238907, -0.01851556822657585, -0.022723928093910217, -0.022308150306344032, 0.06798756867647171, 0.009214975871145725, 0.009117244742810726, 0.0701998621225357, 0.04812147468328476, 0.23800969123840332, 0.14156728982925415, 0.024646548554301262, 0.055473603308200836, -0.09987368434667587, -0.059075936675071716, 0.10746309906244278, -0.059961237013339996, 0.06195496767759323, -0.09888153523206711, 0.02650160901248455, 0.08210327476263046, -0.14644451439380646, 0.055594488978385925, -0.02142839878797531, -0.0026189270429313183, -0.02165798284113407, -0.0845230296254158, -0.0562170147895813, -0.0047279889695346355, 0.00013918368495069444, -0.12053705751895905, 0.07140173763036728, 0.10253814607858658, -0.0094867879524827, 0.00609339727088809, 0.0848584920167923, -0.05921567231416702, -0.08825790137052536, 0.09077592939138412, 0.014319799840450287, 0.06074699014425278, 0.0402689203619957, 0.04608598351478577, 0.09429209679365158, 0.01617097295820713, 0.08277683705091476, 0.08567919582128525, 0.10992750525474548, 0.03149685636162758, -0.07722058892250061, -0.07664887607097626, 0.03157626464962959, -0.014856217429041862, -0.010956821963191032, 0.15271081030368805, 0.07400814443826675, 0.012826032005250454, -0.02011067420244217, 0.15566788613796234, -0.005517797544598579, -0.030751314014196396, -0.134616881608963, 0.023754382506012917, -0.04575878754258156, -0.00827032420784235, -0.01390751264989376, -0.14785175025463104, -0.004849229007959366, 0.1355130523443222, 0.06431777030229568, -0.048503875732421875, -0.01881408877670765, -0.01026780903339386, 0.005454426631331444, -0.014977398328483105, 0.02834455296397209, 0.03483597934246063, 0.2065761387348175, -0.05889827758073807, -0.003266112180426717, -0.04272306337952614, -0.013851560652256012, -0.057738710194826126, 0.08208388835191727, -0.018573399633169174, 0.022150516510009766, -0.08055128902196884, 0.09611272066831589, -0.0015367274172604084, -0.1912383884191513, 0.04843515530228615, -0.07475190609693527, -0.07963286340236664, 0.0199518371373415, -0.03347262367606163, -0.007517656311392784, 0.027031656354665756, 0.007256123702973127, -0.05930011346936226, 0.11796863377094269, 0.011409842409193516, -0.05728698894381523, 0.02355269156396389, 0.010729760862886906, -0.08368610590696335, 0.2724888026714325, -0.033609841018915176, 0.04304705932736397, 0.08011330664157867, -0.009138915687799454, -0.15924319624900818, -0.04170449823141098, 0.06864109635353088, -0.05633244663476944, 0.02940051257610321, 0.11242727190256119, 0.008159062825143337, 0.1297309547662735, 0.0971204936504364, -0.08684880286455154, 0.04540690407156944, 0.0021542892791330814, 0.023929867893457413, -0.12396560609340668, 0.014529433101415634, -0.08488286286592484, 0.11049434542655945, 0.1234472393989563, -0.004293057136237621, -0.005865119863301516, -0.033875253051519394, 0.0011232236865907907, 0.010731271468102932, 0.11758872866630554, 0.0017676148563623428, -0.06697041541337967, 0.018264921382069588, -0.1471254974603653, 0.08019746840000153, -0.11765199899673462, -0.07362677156925201, 0.04090147465467453, -0.01792881079018116, -0.016376236453652382, 0.08311357349157333, 0.02269637957215309, 0.02446134015917778, -0.05188082158565521, -0.10934650152921677, 0.022640321403741837, 0.16145943105220795, -0.014274847693741322, -0.026417745277285576 ]
d807d10f8a8ce4aa40ad662924e5d5c52239c51e
# Dataset Card for wall-damage ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/wall-damage - **Point of Contact:** [email protected] ### Dataset Summary wall-damage ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/wall-damage ### Citation Information ``` @misc{ wall-damage, title = { wall damage Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/wall-damage } }, url = { https://universe.roboflow.com/object-detection/wall-damage }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/wall-damage
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:43+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "wall-damage", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "wall-damage", "1": "Minorrotation", "2": "Moderaterotation", "3": "Severerotation"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:29:58+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for wall-damage The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary wall-damage ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for wall-damage\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nwall-damage", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for wall-damage\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nwall-damage", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for wall-damage\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nwall-damage### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.020527636632323265, 0.16269780695438385, -0.008742986246943474, 0.024023042991757393, 0.11066272109746933, 0.003578203497454524, 0.053458888083696365, 0.07730110734701157, 0.02228030189871788, 0.16286985576152802, -0.015989569947123528, 0.07482229173183441, 0.12801794707775116, 0.105040542781353, -0.01906590908765793, -0.14776399731636047, 0.05954252555966377, -0.06476323306560516, 0.06735622137784958, 0.06743980944156647, 0.06768206506967545, -0.13434556126594543, 0.09788991510868073, -0.03596162423491478, -0.047378700226545334, 0.013612272217869759, -0.02530677430331707, -0.04262423887848854, 0.02068237029016018, 0.028738897293806076, 0.03604471683502197, 0.013565311208367348, 0.04053323343396187, -0.18809174001216888, 0.026303209364414215, 0.11059316247701645, 0.013535529375076294, 0.037951841950416565, 0.1315826028585434, -0.09167952090501785, 0.046814851462841034, -0.13696496188640594, 0.02549048885703087, 0.02147146500647068, -0.1261899471282959, -0.09717029333114624, -0.12815380096435547, 0.04695046320557594, 0.1192566305398941, 0.05162215232849121, -0.009558913297951221, 0.055705711245536804, -0.0030010943301022053, 0.058168500661849976, 0.12336110323667526, -0.08931606262922287, -0.0509350411593914, 0.10051953792572021, 0.030959483236074448, 0.10483570396900177, -0.11409563571214676, -0.010694114491343498, -0.00823699589818716, -0.02636009454727173, 0.017709312960505486, -0.07607818394899368, -0.032578133046627045, 0.0029534203931689262, -0.09366307407617569, -0.1255125254392624, 0.14028187096118927, 0.058020275086164474, -0.04953857511281967, -0.12281663715839386, -0.03293515369296074, 0.0430457629263401, -0.029187481850385666, -0.012098298408091068, 0.04833422601222992, 0.001788537367247045, 0.06667343527078629, -0.060808729380369186, -0.1006661131978035, 0.04328423738479614, 0.0007316961418837309, 0.026567161083221436, -0.03392510488629341, 0.043775323778390884, 0.006445135455578566, 0.07747510820627213, -0.009879166260361671, -0.11491352319717407, -0.03355002403259277, -0.04400763660669327, -0.0735013335943222, -0.03751681372523308, 0.06136967986822128, -0.12716345489025116, 0.06416995823383331, 0.05376015603542328, -0.08905740827322006, 0.04116681218147278, -0.1178131252527237, 0.020862139761447906, 0.10016731917858124, 0.19437727332115173, -0.08107700943946838, -0.10112523287534714, -0.005033296998590231, 0.027275236323475838, 0.024089492857456207, -0.040053147822618484, -0.03468863666057587, -0.014058275148272514, 0.03305590897798538, 0.03285050392150879, 0.09910525381565094, 0.028844019398093224, -0.07221993803977966, -0.051131755113601685, 0.11135318130254745, -0.10709153115749359, 0.06430704146623611, 0.04815055802464485, -0.02972639910876751, 0.07034473121166229, 0.021848825737833977, 0.011210530996322632, -0.10243957489728928, 0.07955032587051392, -0.044121623039245605, 0.025611259043216705, -0.09940696507692337, -0.08677173405885696, 0.044628072530031204, -0.08592560142278671, -0.09067132323980331, -0.08505978435277939, -0.05500214919447899, -0.08816353231668472, 0.04197310656309128, -0.04121779277920723, 0.02978409081697464, 0.015262375585734844, -0.04200021177530289, -0.00032128251041285694, 0.009456975385546684, 0.028171703219413757, -0.04866588115692139, 0.03452811762690544, -0.10168593376874924, 0.03694957494735718, 0.08356443047523499, 0.031238600611686707, -0.07477308809757233, 0.06288313865661621, -0.2109423130750656, 0.12234779447317123, -0.03154889866709709, 0.03236866369843483, -0.13920818269252777, 0.021759603172540665, -0.03092527575790882, -0.03831658139824867, -0.0003431860823184252, 0.13408593833446503, -0.10221460461616516, 0.01761336252093315, 0.09803465753793716, -0.04874693229794502, -0.04946489632129669, 0.03716195002198219, -0.041988492012023926, 0.01067910436540842, 0.08518487960100174, 0.09905228763818741, -0.02564501203596592, -0.12268149852752686, -0.11463315039873123, -0.049925338476896286, -0.053460802882909775, 0.13707934319972992, 0.054709408432245255, -0.04298315569758415, 0.08168967068195343, -0.011152313090860844, -0.0174237210303545, -0.02648124285042286, 0.017665116116404533, -0.03142950311303139, 0.015256399288773537, 0.004985944367945194, -0.0646742582321167, 0.012376542203128338, -0.10668102651834488, 0.016864800825715065, -0.08556601405143738, -0.04438912495970726, 0.004848202224820852, -0.017134275287389755, 0.026428954675793648, -0.04294012486934662, 0.0964844822883606, -0.10397621244192123, -0.003445061156526208, -0.14955592155456543, -0.09183432161808014, 0.05951143428683281, 0.015714295208454132, 0.047407716512680054, -0.07411018013954163, 0.002530098892748356, 0.009203154593706131, 0.03231670707464218, -0.017968880012631416, 0.04213685169816017, -0.02619505487382412, -0.030110811814665794, -0.13025178015232086, -0.015956616029143333, -0.024223163723945618, 0.0999264270067215, -0.12354109436273575, -0.02600800432264805, 0.15762127935886383, 0.11142194271087646, 0.051835495978593826, -0.05138783156871796, 0.05905934423208237, -0.01612604781985283, -0.031251538544893265, -0.07313764095306396, -0.01547521073371172, -0.012012361548841, 0.024172641336917877, 0.09128664433956146, -0.20047667622566223, -0.11976253241300583, 0.08162382990121841, 0.003930369392037392, -0.08266345411539078, -0.05467782914638519, -0.04068564623594284, -0.008128075860440731, -0.08914623409509659, -0.05440858006477356, 0.05111599341034889, 0.06089523434638977, 0.08326992392539978, -0.05953655391931534, -0.03476973995566368, 0.024666741490364075, -0.013314525596797466, -0.08024903386831284, 0.039330508559942245, 0.05329204723238945, -0.09894879162311554, 0.09303417801856995, 0.025957942008972168, 0.039360035210847855, 0.11796343326568604, 0.035600028932094574, -0.09949363768100739, -0.016100334003567696, 0.07609402388334274, 0.02791569195687771, 0.10822372883558273, -0.03357231989502907, 0.008078528568148613, 0.07183670997619629, 0.00496550090610981, -0.032445792108774185, -0.09002973139286041, 0.08117923140525818, 0.029421065002679825, -0.03543933853507042, 0.055307451635599136, -0.024639276787638664, 0.0821707472205162, 0.1013377234339714, 0.046065375208854675, 0.08862704038619995, -0.052994515746831894, -0.06119253858923912, -0.09299874305725098, 0.12200770527124405, -0.04827649146318436, -0.24998001754283905, -0.084084153175354, -0.07774565368890762, -0.04490465298295021, -0.000783332739956677, 0.024160265922546387, -0.0008974943193607032, -0.08073686808347702, -0.08451464772224426, 0.05593149736523628, 0.07296685129404068, -0.10011465847492218, -0.08787594735622406, 0.02041604556143284, -0.0002276877494296059, -0.07997729629278183, -0.008777209557592869, 0.02388259768486023, -0.07279202342033386, 0.019298335537314415, 0.044984810054302216, 0.13551481068134308, 0.08254542201757431, -0.022700531408190727, 0.00959925539791584, -0.013772248290479183, 0.1795385777950287, -0.15467610955238342, 0.13838110864162445, 0.16559013724327087, 0.01365966908633709, 0.09052693098783493, 0.2068154513835907, -0.01073509268462658, -0.00471948366612196, 0.012461934238672256, 0.06610886752605438, -0.05992650240659714, -0.19254708290100098, -0.046513210982084274, -0.059696588665246964, 0.018907032907009125, 0.10458961874246597, 0.040739379823207855, 0.02903803437948227, 0.0809062048792839, -0.09440477192401886, 0.017692821100354195, 0.04766937345266342, 0.09859143942594528, 0.03872353583574295, 0.028952738270163536, 0.04853522405028343, -0.04227864742279053, -0.02530897967517376, 0.09958042949438095, 0.1392812430858612, 0.12458598613739014, -0.08912868797779083, 0.10117873549461365, 0.02884034812450409, 0.014061243273317814, -0.04415643587708473, -0.001844467013143003, -0.03202785924077034, 0.05390806868672371, -0.010600979439914227, -0.09128507971763611, -0.0036595179699361324, 0.07546920329332352, 0.12023672461509705, 0.0008812968153506517, 0.01680390164256096, -0.0003807182947639376, 0.09736213833093643, 0.20146380364894867, 0.030848674476146698, -0.18403448164463043, 0.030784575268626213, 0.03248528018593788, 0.02167520672082901, -0.13340505957603455, -0.03235701471567154, 0.1099269688129425, -0.16306371986865997, 0.06328535825014114, -0.04780703783035278, 0.1088998094201088, -0.12665468454360962, -0.032352104783058167, 0.04030368849635124, 0.04400757700204849, -0.027528388425707817, 0.06429804861545563, -0.1193266212940216, 0.09032896906137466, 0.044086772948503494, 0.03917882591485977, -0.07676078379154205, 0.044363588094711304, 0.012849581427872181, -0.0030829792376607656, 0.14139185845851898, -0.005307967774569988, -0.03878755494952202, -0.1328860968351364, -0.09676031023263931, -0.016097519546747208, 0.05962854623794556, -0.05726988986134529, 0.10280641913414001, 0.00665965536609292, -0.03897161781787872, -0.06603045761585236, -0.04012756794691086, -0.060802292078733444, -0.1775956153869629, 0.04194311052560806, -0.0016268271720036864, 0.018061265349388123, -0.018972598016262054, 0.0413115993142128, 0.0003687481221277267, 0.09215658158063889, -0.07715434581041336, -0.07510598003864288, -0.14572903513908386, 0.0221086572855711, 0.05452720448374748, -0.03296608850359917, -0.020236952230334282, -0.08725358545780182, 0.1687053143978119, -0.03749389946460724, -0.061563096940517426, 0.03780115768313408, -0.0478844940662384, -0.09402338415384293, -0.0768495574593544, 0.11296848952770233, 0.033469781279563904, -0.007931763306260109, 0.007301916368305683, 0.057610418647527695, 0.0052395169623196125, -0.05754663422703743, 0.048125214874744415, 0.12036260217428207, 0.11673474311828613, 0.14704129099845886, 0.016227923333644867, -0.1589471697807312, -0.11063557863235474, 0.015038864687085152, 0.044130418449640274, 0.09001290798187256, -0.08751119673252106, 0.10062552243471146, 0.022569505497813225, -0.10181869566440582, -0.2360147386789322, 0.08341523259878159, 0.05384901538491249, -0.008185649290680885, -0.002302230102941394, -0.1401246339082718, 0.1275704950094223, 0.04668144881725311, 0.00042753637535497546, 0.07840543240308762, -0.24618707597255707, -0.0693381205201149, -0.03072204440832138, 0.04946588724851608, -0.16357383131980896, -0.15587006509304047, -0.03848221153020859, -0.03423561900854111, -0.1780661642551422, 0.05351309850811958, -0.021843235939741135, 0.03678238019347191, 0.04651114344596863, 0.058936748653650284, 0.06002485379576683, -0.04610753431916237, 0.10980607569217682, 0.015949852764606476, 0.05033613368868828, -0.07239581644535065, -0.09115636348724365, 0.07424091547727585, -0.10937345027923584, 0.11729130893945694, 0.02886085771024227, 0.01491096056997776, -0.04969744011759758, -0.012350816279649734, -0.03460731729865074, 0.07656298577785492, -0.03428363800048828, -0.04329618066549301, -0.08016461879014969, 0.03906722366809845, 0.11893481016159058, 0.01799425482749939, 0.0832146555185318, -0.047652486711740494, -0.011120827868580818, 0.16772231459617615, 0.11376600712537766, -0.01747821643948555, -0.12753237783908844, -0.040518127381801605, 0.005232233554124832, 0.035980209708213806, -0.11646615713834763, 0.056229714304208755, 0.08701466023921967, 0.01476666983217001, 0.10620276629924774, -0.008850750513374805, -0.09956461936235428, 0.011731118895113468, 0.060023970901966095, -0.09195000678300858, -0.15843871235847473, 0.006506150122731924, 0.08319953829050064, -0.10836758464574814, -0.10066917538642883, 0.12806686758995056, 0.012883976101875305, -0.012500359676778316, 0.014467831701040268, 0.07979167997837067, 0.053172122687101364, 0.04391971975564957, 0.0071827261708676815, 0.036096930503845215, -0.06107574701309204, 0.10661076754331589, 0.14398442208766937, -0.12419518083333969, 0.002548612654209137, 0.12112509459257126, -0.04709619656205177, -0.015604326501488686, -0.04581929370760918, 0.07076813280582428, -0.021456841379404068, -0.0315522626042366, 0.029737507924437523, -0.06974423676729202, 0.02377321384847164, 0.11422295868396759, -0.01226309034973383, 0.05607699230313301, 0.033773500472307205, -0.012573749758303165, -0.11906115710735321, 0.1407262235879898, 0.0016907259123399854, 0.05458979308605194, -0.10677219182252884, 0.022511838003993034, 0.015429317019879818, 0.022306270897388458, 0.008187005296349525, -0.0710306316614151, -0.0755702406167984, -0.0018022177973762155, -0.05957714468240738, 0.10367321968078613, -0.08950429409742355, -0.014486887492239475, -0.016485225409269333, 0.02010370045900345, -0.020883571356534958, 0.027767708525061607, -0.0426950640976429, -0.06643174588680267, -0.042828939855098724, 0.12668675184249878, -0.13725152611732483, -0.022848326712846756, 0.054215364158153534, -0.08253209292888641, 0.06984048336744308, -0.003910476341843605, -0.03910904377698898, -0.07063055783510208, -0.18170179426670074, -0.030377859249711037, 0.030369265004992485, 0.05497292801737785, 0.04770088195800781, -0.08566274493932724, 0.05417931452393532, -0.017713898792862892, -0.09256546199321747, -0.02100284770131111, -0.012482634745538235, -0.10634611546993256, 0.060541436076164246, -0.07892128080129623, -0.03071683645248413, -0.04556477814912796, 0.14098864793777466, 0.04929724335670471, 0.004785789176821709, 0.06251039355993271, -0.04752752184867859, 0.09281718730926514, -0.15672631561756134, -0.03305326774716377, -0.0020533797796815634, -0.030417704954743385, -0.07239573448896408, -0.014734061434864998, 0.07538564503192902, -0.03162696957588196, 0.10688130557537079, 0.1290571242570877, 0.03257386386394501, 0.035430606454610825, -0.02452070266008377, 0.028713027015328407, 0.049457501620054245, -0.021667225286364555, -0.019327474758028984, -0.025131037458777428, 0.06827105581760406, 0.011795454658567905, 0.020252399146556854, 0.10853032022714615, 0.09343238919973373, 0.23063069581985474, 0.15149444341659546, 0.027605101466178894, 0.044780388474464417, -0.08080743253231049, -0.08046864718198776, 0.09113548696041107, -0.07433314621448517, 0.06300803273916245, -0.10344100743532181, 0.006628735456615686, 0.11422187089920044, -0.1668063998222351, 0.06331929564476013, -0.01401656772941351, -0.011761068366467953, -0.03482833132147789, -0.12832631170749664, -0.05774949863553047, -0.03598980978131294, -0.00449324632063508, -0.11382242292165756, 0.07340307533740997, 0.10290152579545975, -0.01255015842616558, 0.015116756781935692, 0.0906885415315628, -0.0882708802819252, -0.06845125555992126, 0.0892142578959465, 0.02523963712155819, 0.07951561361551285, 0.055073171854019165, 0.03821945935487747, 0.06652605533599854, -0.0017785521922633052, 0.09563977271318436, 0.08634389936923981, 0.11357667297124863, 0.043335311114788055, -0.07635913789272308, -0.06925909966230392, 0.03781135752797127, -0.0065984297543764114, -0.031110472977161407, 0.14532802999019623, 0.07117290794849396, 0.01444743387401104, -0.01925651542842388, 0.18028883635997772, -0.024385329335927963, -0.0192169900983572, -0.14831507205963135, 0.0474533885717392, -0.02808343432843685, -0.001736604841426015, -0.02070566453039646, -0.15768158435821533, 0.003191751427948475, 0.12213972210884094, 0.07133689522743225, -0.049588486552238464, -0.007622849196195602, -0.016008228063583374, 0.013220993801951408, -0.002028122777119279, 0.05056542530655861, 0.01847713626921177, 0.23130680620670319, -0.04831313341856003, 0.004927698988467455, -0.03038225695490837, -0.020412364974617958, -0.06896977126598358, 0.07862349599599838, -0.020972536876797676, 0.0019457730231806636, -0.0673832893371582, 0.10448875278234482, 0.002262648893520236, -0.17465688288211823, 0.060726843774318695, -0.11146660149097443, -0.08587769418954849, 0.009332003071904182, 0.009195289574563503, -0.0027990895323455334, 0.023406853899359703, 0.013473459519445896, -0.06303476542234421, 0.11325935274362564, 0.02294456586241722, -0.06009392440319061, -0.004306643735617399, -0.0007044870872050524, -0.11657050997018814, 0.27298885583877563, -0.026303522288799286, 0.004545050673186779, 0.10337066650390625, -0.013437989167869091, -0.1387566179037094, -0.019327716901898384, 0.07107071578502655, -0.048551272600889206, 0.0003592770954128355, 0.12149248272180557, -0.0036857377272099257, 0.14500097930431366, 0.09334035962820053, -0.07405762374401093, 0.04401148855686188, -0.02699691243469715, 0.009818007238209248, -0.10660866647958755, 0.016701020300388336, -0.08602474629878998, 0.10356250405311584, 0.14849936962127686, 0.00465758889913559, -0.00016839843010529876, -0.03717439994215965, -0.015486393123865128, 0.012562454678118229, 0.10500775277614594, -0.011519168503582478, -0.0420144721865654, 0.013538731262087822, -0.10437186062335968, 0.07616505771875381, -0.10717590153217316, -0.06712553650140762, 0.030651988461613655, -0.008436430245637894, -0.02420930005609989, 0.0943913459777832, 0.05443974584341049, 0.015592653304338455, -0.05157582089304924, -0.10381122678518295, 0.024469424039125443, 0.1795230209827423, -0.014513730071485043, -0.02374085783958435 ]
b1490a11c0bed13ed720730e3666625400f31c85
# Dataset Card for animals-ij5d2 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/animals-ij5d2 - **Point of Contact:** [email protected] ### Dataset Summary animals-ij5d2 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/animals-ij5d2 ### Citation Information ``` @misc{ animals-ij5d2, title = { animals ij5d2 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/animals-ij5d2 } }, url = { https://universe.roboflow.com/object-detection/animals-ij5d2 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/animals-ij5d2
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:48+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "animals-ij5d2", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "animals", "1": "cat", "2": "chicken", "3": "cow", "4": "dog", "5": "fox", "6": "goat", "7": "horse", "8": "person", "9": "racoon", "10": "skunk"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:09+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for animals-ij5d2 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary animals-ij5d2 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for animals-ij5d2\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nanimals-ij5d2", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for animals-ij5d2\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nanimals-ij5d2", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for animals-ij5d2\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nanimals-ij5d2### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.010654553771018982, 0.17946495115756989, -0.007170081604272127, 0.019852207973599434, 0.11215108633041382, 0.008065479807555676, 0.061595369130373, 0.10007185488939285, -0.0003039721923414618, 0.16171906888484955, 0.0033564739860594273, 0.08740372210741043, 0.12151564657688141, 0.08235383778810501, -0.01502260658890009, -0.1587369590997696, 0.0680173709988594, -0.05674140527844429, 0.06585206836462021, 0.06551197916269302, 0.07178549468517303, -0.1370038539171219, 0.08729253709316254, -0.03675008937716484, -0.038481179624795914, 0.022365860641002655, -0.058922890573740005, -0.033428438007831573, 0.015256848186254501, 0.03329845145344734, 0.007873914204537868, 0.01576646789908409, 0.04467875510454178, -0.1897064447402954, 0.018035512417554855, 0.10182338953018188, 0.02737552486360073, 0.026187323033809662, 0.16752703487873077, -0.08460702747106552, 0.05304757505655289, -0.13673023879528046, 0.04311271756887436, 0.018733931705355644, -0.10694495588541031, -0.12960539758205414, -0.10720238089561462, 0.06825117021799088, 0.10940305143594742, 0.04976429417729378, -0.018735840916633606, 0.07173343747854233, -0.014093268662691116, 0.06228604167699814, 0.12175852060317993, -0.07514822483062744, -0.042091645300388336, 0.08783885091543198, 0.014762320555746555, 0.10897529870271683, -0.11909735947847366, -0.01643434353172779, 0.007399931084364653, -0.02893168479204178, -0.0002810473379213363, -0.04781771078705788, -0.041936665773391724, -0.021593362092971802, -0.105393186211586, -0.1479298174381256, 0.1404414176940918, 0.05597095564007759, -0.057666927576065063, -0.1381034106016159, -0.002375449286773801, 0.051277533173561096, -0.039565976709127426, 0.005049553234130144, 0.048505522310733795, -0.011564881540834904, 0.06723129749298096, -0.06074776500463486, -0.10409639030694962, 0.05067349597811699, 0.035287436097860336, 0.03800522908568382, -0.0071015567518770695, 0.0408443883061409, 0.01338142342865467, 0.07233188301324844, -0.0019047443056479096, -0.10018952190876007, -0.012567057274281979, -0.027571698650717735, -0.07233112305402756, -0.043168794363737106, 0.061821646988391876, -0.15506486594676971, 0.07010450214147568, 0.05379636585712433, -0.060937896370887756, 0.03204398974776268, -0.13640594482421875, 0.01619555428624153, 0.10256452858448029, 0.17788636684417725, -0.08955150097608566, -0.09986475110054016, 0.0014545641606673598, 0.04590250179171562, 0.0054564094170928, -0.03557239845395088, -0.02840234898030758, -0.010667910799384117, 0.03446085751056671, 0.031124139204621315, 0.12978948652744293, 0.04455956816673279, -0.06441495567560196, -0.0689794197678566, 0.12140345573425293, -0.09669331461191177, 0.039739061146974564, 0.05901392921805382, -0.05445265769958496, 0.078035868704319, -0.003502307692542672, 0.024450020864605904, -0.10045797377824783, 0.100865438580513, -0.02475842647254467, 0.01007890049368143, -0.08721208572387695, -0.10135967284440994, 0.050707194954156876, -0.07873576134443283, -0.07238887995481491, -0.08434825390577316, -0.05223304033279419, -0.08111690729856491, 0.04278437793254852, -0.04165412113070488, 0.008241639472544193, 0.017178058624267578, -0.03930535167455673, -0.0064910538494586945, 0.017191732302308083, 0.04685632884502411, -0.05617162585258484, 0.03769683092832565, -0.10844393074512482, 0.04078352078795433, 0.09606457501649857, 0.04667472466826439, -0.10177797824144363, 0.05487683415412903, -0.1810152679681778, 0.13369368016719818, -0.05134037137031555, 0.04562098905444145, -0.12692897021770477, 0.0226597860455513, -0.01368619967252016, -0.05013294517993927, -0.0064627076499164104, 0.13060007989406586, -0.07867886871099472, 0.022166762501001358, 0.06575868278741837, -0.05794323608279228, -0.058485135436058044, 0.05400853231549263, -0.04027225822210312, 0.013676277361810207, 0.0967092290520668, 0.14084431529045105, -0.02403908222913742, -0.12007313966751099, -0.10414537787437439, -0.03020373173058033, -0.031392306089401245, 0.15550415217876434, 0.07924649864435196, -0.03383355960249901, 0.0885578840970993, -0.008641297928988934, -0.013249650597572327, -0.033476319164037704, 0.014123101718723774, -0.037025678902864456, 0.020228978246450424, -0.016317754983901978, -0.06646080315113068, 0.024253230541944504, -0.09000933170318604, 0.005681837443262339, -0.07298915088176727, -0.05324733257293701, 0.026516608893871307, -0.026134807616472244, 0.020613182336091995, -0.006184165365993977, 0.10009042173624039, -0.1342059224843979, 0.0025001366157084703, -0.15996675193309784, -0.09324420243501663, 0.06322748214006424, -0.042630884796381, 0.053739920258522034, -0.05360632762312889, -0.014645660296082497, 0.019338438287377357, 0.038992900401353836, -0.018468264490365982, 0.044367287307977676, -0.018508529290556908, -0.059851840138435364, -0.13990885019302368, -0.027997449040412903, -0.028850939124822617, 0.11865029484033585, -0.12426887452602386, -0.01124571356922388, 0.14270703494548798, 0.11403225362300873, 0.039297230541706085, -0.04772502928972244, 0.07442006468772888, -0.03036966547369957, -0.028830144554376602, -0.07978811115026474, 0.0001312306267209351, 0.002364806132391095, 0.030361823737621307, 0.08810347318649292, -0.15865018963813782, -0.1234109029173851, 0.09170631319284439, 0.01971181109547615, -0.09375547617673874, -0.0372496023774147, -0.04769371822476387, -0.018209246918559074, -0.09634207934141159, -0.03899192065000534, 0.039235733449459076, 0.0640987977385521, 0.08761196583509445, -0.0680488646030426, -0.03653448447585106, 0.01935211755335331, -0.02078164555132389, -0.06255660951137543, 0.07151118665933609, 0.04414403811097145, -0.1201443150639534, 0.11067137867212296, -0.02533630095422268, 0.03935888782143593, 0.09845805168151855, 0.043816160410642624, -0.12782853841781616, 0.025596126914024353, 0.08538088202476501, 0.03178120404481888, 0.08765234053134918, -0.018192710354924202, 0.01931385137140751, 0.08253518491983414, -0.008193873800337315, -0.018770182505249977, -0.08982973545789719, 0.08782334625720978, 0.04568525403738022, -0.03000396303832531, 0.033750683069229126, -0.026352491229772568, 0.08183054625988007, 0.10876676440238953, 0.06860999763011932, 0.11453910171985626, -0.034418683499097824, -0.0534391775727272, -0.09174131602048874, 0.1271720677614212, -0.022995004430413246, -0.2707703709602356, -0.07873273640871048, -0.07550565898418427, -0.0644000843167305, -0.0073832240886986256, 0.043979205191135406, -0.00447528250515461, -0.07419918477535248, -0.0864671841263771, 0.048842258751392365, 0.047644514590501785, -0.08913342654705048, -0.11346646398305893, 0.030513308942317963, 0.010313465259969234, -0.07557275891304016, 0.004499939735978842, 0.027419529855251312, -0.051509227603673935, 0.00794918742030859, 0.051094796508550644, 0.13533514738082886, 0.05420885980129242, -0.040657781064510345, -0.010567348450422287, -0.009772565215826035, 0.19013290107250214, -0.1433211714029312, 0.09513897448778152, 0.1395285725593567, 0.003799053141847253, 0.08072232455015182, 0.2018738090991974, -0.014982668682932854, -0.019266054034233093, 0.02450951375067234, 0.08011494576931, -0.06775152683258057, -0.19525371491909027, -0.04381483048200607, -0.047094590961933136, 0.04497414827346802, 0.14865565299987793, 0.036210738122463226, 0.027779899537563324, 0.10407030582427979, -0.11698229610919952, 0.038837406784296036, 0.02299785614013672, 0.1211446225643158, 0.03400148078799248, 0.04514053836464882, 0.05075431987643242, -0.046476006507873535, -0.031294867396354675, 0.09172666072845459, 0.12180711328983307, 0.11634792387485504, -0.09911137819290161, 0.10479586571455002, 0.02340512163937092, 0.02286994457244873, -0.045187123119831085, 0.0024266564287245274, -0.04876790568232536, 0.05816211551427841, -0.006512489635497332, -0.09225193411111832, -0.005521297454833984, 0.08508346974849701, 0.13761021196842194, 0.00031484136707149446, 0.0007513078744523227, -0.03164605423808098, 0.08031204342842102, 0.23759588599205017, -0.004142562858760357, -0.19708286225795746, 0.02406151220202446, 0.027850903570652008, 0.008343012072145939, -0.11439570039510727, -0.039563730359077454, 0.07601991295814514, -0.17688193917274475, 0.055893998593091965, -0.038760457187891006, 0.11189623922109604, -0.1482071578502655, -0.03361716493964195, 0.043789930641651154, 0.026778537780046463, -0.026668433099985123, 0.08846762031316757, -0.12778344750404358, 0.07811702787876129, 0.03973151370882988, 0.025850027799606323, -0.08676737546920776, 0.03987356647849083, 0.010348981246352196, -0.013573264703154564, 0.14631709456443787, -0.02341333031654358, -0.00025931731215678155, -0.143666073679924, -0.11612921208143234, -0.022378921508789062, 0.04022781923413277, -0.07985599339008331, 0.10845741629600525, 0.012469888664782047, -0.02425198070704937, -0.09079472720623016, -0.027325134724378586, -0.04866325482726097, -0.19940219819545746, 0.03897658735513687, -0.005068046972155571, 0.024841217324137688, -0.010138287208974361, 0.029702991247177124, 0.01015338022261858, 0.12422328442335129, -0.04617226868867874, -0.10418710857629776, -0.14872092008590698, 0.050446752458810806, 0.071517713367939, -0.020630167797207832, -0.027735093608498573, -0.09695236384868622, 0.18474265933036804, -0.039527904242277145, -0.07066705077886581, 0.008779275231063366, -0.07449522614479065, -0.12254032492637634, -0.05903790146112442, 0.09552475064992905, 0.030852247029542923, 0.01921001635491848, 0.011334053240716457, 0.05417817458510399, -0.003149508498609066, -0.04293225705623627, 0.019171038642525673, 0.0850449949502945, 0.1286831945180893, 0.1240900307893753, 0.0012781338300555944, -0.15689340233802795, -0.14579324424266815, 0.0007557449862360954, 0.057978007942438126, 0.11546237021684647, -0.07791701704263687, 0.12333644181489944, 0.05313550680875778, -0.09637371450662613, -0.22085602581501007, 0.09551631659269333, 0.08131496608257294, -0.01755702868103981, -0.004915018565952778, -0.1494130641222, 0.15001752972602844, 0.04710540920495987, -0.00136857689358294, 0.0798775777220726, -0.26558345556259155, -0.07375748455524445, -0.018963471055030823, 0.048767462372779846, -0.21850281953811646, -0.17852012813091278, -0.03948289155960083, -0.051472194492816925, -0.15683920681476593, 0.06606463342905045, -0.006998790428042412, 0.04696417972445488, 0.04362392798066139, 0.0370328463613987, 0.06932558864355087, -0.04413403943181038, 0.1137380301952362, 0.03365100547671318, 0.037240318953990936, -0.06324028968811035, -0.07497341185808182, 0.03106072172522545, -0.09550539404153824, 0.13242650032043457, 0.029175125062465668, 0.0058855111710727215, -0.09213709086179733, -0.015400524251163006, -0.037306156009435654, 0.07339760661125183, -0.02949799783527851, -0.05579451471567154, -0.09496622532606125, 0.03885814547538757, 0.16374102234840393, 0.029558997601270676, 0.08505353331565857, -0.044709011912345886, -0.004534542094916105, 0.1556755006313324, 0.08523774892091751, 0.018600234761834145, -0.15551318228244781, -0.05635973811149597, -0.0012316807406023145, 0.041172049939632416, -0.11410170793533325, 0.03761807456612587, 0.08733557909727097, 0.01791570521891117, 0.10565710812807083, -0.015075987204909325, -0.10009285807609558, 0.00957394391298294, 0.040863752365112305, -0.09993641078472137, -0.09526397287845612, 0.03407415747642517, 0.11059174686670303, -0.10878977179527283, -0.1335928738117218, 0.1099674329161644, -0.0032060628291219473, -0.02314048819243908, 0.000525127921719104, 0.073831707239151, 0.06133272498846054, 0.06475275009870529, 0.006427805405110121, 0.04139084368944168, -0.07072009146213531, 0.10174557566642761, 0.15047860145568848, -0.15035510063171387, 0.010840780101716518, 0.10607828199863434, -0.0450771227478981, -0.012305069714784622, -0.024525020271539688, 0.03660760074853897, -0.020131800323724747, -0.030469000339508057, 0.034404218196868896, -0.04250088706612587, 0.030918972566723824, 0.07565785944461823, 0.00391702214255929, 0.03530678153038025, 0.03147130459547043, -0.018708601593971252, -0.15586243569850922, 0.1451430469751358, 0.018989907577633858, 0.0597013495862484, -0.09957277029752731, 0.014775669202208519, 0.023845361545681953, -0.014150469563901424, 0.015192386694252491, -0.05550948157906532, -0.0732937753200531, -0.004177779424935579, -0.027214430272579193, 0.11376408487558365, -0.0829572081565857, 0.0016562133096158504, -0.011487404815852642, 0.008999524638056755, -0.00373557535931468, 0.018672458827495575, -0.05792131647467613, -0.08301665633916855, -0.03876686841249466, 0.12370053678750992, -0.1317587047815323, -0.030639443546533585, 0.04361771419644356, -0.08725195378065109, 0.042279668152332306, 0.00833573006093502, -0.03677641600370407, -0.09289459139108658, -0.17829233407974243, -0.0357028990983963, 0.02813120372593403, 0.05912934988737106, 0.03921419382095337, -0.08350050449371338, 0.04915798455476761, -0.013686586171388626, -0.09762028604745865, -0.006086945533752441, -0.00798009429126978, -0.11978466808795929, 0.05292554572224617, -0.09480035305023193, -0.026158815249800682, -0.037771474570035934, 0.12440954148769379, 0.04957800731062889, 0.010493535548448563, 0.095132015645504, -0.05889788642525673, 0.10225296765565872, -0.11920175701379776, -0.039196379482746124, -0.012967050075531006, -0.033013828098773956, -0.0779832974076271, -0.010701910592615604, 0.06614013016223907, -0.025581222027540207, 0.12377214431762695, 0.12270151078701019, 0.04788225516676903, 0.04504247382283211, -0.005923093296587467, 0.06486096978187561, 0.04750176891684532, -0.012741864658892155, -0.014625489711761475, -0.016746049746870995, 0.07604765146970749, 0.030358657240867615, 0.03584085777401924, 0.08836974203586578, 0.0743851438164711, 0.22920745611190796, 0.1316264569759369, 0.009681718423962593, 0.03873200714588165, -0.06956582516431808, -0.07520506531000137, 0.10217463225126266, -0.05088496953248978, 0.08310984075069427, -0.0887431725859642, 0.07154399156570435, 0.1111597865819931, -0.15488974750041962, 0.06287701427936554, 0.0032104901038110256, 0.00022355507826432586, -0.030286043882369995, -0.09136450290679932, -0.05059000849723816, -0.020661696791648865, -0.0008449403685517609, -0.1095343828201294, 0.08282014727592468, 0.13486933708190918, 0.006872898433357477, 0.01677762158215046, 0.10320869088172913, -0.06563640385866165, -0.07141890376806259, 0.07069987058639526, 0.01754545234143734, 0.04553072899580002, 0.039766933768987656, 0.02617013081908226, 0.08324182778596878, 0.003368418663740158, 0.09063475579023361, 0.07741028815507889, 0.09727694094181061, 0.026095334440469742, -0.06902671605348587, -0.07283744215965271, 0.040811289101839066, -0.013192670419812202, 0.004777876194566488, 0.16775037348270416, 0.0801754742860794, -0.0025124147068709135, -0.03404682129621506, 0.15937592089176178, -0.0169033445417881, -0.010608968324959278, -0.13636305928230286, 0.03422684967517853, -0.042109619826078415, -0.016887184232473373, -0.011359541676938534, -0.15796680748462677, 0.004178246017545462, 0.1378982663154602, 0.06308776140213013, -0.0364186130464077, -0.021806471049785614, -0.022569868713617325, 0.006485311780124903, -0.0199272483587265, 0.03808007761836052, 0.02052374742925167, 0.20020604133605957, -0.060196492820978165, 0.0196835920214653, -0.0438217855989933, -0.0356014147400856, -0.07691961526870728, 0.08979048579931259, -0.009677997790277004, 0.0025692826602607965, -0.0751141682267189, 0.10115984827280045, -0.006555336993187666, -0.22285954654216766, 0.057318441569805145, -0.08886957913637161, -0.08112063258886337, 0.00013005251821596175, -0.04059584438800812, 0.007134286221116781, 0.02553502842783928, 0.004586121998727322, -0.061770837754011154, 0.061518292874097824, 0.017893841490149498, -0.07239943742752075, -0.013956483453512192, -0.0016917220782488585, -0.10078482329845428, 0.274006724357605, -0.03605566546320915, 0.03260490670800209, 0.08791197836399078, -0.03353932872414589, -0.1429263800382614, -0.04590653255581856, 0.08057761937379837, -0.04828457534313202, 0.019983451813459396, 0.1384795606136322, -0.007701788563281298, 0.15512455999851227, 0.09251765161752701, -0.08716703206300735, 0.04447947442531586, -0.04744771495461464, 0.017068766057491302, -0.10993004590272903, 0.0026414417661726475, -0.0926913470029831, 0.11732050776481628, 0.1503288298845291, -0.009064813144505024, -0.010743596591055393, -0.04356199502944946, -0.007934139110147953, 0.0049070450477302074, 0.07854799181222916, -0.010388349182903767, -0.06774795055389404, 0.005750525742769241, -0.13839198648929596, 0.09136436134576797, -0.15597790479660034, -0.06160207465291023, 0.034904707223176956, -0.01411722507327795, -0.023804858326911926, 0.07380766421556473, 0.03219957649707794, -0.00976502988487482, -0.0603625513613224, -0.13539858162403107, 0.01221434772014618, 0.17354387044906616, -0.0017934318166226149, -0.029082736000418663 ]
e286c1630cff62a248c1507016b84db4324a5fa5
# Dataset Card for uno-deck ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/uno-deck - **Point of Contact:** [email protected] ### Dataset Summary uno-deck ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/uno-deck ### Citation Information ``` @misc{ uno-deck, title = { uno deck Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/uno-deck } }, url = { https://universe.roboflow.com/object-detection/uno-deck }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/uno-deck
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:53+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "uno-deck", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "uno-deck", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9, "11": 10, "12": 11, "13": 12, "14": 13, "15": 14}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:53+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for uno-deck The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary uno-deck ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for uno-deck\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nuno-deck", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for uno-deck\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nuno-deck", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 21, 22, 9, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for uno-deck\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nuno-deck### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01430987287312746, 0.160444974899292, -0.008659755811095238, 0.02883150242269039, 0.11828885972499847, -0.005470742471516132, 0.07124073058366776, 0.07057376205921173, 0.020910140126943588, 0.15823528170585632, -0.025544004514813423, 0.06291082501411438, 0.13557764887809753, 0.10704879462718964, -0.02073836885392666, -0.15138281881809235, 0.059421051293611526, -0.07138175517320633, 0.0644451156258583, 0.06294422596693039, 0.06882026046514511, -0.13288594782352448, 0.09226959198713303, -0.03887427970767021, -0.04393899813294411, 0.015034317970275879, -0.021534180268645287, -0.044966116547584534, 0.011375190690159798, 0.021085189655423164, 0.045633140951395035, 0.010396280325949192, 0.04802820086479187, -0.20155014097690582, 0.028622915968298912, 0.11226573586463928, 0.013848671689629555, 0.035769905894994736, 0.12213165313005447, -0.0952586680650711, 0.03143754228949547, -0.14401495456695557, 0.028281452134251595, 0.011099250055849552, -0.12612740695476532, -0.06324142217636108, -0.12859585881233215, 0.02097185142338276, 0.10648073256015778, 0.05573200434446335, -0.00901062786579132, 0.04871799424290657, 0.0021502396557480097, 0.05855272337794304, 0.11086760461330414, -0.07729606330394745, -0.06432763487100601, 0.09032448381185532, 0.008830123580992222, 0.11998549848794937, -0.12819206714630127, -0.006031474098563194, -0.0030672564171254635, -0.029658256098628044, 0.009103432297706604, -0.0680939331650734, -0.04445703327655792, 0.00019579824584070593, -0.09135208278894424, -0.1289571076631546, 0.15385805070400238, 0.05272184684872627, -0.04980972409248352, -0.08620207756757736, -0.03114291839301586, 0.02761000208556652, -0.022904464974999428, -0.008688612841069698, 0.04548905789852142, 0.0164369847625494, 0.0674431249499321, -0.05731426551938057, -0.11398713290691376, 0.05877413973212242, -0.006164636928588152, 0.057974930852651596, -0.041824985295534134, 0.04828744754195213, 0.018463077023625374, 0.07212982326745987, 0.008765382692217827, -0.1244589164853096, -0.031128928065299988, -0.04010830819606781, -0.07861677557229996, -0.038993243128061295, 0.0578744076192379, -0.11684584617614746, 0.06057712435722351, 0.06816843152046204, -0.07553352415561676, 0.03573283180594444, -0.10888631641864777, 0.024784047156572342, 0.09490443021059036, 0.18715400993824005, -0.07053796201944351, -0.08666902780532837, 0.008419035002589226, 0.020396845415234566, 0.035888735204935074, -0.05461828410625458, -0.037674061954021454, -0.012683799490332603, 0.00991396140307188, 0.02463139034807682, 0.09670886397361755, 0.017376573756337166, -0.06931529939174652, -0.05206973850727081, 0.08370769768953323, -0.1112004742026329, 0.05987335741519928, 0.04353436082601547, -0.008403804153203964, 0.08545362949371338, 0.01665763184428215, 0.028103655204176903, -0.09239866584539413, 0.06303393840789795, -0.042088016867637634, 0.03452763333916664, -0.0910247191786766, -0.06585374474525452, 0.046402569860219955, -0.08515285700559616, -0.08028090000152588, -0.0903029516339302, -0.036898981779813766, -0.09118165075778961, 0.04404480382800102, -0.04048757627606392, 0.03375096619129181, 0.011481499299407005, -0.03791596367955208, -0.009306725114583969, 0.021647561341524124, 0.02135796844959259, -0.05564390867948532, 0.029190754517912865, -0.10117539018392563, 0.029218826442956924, 0.059243932366371155, 0.02779199369251728, -0.07855276763439178, 0.057519491761922836, -0.17029885947704315, 0.124936044216156, -0.03249740973114967, 0.03968155011534691, -0.1208009421825409, 0.02906828187406063, -0.03270943462848663, -0.0459311343729496, 0.007939416915178299, 0.11472059041261673, -0.10637485980987549, 0.026609988883137703, 0.06531975418329239, -0.05762244015932083, -0.04118622839450836, 0.03792816400527954, -0.04485875740647316, 0.009707759134471416, 0.07344157993793488, 0.09905589371919632, -0.006567405071109533, -0.11934025585651398, -0.12297039479017258, -0.04828251153230667, -0.05075127258896828, 0.14410138130187988, 0.06263750046491623, -0.025652119889855385, 0.06470867991447449, -0.003992293030023575, -0.02236349880695343, -0.029438262805342674, 0.01993093080818653, -0.044525980949401855, 0.01109746377915144, 0.018162479624152184, -0.07637304067611694, 0.014833412133157253, -0.1124301552772522, 0.017405498772859573, -0.07312381267547607, -0.0616835355758667, 0.008493018336594105, -0.027785593643784523, 0.027522996068000793, -0.03847350552678108, 0.08805074542760849, -0.1093047633767128, -0.012768896296620369, -0.13348549604415894, -0.10358428955078125, 0.06439503282308578, 0.04838917404413223, 0.04121152311563492, -0.06315670907497406, -0.0017212536185979843, 0.01612856611609459, 0.038434773683547974, -0.005928726866841316, 0.04289926216006279, -0.022518975660204887, -0.025616036728024483, -0.13419713079929352, -0.017320755869150162, -0.027110496535897255, 0.11434808373451233, -0.11858678609132767, -0.028386937454342842, 0.15830987691879272, 0.1160220131278038, 0.03493393585085869, -0.04503806307911873, 0.04756329581141472, -0.01698043942451477, -0.04060494154691696, -0.07378937304019928, -0.018569201231002808, 0.006989201530814171, 0.04232921823859215, 0.06484594941139221, -0.20144326984882355, -0.14906419813632965, 0.07352063059806824, 0.0025219807866960764, -0.07317785173654556, -0.07254824787378311, -0.045098770409822464, -0.005816458724439144, -0.10220450907945633, -0.03454486280679703, 0.0655888170003891, 0.0481114499270916, 0.07216094434261322, -0.05901727080345154, -0.027456635609269142, 0.03039143607020378, -0.024373767897486687, -0.08360282331705093, 0.025981480255723, 0.048387911170721054, -0.10166469216346741, 0.09470240026712418, 0.006985194981098175, 0.02475978434085846, 0.12755143642425537, 0.03431772440671921, -0.09811078757047653, -0.017062917351722717, 0.08083205670118332, 0.025382626801729202, 0.11391419172286987, -0.04305986315011978, 0.0209210067987442, 0.06754613667726517, -0.0011877544457092881, -0.03728083521127701, -0.08888276666402817, 0.07036635279655457, 0.020014837384223938, -0.03634653985500336, 0.07312441617250443, -0.03809712454676628, 0.07294542342424393, 0.09408660978078842, 0.04530801251530647, 0.08215703070163727, -0.057289693504571915, -0.06546860933303833, -0.08476431667804718, 0.11560826003551483, -0.054272692650556564, -0.2315545529127121, -0.08901160210371017, -0.08757063746452332, -0.056372176855802536, 0.011853606440126896, 0.025692470371723175, -0.0047326767817139626, -0.07936030626296997, -0.08228651434183121, 0.02831602841615677, 0.07728710025548935, -0.0941142663359642, -0.07660647481679916, 0.02339642308652401, -0.006378521211445332, -0.06863569468259811, -0.013413729146122932, 0.022257987409830093, -0.07657499611377716, 0.01871841587126255, 0.04741035774350166, 0.13279299437999725, 0.08562149107456207, -0.029554709792137146, 0.009073411114513874, -0.0061728875152766705, 0.16688089072704315, -0.15369945764541626, 0.13085557520389557, 0.15073567628860474, 0.0005270938854664564, 0.08637652546167374, 0.22319501638412476, -0.011334262788295746, 0.0007731970981694758, 0.012670427560806274, 0.05633270740509033, -0.0727204903960228, -0.19758878648281097, -0.044678591191768646, -0.07164540141820908, 0.008902076631784439, 0.10719417035579681, 0.036205828189849854, 0.015896135941147804, 0.09753558784723282, -0.09856224805116653, 0.025683194398880005, 0.04399857297539711, 0.09288374334573746, 0.03439187631011009, 0.03554406017065048, 0.047364115715026855, -0.03935844451189041, -0.03806256130337715, 0.0976814478635788, 0.1431899070739746, 0.12172924727201462, -0.10004445910453796, 0.11168118566274643, 0.030674681067466736, 0.02126394398510456, -0.04207363352179527, 0.006173118017613888, -0.02107280120253563, 0.05629563704133034, -0.0035222191363573074, -0.09706607460975647, -0.01641167886555195, 0.07398098707199097, 0.11037996411323547, 0.006942408625036478, 0.012999418191611767, 0.011739097535610199, 0.09420531243085861, 0.20233310759067535, 0.029207710176706314, -0.1767561137676239, 0.024205099791288376, 0.03512094169855118, 0.04285551235079765, -0.13370740413665771, -0.034280937165021896, 0.12483673542737961, -0.15654417872428894, 0.06889789551496506, -0.041086822748184204, 0.10173440724611282, -0.1216520443558693, -0.03433454409241676, 0.05111942067742348, 0.06722467392683029, -0.02744358219206333, 0.07509221136569977, -0.1045505702495575, 0.09462937712669373, 0.03847267106175423, 0.04082357510924339, -0.0783241018652916, 0.048551350831985474, 0.010906655341386795, -0.004557543434202671, 0.13043038547039032, 0.005228874739259481, -0.056210316717624664, -0.14202190935611725, -0.10540938377380371, -0.0012598622124642134, 0.058531519025564194, -0.06553685665130615, 0.10609934478998184, -0.002858758205547929, -0.03806327283382416, -0.05947193130850792, -0.050028327852487564, -0.05043714866042137, -0.19273290038108826, 0.04940043017268181, -0.006503379438072443, 0.01809675619006157, -0.01611725054681301, 0.03245627507567406, 0.015301520936191082, 0.10298457741737366, -0.045906003564596176, -0.06807210296392441, -0.14192058145999908, 0.033781010657548904, 0.04166826978325844, -0.031006749719381332, -0.028801457956433296, -0.09479088336229324, 0.18312323093414307, -0.029740499332547188, -0.057943057268857956, 0.021675249561667442, -0.040000878274440765, -0.08912637829780579, -0.07704776525497437, 0.1193172037601471, 0.025360221043229103, -0.0190261397510767, 0.02098555490374565, 0.06278761476278305, 0.001988220028579235, -0.06316941231489182, 0.044616665691137314, 0.11699721962213516, 0.11735470592975616, 0.1582857072353363, 0.008959039114415646, -0.14840826392173767, -0.11178282648324966, 0.013354088179767132, 0.05173136293888092, 0.09593440592288971, -0.08329050987958908, 0.09216559678316116, 0.014251833781599998, -0.1127098798751831, -0.21653401851654053, 0.06759127229452133, 0.05957401543855667, -0.006665554828941822, -0.01477215625345707, -0.12986287474632263, 0.14278502762317657, 0.05197247117757797, 0.008873900398612022, 0.055419713258743286, -0.20929762721061707, -0.05575861409306526, -0.03300219401717186, 0.04312678053975105, -0.1297178715467453, -0.14421610534191132, -0.03624024987220764, -0.04143698513507843, -0.1618679314851761, 0.06735046952962875, -0.0350225530564785, 0.04907388612627983, 0.044835105538368225, 0.02889952063560486, 0.06127659231424332, -0.03902555629611015, 0.12352488189935684, 0.016257286071777344, 0.03859688714146614, -0.07738283276557922, -0.08369210362434387, 0.0826057493686676, -0.10986747592687607, 0.10264058411121368, 0.042457517236471176, 0.013612226583063602, -0.03332022950053215, -0.02011820301413536, -0.02694382518529892, 0.0800219401717186, -0.030632050707936287, -0.048527687788009644, -0.0822923332452774, 0.030051764100790024, 0.12955868244171143, 0.024790367111563683, 0.09149253368377686, -0.030312547460198402, 0.002079711528494954, 0.1712210476398468, 0.11280667036771774, -0.016955427825450897, -0.1176881194114685, -0.04585205391049385, 0.008363013155758381, 0.02377260848879814, -0.09128376841545105, 0.05859066918492317, 0.09315963834524155, 0.014935703948140144, 0.09563152492046356, 0.000007709284545853734, -0.0964554026722908, 0.006102748215198517, 0.06335041671991348, -0.09096815437078476, -0.14641907811164856, -0.005673988256603479, 0.08824214339256287, -0.11056846380233765, -0.11064067482948303, 0.13868708908557892, 0.008623296394944191, -0.008118929341435432, 0.014427601359784603, 0.07561969012022018, 0.04020925611257553, 0.036300018429756165, 0.013207393698394299, 0.032222930341959, -0.05795375257730484, 0.10074291378259659, 0.14933273196220398, -0.09181443601846695, -0.004773341119289398, 0.11186322569847107, -0.04864991456270218, -0.017154822126030922, -0.03161778301000595, 0.06807569414377213, -0.02369522489607334, -0.019574856385588646, 0.026735059916973114, -0.07443209737539291, 0.009407331235706806, 0.08806260675191879, -0.011251351796090603, 0.05682995915412903, 0.027316197752952576, -0.006784324534237385, -0.12530769407749176, 0.13639795780181885, -0.01070758793503046, 0.05053705722093582, -0.10384556651115417, 0.031382400542497635, 0.012263148091733456, 0.03370358794927597, 0.008155145682394505, -0.08524231612682343, -0.07444975525140762, -0.003783431136980653, -0.05373334884643555, 0.10979814827442169, -0.09336083382368088, -0.011771135032176971, -0.011444028466939926, 0.015480784699320793, -0.03141646459698677, 0.029747536405920982, -0.03895694762468338, -0.05481491982936859, -0.050153620541095734, 0.11961718648672104, -0.1245068907737732, -0.01874718628823757, 0.056608665734529495, -0.08845534175634384, 0.06731270253658295, 0.00704887043684721, -0.03139051795005798, -0.06967945396900177, -0.19940143823623657, -0.018034061416983604, 0.040540892630815506, 0.060768622905015945, 0.03836435452103615, -0.08030577003955841, 0.056138645857572556, -0.006930170580744743, -0.0910189300775528, -0.020927278324961662, 0.005766469985246658, -0.10370878130197525, 0.05095161125063896, -0.0684160366654396, -0.031012358143925667, -0.04716803506016731, 0.14040958881378174, 0.031756140291690826, 0.01455957442522049, 0.06371806561946869, -0.05096594989299774, 0.09862598776817322, -0.15835794806480408, -0.03909431770443916, -0.0056720213033258915, -0.0336608923971653, -0.07323426753282547, -0.029663722962141037, 0.07537014037370682, -0.024098284542560577, 0.10603085905313492, 0.13281592726707458, 0.037926480174064636, 0.025286367163062096, -0.039597343653440475, 0.05499859154224396, 0.060990918427705765, 0.00013267542817629874, -0.007234314922243357, -0.02715340070426464, 0.07698137313127518, 0.000652494840323925, 0.03354722633957863, 0.10776794701814651, 0.08963575214147568, 0.21826475858688354, 0.16026972234249115, 0.020386336371302605, 0.05490800738334656, -0.0866721123456955, -0.06491867452859879, 0.08230416476726532, -0.08316338062286377, 0.04747023060917854, -0.09641444683074951, -0.032544419169425964, 0.10782992094755173, -0.17033331096172333, 0.05709042400121689, -0.021393856033682823, -0.019366394728422165, -0.040531765669584274, -0.12531432509422302, -0.05358221381902695, -0.043523158878088, -0.011957080103456974, -0.12573590874671936, 0.06801611930131912, 0.11871568858623505, -0.013081124983727932, 0.011049313470721245, 0.076944500207901, -0.07861994951963425, -0.06284298747777939, 0.08175970613956451, 0.026769177988171577, 0.0917234793305397, 0.04615774005651474, 0.029288362711668015, 0.06842455267906189, -0.00406304094940424, 0.09181660413742065, 0.08335552364587784, 0.14813953638076782, 0.0421641543507576, -0.07405064254999161, -0.07214459776878357, 0.04592204838991165, -0.023368626832962036, -0.022760692983865738, 0.13028021156787872, 0.07293250411748886, 0.02310754358768463, -0.001434511854313314, 0.18762050569057465, -0.010203135199844837, -0.03270955756306648, -0.1580265611410141, 0.02816050313413143, -0.035329416394233704, -0.000013004769243707415, -0.02621264010667801, -0.15183185040950775, 0.0019963460508733988, 0.11141631007194519, 0.05488835275173187, -0.043878763914108276, 0.0006198997725732625, -0.014246213249862194, 0.010595617815852165, 0.006951502058655024, 0.050707414746284485, 0.012717660516500473, 0.19855374097824097, -0.051462043076753616, -0.012302165850996971, -0.02510748989880085, -0.015187461860477924, -0.07097173482179642, 0.07122921198606491, -0.028698980808258057, 0.004954380448907614, -0.06990896165370941, 0.10145090520381927, 0.0012357119703665376, -0.16529756784439087, 0.06300415098667145, -0.11935941129922867, -0.09570787847042084, 0.00805213488638401, 0.006407718174159527, -0.004693063907325268, 0.01773904822766781, 0.009393788874149323, -0.06789825111627579, 0.12479891628026962, 0.03157222643494606, -0.061216000467538834, 0.00034392179804854095, 0.0036160375457257032, -0.11757475882768631, 0.26905298233032227, -0.02702239528298378, 0.010002403520047665, 0.1006598249077797, 0.002191943349316716, -0.1373574286699295, -0.022912511602044106, 0.06985951215028763, -0.04740215837955475, 0.003329953644424677, 0.10997524112462997, -0.012975823134183884, 0.12288917601108551, 0.1037815660238266, -0.060053881257772446, 0.04452833905816078, -0.009231987409293652, 0.031894706189632416, -0.0922887772321701, 0.004828024189919233, -0.0965203195810318, 0.10522288084030151, 0.14043031632900238, -0.000871581956744194, -0.006574484519660473, -0.036354247480630875, -0.008817492984235287, 0.008457287214696407, 0.11004301905632019, -0.010562359355390072, -0.05463440716266632, 0.0029489933513104916, -0.09659860283136368, 0.07968229055404663, -0.09979955106973648, -0.06962160766124725, 0.033678967505693436, -0.012904705479741096, -0.023871146142482758, 0.09488073736429214, 0.044871628284454346, 0.020923223346471786, -0.057220783084630966, -0.09945568442344666, 0.01900135912001133, 0.17176267504692078, -0.014512617141008377, -0.025829121470451355 ]
9801096c1b38433131b3d425b67b2a75945deaf9
# Dataset Card for avatar-recognition-nuexe ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/avatar-recognition-nuexe - **Point of Contact:** [email protected] ### Dataset Summary avatar-recognition-nuexe ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/avatar-recognition-nuexe ### Citation Information ``` @misc{ avatar-recognition-nuexe, title = { avatar recognition nuexe Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/avatar-recognition-nuexe } }, url = { https://universe.roboflow.com/object-detection/avatar-recognition-nuexe }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/avatar-recognition-nuexe
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:29:59+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "avatar-recognition-nuexe", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "avatar", "1": "Character"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:13+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for avatar-recognition-nuexe The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary avatar-recognition-nuexe ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for avatar-recognition-nuexe\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\navatar-recognition-nuexe", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for avatar-recognition-nuexe\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\navatar-recognition-nuexe", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for avatar-recognition-nuexe\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\navatar-recognition-nuexe### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.006812592968344688, 0.17757520079612732, -0.00785018689930439, 0.015704737976193428, 0.09487031400203705, 0.0024890403728932142, 0.0564739964902401, 0.07742062956094742, -0.005128549877554178, 0.1731289029121399, -0.011149291880428791, 0.05455528572201729, 0.13254287838935852, 0.07760146260261536, -0.010322538204491138, -0.14772357046604156, 0.0695958286523819, -0.07412047684192657, 0.09534386545419693, 0.06622270494699478, 0.07120635360479355, -0.135471910238266, 0.08544273674488068, -0.01693069376051426, -0.02522462047636509, 0.02475140616297722, -0.06441207975149155, -0.02819035016000271, 0.005046334117650986, 0.030410882085561752, 0.029968557879328728, 0.02462894842028618, 0.06033129617571831, -0.19138120114803314, 0.01864437200129032, 0.09451833367347717, 0.031509071588516235, 0.017316846176981926, 0.1541597694158554, -0.07200963795185089, 0.03771893307566643, -0.1150432676076889, 0.03193552419543266, 0.025068311020731926, -0.10344100743532181, -0.08050111681222916, -0.13024307787418365, 0.05429765209555626, 0.09189767390489578, 0.05911591649055481, -0.023612143471837044, 0.07350491732358932, -0.03857405483722687, 0.04123065248131752, 0.1266641467809677, -0.07029251754283905, -0.03856377676129341, 0.09033408761024475, 0.061717186123132706, 0.07608352601528168, -0.1178252324461937, -0.01662338525056839, 0.01364175882190466, -0.011358987540006638, -0.00923629105091095, -0.03909677639603615, -0.0324799120426178, -0.013029038906097412, -0.10161640495061874, -0.13352742791175842, 0.13618594408035278, 0.06941353529691696, -0.061476659029722214, -0.1355372667312622, -0.007028466090559959, 0.0506744459271431, -0.03525912016630173, -0.0112302852794528, 0.04845521226525307, -0.0033507165499031544, 0.062433887273073196, -0.054569583386182785, -0.10092618316411972, 0.05054011940956116, 0.01624276675283909, 0.011467836797237396, -0.01586334779858589, 0.035355597734451294, 0.02458130568265915, 0.07807144522666931, 0.008976801298558712, -0.1088893935084343, -0.024568423628807068, -0.044661469757556915, -0.05726918205618858, -0.04373176768422127, 0.052169181406497955, -0.12261482328176498, 0.07290522754192352, 0.07806619256734848, -0.05776648223400116, 0.01809556595981121, -0.11476803570985794, 0.00726231187582016, 0.12407514452934265, 0.18912559747695923, -0.1027601882815361, -0.08991740643978119, -0.004413555841892958, 0.04945945739746094, 0.017978154122829437, -0.021238844841718674, -0.03099980019032955, -0.012274847365915775, 0.0391056053340435, 0.03591645136475563, 0.10512206703424454, 0.0338812917470932, -0.07670231908559799, -0.060933250933885574, 0.15717174112796783, -0.09273313730955124, 0.0522116981446743, 0.05435884743928909, -0.0704384371638298, 0.08683079481124878, 0.013454572297632694, 0.024485290050506592, -0.11362548172473907, 0.0675346776843071, -0.028935087844729424, 0.010248630307614803, -0.09155946969985962, -0.10399460047483444, 0.056832049041986465, -0.08170624822378159, -0.07706445455551147, -0.0785461887717247, -0.03139020502567291, -0.09377295523881912, 0.035610903054475784, -0.046445611864328384, 0.014546153135597706, 0.010397342033684254, -0.0457531102001667, -0.01277027279138565, 0.011886718682944775, 0.02962031029164791, -0.057672858238220215, 0.02869333326816559, -0.09645085781812668, 0.0413038469851017, 0.10847736895084381, 0.04459041357040405, -0.09317491948604584, 0.06330030411481857, -0.1830006092786789, 0.12163060158491135, -0.03392530232667923, 0.0371520034968853, -0.12148254364728928, 0.005593734327703714, -0.01799839921295643, -0.039462681859731674, 0.00152828567661345, 0.13918602466583252, -0.09007826447486877, 0.017507383599877357, 0.053463637828826904, -0.0422799214720726, -0.06309807300567627, 0.0482657328248024, -0.03976636007428169, -0.01218276284635067, 0.07795815914869308, 0.11447573453187943, -0.025472860783338547, -0.13701698184013367, -0.12438514083623886, -0.0492963045835495, -0.05006549134850502, 0.15305447578430176, 0.0654820054769516, -0.03562517091631889, 0.10754190385341644, -0.005177289247512817, 0.0076459068804979324, -0.04194415733218193, 0.005323462188243866, -0.037574972957372665, 0.008432983420789242, -0.012346296571195126, -0.07808083295822144, 0.011427812278270721, -0.10130498558282852, 0.007600722834467888, -0.08501933515071869, -0.04671452194452286, 0.01810602843761444, -0.015506559051573277, 0.014496923424303532, -0.03835136070847511, 0.0816667377948761, -0.11051220446825027, -0.000051889888709411025, -0.14547963440418243, -0.1104784607887268, 0.06249505653977394, -0.05071387439966202, 0.046042513102293015, -0.07357253134250641, -0.015877891331911087, 0.012222233228385448, 0.038592349737882614, -0.017530499026179314, 0.034735534340143204, -0.02640148624777794, -0.0362565740942955, -0.10906658321619034, -0.0538618229329586, -0.020610252395272255, 0.10167717933654785, -0.11899318546056747, -0.030119119212031364, 0.10020533204078674, 0.12461484223604202, 0.022620003670454025, -0.042715612798929214, 0.06937552988529205, -0.04172179847955704, -0.022648006677627563, -0.06867115944623947, -0.02118212729692459, -0.0076115732081234455, 0.04698166623711586, 0.07107177376747131, -0.1505175232887268, -0.14277805387973785, 0.08791985362768173, 0.026716703549027443, -0.07859716564416885, -0.04308200627565384, -0.04497422277927399, -0.01775403879582882, -0.09124584496021271, -0.04031006991863251, 0.019075142219662666, 0.06451635807752609, 0.073447585105896, -0.07407479733228683, -0.03732508420944214, 0.01851147972047329, -0.016705406829714775, -0.08414297550916672, 0.06695675849914551, 0.06934145092964172, -0.11226523667573929, 0.08499841392040253, -0.02649659663438797, 0.04887361824512482, 0.07486715167760849, 0.038858477026224136, -0.11895474046468735, 0.016801966354250908, 0.06779760122299194, 0.01693880371749401, 0.08321459591388702, -0.015355701558291912, 0.01785319484770298, 0.08028444647789001, -0.009254789911210537, -0.019694367423653603, -0.0849195271730423, 0.06912954151630402, 0.024139054119586945, -0.0372152253985405, 0.020092563703656197, -0.019497912377119064, 0.09702033549547195, 0.09936027973890305, 0.07187200337648392, 0.1032583937048912, -0.053152699023485184, -0.0670919120311737, -0.091643787920475, 0.11867150664329529, -0.0329943485558033, -0.25455141067504883, -0.07538788765668869, -0.06637807935476303, -0.060374751687049866, -0.004684587474912405, 0.02596890740096569, -0.016120504587888718, -0.090638168156147, -0.09770508110523224, 0.06500595808029175, 0.05238424614071846, -0.10904955118894577, -0.1028468906879425, 0.03913445025682449, 0.006589205004274845, -0.08235544711351395, 0.003565822960808873, 0.024259435012936592, -0.040534112602472305, 0.003281130688264966, 0.030690353363752365, 0.13301920890808105, 0.06596579402685165, -0.02670673467218876, -0.004805452190339565, 0.009185750037431717, 0.18884113430976868, -0.14323265850543976, 0.10524547100067139, 0.161104217171669, 0.03266498073935509, 0.08078896254301071, 0.20679809153079987, -0.020932193845510483, -0.014070899225771427, 0.03620551899075508, 0.08246708661317825, -0.04627034813165665, -0.1883540153503418, -0.06077049672603607, -0.04043642058968544, 0.00007358282164204866, 0.13531821966171265, 0.03759821504354477, 0.01847245916724205, 0.08130253106355667, -0.11432824283838272, 0.008514109998941422, 0.021900853142142296, 0.09347107261419296, 0.04821844771504402, 0.04117725417017937, 0.04233783110976219, -0.044269051402807236, -0.04535777121782303, 0.08833897113800049, 0.11858782172203064, 0.10878299921751022, -0.08959907293319702, 0.08756561577320099, 0.03215697780251503, 0.046922970563173294, -0.04071023315191269, -0.00810669269412756, -0.016386086121201515, 0.0411980003118515, -0.0010263824369758368, -0.08671723306179047, 0.010285304859280586, 0.0896008163690567, 0.14998215436935425, -0.00706333015114069, -0.012959630228579044, -0.0372602678835392, 0.06512503325939178, 0.25018349289894104, 0.030330335721373558, -0.20348432660102844, 0.017999637871980667, 0.03122951276600361, 0.0028450204990804195, -0.12845732271671295, -0.035257983952760696, 0.07968958467245102, -0.15910355746746063, 0.05742523446679115, -0.024402648210525513, 0.11294180154800415, -0.11349698901176453, -0.03552380949258804, 0.05697114020586014, 0.04425065219402313, -0.021478423848748207, 0.06963887810707092, -0.08651716262102127, 0.06478256732225418, 0.027061820030212402, 0.03269245848059654, -0.07520230859518051, 0.03721247985959053, 0.01384386420249939, -0.014847089536488056, 0.1355227530002594, -0.017797015607357025, 0.02271108515560627, -0.12418918311595917, -0.10871212184429169, -0.014933300204575062, 0.05670355260372162, -0.06338801234960556, 0.1108546331524849, 0.01128953043371439, -0.028514936566352844, -0.07039344310760498, -0.022319883108139038, -0.0800391435623169, -0.1720370650291443, 0.032551635056734085, -0.02015572600066662, 0.021961351856589317, -0.011910666711628437, 0.020068973302841187, -0.01666467823088169, 0.13059654831886292, -0.027472086250782013, -0.08502016216516495, -0.13017092645168304, 0.04052530229091644, 0.10099992156028748, -0.014037036336958408, -0.007241890765726566, -0.09640755504369736, 0.17907224595546722, -0.029702236875891685, -0.07452618330717087, 0.0204756036400795, -0.06075618788599968, -0.10373108834028244, -0.05864643305540085, 0.09654034674167633, 0.045521799474954605, 0.0025198946241289377, 0.004825479816645384, 0.046591080725193024, -0.01058773510158062, -0.037956371903419495, 0.025593839585781097, 0.10527217388153076, 0.13475100696086884, 0.13503709435462952, 0.0009869992500171065, -0.1580449342727661, -0.12307742983102798, 0.0009240334620699286, 0.024137936532497406, 0.10154904425144196, -0.06759417057037354, 0.09617288410663605, 0.0425669401884079, -0.07313109189271927, -0.2253011018037796, 0.07447880506515503, 0.06203203275799751, 0.0003863502060994506, -0.008165962062776089, -0.13071134686470032, 0.15004704892635345, 0.03896242380142212, -0.0018528280779719353, 0.08247443288564682, -0.2736915946006775, -0.07136290520429611, -0.02376437373459339, 0.019882071763277054, -0.2199278473854065, -0.15796618163585663, -0.04580505192279816, -0.05918839946389198, -0.17715629935264587, 0.04572245478630066, 0.023774316534399986, 0.04700012505054474, 0.03670312464237213, 0.0660543292760849, 0.05844542011618614, -0.04057596996426582, 0.11124210059642792, 0.017133774235844612, 0.039615698158741, -0.07846507430076599, -0.08318641036748886, 0.012363645248115063, -0.1039508730173111, 0.1586574912071228, 0.052328918129205704, 0.02580147236585617, -0.04486283287405968, -0.016581762582063675, -0.04762144014239311, 0.08202803879976273, -0.023478128015995026, -0.032626401633024216, -0.10904086381196976, 0.04395024850964546, 0.12795895338058472, 0.0325864776968956, 0.07721927016973495, -0.04416666552424431, -0.01447578240185976, 0.12387798726558685, 0.10322012007236481, -0.008943743072450161, -0.11866595596075058, -0.039167776703834534, 0.0012843126896768808, 0.04179931804537773, -0.09274356067180634, 0.03963266313076019, 0.09894638508558273, 0.020527265965938568, 0.09871978312730789, -0.014182080514729023, -0.09999445825815201, 0.006073684897273779, 0.04165602847933769, -0.07779641449451447, -0.11842189729213715, 0.03418632224202156, 0.10440778732299805, -0.12583264708518982, -0.10914665460586548, 0.10238928347826004, 0.009550211951136589, -0.0260433629155159, 0.0002395450574113056, 0.08110521733760834, 0.047184187918901443, 0.04862450063228607, 0.024595899507403374, 0.03372860327363014, -0.07037301361560822, 0.11782790720462799, 0.14648586511611938, -0.12557345628738403, 0.003205276792868972, 0.10628361999988556, -0.04563416913151741, -0.017610609531402588, -0.024917514994740486, 0.020767202600836754, -0.022114437073469162, -0.024888599291443825, 0.03765605017542839, -0.06565379351377487, 0.04254179447889328, 0.07017423957586288, -0.002546890638768673, 0.05305185914039612, 0.03487540781497955, -0.011273324489593506, -0.13926087319850922, 0.12605461478233337, 0.03133133426308632, 0.05236125737428665, -0.09519221633672714, -0.015598881989717484, 0.027725612744688988, 0.019173696637153625, 0.008320176973938942, -0.05304393172264099, -0.0743161141872406, 0.0078012775629758835, -0.08187942951917648, 0.0971837118268013, -0.10287212580442429, -0.001565951737575233, -0.024792058393359184, 0.007298655807971954, -0.020345909520983696, 0.02831559255719185, -0.045286279171705246, -0.08988203853368759, -0.047805942595005035, 0.12766748666763306, -0.13670147955417633, -0.017045244574546814, 0.05306378751993179, -0.08267194777727127, 0.053313247859478, 0.009625250473618507, -0.034425999969244, -0.09302268177270889, -0.17684614658355713, -0.0654446929693222, 0.03426799550652504, 0.07212969660758972, 0.04838065803050995, -0.08631639182567596, 0.04904575273394585, 0.002619324252009392, -0.10005694627761841, -0.02150779776275158, -0.019262168556451797, -0.11369635909795761, 0.033937256783246994, -0.0974225327372551, -0.034037571400403976, -0.04066449776291847, 0.1324816644191742, 0.06097052991390228, -0.002719162032008171, 0.07969852536916733, -0.04459380730986595, 0.09354618191719055, -0.14193229377269745, -0.03917226195335388, -0.016036393120884895, -0.016092274338006973, -0.06172441691160202, 0.0019803277682513, 0.06883314996957779, -0.02128278836607933, 0.12538030743598938, 0.11809030175209045, 0.04443669319152832, 0.039363794028759, 0.004769858438521624, 0.053887739777565, 0.06051799654960632, -0.01186433807015419, -0.010880411602556705, -0.02023962512612343, 0.07977493852376938, 0.014482511207461357, 0.02184935100376606, 0.07451500743627548, 0.05932699516415596, 0.23565049469470978, 0.13831517100334167, 0.030158815905451775, 0.0578477568924427, -0.09262876957654953, -0.05853801220655441, 0.10649806261062622, -0.060399655252695084, 0.07189187407493591, -0.09650764614343643, 0.028744233772158623, 0.10291106253862381, -0.1371828317642212, 0.06434019654989243, -0.018663786351680756, -0.0017439104849472642, -0.021653011441230774, -0.10505808889865875, -0.06257721036672592, -0.023212086409330368, 0.004620376508682966, -0.11113598197698593, 0.07985451817512512, 0.12562774121761322, -0.00009862765728030354, 0.006668575573712587, 0.08907607197761536, -0.06103913486003876, -0.09031352400779724, 0.07418354600667953, 0.01161428913474083, 0.06033722311258316, 0.05514266714453697, 0.03977687284350395, 0.10853039473295212, 0.023241722956299782, 0.08846668899059296, 0.09223007410764694, 0.08750230818986893, 0.03254598006606102, -0.07099679857492447, -0.07451415807008743, 0.029992733150720596, -0.009820090606808662, -0.014259489253163338, 0.15326109528541565, 0.07678228616714478, 0.0190274640917778, -0.025985468178987503, 0.15320134162902832, -0.019739480689167976, -0.027994591742753983, -0.14577452838420868, 0.03498736768960953, -0.04055933281779289, -0.011283601634204388, -0.017917176708579063, -0.1572321355342865, -0.008243887685239315, 0.13710518181324005, 0.07893411070108414, -0.06162548437714577, -0.02229701541364193, -0.009642019867897034, 0.0035518736112862825, -0.03405352309346199, 0.03627024218440056, 0.032939329743385315, 0.204850435256958, -0.05357080325484276, 0.013951283879578114, -0.04380179941654205, -0.02831190638244152, -0.057562824338674545, 0.06546305119991302, -0.011032928712666035, 0.011479703709483147, -0.08328598737716675, 0.11352623254060745, -0.0043138968758285046, -0.167769193649292, 0.05397481843829155, -0.0746314525604248, -0.08728229999542236, 0.014907298609614372, -0.03256113827228546, 0.0074221291579306126, 0.03431572765111923, 0.00396830914542079, -0.05171489343047142, 0.1009029820561409, 0.010897526517510414, -0.05633489042520523, -0.014591993764042854, -0.000042273826693417504, -0.0840747281908989, 0.27845051884651184, -0.024916576221585274, 0.023489458486437798, 0.07960032671689987, -0.013900721445679665, -0.13559038937091827, -0.024731632322072983, 0.08110003173351288, -0.043413739651441574, 0.02395814098417759, 0.11790025234222412, -0.0002873581543099135, 0.1465103030204773, 0.0930749848484993, -0.07721050828695297, 0.04796138033270836, -0.03142499178647995, 0.03379138559103012, -0.12815339863300323, 0.022297365590929985, -0.09312532842159271, 0.11603645235300064, 0.13742825388908386, -0.0019546756520867348, -0.005657803267240524, -0.03203975781798363, 0.009193054400384426, 0.008718260563910007, 0.09855257719755173, 0.0031061579938977957, -0.06485704332590103, 0.018552782014012337, -0.14966896176338196, 0.07813817262649536, -0.13924218714237213, -0.057188842445611954, 0.03270949423313141, -0.016153579577803612, -0.0006227599224075675, 0.08220509439706802, 0.026612084358930588, 0.013832539319992065, -0.05678614228963852, -0.1133125051856041, 0.033412594348192215, 0.16754107177257538, -0.021907487884163857, -0.03347567096352577 ]
a6cdb168089363c701a537c9b94c8358f609df98
# Dataset Card for cotton-plant-disease ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cotton-plant-disease - **Point of Contact:** [email protected] ### Dataset Summary cotton-plant-disease ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cotton-plant-disease ### Citation Information ``` @misc{ cotton-plant-disease, title = { cotton plant disease Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cotton-plant-disease } }, url = { https://universe.roboflow.com/object-detection/cotton-plant-disease }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cotton-plant-disease
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:10+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cotton-plant-disease", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cotton-plant-disease", "1": "dc"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:39+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cotton-plant-disease The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cotton-plant-disease ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cotton-plant-disease\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncotton-plant-disease", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cotton-plant-disease\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncotton-plant-disease", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cotton-plant-disease\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncotton-plant-disease### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01438886672258377, 0.18177133798599243, -0.007521051913499832, 0.0178665891289711, 0.09011843800544739, -0.01704885996878147, 0.04636925458908081, 0.07955851405858994, -0.012346474453806877, 0.1764608919620514, 0.007319529075175524, 0.07364187389612198, 0.11434619873762131, 0.09089460223913193, -0.010227045975625515, -0.1532759666442871, 0.06380458176136017, -0.06097365543246269, 0.05257942155003548, 0.07551522552967072, 0.07907665520906448, -0.13030192255973816, 0.08352711796760559, -0.042664479464292526, -0.025256333872675896, 0.03963767737150192, -0.06974978744983673, -0.043562017381191254, 0.0026827023830264807, 0.05240286514163017, 0.011856179684400558, 0.03437219560146332, 0.03658151254057884, -0.21483547985553741, 0.021926864981651306, 0.10030035674571991, 0.028088247403502464, 0.02579946629703045, 0.15733976662158966, -0.07911146432161331, 0.05569079518318176, -0.12122205644845963, 0.038830291479825974, 0.01885923556983471, -0.11127068102359772, -0.10802964866161346, -0.1137835830450058, 0.07527218759059906, 0.09863419830799103, 0.04797947406768799, -0.013680648989975452, 0.0857492983341217, -0.016482431441545486, 0.06166320666670799, 0.12759612500667572, -0.04408473148941994, -0.038188133388757706, 0.0996544137597084, 0.056007105857133865, 0.10333867371082306, -0.11794859170913696, -0.022838624194264412, 0.009159399196505547, -0.018637891858816147, 0.002630877308547497, -0.05355501547455788, -0.045552853494882584, 0.00421717157587409, -0.10075292736291885, -0.14826861023902893, 0.15881125628948212, 0.05404454469680786, -0.050300102680921555, -0.13851572573184967, 0.006524291820824146, 0.07784661650657654, -0.033380698412656784, -0.009149674326181412, 0.06087954714894295, 0.0029466378036886454, 0.05493815243244171, -0.06781381368637085, -0.1026439517736435, 0.05335632711648941, 0.034464359283447266, 0.012286875396966934, -0.02174310013651848, 0.03205210343003273, 0.01824186183512211, 0.06636389344930649, 0.0184455756098032, -0.11524173617362976, -0.026067620143294334, -0.04748978093266487, -0.037480536848306656, -0.05128275603055954, 0.05544205382466316, -0.13777673244476318, 0.07887359708547592, 0.061999041587114334, -0.06481355428695679, 0.03699835389852524, -0.10403052717447281, 0.007594810798764229, 0.12051466107368469, 0.17851288616657257, -0.08284018933773041, -0.0844566747546196, 0.011389239691197872, 0.042669422924518585, 0.022324372082948685, -0.023817460983991623, -0.021457675844430923, 0.013077886775135994, 0.025862103328108788, 0.04337354004383087, 0.12594838440418243, 0.03486110642552376, -0.07754001021385193, -0.06494396179914474, 0.1382276713848114, -0.10223448276519775, 0.03670996055006981, 0.05401511490345001, -0.04669681936502457, 0.08578015118837357, 0.013889309950172901, 0.01886884868144989, -0.11644691973924637, 0.06936100870370865, -0.03373372182250023, 0.014022093266248703, -0.07781750708818436, -0.08073945343494415, 0.06341419368982315, -0.06860383599996567, -0.07010742276906967, -0.07492344081401825, -0.04680069908499718, -0.09788540005683899, 0.03259740397334099, -0.0367773063480854, -0.0022083555813878775, 0.017357023432850838, -0.04167861491441727, -0.021966097876429558, 0.015046998858451843, 0.04755102097988129, -0.04856017231941223, 0.03954581543803215, -0.10092569887638092, 0.03573267161846161, 0.13114780187606812, 0.04975581541657448, -0.11399572342634201, 0.06573652476072311, -0.19752728939056396, 0.15040475130081177, -0.06186947226524353, 0.05147555470466614, -0.1452595740556717, 0.013327245600521564, -0.007836062461137772, -0.036458276212215424, -0.020548783242702484, 0.1340114325284958, -0.09264960139989853, 0.0030257287435233593, 0.07050567120313644, -0.060511235147714615, -0.05813015252351761, 0.030520116910338402, -0.041216954588890076, -0.009734941646456718, 0.08863653242588043, 0.14404690265655518, -0.0445234514772892, -0.11275049299001694, -0.10982885211706161, -0.019394706934690475, -0.039214082062244415, 0.1527044028043747, 0.07970952242612839, -0.04526021331548691, 0.10022043436765671, -0.007707869168370962, -0.01705668494105339, -0.0561257041990757, 0.019414326176047325, -0.03643214702606201, 0.007951663807034492, -0.006616390310227871, -0.10646335035562515, 0.019823109731078148, -0.10535049438476562, 0.007895177230238914, -0.07916967570781708, -0.02812035195529461, 0.017945056781172752, -0.0340714231133461, 0.016654931008815765, -0.025403792038559914, 0.09456975013017654, -0.11289144307374954, -0.0013843085616827011, -0.16075506806373596, -0.11215922981500626, 0.055702194571495056, -0.05762089788913727, 0.039854828268289566, -0.08255523443222046, -0.026788070797920227, 0.01904834248125553, 0.04149209335446358, -0.013044171966612339, 0.04516167566180229, -0.024733733385801315, -0.04162679612636566, -0.13568872213363647, -0.04773370176553726, -0.031171346083283424, 0.0874924585223198, -0.12576667964458466, -0.035955194383859634, 0.12727540731430054, 0.1277732402086258, 0.03493313863873482, -0.04980221018195152, 0.09386073052883148, -0.022194258868694305, -0.01766180619597435, -0.09420479089021683, -0.006555051542818546, 0.00016808995860628784, 0.04278052598237991, 0.07978060096502304, -0.15484927594661713, -0.13859155774116516, 0.08152537792921066, 0.026619575917720795, -0.08861438930034637, -0.06396975368261337, -0.043625008314847946, -0.014004983007907867, -0.09561123698949814, -0.023521821945905685, 0.05443199351429939, 0.059036366641521454, 0.08811736106872559, -0.08942466974258423, -0.043136514723300934, 0.00908055528998375, -0.02762603387236595, -0.08748991042375565, 0.08296406269073486, 0.045765042304992676, -0.1297803372144699, 0.10392974317073822, -0.027773436158895493, 0.04795065522193909, 0.0847739577293396, 0.020269062370061874, -0.11590412259101868, 0.020248519256711006, 0.06629136204719543, 0.017287733033299446, 0.06414563208818436, -0.0008335369639098644, 0.024873243644833565, 0.07667244970798492, -0.03264516219496727, -0.014878818765282631, -0.07489889860153198, 0.07390938699245453, 0.039659012109041214, -0.035574089735746384, 0.03610870987176895, -0.01856251433491707, 0.07606051117181778, 0.08814673125743866, 0.05472319573163986, 0.11966682970523834, -0.04422182962298393, -0.05531962215900421, -0.10075925290584564, 0.13439548015594482, -0.022392679005861282, -0.26457104086875916, -0.08651891350746155, -0.056810688227415085, -0.03807101771235466, -0.010748335160315037, 0.03931141644716263, -0.0000317228477797471, -0.09301641583442688, -0.11487232893705368, 0.057586535811424255, 0.05349627882242203, -0.11671888828277588, -0.10255813598632812, 0.0500790998339653, 0.014834186062216759, -0.0772748589515686, 0.009446525946259499, 0.026979774236679077, -0.03596751391887665, 0.006004465743899345, 0.03159857541322708, 0.1156105324625969, 0.05309674143791199, 0.0020412218291312456, -0.005669366102665663, -0.001347096054814756, 0.1888515055179596, -0.13833455741405487, 0.10447093844413757, 0.16404037177562714, 0.013166217133402824, 0.08010978251695633, 0.20215332508087158, -0.019160689786076546, -0.014151440002024174, 0.02724508009850979, 0.07035212218761444, -0.059401094913482666, -0.2084546834230423, -0.059864871203899384, -0.03668820858001709, 0.0043798829428851604, 0.13589145243167877, 0.03792768344283104, 0.009598291479051113, 0.08946685492992401, -0.11205683648586273, 0.03345464915037155, 0.007178791332989931, 0.10446469485759735, 0.07395684719085693, 0.04336293414235115, 0.04375077784061432, -0.054203618317842484, -0.02592889592051506, 0.08967823535203934, 0.09297678619623184, 0.10967724025249481, -0.09485623985528946, 0.10228216648101807, 0.02962285839021206, 0.029354264959692955, -0.02882339060306549, -0.023764589801430702, -0.033192288130521774, 0.05828727409243584, -0.005694957450032234, -0.10292025655508041, 0.006567952688783407, 0.08003756403923035, 0.14357233047485352, -0.023536397144198418, 0.005054503213614225, -0.038360293954610825, 0.056593652814626694, 0.23931075632572174, -0.008091732859611511, -0.203212708234787, 0.010932853445410728, 0.041058123111724854, 0.006895135622471571, -0.11153651773929596, -0.03975312411785126, 0.07964881509542465, -0.17436020076274872, 0.0646766722202301, -0.021314434707164764, 0.11539046466350555, -0.1271447390317917, -0.03653395548462868, 0.04547007009387016, 0.04904355853796005, -0.026598772034049034, 0.08374317735433578, -0.09502629935741425, 0.07392673939466476, 0.03441543132066727, 0.01684657670557499, -0.0695408433675766, 0.0435418039560318, 0.0060555157251656055, -0.016011981293559074, 0.1466129571199417, -0.016504524275660515, -0.0015567255904898047, -0.13607271015644073, -0.11723095923662186, -0.009817768819630146, 0.04054046794772148, -0.07646406441926956, 0.09804198890924454, 0.009952523745596409, -0.028252527117729187, -0.08897486329078674, -0.03953959047794342, -0.05078663304448128, -0.18441839516162872, 0.037663403898477554, -0.024518854916095734, 0.029307331889867783, -0.020400570705533028, 0.019066879525780678, 0.012193197384476662, 0.1252862960100174, -0.05376598984003067, -0.1047048345208168, -0.13876110315322876, 0.05423744395375252, 0.11196581274271011, -0.02585800364613533, -0.014673071913421154, -0.10057537257671356, 0.18012376129627228, -0.030541738495230675, -0.07728137075901031, 0.016677578911185265, -0.0724029541015625, -0.11732478439807892, -0.05718076601624489, 0.11621847003698349, 0.021057212725281715, -0.004216003231704235, 0.011064042337238789, 0.06160891428589821, -0.007196458056569099, -0.047412823885679245, 0.022440752014517784, 0.11292445659637451, 0.14185579121112823, 0.11880592256784439, 0.006728739943355322, -0.138779878616333, -0.1240057721734047, -0.01804989017546177, 0.03222234547138214, 0.09921835362911224, -0.06732736527919769, 0.13152673840522766, 0.042770933359861374, -0.08902011066675186, -0.22427865862846375, 0.060553520917892456, 0.08395081013441086, -0.014446786604821682, 0.012285398319363594, -0.15453572571277618, 0.15765100717544556, 0.03686164692044258, 0.005365068092942238, 0.05251648649573326, -0.2594378888607025, -0.06542804092168808, -0.015027845278382301, 0.014392802491784096, -0.2443639487028122, -0.17017009854316711, -0.0702243372797966, -0.05407923832535744, -0.13980655372142792, 0.04745226353406906, 0.022873777896165848, 0.042522311210632324, 0.0378776490688324, 0.036813605576753616, 0.06763046234846115, -0.041227422654628754, 0.11250145733356476, 0.015550054609775543, 0.03850473836064339, -0.07828731089830399, -0.08030679821968079, 0.00520787900313735, -0.09515205025672913, 0.14012092351913452, 0.04157283902168274, 0.036831021308898926, -0.040101926773786545, -0.022304492071270943, -0.03650406375527382, 0.08505517244338989, -0.03235989436507225, -0.027790267020463943, -0.10223396867513657, 0.02969442494213581, 0.13638287782669067, 0.02434929646551609, 0.08790687471628189, -0.04788682609796524, -0.011699440889060497, 0.1692192554473877, 0.10295740514993668, 0.002786999335512519, -0.1729140430688858, -0.0528876930475235, -0.0018644651863723993, 0.03961518034338951, -0.13030630350112915, 0.03515613079071045, 0.08732796460390091, 0.0229333583265543, 0.10246050357818604, -0.026405945420265198, -0.10209418088197708, 0.0024861497804522514, 0.037943996489048004, -0.08967632800340652, -0.09373945742845535, 0.018086789175868034, 0.11846727132797241, -0.12724198400974274, -0.13799989223480225, 0.10637718439102173, 0.00575675256550312, -0.027401503175497055, -0.00039373256731778383, 0.07691995054483414, 0.06700828671455383, 0.06229928135871887, 0.022623170167207718, 0.03820601850748062, -0.07361643016338348, 0.11013305187225342, 0.1486971527338028, -0.1439802497625351, 0.005311592482030392, 0.1118541732430458, -0.04845922812819481, -0.020587274804711342, -0.01011490449309349, 0.027470268309116364, -0.02460438758134842, -0.02170209214091301, 0.04279216378927231, -0.047729965299367905, 0.044216133654117584, 0.10558588057756424, 0.008147203363478184, 0.05483812466263771, 0.0259039755910635, -0.029610615223646164, -0.13518111407756805, 0.13337470591068268, 0.034227155148983, 0.044408947229385376, -0.0900268703699112, 0.006967697758227587, 0.039176784455776215, 0.006243334151804447, 0.012917463667690754, -0.06357228755950928, -0.07385186105966568, -0.00496216444298625, -0.02664915658533573, 0.12353036552667618, -0.09603659808635712, -0.001433185301721096, -0.022805336862802505, 0.003123320173472166, -0.010024935938417912, 0.035340018570423126, -0.043966956436634064, -0.08323163539171219, -0.053636930882930756, 0.14441551268100739, -0.1474691927433014, -0.024849481880664825, 0.06985463947057724, -0.08389327675104141, 0.054299723356962204, 0.0038514353800565004, -0.04041607305407524, -0.09760203957557678, -0.18852117657661438, -0.03906162083148956, 0.03323379158973694, 0.06909377872943878, 0.02707303874194622, -0.08618152886629105, 0.04552283510565758, -0.007356713060289621, -0.10735952854156494, -0.016065241768956184, -0.02251945436000824, -0.12332165986299515, 0.03808808699250221, -0.08631071448326111, -0.038176968693733215, -0.038678012788295746, 0.12493528425693512, 0.06194755434989929, -0.004380817525088787, 0.0865187719464302, -0.05332189425826073, 0.09533486515283585, -0.1397191882133484, -0.03756400942802429, -0.017916664481163025, -0.028129948303103447, -0.0901365652680397, 0.005893208552151918, 0.07151555269956589, -0.026445399969816208, 0.13739623129367828, 0.12480855733156204, 0.036183521151542664, 0.045250292867422104, 0.013456704095005989, 0.09465119987726212, 0.0635523796081543, -0.002302630338817835, -0.0028941200580447912, -0.008444693870842457, 0.07765410840511322, 0.009651708416640759, 0.02027198113501072, 0.08095180243253708, 0.0359933003783226, 0.24357211589813232, 0.12298252433538437, 0.011580875143408775, 0.03562784194946289, -0.0760670006275177, -0.0322529636323452, 0.11249168962240219, -0.04458150640130043, 0.07003017514944077, -0.08192332088947296, 0.036836083978414536, 0.09963002055883408, -0.15049363672733307, 0.06446646898984909, 0.002015304286032915, -0.0052860453724861145, -0.038309067487716675, -0.10576973110437393, -0.06642316281795502, -0.01663374900817871, -0.0011856179917231202, -0.11822573840618134, 0.08966273814439774, 0.14317986369132996, -0.006844307761639357, 0.01590808294713497, 0.0858585312962532, -0.051991794258356094, -0.10667990148067474, 0.06652192026376724, 0.014305789023637772, 0.04613446071743965, 0.040379445999860764, 0.052400801330804825, 0.09467512369155884, 0.004670267924666405, 0.07081753015518188, 0.09415700286626816, 0.11573843657970428, 0.03188195079565048, -0.0891423374414444, -0.07482670247554779, 0.03368835523724556, -0.010889923200011253, -0.024356218054890633, 0.1316269189119339, 0.0782185047864914, 0.011619234457612038, -0.01907365955412388, 0.17818105220794678, -0.00040711992187425494, -0.021703360602259636, -0.13025052845478058, 0.0394185371696949, -0.04387235268950462, -0.014788858592510223, -0.01025589182972908, -0.14007540047168732, 0.01246391050517559, 0.13303381204605103, 0.06328339874744415, -0.03816165775060654, -0.013374692760407925, -0.026079438626766205, 0.005281638354063034, -0.015036722645163536, 0.02771364524960518, 0.021079903468489647, 0.19206200540065765, -0.07112710922956467, 0.012040517292916775, -0.05057379975914955, -0.03160347789525986, -0.0854807123541832, 0.07811149209737778, -0.014496074989438057, -0.00873023085296154, -0.06901455670595169, 0.11740006506443024, -0.016003062948584557, -0.18125924468040466, 0.06625854223966599, -0.08223322033882141, -0.08179415762424469, 0.007289724890142679, -0.023550748825073242, 0.023090785369277, 0.015898454934358597, 0.013025864027440548, -0.06310880929231644, 0.08497178554534912, 0.02562732622027397, -0.08420630544424057, -0.013781579211354256, 0.0031164675019681454, -0.10293227434158325, 0.25134164094924927, -0.03205733373761177, 0.04740060865879059, 0.07901064306497574, -0.015881173312664032, -0.13804496824741364, -0.026291560381650925, 0.08974112570285797, -0.05398526415228844, 0.03979369252920151, 0.10506276786327362, 0.0020094134379178286, 0.17379559576511383, 0.09064721316099167, -0.06303185224533081, 0.0467042475938797, -0.01824883744120598, 0.01634746603667736, -0.10624226927757263, 0.007497238926589489, -0.10155627876520157, 0.11014555394649506, 0.13064071536064148, -0.019266467541456223, -0.020945876836776733, -0.03707543760538101, 0.007388422731310129, 0.008726567961275578, 0.07539521157741547, 0.008585253730416298, -0.06208714470267296, 0.020527180284261703, -0.15384125709533691, 0.08718528598546982, -0.12541291117668152, -0.05789797008037567, 0.039275139570236206, -0.014831888489425182, -0.010257666930556297, 0.07891399413347244, 0.030045872554183006, 0.0034402073360979557, -0.05656920745968819, -0.07449217140674591, 0.030354207381606102, 0.16116370260715485, -0.01139638852328062, -0.024313919246196747 ]
51765b0d63b11ab6c980e1574a5dc9010f34b280
# Dataset Card for x-ray-rheumatology ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/x-ray-rheumatology - **Point of Contact:** [email protected] ### Dataset Summary x-ray-rheumatology ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/x-ray-rheumatology ### Citation Information ``` @misc{ x-ray-rheumatology, title = { x ray rheumatology Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/x-ray-rheumatology } }, url = { https://universe.roboflow.com/object-detection/x-ray-rheumatology }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/x-ray-rheumatology
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:14+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "x-ray-rheumatology", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "x-ray-rheumatology", "1": "artefact", "2": "distal phalanges", "3": "fifth metacarpal bone", "4": "first metacarpal bone", "5": "fourth metacarpal bone", "6": "intermediate phalanges", "7": "proximal phalanges", "8": "radius", "9": "second metacarpal bone", "10": "soft tissue calcination", "11": "third metacarpal bone", "12": "ulna"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:27+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for x-ray-rheumatology The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary x-ray-rheumatology ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for x-ray-rheumatology\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nx-ray-rheumatology", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for x-ray-rheumatology\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nx-ray-rheumatology", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for x-ray-rheumatology\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nx-ray-rheumatology### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01087378803640604, 0.17702555656433105, -0.007498576305806637, 0.01764749176800251, 0.08779807388782501, 0.0008924362482503057, 0.05363158881664276, 0.07868071645498276, -0.004401452373713255, 0.17041216790676117, -0.00945056788623333, 0.05784328281879425, 0.1282067447900772, 0.073758065700531, -0.015435419045388699, -0.1532299816608429, 0.06296999752521515, -0.07198207825422287, 0.08378986269235611, 0.07022847980260849, 0.07899940013885498, -0.1369880586862564, 0.08647850900888443, -0.022881532087922096, -0.018419748172163963, 0.029468653723597527, -0.06553012877702713, -0.029390044510364532, 0.009533521719276905, 0.03678995370864868, 0.03042825497686863, 0.026637515053153038, 0.058977775275707245, -0.18698817491531372, 0.019523652270436287, 0.09886258840560913, 0.02918453887104988, 0.02146240882575512, 0.1527920663356781, -0.08490518480539322, 0.03078058920800686, -0.12304128706455231, 0.030867956578731537, 0.019292498007416725, -0.10853386670351028, -0.07904905825853348, -0.1324693113565445, 0.06160951033234596, 0.08681626617908478, 0.0564497634768486, -0.02369801327586174, 0.08249595761299133, -0.03196560591459274, 0.048251453787088394, 0.1469445377588272, -0.06282439827919006, -0.0411171056330204, 0.09120898693799973, 0.062300339341163635, 0.08695792406797409, -0.1200101375579834, -0.01818162016570568, 0.017518991604447365, -0.013396860100328922, -0.0006544286734424531, -0.04073932021856308, -0.02555503509938717, -0.0038731740787625313, -0.10761810094118118, -0.13580802083015442, 0.1333097517490387, 0.05668739974498749, -0.058889344334602356, -0.1385035216808319, -0.01066635362803936, 0.05578836798667908, -0.028215954080224037, -0.0028928767424076796, 0.04786955565214157, -0.010697955265641212, 0.06835032254457474, -0.059783220291137695, -0.10604313760995865, 0.04805978015065193, 0.019962413236498833, 0.03900327906012535, -0.013537365943193436, 0.03517429530620575, 0.030302342027425766, 0.08162561804056168, 0.01357139553874731, -0.10607527196407318, -0.0234078299254179, -0.046728700399398804, -0.05488095059990883, -0.04169585928320885, 0.05162530764937401, -0.12109985947608948, 0.0669180154800415, 0.07029025256633759, -0.06235050410032272, 0.02000953070819378, -0.10802172124385834, 0.00599877443164587, 0.12716570496559143, 0.18736398220062256, -0.0960499569773674, -0.08814777433872223, -0.005446223076432943, 0.04998607188463211, 0.01198736671358347, -0.018928956240415573, -0.025186577811837196, -0.005310088861733675, 0.034785062074661255, 0.04009857401251793, 0.10462306439876556, 0.03552991896867752, -0.07295157760381699, -0.06559373438358307, 0.15179935097694397, -0.10008330643177032, 0.04730827361345291, 0.05750352516770363, -0.06344950944185257, 0.07831965386867523, 0.01253032311797142, 0.01675954833626747, -0.11590496450662613, 0.06777602434158325, -0.027383854612708092, 0.010040848515927792, -0.09639372676610947, -0.10486456751823425, 0.05084200203418732, -0.0869005024433136, -0.08000572770833969, -0.07566609978675842, -0.042432792484760284, -0.09458281099796295, 0.03405573591589928, -0.04515018314123154, 0.014844164252281189, 0.015756875276565552, -0.04122267663478851, -0.015585524961352348, 0.011684931814670563, 0.04041676968336105, -0.05615922063589096, 0.034090105444192886, -0.10022735595703125, 0.03441645950078964, 0.10780029743909836, 0.04676475003361702, -0.08997044712305069, 0.06541336327791214, -0.18697121739387512, 0.1261054426431656, -0.04657064750790596, 0.027174757793545723, -0.1280214488506317, 0.002966419095173478, -0.009450051933526993, -0.03217059373855591, -0.0035765673965215683, 0.1370890736579895, -0.09814400970935822, 0.01942131109535694, 0.051223743706941605, -0.046161383390426636, -0.054924674332141876, 0.04533151164650917, -0.046448249369859695, -0.004441969096660614, 0.08014046400785446, 0.11486942321062088, -0.02943284995853901, -0.13075347244739532, -0.11406584084033966, -0.046552062034606934, -0.043941378593444824, 0.15771818161010742, 0.06819078326225281, -0.03646175563335419, 0.09606486558914185, -0.009267160668969154, -0.010571475140750408, -0.05913771316409111, 0.005725573282688856, -0.0379982627928257, 0.012463457882404327, -0.005034053232520819, -0.07930426299571991, 0.009078087285161018, -0.10080070793628693, 0.007972436025738716, -0.08122575283050537, -0.0351722426712513, 0.021281475201249123, -0.02100466564297676, 0.01071692630648613, -0.031168268993496895, 0.07577963918447495, -0.1057019829750061, -0.003807250177487731, -0.15036971867084503, -0.11079783737659454, 0.06146600469946861, -0.05866047367453575, 0.04799078404903412, -0.06136711314320564, -0.014728141948580742, 0.013705950230360031, 0.03645612671971321, -0.015811434015631676, 0.03771977499127388, -0.02206946350634098, -0.03855825215578079, -0.11835981905460358, -0.05214858800172806, -0.020804090425372124, 0.09646131098270416, -0.12189439684152603, -0.030669812113046646, 0.10750212520360947, 0.12670709192752838, 0.021285315975546837, -0.04053117334842682, 0.06954207271337509, -0.04043781757354736, -0.01655559614300728, -0.07168912142515182, -0.019132178276777267, -0.005270484369248152, 0.04275307059288025, 0.07444725930690765, -0.15198981761932373, -0.14427436888217926, 0.0853562131524086, 0.03465263172984123, -0.08256445080041885, -0.0518612340092659, -0.04991302639245987, -0.02082679606974125, -0.10034199804067612, -0.04563882574439049, 0.02661277912557125, 0.06419818848371506, 0.07745189964771271, -0.07870101928710938, -0.046508003026247025, 0.013930405490100384, -0.014640123583376408, -0.08253246545791626, 0.08024004101753235, 0.057484522461891174, -0.13154815137386322, 0.09131147712469101, -0.026322215795516968, 0.04815410077571869, 0.07738327234983444, 0.035228028893470764, -0.11536675691604614, 0.015148221515119076, 0.06780893355607986, 0.014454892836511135, 0.09234139323234558, -0.004879724700003862, 0.016358138993382454, 0.07938646525144577, -0.013505794107913971, -0.01410914957523346, -0.08654908835887909, 0.07463032752275467, 0.023319359868764877, -0.03494106978178024, 0.021764013916254044, -0.02225971594452858, 0.09427452832460403, 0.0992376059293747, 0.07063738256692886, 0.1102420911192894, -0.05374104529619217, -0.06683244556188583, -0.09005536139011383, 0.12781603634357452, -0.02788240648806095, -0.2522217333316803, -0.0771859809756279, -0.05886915326118469, -0.05668427795171738, -0.0091455839574337, 0.02488325536251068, -0.006169789005070925, -0.09407168626785278, -0.0984354168176651, 0.0720745101571083, 0.04749327152967453, -0.10961630195379257, -0.11427001655101776, 0.03905614838004112, 0.004143218509852886, -0.08853047341108322, 0.002188119338825345, 0.020739970728754997, -0.041375890374183655, 0.008108817040920258, 0.033598337322473526, 0.12754634022712708, 0.05594045668840408, -0.01938030868768692, -0.0031789622735232115, 0.002156192436814308, 0.18642908334732056, -0.1417464315891266, 0.10573241859674454, 0.1524898260831833, 0.01857019029557705, 0.08084982633590698, 0.1978115439414978, -0.018102282658219337, -0.016086090356111526, 0.032151542603969574, 0.08503928035497665, -0.0470748171210289, -0.2001190483570099, -0.06333281099796295, -0.040877752006053925, 0.0021559814922511578, 0.13667643070220947, 0.03723563626408577, 0.01298715453594923, 0.08019927144050598, -0.11587037891149521, 0.013290819711983204, 0.01665615849196911, 0.09425348043441772, 0.04687913507223129, 0.037207189947366714, 0.04175041988492012, -0.046006686985492706, -0.0448969304561615, 0.09140098094940186, 0.12305490672588348, 0.12022349238395691, -0.09435993432998657, 0.09898478537797928, 0.035235799849033356, 0.042656999081373215, -0.03912610188126564, -0.006220560520887375, -0.021539408713579178, 0.048644375056028366, -0.008757229894399643, -0.09134487807750702, 0.012531233951449394, 0.09094042330980301, 0.14687077701091766, -0.013857598416507244, -0.004595247097313404, -0.04569876939058304, 0.06865894794464111, 0.25822070240974426, 0.014808573760092258, -0.19799986481666565, 0.018804999068379402, 0.03586205467581749, 0.0016904326621443033, -0.12301134318113327, -0.03629157692193985, 0.07326775044202805, -0.16547726094722748, 0.055173881351947784, -0.02598356269299984, 0.11241881549358368, -0.12599141895771027, -0.03854851424694061, 0.05101511999964714, 0.048831067979335785, -0.027164878323674202, 0.0721372440457344, -0.0860571563243866, 0.07818054407835007, 0.029361696913838387, 0.02786347083747387, -0.08048415929079056, 0.03278162330389023, 0.011999649927020073, -0.03030303865671158, 0.14229053258895874, -0.015426947735249996, 0.022268887609243393, -0.12057482451200485, -0.10985519737005234, -0.014105133712291718, 0.06224562227725983, -0.07365792244672775, 0.11482132226228714, 0.007990863174200058, -0.028569987043738365, -0.07324284315109253, -0.03537381440401077, -0.06754924356937408, -0.16961942613124847, 0.03500543534755707, -0.03294866904616356, 0.01025997381657362, -0.01760481297969818, 0.016094805672764778, -0.015000655315816402, 0.12908709049224854, -0.037470459938049316, -0.09111002832651138, -0.13383330404758453, 0.043464455753564835, 0.1077721044421196, -0.017230823636054993, -0.008659541606903076, -0.09168431162834167, 0.17979879677295685, -0.030576171353459358, -0.0731382668018341, 0.02190435118973255, -0.06516250967979431, -0.11311855167150497, -0.057062674313783646, 0.11271268129348755, 0.049372393637895584, 0.003416722873225808, 0.0012261532247066498, 0.05147700756788254, -0.017404885962605476, -0.04352455586194992, 0.025193385779857635, 0.10313241183757782, 0.13926438987255096, 0.1416042000055313, 0.00284253666177392, -0.15803568065166473, -0.12043342739343643, -0.005630723666399717, 0.022644056007266045, 0.09390942007303238, -0.0676102265715599, 0.1046244204044342, 0.04304590821266174, -0.0745503157377243, -0.2313338816165924, 0.07613901793956757, 0.06693052500486374, -0.0017391237197443843, -0.007168281357735395, -0.13054093718528748, 0.1437959372997284, 0.03641558066010475, -0.001906947116367519, 0.0723876804113388, -0.2637515366077423, -0.07171904295682907, -0.01864585280418396, 0.019956177100539207, -0.2220166027545929, -0.16060258448123932, -0.051388926804065704, -0.05353182554244995, -0.1729281097650528, 0.05310841649770737, 0.003592780092731118, 0.04737825319170952, 0.037126973271369934, 0.06256818026304245, 0.05955754220485687, -0.041871264576911926, 0.10907299071550369, 0.019944924861192703, 0.03550001606345177, -0.07157260924577713, -0.09376885741949081, 0.017230410128831863, -0.0956561341881752, 0.1508474051952362, 0.05814817547798157, 0.030307093635201454, -0.046610310673713684, -0.018486961722373962, -0.05033508688211441, 0.07961253821849823, -0.029079720377922058, -0.03610607981681824, -0.10461417585611343, 0.047095585614442825, 0.12670814990997314, 0.025257699191570282, 0.07171911746263504, -0.04545944929122925, -0.024248657748103142, 0.13386598229408264, 0.1070168986916542, 0.007947106845676899, -0.13640469312667847, -0.038149312138557434, 0.003016256494447589, 0.041132573038339615, -0.09659068286418915, 0.04020727798342705, 0.09522886574268341, 0.02521728165447712, 0.10275478661060333, -0.014701621606945992, -0.10367853194475174, 0.0007418254390358925, 0.036502037197351456, -0.0851387307047844, -0.12837667763233185, 0.02949671819806099, 0.09956572204828262, -0.12349870055913925, -0.10571390390396118, 0.10719665139913559, 0.005864109378308058, -0.02823019213974476, -0.001889890292659402, 0.0786157175898552, 0.049724310636520386, 0.05382821336388588, 0.027806345373392105, 0.03479260578751564, -0.07501891255378723, 0.1178416833281517, 0.1455458700656891, -0.12459216266870499, -0.0018724271794781089, 0.11306028813123703, -0.04521329328417778, -0.016664676368236542, -0.016034167259931564, 0.02420194447040558, -0.03643620014190674, -0.0240798257291317, 0.032609663903713226, -0.06828027218580246, 0.041886936873197556, 0.07420741766691208, 0.0039405194111168385, 0.05590032413601875, 0.03454840928316116, -0.006338716018944979, -0.1296074539422989, 0.12526960670948029, 0.03682718053460121, 0.05216721072793007, -0.0871262475848198, -0.006503520533442497, 0.023681094869971275, 0.01818929985165596, 0.009851261042058468, -0.04875539243221283, -0.078807532787323, 0.0049103423953056335, -0.07130160182714462, 0.10180637985467911, -0.09430807828903198, -0.0005555653478950262, -0.022910211235284805, 0.0067058042623102665, -0.012676317244768143, 0.03360060602426529, -0.04555603489279747, -0.08391091227531433, -0.04665985330939293, 0.13201163709163666, -0.13930557668209076, -0.016019562259316444, 0.058807600289583206, -0.08552847802639008, 0.05789106711745262, 0.010392739437520504, -0.03491196036338806, -0.09376850724220276, -0.1660136729478836, -0.05719490349292755, 0.023846834897994995, 0.0715525820851326, 0.048073362559080124, -0.0947517454624176, 0.044542327523231506, -0.0019770520739257336, -0.09714482724666595, -0.02215799130499363, -0.025640806183218956, -0.11655033379793167, 0.042628370225429535, -0.09117600321769714, -0.032608527690172195, -0.04109674692153931, 0.12751586735248566, 0.05325327813625336, 0.00680563785135746, 0.0732581838965416, -0.04234786331653595, 0.09314137697219849, -0.1393599957227707, -0.03795294836163521, -0.013581803999841213, -0.02478928491473198, -0.06928085535764694, 0.0011736701708287, 0.07213973253965378, -0.0209922157227993, 0.13205650448799133, 0.12282783538103104, 0.03825703635811806, 0.042028624564409256, 0.007143101189285517, 0.053863007575273514, 0.06199445202946663, -0.014443607069551945, -0.020620839670300484, -0.016686314716935158, 0.06676369905471802, 0.008063646964728832, 0.012843561358749866, 0.07710366696119308, 0.06689098477363586, 0.2400500476360321, 0.1508130431175232, 0.019062254577875137, 0.05928884819149971, -0.09053091704845428, -0.06601595133543015, 0.10855399072170258, -0.04719863831996918, 0.06894447654485703, -0.09906046837568283, 0.027553828433156013, 0.09494660049676895, -0.14925597608089447, 0.07215895503759384, -0.02363905869424343, -0.0022863668855279684, -0.01831112988293171, -0.09932923316955566, -0.06436799466609955, -0.013600611127912998, 0.003582355100661516, -0.11306602507829666, 0.08902812004089355, 0.11776091158390045, 0.0008705352083779871, 0.01327525544911623, 0.09615715593099594, -0.05801927670836449, -0.09638731926679611, 0.07499883323907852, 0.020179450511932373, 0.06361784040927887, 0.05268711596727371, 0.042495246976614, 0.10061609745025635, 0.015826238319277763, 0.08391282707452774, 0.08963768929243088, 0.09206719696521759, 0.028820941224694252, -0.0720478892326355, -0.07403185218572617, 0.02781069092452526, -0.013529589399695396, -0.008398178033530712, 0.15526819229125977, 0.0744471400976181, 0.0177500918507576, -0.02312375418841839, 0.1610676497220993, -0.020013930276036263, -0.03511550650000572, -0.14268799126148224, 0.03993748128414154, -0.041842907667160034, -0.012111000716686249, -0.007721722591668367, -0.15275202691555023, 0.002161463489755988, 0.13599185645580292, 0.08372510224580765, -0.056823864579200745, -0.01681169867515564, -0.008456898853182793, 0.005391801707446575, -0.023892417550086975, 0.03341132402420044, 0.027649175375699997, 0.2146320641040802, -0.05920393392443657, 0.013794971629977226, -0.04248958081007004, -0.02944766730070114, -0.05653830245137215, 0.07997798174619675, -0.0071529485285282135, 0.008092828094959259, -0.08188633620738983, 0.11316745728254318, 0.001519648591056466, -0.2015068233013153, 0.0454881452023983, -0.08106058090925217, -0.08998238295316696, 0.011820504441857338, -0.031031625345349312, 0.012106954120099545, 0.032693102955818176, 0.0038170393090695143, -0.05485502630472183, 0.10232339799404144, 0.01344196405261755, -0.058162201195955276, -0.0125739062204957, 0.012602882459759712, -0.07688193023204803, 0.27139073610305786, -0.02561221830546856, 0.032602403312921524, 0.07835942506790161, -0.02006717585027218, -0.1323474943637848, -0.02532506175339222, 0.0820014700293541, -0.054952528327703476, 0.025838090106844902, 0.11878432333469391, -0.00070544722257182, 0.1379416137933731, 0.08425537496805191, -0.07728941738605499, 0.05169767886400223, -0.006858631037175655, 0.022458285093307495, -0.1260063648223877, 0.023467035964131355, -0.09772036224603653, 0.11973906308412552, 0.14319145679473877, -0.004057729616761208, -0.0023947216104716063, -0.037680719047784805, 0.00731915608048439, 0.012666841968894005, 0.10164497792720795, 0.008762963116168976, -0.06630033254623413, 0.016329828649759293, -0.1463075578212738, 0.08154286444187164, -0.13717779517173767, -0.05921756103634834, 0.03819134458899498, -0.013092195615172386, -0.0011925967410206795, 0.07884488999843597, 0.02406458929181099, 0.014272200874984264, -0.05575801059603691, -0.10634788870811462, 0.025055725127458572, 0.1600417196750641, -0.016437411308288574, -0.029203498736023903 ]
59b6b8327e6b93e544d26f988f86cda0bf896336
# Dataset Card for cavity-rs0uf ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cavity-rs0uf - **Point of Contact:** [email protected] ### Dataset Summary cavity-rs0uf ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cavity-rs0uf ### Citation Information ``` @misc{ cavity-rs0uf, title = { cavity rs0uf Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cavity-rs0uf } }, url = { https://universe.roboflow.com/object-detection/cavity-rs0uf }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cavity-rs0uf
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:28+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cavity-rs0uf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cavity-0", "1": "cavity", "2": "normal"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:44+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cavity-rs0uf The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cavity-rs0uf ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cavity-rs0uf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncavity-rs0uf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cavity-rs0uf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncavity-rs0uf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cavity-rs0uf\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncavity-rs0uf### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.018059128895401955, 0.16761955618858337, -0.00772718945518136, 0.023546725511550903, 0.10078693181276321, 0.002814558334648609, 0.05843978747725487, 0.08204609900712967, 0.004208410158753395, 0.17601552605628967, -0.00033238145988434553, 0.06985729932785034, 0.11835455894470215, 0.0915343314409256, -0.022319994866847992, -0.15032435953617096, 0.061042629182338715, -0.06348638981580734, 0.05912647768855095, 0.07189572602510452, 0.07276196777820587, -0.1376909613609314, 0.08518727123737335, -0.03849794715642929, -0.025196947157382965, 0.027660096064209938, -0.05536983907222748, -0.039302852004766464, 0.004410288762301207, 0.0472271628677845, 0.02404794655740261, 0.02962999977171421, 0.03541683778166771, -0.18854935467243195, 0.022282062098383904, 0.10752560943365097, 0.03185926750302315, 0.023314207792282104, 0.15463975071907043, -0.08498374372720718, 0.050946105271577835, -0.12548987567424774, 0.03441553935408592, 0.016495855525135994, -0.11952945590019226, -0.11672209203243256, -0.12163095921278, 0.05911905691027641, 0.10783113539218903, 0.04881269484758377, -0.017563236877322197, 0.07182041555643082, -0.015980470925569534, 0.05946604162454605, 0.11126482486724854, -0.06772732734680176, -0.04103516414761543, 0.08099004626274109, 0.03301643952727318, 0.1007806658744812, -0.11432912200689316, -0.018252423033118248, -0.0016458637546747923, -0.025535263121128082, 0.00850809458643198, -0.059146422892808914, -0.0562785379588604, -0.009570355527102947, -0.10023833811283112, -0.14625783264636993, 0.14143182337284088, 0.05142470821738243, -0.05156010389328003, -0.14260822534561157, -0.007892853580415249, 0.05471765249967575, -0.03557248041033745, -0.006442691665142775, 0.04450264573097229, -0.0043956744484603405, 0.06428347527980804, -0.07216927409172058, -0.10197661072015762, 0.04842652752995491, 0.03804139420390129, 0.03297336772084236, -0.018548453226685524, 0.041774630546569824, 0.018946830183267593, 0.06929660588502884, 0.0005708559765480459, -0.10860282927751541, -0.025721093639731407, -0.03758028894662857, -0.06187897548079491, -0.04422023892402649, 0.0649273619055748, -0.1459813266992569, 0.06383931636810303, 0.05605557560920715, -0.07770270854234695, 0.03485662862658501, -0.1330622434616089, 0.0212324857711792, 0.10434582084417343, 0.17716220021247864, -0.085214763879776, -0.08169952780008316, -0.003198949620127678, 0.04277430474758148, 0.017313025891780853, -0.032731372863054276, -0.021994737908244133, -0.0010590885067358613, 0.02568984404206276, 0.03541615605354309, 0.10822076350450516, 0.04469447210431099, -0.07010681182146072, -0.06189322471618652, 0.13611054420471191, -0.09681762009859085, 0.05160772427916527, 0.06267809867858887, -0.05537302419543266, 0.07271447777748108, 0.0114710358902812, 0.012729876674711704, -0.11754611879587173, 0.10127944499254227, -0.027643103152513504, 0.018252573907375336, -0.09049858152866364, -0.09684757888317108, 0.05572779104113579, -0.08481929451227188, -0.08314716070890427, -0.08102033287286758, -0.053207654505968094, -0.08618566393852234, 0.04505971074104309, -0.042283497750759125, 0.032801609486341476, 0.021159350872039795, -0.041033368557691574, -0.01305126678198576, 0.00793527066707611, 0.03754465654492378, -0.05623209476470947, 0.03899288922548294, -0.09592531621456146, 0.0394417867064476, 0.10795892775058746, 0.038594335317611694, -0.09632226079702377, 0.062296997755765915, -0.19694361090660095, 0.1348729431629181, -0.05329811945557594, 0.0203940961509943, -0.13453741371631622, 0.012879679910838604, -0.019584691151976585, -0.03644520044326782, 0.0022782140877097845, 0.14255312085151672, -0.07449131458997726, 0.018745632842183113, 0.06580439954996109, -0.055722400546073914, -0.05921681225299835, 0.03779229894280434, -0.039158254861831665, -0.006085829343646765, 0.07515237480401993, 0.12764647603034973, -0.04110705107450485, -0.11490271985530853, -0.10914412140846252, -0.03870407119393349, -0.0356336385011673, 0.15193842351436615, 0.07222553342580795, -0.03923128917813301, 0.10060304403305054, -0.010082143358886242, -0.0086335064843297, -0.043133705854415894, 0.011444334872066975, -0.036492787301540375, 0.018487241119146347, -0.00728406710550189, -0.08357376605272293, 0.018300116062164307, -0.09623107314109802, 0.009928073734045029, -0.07988931983709335, -0.05033295974135399, 0.013186227530241013, -0.03146108239889145, 0.017408834770321846, -0.034411679953336716, 0.09487255662679672, -0.13503991067409515, 0.00015967157378327101, -0.16237324476242065, -0.11023671180009842, 0.060956213623285294, -0.04184883460402489, 0.03668827563524246, -0.07649357616901398, -0.008533883839845657, 0.02357221394777298, 0.03346245363354683, -0.016649531200528145, 0.04249202460050583, -0.024541720747947693, -0.041099075227975845, -0.1306207776069641, -0.047792527824640274, -0.023203281685709953, 0.10655378550291061, -0.12594443559646606, -0.024412954226136208, 0.14400313794612885, 0.1174556240439415, 0.04246646165847778, -0.04920458421111107, 0.07711818814277649, -0.023144004866480827, -0.018488742411136627, -0.0798940509557724, -0.009488350711762905, -0.002846492687240243, 0.03704133257269859, 0.0857638418674469, -0.16490188241004944, -0.12794610857963562, 0.08352211117744446, 0.01948252134025097, -0.08584919571876526, -0.04933477193117142, -0.05074450001120567, -0.018762780353426933, -0.09502912312746048, -0.02823927067220211, 0.029345396906137466, 0.06963077187538147, 0.08881909400224686, -0.06756450980901718, -0.030765483155846596, 0.030123237520456314, -0.01816488243639469, -0.07889708131551743, 0.0670991837978363, 0.05716194957494736, -0.11673739552497864, 0.10707325488328934, -0.023087458685040474, 0.03601799160242081, 0.09083808958530426, 0.03710005804896355, -0.1189412772655487, 0.022332876920700073, 0.08081655204296112, 0.028104886412620544, 0.09621435403823853, -0.027415860444307327, 0.015459595248103142, 0.07947248965501785, -0.01688133180141449, -0.018747340887784958, -0.08228877931833267, 0.0802769586443901, 0.03757037594914436, -0.03598323091864586, 0.03395458310842514, -0.012265466153621674, 0.07896816730499268, 0.10249826312065125, 0.06238507479429245, 0.11587207019329071, -0.04698492959141731, -0.06138943135738373, -0.08972512930631638, 0.12628613412380219, -0.020821157842874527, -0.2639316916465759, -0.07378693670034409, -0.06444152444601059, -0.05529620125889778, -0.008827362209558487, 0.03348354622721672, 0.00461999885737896, -0.08410048484802246, -0.09973078221082687, 0.051487814635038376, 0.06414713710546494, -0.10452181845903397, -0.11914961785078049, 0.030637728050351143, 0.008263211697340012, -0.07199005782604218, 0.00029018864734098315, 0.027059955522418022, -0.05296293646097183, 0.01026911661028862, 0.04832792654633522, 0.1305975615978241, 0.0554974339902401, -0.02384423278272152, 0.006290912628173828, -0.007655100431293249, 0.1729501336812973, -0.15663596987724304, 0.10067373514175415, 0.1597384810447693, 0.008891452103853226, 0.07512221485376358, 0.19369332492351532, -0.014807174913585186, -0.018054716289043427, 0.02248324267566204, 0.07649055868387222, -0.06115679815411568, -0.19266940653324127, -0.05854664370417595, -0.05271686613559723, 0.028327494859695435, 0.13728918135166168, 0.03834240883588791, 0.024533307179808617, 0.09370658546686172, -0.11329849809408188, 0.0347793772816658, 0.024765243753790855, 0.10293716192245483, 0.04396682232618332, 0.044057924300432205, 0.043974000960588455, -0.04303461313247681, -0.033168595284223557, 0.09667649865150452, 0.11496789753437042, 0.11278063803911209, -0.10452350974082947, 0.09617757052183151, 0.028798751533031464, 0.03128867223858833, -0.03914649412035942, -0.003956397529691458, -0.03442106768488884, 0.05628586560487747, -0.0036184664350003004, -0.10144085437059402, -0.003684558905661106, 0.08441683650016785, 0.13666898012161255, -0.01903746835887432, 0.004928135313093662, -0.04343286156654358, 0.08011296391487122, 0.24060982465744019, 0.012663542293012142, -0.20389734208583832, 0.01572609879076481, 0.035645369440317154, 0.0260398481041193, -0.12672178447246552, -0.04072318971157074, 0.09023421257734299, -0.1659184694290161, 0.05369904264807701, -0.04248635843396187, 0.11130435019731522, -0.1430155336856842, -0.0377485416829586, 0.060840487480163574, 0.03317476436495781, -0.023695938289165497, 0.07777373492717743, -0.1255137026309967, 0.07689915597438812, 0.042579177767038345, 0.03552621230483055, -0.08846770226955414, 0.03808828815817833, 0.0061835660599172115, -0.01643613539636135, 0.1551864743232727, -0.02075921930372715, 0.0118049131706357, -0.13540548086166382, -0.11209823191165924, -0.015210245735943317, 0.05422477796673775, -0.07064315676689148, 0.09715988487005234, 0.017325127497315407, -0.03395034000277519, -0.08172628283500671, -0.04184400662779808, -0.06536795198917389, -0.1905946284532547, 0.04456426575779915, -0.0030826800502836704, 0.014474848285317421, -0.012303287163376808, 0.03188859298825264, 0.031263306736946106, 0.12472808361053467, -0.042400162667036057, -0.08950009196996689, -0.15050947666168213, 0.060739267617464066, 0.08775879442691803, -0.01635521464049816, -0.020635956898331642, -0.09288909286260605, 0.17439687252044678, -0.029929952695965767, -0.06799641996622086, 0.026210615411400795, -0.06619950383901596, -0.1179405003786087, -0.061995722353458405, 0.10443145781755447, 0.025356922298669815, -0.005684674717485905, 0.0029370321426540613, 0.05817911773920059, 0.008366708643734455, -0.04570469632744789, 0.033773649483919144, 0.09479624032974243, 0.1412205696105957, 0.13686977326869965, 0.01049057301133871, -0.1375618427991867, -0.1184474527835846, 0.0009118277230300009, 0.029142368584871292, 0.10380645841360092, -0.07504388689994812, 0.10782630741596222, 0.04481803998351097, -0.08049169182777405, -0.23130041360855103, 0.08945805579423904, 0.0691302940249443, -0.008396434597671032, -0.012457256205379963, -0.1443207859992981, 0.12728933990001678, 0.03850111737847328, -0.0047772047109901905, 0.08392573148012161, -0.27001234889030457, -0.07087880373001099, -0.020702481269836426, 0.038893964141607285, -0.22742189466953278, -0.1730138212442398, -0.04737530276179314, -0.052115149796009064, -0.15135955810546875, 0.055719759315252304, -0.009331212379038334, 0.04296094551682472, 0.043407052755355835, 0.034762658178806305, 0.06525717675685883, -0.04997777193784714, 0.10397817194461823, 0.013709146529436111, 0.03778330236673355, -0.06849660724401474, -0.07614113390445709, 0.037519942969083786, -0.09074940532445908, 0.14271105825901031, 0.0448407381772995, 0.018797023221850395, -0.05311473831534386, -0.017503894865512848, -0.03541514649987221, 0.08584200590848923, -0.02729179710149765, -0.043027475476264954, -0.08926242589950562, 0.04302261397242546, 0.13310843706130981, 0.028944743797183037, 0.08378654718399048, -0.049594126641750336, -0.006719863973557949, 0.16116102039813995, 0.10040566325187683, 0.011425437405705452, -0.14652469754219055, -0.04038647562265396, 0.0015205584932118654, 0.04481631517410278, -0.12239494174718857, 0.04410449415445328, 0.08505499362945557, 0.01412153523415327, 0.10935994982719421, -0.007593355607241392, -0.09675504267215729, 0.009337017312645912, 0.04609547182917595, -0.10721763968467712, -0.11586156487464905, 0.025468870997428894, 0.10397645086050034, -0.099749855697155, -0.11887092888355255, 0.11574416607618332, -0.00688897306099534, -0.015477706678211689, 0.0013877389719709754, 0.07643838226795197, 0.05555924400687218, 0.06211305409669876, 0.017070522531867027, 0.039624329656362534, -0.06631916016340256, 0.11281801015138626, 0.14966686069965363, -0.16198575496673584, 0.0010861089685931802, 0.1181468740105629, -0.05130310729146004, -0.02465297095477581, -0.03088538721203804, 0.027235204353928566, -0.0017885930137708783, -0.03292027488350868, 0.036229390650987625, -0.040499698370695114, 0.030169768258929253, 0.08866730332374573, -0.003901001764461398, 0.05344280228018761, 0.027877353131771088, -0.01580948382616043, -0.143039733171463, 0.13290712237358093, 0.01704881154000759, 0.0509236603975296, -0.09146639704704285, 0.007845749147236347, 0.02587926760315895, 0.007677069399505854, 0.008989089168608189, -0.054835181683301926, -0.07808894664049149, 0.0006989030516706407, -0.025063229724764824, 0.10580018907785416, -0.08298281580209732, -0.011893874034285545, -0.01742788404226303, 0.01046121958643198, -0.012018077075481415, 0.028889838606119156, -0.048608798533678055, -0.07731643319129944, -0.04389915615320206, 0.12539759278297424, -0.14708846807479858, -0.024334819987416267, 0.048358358442783356, -0.09236613661050797, 0.06093846261501312, 0.013427565805613995, -0.04399142786860466, -0.09494149684906006, -0.18147432804107666, -0.038175590336322784, 0.02492881380021572, 0.06566013395786285, 0.04220724478363991, -0.06910547614097595, 0.05434615537524223, -0.0052049653604626656, -0.0957869440317154, -0.016612643375992775, -0.0028949782717972994, -0.1109921932220459, 0.04805043339729309, -0.09001282602548599, -0.021912191063165665, -0.03888081759214401, 0.13860471546649933, 0.05461651086807251, 0.018117982894182205, 0.07105246931314468, -0.05169910937547684, 0.09862124919891357, -0.13025812804698944, -0.037329595535993576, -0.0038523715920746326, -0.03329578414559364, -0.07214906066656113, -0.0012492702808231115, 0.0795745998620987, -0.03492284193634987, 0.12828288972377777, 0.12971137464046478, 0.04958829656243324, 0.04352913796901703, -0.01644805818796158, 0.06705501675605774, 0.05986544489860535, -0.02924061194062233, -0.011677433736622334, -0.02148028463125229, 0.07520842552185059, 0.020137131214141846, 0.015564218163490295, 0.10120730847120285, 0.06144557520747185, 0.23280452191829681, 0.1328890174627304, 0.018227655440568924, 0.041466351598501205, -0.08918372541666031, -0.04931962117552757, 0.10030508786439896, -0.06048670411109924, 0.08571184426546097, -0.10839789360761642, 0.04978935047984123, 0.0957082137465477, -0.15111766755580902, 0.0643053948879242, -0.011944412253797054, -0.011037847027182579, -0.02957402542233467, -0.10335560888051987, -0.05891721323132515, -0.019722817465662956, 0.0035332324914634228, -0.10972166061401367, 0.08675835281610489, 0.13029949367046356, 0.0007554078474640846, 0.01719842106103897, 0.10549832135438919, -0.05770581588149071, -0.07583118230104446, 0.08539044857025146, 0.017858359962701797, 0.05976027995347977, 0.041728656738996506, 0.03997823968529701, 0.08029481768608093, -0.0022315136156976223, 0.09150238335132599, 0.08913276344537735, 0.0935666486620903, 0.03722994774580002, -0.07163093239068985, -0.07578063756227493, 0.03239665925502777, -0.010885137133300304, -0.011152245104312897, 0.14918935298919678, 0.07397117465734482, 0.015969060361385345, -0.026763970032334328, 0.1754540354013443, -0.019645635038614273, -0.00824247021228075, -0.14024817943572998, 0.02900546044111252, -0.03353353962302208, -0.011334442533552647, -0.016558224335312843, -0.1529017984867096, 0.006951907183974981, 0.1342315524816513, 0.07577356696128845, -0.04966701194643974, -0.010790647007524967, -0.008787131868302822, 0.007626230828464031, -0.018406270071864128, 0.04078468680381775, 0.01151785533875227, 0.21085205674171448, -0.06081099063158035, 0.010571963153779507, -0.03908563405275345, -0.03478502109646797, -0.06070958450436592, 0.09808024764060974, -0.016027187928557396, 0.002231811871752143, -0.0749182403087616, 0.10933377593755722, -0.008748631924390793, -0.2027517557144165, 0.06759493798017502, -0.09674843400716782, -0.07923293858766556, 0.008085689507424831, -0.025200869888067245, 0.009872660040855408, 0.02698284387588501, 0.0008940883562900126, -0.06642991304397583, 0.07347806543111801, 0.023924103006720543, -0.06584720313549042, -0.010011361911892891, -0.006048545707017183, -0.09526245296001434, 0.2637699544429779, -0.031439900398254395, 0.03867924585938454, 0.08289515227079391, -0.02152610570192337, -0.13311883807182312, -0.03357675299048424, 0.08306629955768585, -0.05677080526947975, 0.01534249633550644, 0.1293533593416214, -0.009540172293782234, 0.14630579948425293, 0.08425194025039673, -0.09714651107788086, 0.053498730063438416, -0.03722371533513069, 0.012719840742647648, -0.1114397644996643, 0.0013870552647858858, -0.0902629867196083, 0.11055262386798859, 0.1439548283815384, -0.002671972382813692, -0.007200623396784067, -0.03875585272908211, 0.0045736320316791534, 0.0048209670931100845, 0.09973365813493729, 0.0007572267786599696, -0.058782078325748444, 0.011168025434017181, -0.14916634559631348, 0.08557464182376862, -0.13223206996917725, -0.04799412935972214, 0.039750587195158005, -0.014582389034330845, -0.01300942525267601, 0.07770802825689316, 0.03340531140565872, 0.0031018133740872145, -0.06243884563446045, -0.12327481061220169, 0.03721298277378082, 0.16557767987251282, -0.010904286056756973, -0.026864930987358093 ]
1d82b015cea3a7ff9859167e1d0f8971291bf0b4
# Dataset Card for peanuts-sd4kf ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/peanuts-sd4kf - **Point of Contact:** [email protected] ### Dataset Summary peanuts-sd4kf ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/peanuts-sd4kf ### Citation Information ``` @misc{ peanuts-sd4kf, title = { peanuts sd4kf Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/peanuts-sd4kf } }, url = { https://universe.roboflow.com/object-detection/peanuts-sd4kf }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/peanuts-sd4kf
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:40+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "peanuts-sd4kf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "peanuts", "1": "with mold", "2": "without mold"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:58+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for peanuts-sd4kf The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary peanuts-sd4kf ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for peanuts-sd4kf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npeanuts-sd4kf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for peanuts-sd4kf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npeanuts-sd4kf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for peanuts-sd4kf\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\npeanuts-sd4kf### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.002993231639266014, 0.16543632745742798, -0.007727890741080046, 0.0244931448251009, 0.10031642019748688, -0.006167183164507151, 0.04654155671596527, 0.0728815421462059, 0.009031164459884167, 0.16310349106788635, -0.009280018508434296, 0.08347078412771225, 0.1348733752965927, 0.0886709913611412, -0.011342348530888557, -0.15652984380722046, 0.059955112636089325, -0.06033341586589813, 0.09860750287771225, 0.06908762454986572, 0.06784767657518387, -0.1358022838830948, 0.08748948574066162, -0.020088406279683113, -0.04571632295846939, 0.029179327189922333, -0.06639785319566727, -0.018184565007686615, 0.0047196391969919205, 0.019718123599886894, 0.029363002628087997, 0.03194648399949074, 0.051727794110774994, -0.19161802530288696, 0.019271010532975197, 0.08702413737773895, 0.03609346225857735, 0.027780333533883095, 0.1499047875404358, -0.06870155781507492, 0.010737858712673187, -0.15537293255329132, 0.021812979131937027, 0.00883947592228651, -0.10231747478246689, -0.08463936299085617, -0.1325666755437851, 0.06531896442174911, 0.09907399117946625, 0.03857723996043205, -0.02008442021906376, 0.04655946418642998, -0.022914016619324684, 0.050169285386800766, 0.1333160698413849, -0.09315181523561478, -0.03394293040037155, 0.0891103446483612, 0.0317390002310276, 0.07394832372665405, -0.1071213036775589, -0.02643764577805996, 0.016217567026615143, -0.013707909733057022, 0.005632149986922741, -0.03159143775701523, -0.011812076903879642, -0.014168580994009972, -0.11172271519899368, -0.13079889118671417, 0.12772008776664734, 0.05864011123776436, -0.0646645799279213, -0.1425284743309021, -0.009858036413788795, 0.04291360825300217, -0.03706827014684677, -0.007438080385327339, 0.06223262846469879, -0.004335337318480015, 0.0806579738855362, -0.05569610372185707, -0.10891876369714737, 0.0627182349562645, 0.002063313964754343, 0.05478803440928459, -0.012532294727861881, 0.0390622578561306, 0.04436507076025009, 0.0728059709072113, 0.035347744822502136, -0.11245575547218323, -0.03866039961576462, -0.0318559855222702, -0.0451960451900959, -0.059059690684080124, 0.05873816832900047, -0.08087170869112015, 0.0596749447286129, 0.07054371386766434, -0.07271052151918411, 0.017609862610697746, -0.1192142516374588, 0.0076464093290269375, 0.13782736659049988, 0.17209215462207794, -0.09428583830595016, -0.060061607509851456, -0.003517827019095421, 0.045334555208683014, 0.020868243649601936, -0.018399925902485847, -0.029210994020104408, 0.0020421382505446672, 0.0353718139231205, 0.030782241374254227, 0.10583755373954773, 0.04141411930322647, -0.08061128854751587, -0.059542350471019745, 0.16285796463489532, -0.10194066166877747, 0.04020974040031433, 0.055878374725580215, -0.06567610800266266, 0.08987888693809509, 0.01441738847643137, 0.025344936177134514, -0.10532598197460175, 0.08193339407444, -0.023703139275312424, 0.015879783779382706, -0.08847746253013611, -0.0842142403125763, 0.05945153534412384, -0.07660546898841858, -0.08015316724777222, -0.0900806412100792, -0.05681295692920685, -0.09006531536579132, 0.03468846529722214, -0.050190456211566925, 0.002189270220696926, 0.02243865095078945, -0.046740271151065826, -0.012247052043676376, 0.008684566244482994, 0.0403415821492672, -0.06317927688360214, 0.030591733753681183, -0.10647731274366379, 0.04619872197508812, 0.119858518242836, 0.03925728425383568, -0.0866398885846138, 0.06102914363145828, -0.17758551239967346, 0.12747140228748322, -0.03882062807679176, 0.029516950249671936, -0.11639196425676346, 0.0008999304845929146, -0.03111083433032036, -0.04161510989069939, -0.0195610448718071, 0.14974814653396606, -0.09303571283817291, 0.027734573930501938, 0.045168135315179825, -0.04438916966319084, -0.05388548970222473, 0.039857786148786545, -0.0381031334400177, -0.00024121315800584853, 0.0802990198135376, 0.12260936200618744, -0.04545480012893677, -0.1318492591381073, -0.12188293039798737, -0.016960248351097107, -0.04308025911450386, 0.15330824255943298, 0.07180904597043991, -0.022654805332422256, 0.0665363073348999, -0.012436035089194775, -0.0031313630752265453, -0.04084201157093048, 0.007856512442231178, -0.03209293633699417, 0.011164478026330471, -0.01721431501209736, -0.0744144544005394, 0.015960445627570152, -0.08490607887506485, 0.02308628149330616, -0.06474456936120987, -0.009502610191702843, 0.018402960151433945, -0.015002482570707798, 0.009671371430158615, -0.031990621238946915, 0.062101878225803375, -0.1160055547952652, -0.005948545876890421, -0.15754859149456024, -0.09710787236690521, 0.07246000319719315, -0.033932872116565704, 0.030180931091308594, -0.05639583244919777, -0.013038042932748795, 0.009916920214891434, 0.04558933153748512, -0.0099638681858778, 0.061455436050891876, -0.014176898635923862, -0.0398169569671154, -0.12034868448972702, -0.055219851434230804, -0.017774010077118874, 0.10776413232088089, -0.11370022594928741, -0.031700070947408676, 0.12157601863145828, 0.1219068095088005, 0.021854327991604805, -0.041375741362571716, 0.06664128601551056, -0.04212268069386482, -0.012369784526526928, -0.06740070879459381, -0.013428888283669949, 0.009900445118546486, 0.06318145990371704, 0.07342099398374557, -0.13205043971538544, -0.11222981661558151, 0.0800236240029335, 0.04014785587787628, -0.08069335669279099, -0.04126493260264397, -0.06567461788654327, -0.02335706539452076, -0.09564699977636337, -0.0456380695104599, 0.010942645370960236, 0.059326425194740295, 0.08324455469846725, -0.0722823441028595, -0.0686916783452034, 0.013838478364050388, -0.017220886424183846, -0.08595580607652664, 0.06162441521883011, 0.043748266994953156, -0.13375747203826904, 0.09454720467329025, -0.032668616622686386, 0.07042160630226135, 0.08415684849023819, 0.03304450586438179, -0.10430978983640671, -0.0006520193419419229, 0.07274474203586578, 0.006682578474283218, 0.0898602306842804, 0.007001142017543316, 0.020603839308023453, 0.07712569832801819, -0.007791541516780853, -0.006914377212524414, -0.0842980369925499, 0.08037523180246353, 0.028772611171007156, -0.04227645322680473, 0.03647809103131294, -0.03130139783024788, 0.0928211584687233, 0.09871501475572586, 0.08008956909179688, 0.1186748817563057, -0.05612346902489662, -0.06361241638660431, -0.09549958258867264, 0.1248525083065033, -0.03345999866724014, -0.2496565580368042, -0.06398923695087433, -0.07454775273799896, -0.04043572023510933, 0.0010683962609618902, 0.019748274236917496, -0.0022861517500132322, -0.08344138413667679, -0.10063877701759338, 0.06407804787158966, 0.04896692931652069, -0.10404471307992935, -0.0835113450884819, 0.02432919107377529, -0.003179858671501279, -0.07659412175416946, -0.0033131642267107964, 0.018278054893016815, -0.03963613510131836, -0.003228183137252927, 0.03445404767990112, 0.1158706471323967, 0.0658554807305336, -0.014427920803427696, -0.008851449005305767, 0.002458545845001936, 0.1896447092294693, -0.12716634571552277, 0.112855464220047, 0.15037840604782104, 0.00800340436398983, 0.0840897336602211, 0.20804311335086823, -0.010092265903949738, -0.01319865696132183, 0.03126396983861923, 0.07340720295906067, -0.047092463821172714, -0.19182267785072327, -0.05512091517448425, -0.036004990339279175, 0.024515453726053238, 0.1473788022994995, 0.04223250597715378, -0.002859752159565687, 0.08749718219041824, -0.10780349373817444, 0.008779249154031277, 0.026508202776312828, 0.08547025173902512, 0.052981406450271606, 0.03036205843091011, 0.04515817388892174, -0.0470261424779892, -0.05232091248035431, 0.09257947653532028, 0.1216454729437828, 0.10234237462282181, -0.09269564598798752, 0.08240128308534622, 0.044739726930856705, 0.037663232535123825, -0.05055604130029678, 0.0031649195589125156, -0.02263585664331913, 0.053806204348802567, -0.002960494952276349, -0.09230899810791016, 0.010436050593852997, 0.0736023485660553, 0.13051743805408478, -0.0017071664333343506, -0.006616757716983557, -0.04464593529701233, 0.07265563309192657, 0.26667261123657227, 0.011747102253139019, -0.18438629806041718, 0.016732163727283478, 0.03667980432510376, 0.002214886713773012, -0.11680479347705841, -0.04355115815997124, 0.06936156004667282, -0.16263271868228912, 0.05011358484625816, -0.020361071452498436, 0.10021007061004639, -0.1445169299840927, -0.03462664410471916, 0.08467212319374084, 0.023128114640712738, -0.018737412989139557, 0.06347562372684479, -0.07985800504684448, 0.06292299181222916, 0.03144069388508797, 0.03541003540158272, -0.08773442357778549, 0.04186863824725151, -0.000028865259082522243, -0.02990732342004776, 0.1395956575870514, -0.010949498973786831, 0.014059357345104218, -0.1511826068162918, -0.1097688376903534, -0.02114260010421276, 0.05849822610616684, -0.08493135124444962, 0.11261935532093048, 0.00907010305672884, -0.03149199113249779, -0.07429243624210358, -0.05153229832649231, -0.07936542481184006, -0.17231173813343048, 0.052664536982774734, -0.03610474616289139, 0.0011468544835224748, -0.019644854590296745, 0.00874465610831976, -0.02663462981581688, 0.13786672055721283, -0.0513140968978405, -0.09943690150976181, -0.1295647770166397, 0.040053702890872955, 0.07714900374412537, -0.012334950268268585, -0.0033511111978441477, -0.0880739614367485, 0.181338831782341, -0.026814855635166168, -0.09193767607212067, 0.00961600337177515, -0.06712651997804642, -0.09788916260004044, -0.050734542310237885, 0.10671915858983994, 0.048722829669713974, -0.011485664173960686, 0.013113479129970074, 0.051726583391427994, -0.009337391704320908, -0.041224196553230286, 0.01976659707725048, 0.08898064494132996, 0.15528707206249237, 0.14032673835754395, -0.005286006722599268, -0.15121284127235413, -0.10968763381242752, -0.0025719087570905685, 0.02211233600974083, 0.11801451444625854, -0.08289817720651627, 0.09680410474538803, 0.027368737384676933, -0.07479710131883621, -0.22374315559864044, 0.07416819036006927, 0.07201314717531204, -0.01257852092385292, -0.009989537298679352, -0.1416126787662506, 0.16841602325439453, 0.045460160821676254, -0.012215632945299149, 0.0627506747841835, -0.2745434641838074, -0.0666937306523323, -0.020616479218006134, 0.026381840929389, -0.18005958199501038, -0.15872174501419067, -0.053526993840932846, -0.04908363148570061, -0.1853243112564087, 0.07805189490318298, 0.0058740368112921715, 0.04551820456981659, 0.037480589002370834, 0.0489129014313221, 0.0664069876074791, -0.03561272472143173, 0.10985734313726425, 0.039563871920108795, 0.04352835565805435, -0.07424116879701614, -0.07590334862470627, -0.016433285549283028, -0.10143503546714783, 0.14982663094997406, 0.07410112023353577, 0.02641380950808525, -0.06013714522123337, -0.018752725794911385, -0.050196174532175064, 0.07932423800230026, -0.0309459138661623, -0.03551759943366051, -0.0971871092915535, 0.044257547706365585, 0.13685718178749084, 0.02715395763516426, 0.0539398118853569, -0.03222331404685974, -0.016910370439291, 0.13521860539913177, 0.1049671545624733, -0.00486277649179101, -0.11349482834339142, -0.03656505420804024, -0.0091530941426754, 0.023626156151294708, -0.09509322792291641, 0.03939700499176979, 0.0941600501537323, 0.02924191951751709, 0.09259571880102158, -0.009527364745736122, -0.08573441207408905, -0.029121793806552887, 0.05242440477013588, -0.0904092788696289, -0.13480302691459656, 0.02903987467288971, 0.09367848932743073, -0.12115449458360672, -0.11230573803186417, 0.10810768604278564, 0.014459877274930477, -0.030185112729668617, 0.007089963648468256, 0.07980696856975555, 0.05699322000145912, 0.043841660022735596, 0.025093484669923782, 0.03489520773291588, -0.07104692608118057, 0.13131579756736755, 0.14654728770256042, -0.12182945013046265, -0.013059770688414574, 0.09823884069919586, -0.04548075422644615, -0.01731189340353012, -0.021666264161467552, 0.012944173067808151, -0.011029647663235664, -0.01525399461388588, 0.046545617282390594, -0.07697542011737823, 0.04015149548649788, 0.07082248479127884, 0.004692325834184885, 0.07653308659791946, 0.03675159066915512, 0.006042746361345053, -0.13112039864063263, 0.13616448640823364, 0.03822685405611992, 0.05688289552927017, -0.09943851083517075, 0.0006669496069662273, 0.010756435804069042, 0.03640340641140938, 0.008634915575385094, -0.03479567915201187, -0.07689787447452545, -0.012933031655848026, -0.03563343733549118, 0.1092473492026329, -0.10698477178812027, -0.0014205396873876452, -0.016264338046312332, 0.01736183650791645, -0.01826704479753971, 0.03330742195248604, -0.04322456568479538, -0.07464391738176346, -0.04140596091747284, 0.12984225153923035, -0.12906521558761597, -0.02664697729051113, 0.0629803016781807, -0.09686402976512909, 0.0627836212515831, 0.01301624346524477, -0.03232070803642273, -0.10139710456132889, -0.16194018721580505, -0.04663272947072983, 0.03987684100866318, 0.06461533904075623, 0.037482574582099915, -0.09681329876184464, 0.05691886320710182, -0.0007795796263962984, -0.09117254614830017, -0.018824264407157898, -0.004047371447086334, -0.11752167344093323, 0.03433450683951378, -0.09968125820159912, -0.01055844221264124, -0.05334923043847084, 0.11477786302566528, 0.04960407316684723, 0.008942971006035805, 0.06912162899971008, -0.04373040050268173, 0.07793937623500824, -0.1397045999765396, -0.03980868682265282, -0.014683027751743793, -0.033915262669324875, -0.05915246903896332, -0.011000196449458599, 0.06448294222354889, -0.012606730684638023, 0.14239655435085297, 0.1234331876039505, 0.03842062130570412, 0.039007216691970825, -0.013915173709392548, 0.061852000653743744, 0.06196459010243416, 0.006107250228524208, -0.0312100350856781, -0.02955324575304985, 0.08407572656869888, 0.009258739650249481, 0.005834267940372229, 0.07404334843158722, 0.06501276791095734, 0.2508171796798706, 0.133486807346344, 0.013452262617647648, 0.0509595088660717, -0.09317756444215775, -0.06745917350053787, 0.1009431779384613, -0.06430695950984955, 0.06596586853265762, -0.1034519374370575, 0.031698472797870636, 0.06838954240083694, -0.15033729374408722, 0.05879158899188042, -0.021713046357035637, 0.0017573561053723097, -0.0309740137308836, -0.0798531100153923, -0.05261390656232834, -0.011535908095538616, 0.002074623480439186, -0.12336224317550659, 0.0704968273639679, 0.12806808948516846, -0.011123688891530037, 0.01655333675444126, 0.0905732661485672, -0.06750074774026871, -0.08299949765205383, 0.09070681035518646, 0.0072815194725990295, 0.051266323775053024, 0.02557697519659996, 0.034365490078926086, 0.0954073816537857, 0.023319441825151443, 0.0881662592291832, 0.08310817927122116, 0.09323403984308243, 0.023744281381368637, -0.07039989531040192, -0.074138343334198, 0.03113444149494171, -0.011218653060495853, 0.0021896311081945896, 0.1596139371395111, 0.07016274333000183, 0.008140859194099903, -0.021482601761817932, 0.16576217114925385, -0.015106898732483387, -0.034125346690416336, -0.138743594288826, 0.02819073759019375, -0.040318604558706284, -0.010838682763278484, -0.00598498061299324, -0.15151937305927277, -0.008827612735331059, 0.1291934996843338, 0.04751691594719887, -0.04668678343296051, -0.010727675631642342, -0.007990202866494656, 0.0073984540067613125, -0.011728089302778244, 0.028846245259046555, 0.045416343957185745, 0.1988951414823532, -0.05732134357094765, 0.002554772887378931, -0.029513230547308922, -0.020696572959423065, -0.06108463928103447, 0.08402038365602493, -0.012536324560642242, 0.021366028115153313, -0.08477092534303665, 0.10418618470430374, -0.004266169387847185, -0.1873229742050171, 0.038820162415504456, -0.06638509780168533, -0.08213736116886139, 0.01703817956149578, -0.03277270123362541, -0.003789873095229268, 0.027794912457466125, 0.002653562230989337, -0.05953562632203102, 0.10147363692522049, 0.013409259729087353, -0.05990632623434067, 0.022067857906222343, -0.00025337713304907084, -0.07969930022954941, 0.2862314283847809, -0.027701424434781075, 0.038505375385284424, 0.08045756071805954, -0.017989136278629303, -0.16550618410110474, -0.04588017985224724, 0.06929944455623627, -0.05584157630801201, 0.02315809205174446, 0.12830662727355957, 0.007235676050186157, 0.10696965456008911, 0.08671315759420395, -0.09902432560920715, 0.04502643272280693, 0.023667242377996445, 0.03941576927900314, -0.1300266832113266, 0.00667724059894681, -0.09157346189022064, 0.10930297523736954, 0.12927120923995972, -0.003686796175315976, 0.004917653277516365, -0.03544802591204643, -0.0014179205754771829, 0.002696370705962181, 0.1168946921825409, 0.004321508575230837, -0.07629340887069702, 0.010923342779278755, -0.1514158546924591, 0.08246619999408722, -0.12599025666713715, -0.06645181030035019, 0.030210234224796295, -0.01464216411113739, -0.018898893147706985, 0.08865027874708176, 0.015446647070348263, 0.01732194982469082, -0.05156535655260086, -0.12721756100654602, 0.018678884953260422, 0.16964110732078552, -0.018614038825035095, -0.025699252262711525 ]
7e399dd1508105f9885f6fe3c7789cd605b9fa43
# Dataset Card for marbles ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/marbles - **Point of Contact:** [email protected] ### Dataset Summary marbles ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/marbles ### Citation Information ``` @misc{ marbles, title = { marbles Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/marbles } }, url = { https://universe.roboflow.com/object-detection/marbles }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/marbles
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:45+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "marbles", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "marbles", "1": "red", "2": "white"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:30:58+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for marbles The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary marbles ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for marbles\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nmarbles", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for marbles\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nmarbles", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 20, 22, 8, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for marbles\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nmarbles### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.010075979866087437, 0.16544727981090546, -0.008345592767000198, 0.036422248929739, 0.11932694911956787, 0.0006416243850253522, 0.06747570633888245, 0.07082013040781021, 0.013498537242412567, 0.14800333976745605, -0.02544935792684555, 0.06994446367025375, 0.12834592163562775, 0.0994647741317749, -0.01357826218008995, -0.14344502985477448, 0.05993026867508888, -0.0768328458070755, 0.059520430862903595, 0.0631122961640358, 0.0752391517162323, -0.136348158121109, 0.08873257786035538, -0.04339776560664177, -0.03658963367342949, 0.017957717180252075, -0.020140016451478004, -0.030821196734905243, 0.005110301077365875, 0.0271587073802948, 0.03830713778734207, 0.013325353153049946, 0.047455139458179474, -0.21092158555984497, 0.029322482645511627, 0.107132188975811, 0.008563995361328125, 0.03514954075217247, 0.11886445432901382, -0.09153689444065094, 0.020285848528146744, -0.1543717235326767, 0.03494830057024956, 0.011996283195912838, -0.13174383342266083, -0.08891424536705017, -0.12700307369232178, 0.014025918208062649, 0.09690456092357635, 0.049752842634916306, -0.018112879246473312, 0.04054121673107147, -0.002819555811583996, 0.0643414780497551, 0.10114610195159912, -0.10585577040910721, -0.0586148276925087, 0.09009313583374023, 0.012502148747444153, 0.11576840281486511, -0.12806357443332672, -0.00433103134855628, -0.007295561023056507, -0.023438595235347748, 0.019558271393179893, -0.0662764385342598, -0.05712314322590828, 0.00503719225525856, -0.09515351802110672, -0.131890669465065, 0.17031358182430267, 0.04146056994795799, -0.05080364644527435, -0.08273344486951828, -0.014606823213398457, 0.029547199606895447, -0.02556956745684147, 0.00036852117045782506, 0.04915663227438927, 0.02154751494526863, 0.0512036494910717, -0.06645176559686661, -0.1160808801651001, 0.06083662062883377, -0.012375926598906517, 0.04628376290202141, -0.03914970904588699, 0.03721240535378456, 0.02863195352256298, 0.06869178265333176, 0.010660696774721146, -0.11835578083992004, -0.03661723807454109, -0.03688686341047287, -0.09043184667825699, -0.048502180725336075, 0.03496313467621803, -0.10787317156791687, 0.06147053837776184, 0.09619076550006866, -0.0672433003783226, 0.039694081991910934, -0.10583416372537613, 0.02658730559051037, 0.10094550251960754, 0.18295195698738098, -0.0710805281996727, -0.07906658947467804, 0.015390781685709953, 0.01715388335287571, 0.03674575313925743, -0.05298033356666565, -0.041776143014431, -0.005204765126109123, 0.013245204463601112, 0.02850538119673729, 0.08874133974313736, 0.025281209498643875, -0.0731799304485321, -0.046527277678251266, 0.07542247325181961, -0.11401548981666565, 0.058799438178539276, 0.051039937883615494, -0.0069588590413331985, 0.06997007876634598, 0.016732336953282356, 0.03382391482591629, -0.08733068406581879, 0.04890137538313866, -0.045064426958560944, 0.03838398680090904, -0.0873384103178978, -0.06616893410682678, 0.047097187489271164, -0.07497990876436234, -0.08089710772037506, -0.08430741727352142, -0.04383954778313637, -0.09268296509981155, 0.047549501061439514, -0.03895515948534012, 0.035991307348012924, 0.005766651127487421, -0.028777584433555603, -0.00883537158370018, 0.02352408692240715, 0.021379325538873672, -0.05632859095931053, 0.02970970794558525, -0.09305029362440109, 0.02939951792359352, 0.04440247267484665, 0.027686230838298798, -0.08006396144628525, 0.06107329577207565, -0.15507246553897858, 0.13015444576740265, -0.036983467638492584, 0.029966725036501884, -0.11953914165496826, 0.03367403522133827, -0.015024123713374138, -0.04595783352851868, 0.009702718816697598, 0.1085398867726326, -0.12597838044166565, 0.033477235585451126, 0.07172446697950363, -0.059590958058834076, -0.044957492500543594, 0.042777370661497116, -0.04877912253141403, 0.0023044415283948183, 0.0735301524400711, 0.08389008790254593, -0.009320681914687157, -0.1093350276350975, -0.12627317011356354, -0.040623895823955536, -0.04159608855843544, 0.1523859202861786, 0.07263776659965515, -0.01893136091530323, 0.055623140186071396, -0.0007254717056639493, -0.0154545484110713, -0.03286845237016678, 0.024231500923633575, -0.05251326039433479, 0.009462067857384682, 0.01292618177831173, -0.06636738032102585, 0.016834713518619537, -0.1115327998995781, 0.02163771167397499, -0.07007943838834763, -0.07034038007259369, 0.007124694064259529, -0.04201055318117142, 0.027403952553868294, -0.04769924655556679, 0.08339598029851913, -0.1103912740945816, -0.006954141426831484, -0.14384058117866516, -0.11712102591991425, 0.060437947511672974, 0.0327647402882576, 0.04831714928150177, -0.06025873124599457, 0.0012918658321723342, 0.021958889439702034, 0.03068258799612522, -0.0015328996814787388, 0.047139499336481094, -0.01570018380880356, -0.022087575867772102, -0.1436411738395691, -0.027750540524721146, -0.03086264804005623, 0.15401676297187805, -0.11677805334329605, -0.02421923540532589, 0.15164367854595184, 0.1169448271393776, 0.03190814331173897, -0.043514151126146317, 0.04456990957260132, -0.015844646841287613, -0.03644508495926857, -0.06917273998260498, -0.00621410459280014, 0.010120673105120659, 0.042522091418504715, 0.05318184569478035, -0.1996711641550064, -0.1714705526828766, 0.07529357820749283, -0.009616797789931297, -0.07627829909324646, -0.09471017867326736, -0.04128841310739517, -0.004088016226887703, -0.09609396755695343, -0.044631797820329666, 0.07684756070375443, 0.04777749627828598, 0.0733671635389328, -0.05944802612066269, -0.041146885603666306, 0.02649555169045925, -0.027736414223909378, -0.0862756222486496, 0.020467089489102364, 0.04868469387292862, -0.118160679936409, 0.09547971934080124, 0.004631589166820049, 0.011376430280506611, 0.11160524934530258, 0.03286261856555939, -0.09777442365884781, -0.020846059545874596, 0.08006749302148819, 0.027609283104538918, 0.10389389097690582, -0.04251924902200699, 0.024230243638157845, 0.07141292095184326, -0.014729347079992294, -0.031167561188340187, -0.08505456894636154, 0.07332034409046173, 0.015880273655056953, -0.035146985203027725, 0.06927279382944107, -0.04809045419096947, 0.07124721258878708, 0.09038466215133667, 0.047969311475753784, 0.09669525176286697, -0.047373753041028976, -0.06121838092803955, -0.09089929610490799, 0.11601369082927704, -0.07132558524608612, -0.24148935079574585, -0.08846759051084518, -0.1018722653388977, -0.05635260045528412, 0.01302530150860548, 0.025876004248857498, -0.01123158261179924, -0.08320025354623795, -0.08926226943731308, 0.012823062017560005, 0.08002514392137527, -0.098477303981781, -0.08687447011470795, 0.020621322095394135, 0.002399795688688755, -0.07394370436668396, -0.009443484246730804, 0.029090791940689087, -0.07045260816812515, 0.015077870339155197, 0.04895874857902527, 0.12605497241020203, 0.08493144065141678, -0.024420596659183502, 0.009576789103448391, -0.005840377416461706, 0.19168947637081146, -0.14293447136878967, 0.11804921925067902, 0.14010506868362427, -0.022649047896265984, 0.0809890627861023, 0.22878539562225342, -0.01076443400233984, -0.003382823197171092, 0.010485677048563957, 0.05634724721312523, -0.07111074030399323, -0.20006334781646729, -0.04763993248343468, -0.07841237634420395, -0.001155438949353993, 0.11145800352096558, 0.03420650586485863, 0.0075287967920303345, 0.0983407124876976, -0.1029895544052124, 0.028354499489068985, 0.05216618999838829, 0.09312576055526733, 0.057983558624982834, 0.034682586789131165, 0.04982954263687134, -0.04019129276275635, -0.03682772442698479, 0.09127833694219589, 0.14095331728458405, 0.11837156862020493, -0.09735850989818573, 0.1172376349568367, 0.03335388004779816, 0.016553880646824837, -0.0435313880443573, 0.008516727946698666, -0.031765859574079514, 0.06256819516420364, -0.002637444529682398, -0.10046758502721786, -0.021470004692673683, 0.07050207257270813, 0.11914949119091034, -0.007523630280047655, 0.013547186739742756, -0.004398477729409933, 0.09311190992593765, 0.1896778792142868, 0.034236498177051544, -0.1791539043188095, 0.026699552312493324, 0.04110320284962654, 0.051174648106098175, -0.12777723371982574, -0.04249333590269089, 0.11982078850269318, -0.15193845331668854, 0.07022867351770401, -0.03214389830827713, 0.09457925707101822, -0.13141828775405884, -0.040133390575647354, 0.061043720692396164, 0.06967643648386002, -0.017982779070734978, 0.07695115357637405, -0.10925959050655365, 0.07857844978570938, 0.044579122215509415, 0.0415816605091095, -0.07776996493339539, 0.053887926042079926, 0.008771991357207298, -0.004413707181811333, 0.1294335573911667, 0.005632573738694191, -0.03773055225610733, -0.1431177258491516, -0.10173629969358444, 0.0020464740227907896, 0.06124843284487724, -0.0643405094742775, 0.10898777097463608, -0.007530480157583952, -0.045863259583711624, -0.058523911982774734, -0.038616519421339035, -0.05959943309426308, -0.21434926986694336, 0.05182039365172386, -0.006087410729378462, 0.025264611467719078, -0.014416744001209736, 0.03255327790975571, -0.006522830110043287, 0.1296248883008957, -0.041460271924734116, -0.06667334586381912, -0.1370897889137268, 0.049450695514678955, 0.04963754117488861, -0.024439530447125435, -0.027402669191360474, -0.09753179550170898, 0.1834859400987625, -0.029233023524284363, -0.06180719658732414, 0.014010787941515446, -0.037840407341718674, -0.0923657938838005, -0.08209718763828278, 0.12476598471403122, 0.017430784180760384, -0.011250183917582035, 0.03096690960228443, 0.07211785763502121, 0.00169562513474375, -0.06409654021263123, 0.041608069092035294, 0.11594543606042862, 0.12258447706699371, 0.16338467597961426, -0.004625588655471802, -0.16256585717201233, -0.11005429923534393, 0.01717166043817997, 0.0714096650481224, 0.10520025342702866, -0.08057995140552521, 0.08720050007104874, 0.03249705955386162, -0.11064310371875763, -0.20673035085201263, 0.052931882441043854, 0.05795864388346672, -0.015631208196282387, -0.017064601182937622, -0.14077317714691162, 0.15050478279590607, 0.05444462224841118, 0.013630470260977745, 0.047573745250701904, -0.20736007392406464, -0.05757693946361542, -0.03178560733795166, 0.05018661543726921, -0.1403636634349823, -0.13723771274089813, -0.044571831822395325, -0.048760510981082916, -0.15958471596240997, 0.085813969373703, -0.05718983709812164, 0.05318338796496391, 0.05167735740542412, 0.0004694788658525795, 0.05991428717970848, -0.04029800742864609, 0.1290820986032486, 0.016952458769083023, 0.03609958291053772, -0.072697713971138, -0.07991771399974823, 0.08206959068775177, -0.09934575855731964, 0.10275272279977798, 0.033066075295209885, 0.015302048064768314, -0.01863882876932621, -0.021633470430970192, -0.02317686937749386, 0.0694323480129242, -0.0342724435031414, -0.04809059202671051, -0.07847093045711517, 0.039733633399009705, 0.13269901275634766, 0.025251517072319984, 0.08288130164146423, -0.03735047206282616, 0.006916121579706669, 0.1753367781639099, 0.1282459795475006, -0.002331960014998913, -0.1213068813085556, -0.04168412834405899, 0.004840798210352659, 0.013260765932500362, -0.07683508843183517, 0.06578215956687927, 0.09456077963113785, 0.010843250900506973, 0.10846950113773346, 0.004535021260380745, -0.09534933418035507, 0.0026500378735363483, 0.06879325211048126, -0.0918542891740799, -0.13181130588054657, 0.002962573664262891, 0.09170643240213394, -0.12073183804750443, -0.11994911730289459, 0.13654133677482605, 0.022813361138105392, -0.012402343563735485, 0.019660914316773415, 0.07107355445623398, 0.03981661796569824, 0.036488454788923264, 0.017425956204533577, 0.028322679921984673, -0.06770153343677521, 0.09066502749919891, 0.15933848917484283, -0.09521893411874771, -0.005489438306540251, 0.11777858436107635, -0.049499157816171646, -0.02714182808995247, -0.04156985506415367, 0.07270944118499756, -0.01518388744443655, -0.017594167962670326, 0.03290369361639023, -0.06829079240560532, 0.009783314540982246, 0.07946819812059402, -0.006985528860241175, 0.06822893023490906, 0.02440495230257511, -0.009442666545510292, -0.11955486238002777, 0.1460450291633606, -0.02342916652560234, 0.0472007691860199, -0.09269433468580246, 0.041220128536224365, 0.015464580617845058, 0.027954179793596268, 0.0073040989227592945, -0.08344299346208572, -0.07753004878759384, -0.008901422843337059, -0.058851830661296844, 0.11382744461297989, -0.10397093743085861, -0.007877740077674389, -0.005817415192723274, 0.021047145128250122, -0.028945403173565865, 0.024370672181248665, -0.039351899176836014, -0.057250212877988815, -0.0449148491024971, 0.1182560846209526, -0.1323051154613495, -0.021387148648500443, 0.05295455828309059, -0.09260409325361252, 0.07330034673213959, 0.002774856286123395, -0.03351680561900139, -0.06887105852365494, -0.19222407042980194, -0.023992780596017838, 0.03422892466187477, 0.06749352067708969, 0.03746198117733002, -0.08666712045669556, 0.057733673602342606, -0.007104567717760801, -0.0923498123884201, -0.010918514803051949, 0.027606381103396416, -0.10314100980758667, 0.05422955006361008, -0.062247730791568756, -0.02880374900996685, -0.05442996695637703, 0.131757915019989, 0.028518157079815865, 0.01358365174382925, 0.0720580518245697, -0.05291436240077019, 0.09446091949939728, -0.15039457380771637, -0.03547368198633194, -0.0065905991941690445, -0.03407302871346474, -0.0868227481842041, -0.03332031890749931, 0.07548655569553375, -0.025884350761771202, 0.1230984628200531, 0.12171481549739838, 0.039787616580724716, 0.02223416417837143, -0.0250155720859766, 0.0542742982506752, 0.06498634070158005, -0.00022676624939776957, -0.002518587978556752, -0.03540097922086716, 0.07560189068317413, 0.007627018261700869, 0.028149602934718132, 0.10640930384397507, 0.09635313600301743, 0.19561734795570374, 0.1675824522972107, 0.02044377103447914, 0.056672025471925735, -0.09594998508691788, -0.04499416798353195, 0.10120599716901779, -0.07831943780183792, 0.04216018691658974, -0.09897787868976593, -0.026701733469963074, 0.10197314620018005, -0.17089338600635529, 0.05932497978210449, -0.018979031592607498, -0.02212555892765522, -0.04207836464047432, -0.11882258951663971, -0.05725720897316933, -0.025670185685157776, -0.0174722783267498, -0.13557517528533936, 0.05881797894835472, 0.11259728670120239, -0.01624167710542679, 0.010438649915158749, 0.06593196094036102, -0.07912538200616837, -0.06096888333559036, 0.0673874169588089, 0.025067998096346855, 0.09877026826143265, 0.044730328023433685, 0.031670600175857544, 0.07575846463441849, -0.004360708873718977, 0.08973397314548492, 0.09163419157266617, 0.1654156893491745, 0.03835008665919304, -0.07946155220270157, -0.07845242321491241, 0.03968419134616852, -0.017906054854393005, -0.014302920550107956, 0.12951616942882538, 0.06938037276268005, 0.026488924399018288, 0.0000709441228536889, 0.17437583208084106, -0.009317322634160519, -0.03782670572400093, -0.163483664393425, 0.03681579604744911, -0.034381501376628876, 0.00019516120664775372, -0.019322747364640236, -0.15176410973072052, 0.0015465996693819761, 0.11293817311525345, 0.05985449254512787, -0.04848330467939377, 0.006326293107122183, -0.0017289893003180623, 0.010970786213874817, 0.009479881264269352, 0.04801709204912186, 0.017259586602449417, 0.20031064748764038, -0.06262684613466263, -0.014771230518817902, -0.02343682199716568, -0.013806890696287155, -0.06386106461286545, 0.07510346174240112, -0.027395976707339287, 0.008143012411892414, -0.06610777974128723, 0.09673787653446198, -0.010476670227944851, -0.14951270818710327, 0.050974130630493164, -0.10617288202047348, -0.09291327744722366, 0.004128788132220507, 0.0023324175272136927, 0.0003268177097197622, 0.01464280765503645, 0.008763882331550121, -0.0694761648774147, 0.11967414617538452, 0.029767079278826714, -0.05872776359319687, 0.007876984775066376, 0.018004391342401505, -0.115265391767025, 0.2648581564426422, -0.024802129715681076, 0.03972771391272545, 0.1043984442949295, -0.00005090557169751264, -0.13937202095985413, -0.025708714500069618, 0.07100305706262589, -0.045876748859882355, 0.015416164882481098, 0.11107416450977325, -0.006462559103965759, 0.12340543419122696, 0.10251076519489288, -0.04817166551947594, 0.05887294560670853, 0.0065534175373613834, 0.029820898547768593, -0.0861092209815979, 0.0068503073416650295, -0.1056576818227768, 0.11004339158535004, 0.13564197719097137, -0.0013138357317075133, -0.01285969465970993, -0.035085950046777725, -0.010164407081902027, 0.006984881591051817, 0.10541374236345291, -0.016394799575209618, -0.06040165200829506, 0.008718726225197315, -0.09272925555706024, 0.0800234004855156, -0.10742126405239105, -0.07075131684541702, 0.037115104496479034, -0.009911930188536644, -0.021603137254714966, 0.09588850289583206, 0.04630579799413681, 0.02355794794857502, -0.0631260797381401, -0.10306565463542938, 0.01978687010705471, 0.15994617342948914, -0.020010240375995636, -0.029322801157832146 ]
99b4a366289e1314fa9a3571e18cb389dd2f5efc
# Dataset Card for apples-fvpl5 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/apples-fvpl5 - **Point of Contact:** [email protected] ### Dataset Summary apples-fvpl5 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/apples-fvpl5 ### Citation Information ``` @misc{ apples-fvpl5, title = { apples fvpl5 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/apples-fvpl5 } }, url = { https://universe.roboflow.com/object-detection/apples-fvpl5 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/apples-fvpl5
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:57+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "apples-fvpl5", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "apples", "1": "apple", "2": "damaged_apple"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:15+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for apples-fvpl5 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary apples-fvpl5 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for apples-fvpl5\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\napples-fvpl5", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for apples-fvpl5\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\napples-fvpl5", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for apples-fvpl5\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\napples-fvpl5### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.017940308898687363, 0.17549672722816467, -0.007133326027542353, 0.027228442952036858, 0.09728571772575378, -0.014671859331429005, 0.05634284391999245, 0.07784654200077057, -0.003684855764731765, 0.16214478015899658, 0.0068632266484200954, 0.06582493335008621, 0.1107635647058487, 0.09825996309518814, -0.028702711686491966, -0.1516510546207428, 0.06413893401622772, -0.06679024547338486, 0.07567837834358215, 0.07440324127674103, 0.07952625304460526, -0.12652641534805298, 0.08932389318943024, -0.03852289542555809, -0.02630913071334362, 0.03415284678339958, -0.05690314620733261, -0.04155397787690163, -0.00015797866217326373, 0.0483001209795475, 0.008359367959201336, 0.03100188449025154, 0.03074755147099495, -0.20321573317050934, 0.020239394158124924, 0.10989707708358765, 0.039906300604343414, 0.019001495093107224, 0.1540345996618271, -0.08652442693710327, 0.0648331493139267, -0.11401812732219696, 0.03698960691690445, 0.013897518627345562, -0.11673599481582642, -0.10472819209098816, -0.11981356889009476, 0.06561145931482315, 0.10410893708467484, 0.06063961237668991, -0.01665966957807541, 0.08174730837345123, -0.008700832724571228, 0.06952588260173798, 0.11681117862462997, -0.03306381031870842, -0.033790942281484604, 0.07885579019784927, 0.04006601870059967, 0.10380592197179794, -0.11014829576015472, -0.03196758031845093, 0.012875746004283428, -0.023399289697408676, -0.005590620916336775, -0.049126774072647095, -0.05651272460818291, -0.005247573368251324, -0.10394667834043503, -0.15945333242416382, 0.15285618603229523, 0.05484889820218086, -0.06082233041524887, -0.1415066123008728, 0.0015241976361721754, 0.06953559070825577, -0.021432679146528244, 0.0011461697285994887, 0.043574970215559006, -0.0005046044825576246, 0.06593649089336395, -0.05706172436475754, -0.09220670163631439, 0.057520680129528046, 0.039692673832178116, 0.014571637846529484, -0.02534252591431141, 0.04420946538448334, 0.018098345026373863, 0.06958543509244919, 0.003836935618892312, -0.11568352580070496, -0.02466949261724949, -0.044005244970321655, -0.043557822704315186, -0.05117954686284065, 0.05600052699446678, -0.13103708624839783, 0.06263947486877441, 0.059147000312805176, -0.07944373786449432, 0.020915614441037178, -0.12205274403095245, 0.008068018592894077, 0.12098824977874756, 0.1730073094367981, -0.08516964316368103, -0.08075887709856033, -0.0013864698121324182, 0.04595208913087845, 0.023792020976543427, -0.029083767905831337, -0.023886295035481453, 0.013524928130209446, 0.01619820110499859, 0.03959647938609123, 0.11039631068706512, 0.038310009986162186, -0.08431893587112427, -0.0717277005314827, 0.14552776515483856, -0.09689938277006149, 0.04140764847397804, 0.05501379072666168, -0.05666869133710861, 0.08218451589345932, 0.011957519687712193, 0.01862485334277153, -0.11910752207040787, 0.0928640216588974, -0.027990425005555153, 0.014880497008562088, -0.09133348613977432, -0.09028847515583038, 0.054132286459207535, -0.07629931718111038, -0.06652992963790894, -0.07141000032424927, -0.06788977235555649, -0.08912178128957748, 0.03656728193163872, -0.031420230865478516, 0.00764112826436758, 0.020458631217479706, -0.05032265931367874, -0.02205752767622471, 0.009602700360119343, 0.048675838857889175, -0.05645949766039848, 0.040412988513708115, -0.0976627767086029, 0.033397331833839417, 0.10730965435504913, 0.04816098511219025, -0.11568254232406616, 0.0637296512722969, -0.20188169181346893, 0.14088566601276398, -0.051397789269685745, 0.036807216703891754, -0.12689073383808136, 0.010108551010489464, 0.010449386201798916, -0.04079737514257431, -0.011052795685827732, 0.1253451257944107, -0.08601861447095871, 0.014596814289689064, 0.029612820595502853, -0.06792137771844864, -0.05944789946079254, 0.04143408313393593, -0.04609651863574982, -0.022747153416275978, 0.08466321229934692, 0.14296118915081024, -0.02334042452275753, -0.10659096390008926, -0.12024762481451035, -0.039525534957647324, -0.036359719932079315, 0.15638111531734467, 0.07706766575574875, -0.03094639629125595, 0.08403167873620987, -0.010954353958368301, -0.024696659296751022, -0.046315696090459824, 0.01783982664346695, -0.0399053655564785, 0.004645710811018944, -0.013774655759334564, -0.09779363125562668, 0.02497165836393833, -0.1073293462395668, 0.007171474862843752, -0.07649145275354385, -0.03548457846045494, 0.023526500910520554, -0.03403225541114807, 0.005410787183791399, -0.027653492987155914, 0.10394582152366638, -0.12317647784948349, -0.00563809322193265, -0.16173972189426422, -0.09903931617736816, 0.054968707263469696, -0.04886274039745331, 0.025864487513899803, -0.08360885828733444, -0.021852489560842514, 0.028642350807785988, 0.04155229032039642, -0.016186369583010674, 0.03309222310781479, -0.02581941895186901, -0.032541219145059586, -0.12182271480560303, -0.05409872904419899, -0.029398540034890175, 0.09072902798652649, -0.127000093460083, -0.03274892643094063, 0.12815706431865692, 0.12438075244426727, 0.04326320067048073, -0.05507338419556618, 0.0791819840669632, -0.022109707817435265, -0.024176884442567825, -0.0902768149971962, -0.01174789946526289, -0.0008508633472956717, 0.055740706622600555, 0.07297784090042114, -0.15447577834129333, -0.12200481444597244, 0.0804615169763565, 0.04119277372956276, -0.08541584014892578, -0.048684049397706985, -0.047247838228940964, -0.012204382568597794, -0.11054560542106628, -0.022263530641794205, 0.04986433684825897, 0.05871095880866051, 0.08283193409442902, -0.08180749416351318, -0.03807293251156807, 0.017541224136948586, -0.0091416509822011, -0.07896557450294495, 0.07891722768545151, 0.057529740035533905, -0.1135319173336029, 0.1005578339099884, -0.02166208066046238, 0.04566957429051399, 0.09717991948127747, 0.022824635729193687, -0.1197819635272026, 0.0218488909304142, 0.07207456231117249, 0.018084339797496796, 0.08030454814434052, -0.0165866706520319, 0.030536221340298653, 0.07968858629465103, -0.027434390038251877, -0.020799489691853523, -0.07631382346153259, 0.06887679547071457, 0.04252922534942627, -0.040859486907720566, 0.008785799145698547, -0.028670242056250572, 0.08591707050800323, 0.08897292613983154, 0.05042709410190582, 0.10229943692684174, -0.039840903133153915, -0.05833829939365387, -0.09445586800575256, 0.12704679369926453, -0.01542202290147543, -0.26177939772605896, -0.07652530074119568, -0.060850583016872406, -0.05786796286702156, -0.012515556998550892, 0.0323387049138546, 0.018132902681827545, -0.09559139609336853, -0.11190783232450485, 0.0684494748711586, 0.058828458189964294, -0.11078813672065735, -0.10171734541654587, 0.037254657596349716, 0.011294488795101643, -0.0717017725110054, 0.00857938639819622, 0.03751580789685249, -0.03517608717083931, -0.004367752466350794, 0.04149089753627777, 0.12442682683467865, 0.04904057830572128, -0.022802596911787987, 0.0014181501464918256, -0.000027783984478446655, 0.18771320581436157, -0.14902850985527039, 0.08913476020097733, 0.17167331278324127, 0.006279511842876673, 0.07175701856613159, 0.2022952288389206, -0.02712993696331978, -0.02739374153316021, 0.031204327940940857, 0.06555359065532684, -0.05734680965542793, -0.18985803425312042, -0.06712349504232407, -0.039323799312114716, 0.03298958018422127, 0.13947464525699615, 0.03257359564304352, 0.006736607290804386, 0.09146173298358917, -0.11230860650539398, 0.03506581485271454, 0.007626298815011978, 0.09398186206817627, 0.05023776739835739, 0.04353877156972885, 0.04563000425696373, -0.04943949729204178, -0.028894759714603424, 0.09761276096105576, 0.09809286147356033, 0.11150126904249191, -0.11090634763240814, 0.08182517439126968, 0.028948547318577766, 0.03432463854551315, -0.025361668318510056, -0.004494946915656328, -0.03713085129857063, 0.052060917019844055, -0.006365654058754444, -0.10386595875024796, 0.006413876544684172, 0.08318796753883362, 0.14059123396873474, -0.013441990129649639, -0.0048155952244997025, -0.039950039237737656, 0.054725222289562225, 0.25236186385154724, 0.010144136846065521, -0.21665352582931519, 0.013058613054454327, 0.03520190715789795, 0.011762185953557491, -0.1222294420003891, -0.03314303606748581, 0.09385780245065689, -0.16703049838542938, 0.05958118289709091, -0.022283392027020454, 0.11213401705026627, -0.15192322432994843, -0.03347795829176903, 0.06113506481051445, 0.03747224435210228, -0.026720615103840828, 0.08411382138729095, -0.10996833443641663, 0.06534401327371597, 0.03094167821109295, 0.02919980138540268, -0.08196491003036499, 0.03889625146985054, 0.010032341815531254, -0.01295069046318531, 0.14627927541732788, -0.018440337851643562, 0.005094416905194521, -0.13458938896656036, -0.1177436113357544, -0.012997180223464966, 0.040604788810014725, -0.07041201740503311, 0.09102729707956314, 0.012083228677511215, -0.027460921555757523, -0.08425182849168777, -0.04679476469755173, -0.06201576441526413, -0.19033008813858032, 0.03573029488325119, -0.009679366834461689, 0.031093714758753777, -0.016535712406039238, 0.02073870226740837, 0.03747529163956642, 0.12675251066684723, -0.02905038185417652, -0.0946003720164299, -0.13905170559883118, 0.04842836782336235, 0.09879101067781448, -0.009608948603272438, -0.015209493227303028, -0.08823971450328827, 0.17874927818775177, -0.03168926388025284, -0.07394172996282578, 0.017100758850574493, -0.07184141874313354, -0.11550559103488922, -0.05577286332845688, 0.09896215051412582, 0.02072296477854252, -0.006566723808646202, 0.005758726969361305, 0.062950998544693, -0.002132092835381627, -0.048031311482191086, 0.011210045777261257, 0.09566816687583923, 0.14602656662464142, 0.1456124186515808, 0.026418562978506088, -0.14917300641536713, -0.11877168715000153, -0.01061156950891018, 0.0111779710277915, 0.10687588155269623, -0.06869139522314072, 0.11525070667266846, 0.0256050918251276, -0.07072316110134125, -0.21683333814144135, 0.08477231860160828, 0.07438907027244568, -0.0009712054743431509, 0.0002895581419579685, -0.1350342035293579, 0.1490263193845749, 0.04044404998421669, 0.003902233438566327, 0.08196897804737091, -0.27117711305618286, -0.06935685873031616, -0.020328711718320847, 0.03353041037917137, -0.24462345242500305, -0.1552373766899109, -0.05961773172020912, -0.062149979174137115, -0.13681809604167938, 0.05886232480406761, 0.011810760013759136, 0.04428217187523842, 0.03801523894071579, 0.03386475145816803, 0.067303366959095, -0.04708719626069069, 0.10557830333709717, 0.016037458553910255, 0.04670722410082817, -0.07526999711990356, -0.06949542462825775, 0.0054304758086800575, -0.08896525204181671, 0.1535595953464508, 0.03571101650595665, 0.041010353714227676, -0.05368490517139435, -0.019282618537545204, -0.030944690108299255, 0.0877169519662857, -0.023172631859779358, -0.03299032896757126, -0.10311181843280792, 0.031497132033109665, 0.11979445070028305, 0.032310064882040024, 0.07931408286094666, -0.03779691830277443, -0.01592334546148777, 0.1647489219903946, 0.09960943460464478, 0.0021865637972950935, -0.14789168536663055, -0.05273422226309776, 0.0010845446959137917, 0.04714273288846016, -0.1271061897277832, 0.031010808423161507, 0.08766910433769226, 0.025527233257889748, 0.11068309098482132, -0.015791606158018112, -0.08920980244874954, 0.0051864925771951675, 0.04093467444181442, -0.11611339449882507, -0.1009940654039383, 0.013078841380774975, 0.11441465467214584, -0.11212991923093796, -0.1319209784269333, 0.11905036121606827, -0.006274410057812929, -0.017481518909335136, -0.0038437622133642435, 0.07467378675937653, 0.059686943888664246, 0.06327486038208008, 0.01718595251441002, 0.0368182435631752, -0.07909897714853287, 0.11194810271263123, 0.15352189540863037, -0.15886971354484558, -0.0010023880749940872, 0.10822105407714844, -0.047347381711006165, -0.021317845210433006, -0.019295213744044304, 0.036965999752283096, -0.023788709193468094, -0.029481811448931694, 0.03510880097746849, -0.04896194115281105, 0.0493926927447319, 0.09889194369316101, 0.004694641102105379, 0.05988852307200432, 0.02209549769759178, -0.03068229742348194, -0.14275987446308136, 0.13593995571136475, 0.027454419061541557, 0.05196031555533409, -0.09785092622041702, -0.0047324420884251595, 0.034713730216026306, 0.0026347090024501085, 0.016444532200694084, -0.05747463181614876, -0.0762597993016243, -0.000883653701748699, -0.0376836396753788, 0.11477457731962204, -0.07835438847541809, 0.00040773506043478847, -0.01718452200293541, 0.0076316045597195625, -0.009303507395088673, 0.039545923471450806, -0.04581927880644798, -0.0821002796292305, -0.04455674812197685, 0.13299380242824554, -0.15053611993789673, -0.02489054761826992, 0.0608401894569397, -0.08922798931598663, 0.06015799194574356, 0.0030646163504570723, -0.044730935245752335, -0.10790522396564484, -0.1781245619058609, -0.04647374898195267, 0.03116321936249733, 0.0670291930437088, 0.035497553646564484, -0.0877724289894104, 0.05436588078737259, 0.007222280837595463, -0.10409071296453476, -0.012645500712096691, -0.013048234395682812, -0.11989696323871613, 0.038061872124671936, -0.06799953430891037, -0.034758180379867554, -0.039491333067417145, 0.1292129009962082, 0.06023094803094864, 0.005734293721616268, 0.09285157918930054, -0.04496476426720619, 0.0964919850230217, -0.1281571239233017, -0.037330158054828644, -0.0104365861043334, -0.03761177882552147, -0.0871022492647171, 0.013731064274907112, 0.07093179225921631, -0.02908370830118656, 0.13013817369937897, 0.12932822108268738, 0.05772078037261963, 0.04263664782047272, 0.013206777162849903, 0.093449667096138, 0.06537199020385742, -0.005888476502150297, -0.013809642754495144, -0.014516904950141907, 0.07841849327087402, 0.020961305126547813, 0.02147703990340233, 0.10035312920808792, 0.03855167701840401, 0.23750248551368713, 0.11801338195800781, 0.009964239783585072, 0.04132729023694992, -0.0718420222401619, -0.05200584605336189, 0.090943343937397, -0.04017016664147377, 0.0880085825920105, -0.08989403396844864, 0.04043765738606453, 0.08997655659914017, -0.15297703444957733, 0.06647448986768723, -0.0029092307668179274, -0.009557298384606838, -0.02688966877758503, -0.1051194816827774, -0.054854873567819595, -0.029582854360342026, 0.001884632627479732, -0.12075638771057129, 0.09521408379077911, 0.14902280271053314, -0.003180410712957382, 0.010993001982569695, 0.09231173992156982, -0.060972947627305984, -0.08266879618167877, 0.08042815327644348, 0.006521904841065407, 0.04785258695483208, 0.037033285945653915, 0.04476235806941986, 0.0929122343659401, -0.008545763790607452, 0.08109910041093826, 0.0886889398097992, 0.10001330822706223, 0.02551569603383541, -0.07244455069303513, -0.07402882725000381, 0.03572119399905205, -0.018093597143888474, -0.019206756725907326, 0.1624937802553177, 0.07758288830518723, 0.02033720351755619, -0.016055865213274956, 0.1855926811695099, -0.015219432301819324, -0.021706270053982735, -0.1400466114282608, 0.041762739419937134, -0.04535432904958725, -0.009380065836012363, -0.00728645222261548, -0.1444430649280548, 0.005368759855628014, 0.12436272203922272, 0.05695391818881035, -0.05292552337050438, -0.01306578516960144, -0.02613776922225952, 0.003877008566632867, -0.025351665914058685, 0.03403731435537338, 0.0201315488666296, 0.19789494574069977, -0.06035708636045456, 0.009656469337642193, -0.04511785879731178, -0.03393002226948738, -0.06578653305768967, 0.08071671426296234, -0.016898304224014282, -0.0118632847443223, -0.07462548464536667, 0.116979219019413, -0.01219638530164957, -0.16986389458179474, 0.041027095168828964, -0.08668380230665207, -0.08584965020418167, 0.006073683965951204, -0.02674001082777977, 0.014546846970915794, 0.022296713665127754, 0.009250229224562645, -0.06259694695472717, 0.0704168826341629, 0.02033500373363495, -0.08511673659086227, -0.02062511071562767, -0.005278433673083782, -0.10667416453361511, 0.25317996740341187, -0.03085348755121231, 0.03940855711698532, 0.07492247968912125, -0.015050590969622135, -0.13776139914989471, -0.030905423685908318, 0.07997128367424011, -0.04598891735076904, 0.029039012268185616, 0.12691043317317963, -0.006025602109730244, 0.17448750138282776, 0.08322171866893768, -0.07933161407709122, 0.05265985429286957, -0.01000365149229765, 0.031032590195536613, -0.1067499965429306, -0.0037184020038694143, -0.09097462147474289, 0.11482824385166168, 0.14266560971736908, -0.004853734280914068, -0.007067684084177017, -0.03550344705581665, 0.015530937351286411, 0.0010279696434736252, 0.08174978196620941, 0.015957331284880638, -0.05648394674062729, 0.00395952770486474, -0.1384560614824295, 0.08325754851102829, -0.13617876172065735, -0.054379723966121674, 0.034171655774116516, -0.023308392614126205, -0.013568544760346413, 0.07463596761226654, 0.03516107425093651, 0.007124620955437422, -0.06243392080068588, -0.0909503772854805, 0.036117203533649445, 0.15651722252368927, -0.0034521580673754215, -0.02900746650993824 ]
6f511210ac718b282a0c7506567b61cfc2720d2c
# Dataset Card for leaf-disease-nsdsr ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/leaf-disease-nsdsr - **Point of Contact:** [email protected] ### Dataset Summary leaf-disease-nsdsr ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/leaf-disease-nsdsr ### Citation Information ``` @misc{ leaf-disease-nsdsr, title = { leaf disease nsdsr Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/leaf-disease-nsdsr } }, url = { https://universe.roboflow.com/object-detection/leaf-disease-nsdsr }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/leaf-disease-nsdsr
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:59+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "leaf-disease-nsdsr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "leaf-disease", "1": "mildew", "2": "rose_P01", "3": "rose_R02"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:29+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for leaf-disease-nsdsr The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary leaf-disease-nsdsr ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for leaf-disease-nsdsr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nleaf-disease-nsdsr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for leaf-disease-nsdsr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nleaf-disease-nsdsr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 28, 22, 16, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for leaf-disease-nsdsr\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nleaf-disease-nsdsr### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.004818860907107592, 0.1504278928041458, -0.007925823330879211, 0.020737232640385628, 0.09338036179542542, 0.005963967647403479, 0.05253313109278679, 0.07461939752101898, -0.007755257189273834, 0.15804295241832733, -0.019562413915991783, 0.04982960596680641, 0.13607190549373627, 0.07608746737241745, -0.008891060948371887, -0.16396518051624298, 0.0551704578101635, -0.05028635263442993, 0.10912203043699265, 0.054878219962120056, 0.08129831403493881, -0.13273943960666656, 0.08491651713848114, -0.02282588556408882, -0.015741338953375816, 0.03917936980724335, -0.05396180599927902, -0.029457449913024902, 0.017128558829426765, 0.02675843983888626, 0.024534868076443672, 0.026360128074884415, 0.05200492590665817, -0.20167967677116394, 0.01920929364860058, 0.0857025608420372, 0.026554496958851814, 0.02460383251309395, 0.1368790566921234, -0.07425691187381744, 0.02344460040330887, -0.1563868671655655, 0.027917509898543358, 0.005506782326847315, -0.09110436588525772, -0.10525855422019958, -0.13220834732055664, 0.06742618978023529, 0.10498460382223129, 0.03545115888118744, -0.012366375885903835, 0.04842817410826683, -0.029591605067253113, 0.042317476123571396, 0.12843504548072815, -0.10066721588373184, -0.024193430319428444, 0.08202812075614929, 0.023649943992495537, 0.08413857966661453, -0.11346182972192764, -0.018216095864772797, 0.010430988855659962, -0.013257344253361225, 0.008924195542931557, -0.034197863191366196, 0.002464544028043747, -0.007041280157864094, -0.08884590119123459, -0.12204229831695557, 0.1437591314315796, 0.047684621065855026, -0.04870428144931793, -0.15978597104549408, -0.0006393257644958794, 0.04184413701295853, -0.03948013111948967, -0.0173015333712101, 0.06345972418785095, 0.003549461252987385, 0.07209262251853943, -0.05108159780502319, -0.104924775660038, 0.06352353096008301, -0.003206727560609579, 0.029545919969677925, -0.013802304863929749, 0.03275027498602867, 0.027531679719686508, 0.08320512622594833, 0.022330397740006447, -0.11473027616739273, -0.030763540416955948, -0.028621701523661613, -0.037819575518369675, -0.05391782894730568, 0.060185592621564865, -0.08859120309352875, 0.06224831938743591, 0.0820663720369339, -0.08149375021457672, 0.01578131504356861, -0.11054997146129608, 0.0019587860442698, 0.12467443197965622, 0.17019812762737274, -0.09791646152734756, -0.08196678757667542, 0.0031454821582883596, 0.02465089224278927, 0.036774251610040665, -0.01805148832499981, -0.03391450271010399, 0.0009996413718909025, 0.04852934926748276, 0.03659047186374664, 0.10374327749013901, 0.0251473281532526, -0.07564385235309601, -0.0424988754093647, 0.15797249972820282, -0.10070198029279709, 0.0511595644056797, 0.044877901673316956, -0.04903663322329521, 0.11189889907836914, -0.002639754908159375, 0.02477959357202053, -0.10651455074548721, 0.09983288496732712, -0.024354776367545128, 0.015691710636019707, -0.07205560803413391, -0.08092785626649857, 0.060946639627218246, -0.07321179658174515, -0.0736040472984314, -0.10052292793989182, -0.04665851965546608, -0.08142074942588806, 0.0273148100823164, -0.046049825847148895, 0.024214019998908043, 0.03217194229364395, -0.04859881475567818, -0.005502053536474705, 0.00041374407010152936, 0.006345830857753754, -0.06430917978286743, 0.021899038925766945, -0.10142803937196732, 0.03601539880037308, 0.10413821786642075, 0.03375987708568573, -0.0951705202460289, 0.05366591736674309, -0.1747671663761139, 0.13153178989887238, -0.0336293950676918, 0.021408863365650177, -0.12010885030031204, 0.0025977646000683308, -0.02777092158794403, -0.03691570460796356, -0.012146219611167908, 0.15429279208183289, -0.09442579001188278, 0.020031452178955078, 0.059971049427986145, -0.05895359814167023, -0.04523066058754921, 0.044872790575027466, -0.038275349885225296, -0.016960255801677704, 0.10519328713417053, 0.1027781143784523, -0.027009153738617897, -0.13356126844882965, -0.14262725412845612, -0.0075600724667310715, -0.044855859130620956, 0.15417301654815674, 0.07376275211572647, -0.014648856595158577, 0.09264986962080002, -0.004357595928013325, -0.010962073691189289, -0.04236200824379921, 0.01326669193804264, -0.037931207567453384, 0.008081303909420967, 0.000060638602008111775, -0.07972461730241776, 0.016516802832484245, -0.086710125207901, 0.012700141407549381, -0.07945743203163147, -0.006789759267121553, 0.02369614504277706, -0.017760030925273895, 0.01885608769953251, -0.04751021787524223, 0.06619425863027573, -0.11698110401630402, 0.000990603817626834, -0.14811284840106964, -0.1018940657377243, 0.06684514880180359, -0.0255871694535017, 0.022677432745695114, -0.05352892354130745, -0.004282296635210514, 0.00040876620914787054, 0.020549660548567772, -0.015508967451751232, 0.06111704558134079, -0.011643043719232082, -0.028381306678056717, -0.12512226402759552, -0.04713515564799309, -0.02282514050602913, 0.09710901975631714, -0.11927556991577148, -0.03291614353656769, 0.1579895317554474, 0.13056637346744537, 0.03071236051619053, -0.031462084501981735, 0.04969223961234093, -0.03498772159218788, -0.0341511145234108, -0.07016914337873459, -0.025334905833005905, -0.01013228576630354, 0.03524937108159065, 0.08176954835653305, -0.12595462799072266, -0.08825062215328217, 0.08206212520599365, 0.051514558494091034, -0.07721883803606033, -0.038275495171546936, -0.052121661603450775, -0.020383378490805626, -0.08638148754835129, -0.062038786709308624, 0.03630804643034935, 0.06199201941490173, 0.07090740650892258, -0.06421001255512238, -0.05404257774353027, 0.017816172912716866, -0.012950661592185497, -0.09414565563201904, 0.0544104278087616, 0.030799293890595436, -0.11284724622964859, 0.09105799347162247, -0.01540808193385601, 0.06474214047193527, 0.07901715487241745, 0.02243794873356819, -0.1025504618883133, 0.004972276743501425, 0.061938025057315826, 0.01617981679737568, 0.08686213940382004, 0.022526845335960388, 0.007021970581263304, 0.07152459025382996, 0.003890329971909523, -0.009273992851376534, -0.07753289490938187, 0.07817094773054123, 0.027617501094937325, -0.03929396718740463, 0.03673940896987915, -0.037260930985212326, 0.08348960429430008, 0.10742823779582977, 0.06757523119449615, 0.12023729830980301, -0.050156500190496445, -0.05229860544204712, -0.08893776684999466, 0.12290854007005692, -0.03975966200232506, -0.2541538178920746, -0.07793769240379333, -0.05359436944127083, -0.04296982288360596, -0.0105140907689929, 0.023314421996474266, -0.029194321483373642, -0.08704106509685516, -0.10869179666042328, 0.05185601860284805, 0.05591569095849991, -0.11172185838222504, -0.09201892465353012, 0.025767283514142036, -0.01184112299233675, -0.08911498636007309, -0.008222774602472782, 0.02565770410001278, -0.04531273990869522, -0.0038049635477364063, 0.04037821292877197, 0.1241907998919487, 0.062366146594285965, -0.01835920289158821, -0.016761936247348785, -0.0036814843770116568, 0.16216984391212463, -0.13942252099514008, 0.12631192803382874, 0.16128337383270264, 0.014570002444088459, 0.07441975176334381, 0.20638149976730347, -0.008321010507643223, -0.011126946657896042, 0.011410609818994999, 0.06875932961702347, -0.05083947628736496, -0.19518893957138062, -0.0615808367729187, -0.03888094797730446, 0.00610341178253293, 0.12999066710472107, 0.047882307320833206, -0.005927888676524162, 0.07430978864431381, -0.1090862974524498, 0.017674406990408897, 0.03300873935222626, 0.08297153562307358, 0.06276835501194, 0.02557492069900036, 0.043134961277246475, -0.05004847049713135, -0.055613480508327484, 0.10638753324747086, 0.11948452144861221, 0.09395378082990646, -0.10589922219514847, 0.09712374955415726, 0.031404875218868256, 0.023287516087293625, -0.057162094861269, 0.005650706123560667, -0.02710297703742981, 0.05018899217247963, 0.00006779249815735966, -0.08904438465833664, 0.01462110597640276, 0.07950423657894135, 0.13378077745437622, 0.00506827887147665, -0.0020424709655344486, -0.037466906011104584, 0.08146338909864426, 0.23284868896007538, 0.018950490280985832, -0.18174292147159576, 0.00916261412203312, 0.0492888018488884, 0.01115155965089798, -0.11867538839578629, -0.029912851750850677, 0.09394629299640656, -0.1541377305984497, 0.06460558623075485, -0.019112804904580116, 0.10345229506492615, -0.15525466203689575, -0.03742603212594986, 0.05724605172872543, 0.041452378034591675, -0.014877665787935257, 0.07116355001926422, -0.10329050570726395, 0.04654642194509506, 0.03532487526535988, 0.04952000081539154, -0.08693612366914749, 0.0454525388777256, 0.006342975422739983, 0.005138557869940996, 0.13372957706451416, -0.005801138933748007, 0.009678281843662262, -0.1414763629436493, -0.11422952264547348, -0.0087541239336133, 0.05763643980026245, -0.08182637393474579, 0.10321687906980515, 0.008031652309000492, -0.02984137088060379, -0.06868689507246017, -0.0996922105550766, -0.08199292421340942, -0.1822933554649353, 0.054798953235149384, -0.024109939113259315, 0.028199592605233192, -0.021691640838980675, 0.010097271762788296, -0.021758487448096275, 0.12658438086509705, -0.0698467344045639, -0.09722483158111572, -0.13349321484565735, 0.03872614726424217, 0.08661512285470963, -0.02292591519653797, -0.023801244795322418, -0.08093870431184769, 0.18089497089385986, -0.03209199756383896, -0.08350345492362976, 0.010395780205726624, -0.06496576219797134, -0.10186588764190674, -0.052283164113759995, 0.106501504778862, 0.03700842335820198, -0.00810561515390873, 0.023558050394058228, 0.04274098947644234, 0.004583686124533415, -0.051398202776908875, 0.03376638889312744, 0.10928742587566376, 0.12687347829341888, 0.12799511849880219, 0.0008604801259934902, -0.16699102520942688, -0.10614312440156937, 0.006219989620149136, 0.03595258295536041, 0.09941426664590836, -0.08775678277015686, 0.1032344251871109, 0.04264442250132561, -0.08877246826887131, -0.2246539294719696, 0.07404515892267227, 0.044955987483263016, -0.018214190378785133, 0.004898762796074152, -0.1414491981267929, 0.17542368173599243, 0.043109845370054245, -0.00542409997433424, 0.07287221401929855, -0.24802564084529877, -0.06323744356632233, -0.024684594944119453, 0.021715307608246803, -0.16928265988826752, -0.16473501920700073, -0.04574862867593765, -0.06658081710338593, -0.18826396763324738, 0.0528099462389946, 0.010985204949975014, 0.030604934319853783, 0.044314395636320114, 0.04727284237742424, 0.05814724415540695, -0.03751714155077934, 0.10996440798044205, 0.027241753414273262, 0.05167684704065323, -0.07029982656240463, -0.07219935208559036, 0.028521152213215828, -0.09928476810455322, 0.15546728670597076, 0.05194493383169174, 0.024117616936564445, -0.05065585672855377, -0.018139099702239037, -0.03514222055673599, 0.09650925546884537, -0.02475319243967533, -0.03755997493863106, -0.10180888324975967, 0.05008343234658241, 0.13276031613349915, 0.013212866149842739, 0.0820121318101883, -0.027550669386982918, -0.021972373127937317, 0.09092800319194794, 0.12546014785766602, -0.01380886510014534, -0.11161781847476959, -0.04186546802520752, -0.01019865833222866, 0.03430052846670151, -0.10832381248474121, 0.05581849813461304, 0.08877582848072052, 0.020211486145853996, 0.09769681096076965, -0.015946868807077408, -0.09428831189870834, -0.008112026378512383, 0.05963059887290001, -0.07914067804813385, -0.14103443920612335, 0.016755361109972, 0.08103027939796448, -0.09632781893014908, -0.08390116691589355, 0.11781048029661179, 0.003919471055269241, -0.025492046028375626, 0.0037740403786301613, 0.09181567281484604, 0.050321124494075775, 0.0491592176258564, 0.010666335001587868, 0.0342329703271389, -0.07349047064781189, 0.1192684918642044, 0.13621897995471954, -0.14457817375659943, 0.004844744224101305, 0.07820197194814682, -0.04114387556910515, -0.017484847456216812, -0.029564589262008667, 0.01928750053048134, 0.012527349404990673, -0.03525998815894127, 0.03630800545215607, -0.08328201621770859, 0.03552013263106346, 0.060321711003780365, -0.004505143500864506, 0.07266250252723694, 0.028278063982725143, 0.007443545386195183, -0.1417878121137619, 0.13061445951461792, 0.028360771015286446, 0.05621814355254173, -0.10608828812837601, 0.010129510425031185, 0.02806663326919079, 0.022649239748716354, 0.007136321626603603, -0.04264189675450325, -0.07302679866552353, -0.014779770746827126, -0.057110805064439774, 0.09180565923452377, -0.10897602885961533, 0.003295459086075425, -0.019525760784745216, 0.029310772195458412, -0.020375819876790047, 0.038357317447662354, -0.036241721361875534, -0.0724993646144867, -0.04027743265032768, 0.1414908915758133, -0.13813526928424835, -0.013743390329182148, 0.057623498141765594, -0.09562644362449646, 0.0757877454161644, 0.0012239419156685472, -0.03444988280534744, -0.09092233330011368, -0.17674565315246582, -0.04173588752746582, 0.040436238050460815, 0.0665590837597847, 0.029148384928703308, -0.0845876932144165, 0.05877700448036194, 0.010023399256169796, -0.09918791800737381, -0.01803627610206604, -0.017269989475607872, -0.10818175971508026, 0.0446520671248436, -0.11237145960330963, -0.022321736440062523, -0.048691730946302414, 0.12446601688861847, 0.07025668025016785, -0.009263737127184868, 0.08421400189399719, -0.04201536253094673, 0.08256743103265762, -0.13380520045757294, -0.04908093810081482, -0.015319489873945713, -0.03376788645982742, -0.07151273638010025, -0.00942542776465416, 0.06349267065525055, -0.021435877308249474, 0.16088935732841492, 0.12269409745931625, 0.02491169236600399, 0.04034233093261719, -0.005114975851029158, 0.038836732506752014, 0.06122267618775368, 0.009793313220143318, -0.013236279599368572, -0.03052849881350994, 0.05260852724313736, 0.005149994045495987, 0.0057417843490839005, 0.08114782720804214, 0.04012194275856018, 0.24532735347747803, 0.11960469186306, 0.021795086562633514, 0.05389093607664108, -0.08953600376844406, -0.06851207464933395, 0.09117467701435089, -0.07268284261226654, 0.06076483055949211, -0.09335467219352722, 0.025657450780272484, 0.0858326181769371, -0.1403423696756363, 0.05575952306389809, -0.011694449931383133, -0.00543214799836278, -0.03418932855129242, -0.09117510914802551, -0.05608881637454033, -0.015974611043930054, 0.0006886512855999172, -0.1228121891617775, 0.06267579644918442, 0.13963918387889862, -0.005020178388804197, 0.005292986053973436, 0.09260682016611099, -0.08210760354995728, -0.08250000327825546, 0.09959553927183151, 0.013506649062037468, 0.04557741805911064, 0.04845494031906128, 0.028156574815511703, 0.08225101232528687, 0.008146918378770351, 0.08678258955478668, 0.08665493130683899, 0.09818656742572784, 0.02348289266228676, -0.0709785595536232, -0.06961872428655624, 0.03156382218003273, -0.011684296652674675, -0.00693451426923275, 0.15546298027038574, 0.07017219811677933, 0.004017669707536697, -0.022069774568080902, 0.15771625936031342, -0.015467015095055103, -0.02718045376241207, -0.13583193719387054, 0.037278659641742706, -0.0386112742125988, -0.0000982639758149162, -0.01623007096350193, -0.15352492034435272, -0.0021011466160416603, 0.12489008903503418, 0.060409627854824066, -0.03450712189078331, -0.01582360826432705, -0.01519059669226408, 0.006759153679013252, -0.012946944683790207, 0.05295964330434799, 0.023381801322102547, 0.20749489963054657, -0.04652884230017662, 0.008826968260109425, -0.04170004278421402, -0.021957257762551308, -0.06100090965628624, 0.08360377699136734, -0.027063315734267235, 0.021648772060871124, -0.08272339403629303, 0.10891573876142502, 0.002794997999444604, -0.19372862577438354, 0.06389766186475754, -0.08027338236570358, -0.07437256723642349, 0.02826295793056488, -0.007740716449916363, 0.0004664278239943087, 0.020470475777983665, 0.01654312014579773, -0.05461554974317551, 0.11612008512020111, 0.01701301522552967, -0.060320280492305756, 0.03473878279328346, -0.001142585533671081, -0.07584032416343689, 0.26313483715057373, -0.033199287950992584, 0.04178726300597191, 0.09202588349580765, -0.008122729137539864, -0.15213996171951294, -0.03325144201517105, 0.07050931453704834, -0.05217599496245384, 0.023411214351654053, 0.11451492458581924, 0.0035203699953854084, 0.12486299127340317, 0.1028939038515091, -0.09383866935968399, 0.04562429338693619, 0.01228766143321991, 0.01309180911630392, -0.12562167644500732, 0.014648275449872017, -0.08390863984823227, 0.1141926646232605, 0.12269386649131775, -0.004487685859203339, -0.0038425843231379986, -0.04345263913273811, -0.0014331525890156627, 0.004847168456763029, 0.11310560256242752, 0.008581135421991348, -0.06901301443576813, 0.007615046575665474, -0.12058816105127335, 0.0887204259634018, -0.12198437750339508, -0.05830414220690727, 0.04024992138147354, -0.013020596466958523, -0.019836625084280968, 0.08238255977630615, 0.039246100932359695, 0.021263418719172478, -0.05211552977561951, -0.14081192016601562, 0.029833389446139336, 0.1633806824684143, -0.018416984006762505, -0.014255095273256302 ]
92460814e77f2874b3514da063b6caa39e8a9abb
# Dataset Card for document-parts ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/document-parts - **Point of Contact:** [email protected] ### Dataset Summary document-parts ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/document-parts ### Citation Information ``` @misc{ document-parts, title = { document parts Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/document-parts } }, url = { https://universe.roboflow.com/object-detection/document-parts }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/document-parts
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:30:59+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "document-parts", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "document-parts", "1": "table", "2": "title"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:28+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for document-parts The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary document-parts ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for document-parts\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ndocument-parts", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for document-parts\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ndocument-parts", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for document-parts\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ndocument-parts### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.016180938109755516, 0.15417172014713287, -0.0087587870657444, 0.023415764793753624, 0.11002396047115326, 0.004301645793020725, 0.05374732241034508, 0.08002407848834991, 0.009183721616864204, 0.16143961250782013, -0.013970524072647095, 0.08046314120292664, 0.13023285567760468, 0.10063900798559189, -0.02311531826853752, -0.15492363274097443, 0.0582352951169014, -0.06536447256803513, 0.07446078211069107, 0.06791460514068604, 0.06896050274372101, -0.1326642781496048, 0.09973649680614471, -0.03610767424106598, -0.04848645254969597, 0.012601010501384735, -0.02457384392619133, -0.04285509139299393, 0.020291907712817192, 0.031846147030591965, 0.03474041074514389, 0.013993268832564354, 0.04213424026966095, -0.18876913189888, 0.025417055934667587, 0.11126616597175598, 0.017308924347162247, 0.0387457013130188, 0.13040682673454285, -0.08472747355699539, 0.05173031613230705, -0.13218621909618378, 0.024811087176203728, 0.018282625824213028, -0.12468157708644867, -0.09007056057453156, -0.13002583384513855, 0.04038260132074356, 0.11327268183231354, 0.05143547058105469, -0.009249755181372166, 0.06307726353406906, -0.0024299637880176306, 0.05903645604848862, 0.12110976129770279, -0.07891543209552765, -0.05363709479570389, 0.09458713978528976, 0.02824113331735134, 0.11494717001914978, -0.11156217753887177, -0.010685909539461136, -0.007963926531374454, -0.02908327989280224, 0.013481236062943935, -0.07528042048215866, -0.03699898719787598, 0.00020277923613321036, -0.09251315891742706, -0.12835685908794403, 0.14328962564468384, 0.05598995462059975, -0.05060432851314545, -0.12204065918922424, -0.034543439745903015, 0.04656101390719414, -0.028115106746554375, -0.012340745888650417, 0.04995084926486015, -0.00014779258344788104, 0.07612643390893936, -0.06436566263437271, -0.10531831532716751, 0.04468747228384018, 0.0015554057899862528, 0.031636349856853485, -0.034797459840774536, 0.04514962434768677, 0.008046268485486507, 0.0793481394648552, -0.015884073451161385, -0.11648893356323242, -0.03421039506793022, -0.04471404105424881, -0.06857957690954208, -0.037203069776296616, 0.0633794516324997, -0.1252194046974182, 0.06007706746459007, 0.05242691561579704, -0.08503418415784836, 0.03808929771184921, -0.12196805328130722, 0.022381840273737907, 0.09709616005420685, 0.19559849798679352, -0.07747640460729599, -0.09743520617485046, -0.006964685395359993, 0.024163685739040375, 0.027113735675811768, -0.041550688445568085, -0.035168860107660294, -0.017194557934999466, 0.021103184670209885, 0.030400600284337997, 0.09987785667181015, 0.0267413891851902, -0.06828153878450394, -0.05153975635766983, 0.10895127058029175, -0.10477693378925323, 0.06044544279575348, 0.04729785397648811, -0.03158048540353775, 0.08258199691772461, 0.02379315346479416, 0.010693118907511234, -0.10526349395513535, 0.08284098654985428, -0.042895011603832245, 0.02497650496661663, -0.09774313122034073, -0.08531951159238815, 0.04223228245973587, -0.09767656028270721, -0.08826702833175659, -0.0839209035038948, -0.05505002662539482, -0.08793337643146515, 0.04322570562362671, -0.04333960637450218, 0.031087404116988182, 0.015171842649579048, -0.04188637062907219, -0.0017167843179777265, 0.01003123726695776, 0.03495918586850166, -0.05090116709470749, 0.0377805158495903, -0.1017397940158844, 0.03686026111245155, 0.0820043683052063, 0.03415367007255554, -0.0765867605805397, 0.05767383798956871, -0.20008431375026703, 0.12275473773479462, -0.029716551303863525, 0.033070407807826996, -0.13423606753349304, 0.01886799931526184, -0.03128938004374504, -0.03880096599459648, -0.002652758499607444, 0.1321118026971817, -0.09564533084630966, 0.017614075914025307, 0.08632545173168182, -0.0497351810336113, -0.04835454374551773, 0.03486577048897743, -0.04111580550670624, 0.020876744762063026, 0.08192558586597443, 0.10625840723514557, -0.017623521387577057, -0.12247467786073685, -0.10631199181079865, -0.044513437896966934, -0.050932809710502625, 0.13395176827907562, 0.05535683408379555, -0.042131178081035614, 0.08117285370826721, -0.010842387564480305, -0.02667762152850628, -0.029809705913066864, 0.01572583243250847, -0.034054532647132874, 0.014296134002506733, 0.008080285042524338, -0.07079251110553741, 0.013873865827918053, -0.10448545962572098, 0.016993166878819466, -0.08160440623760223, -0.045462191104888916, 0.007058726157993078, -0.01766243204474449, 0.026463737711310387, -0.03410641476511955, 0.0924246683716774, -0.10439162701368332, -0.0043266769498586655, -0.14871498942375183, -0.08812917768955231, 0.060557711869478226, 0.01975366845726967, 0.0487397164106369, -0.07389233261346817, 0.0013935648603364825, 0.013643168844282627, 0.03346848860383034, -0.016772015020251274, 0.044596802443265915, -0.028162145987153053, -0.030175799503922462, -0.1308658868074417, -0.01392360683530569, -0.022521840408444405, 0.09730570018291473, -0.1208890825510025, -0.025387661531567574, 0.14824874699115753, 0.10651948302984238, 0.05011066421866417, -0.04702066630125046, 0.058740511536598206, -0.017827628180384636, -0.03264816105365753, -0.0710631012916565, -0.015178102068603039, -0.010201787576079369, 0.026925550773739815, 0.0912126824259758, -0.19824367761611938, -0.12130469083786011, 0.07818230241537094, 0.002152509754523635, -0.08297271281480789, -0.05417132005095482, -0.04028207063674927, -0.009491406381130219, -0.09435645490884781, -0.051324326545000076, 0.04682411625981331, 0.0581541582942009, 0.08526831865310669, -0.06219284236431122, -0.034229524433612823, 0.025511909276247025, -0.015495100989937782, -0.07993053644895554, 0.04069782420992851, 0.05327324569225311, -0.0970311313867569, 0.09766148775815964, 0.023187408223748207, 0.03857240080833435, 0.12400937080383301, 0.036534521728754044, -0.10237596929073334, -0.012972178868949413, 0.07581771165132523, 0.027271749451756477, 0.103644460439682, -0.03973614424467087, 0.010174727067351341, 0.07451485842466354, 0.006007974501699209, -0.03385188803076744, -0.09393306821584702, 0.07951384782791138, 0.031202858313918114, -0.03696484863758087, 0.05664558708667755, -0.025953467935323715, 0.07875742018222809, 0.10323760658502579, 0.04682501032948494, 0.09118947386741638, -0.054252784699201584, -0.06402173638343811, -0.09303288161754608, 0.12341340631246567, -0.04426173120737076, -0.23888874053955078, -0.09112855046987534, -0.07651730626821518, -0.04852195084095001, 0.002408921718597412, 0.0276471134275198, 0.003387672593817115, -0.0774339810013771, -0.085547536611557, 0.051629673689603806, 0.07440698146820068, -0.09832091629505157, -0.09498436003923416, 0.02102869749069214, -0.004560885485261679, -0.08121975511312485, -0.008699167519807816, 0.022949866950511932, -0.07196507602930069, 0.018566250801086426, 0.0411379411816597, 0.13630788028240204, 0.08095813542604446, -0.023673078045248985, 0.008188996464014053, -0.013893087394535542, 0.1722611039876938, -0.156612828373909, 0.13571614027023315, 0.16775420308113098, 0.016225462779402733, 0.09143642336130142, 0.20485827326774597, -0.0119538689032197, -0.0022647755686193705, 0.013398525305092335, 0.06294675916433334, -0.06127740442752838, -0.19335053861141205, -0.04408056661486626, -0.058915525674819946, 0.02201244793832302, 0.10510376840829849, 0.03795812651515007, 0.03165387734770775, 0.08615434914827347, -0.09692592173814774, 0.020171033218503, 0.046644244343042374, 0.09749405086040497, 0.040297094732522964, 0.02957061491906643, 0.04957268014550209, -0.04466572403907776, -0.02802368998527527, 0.10224330425262451, 0.14073815941810608, 0.12455097585916519, -0.09160929918289185, 0.10848711431026459, 0.027019048109650612, 0.013808120042085648, -0.04468024894595146, 0.0024614324793219566, -0.030611488968133926, 0.05668983608484268, -0.013201039284467697, -0.09457150846719742, -0.006824831943958998, 0.0762871727347374, 0.11673510074615479, 0.0014737261226400733, 0.015971284359693527, -0.004846600349992514, 0.09616997092962265, 0.2076568901538849, 0.025043459609150887, -0.18501512706279755, 0.02723262459039688, 0.03305657207965851, 0.022097591310739517, -0.13219979405403137, -0.03546501323580742, 0.11613044887781143, -0.1635354906320572, 0.06235310062766075, -0.045299530029296875, 0.10896878689527512, -0.12861128151416779, -0.03104514442384243, 0.041461531072854996, 0.043824370950460434, -0.02889060601592064, 0.06912185251712799, -0.11476853489875793, 0.0968443974852562, 0.04224501922726631, 0.03818757086992264, -0.08027144521474838, 0.04520827904343605, 0.01361008733510971, -0.0014373696176335216, 0.1419460028409958, -0.006424193736165762, -0.04131939634680748, -0.13503390550613403, -0.09443696588277817, -0.016197098419070244, 0.05982357636094093, -0.05743023008108139, 0.102916419506073, 0.004130763467401266, -0.038504138588905334, -0.06518938392400742, -0.04569786414504051, -0.04969741776585579, -0.17762108147144318, 0.04401461407542229, -0.005798309110105038, 0.012863291427493095, -0.01480245403945446, 0.03984416648745537, 0.01391111221164465, 0.08509740233421326, -0.07733430713415146, -0.07623046636581421, -0.14568892121315002, 0.01913958229124546, 0.04972689971327782, -0.033825065940618515, -0.02383613958954811, -0.08955024182796478, 0.1682594269514084, -0.035347599536180496, -0.060205765068531036, 0.03503919020295143, -0.04654017835855484, -0.09454435110092163, -0.07626300305128098, 0.1117355078458786, 0.027884550392627716, -0.008874221704900265, 0.003867163322865963, 0.057247769087553024, 0.0016219962853938341, -0.05934227630496025, 0.04865332692861557, 0.12067835032939911, 0.12021490931510925, 0.151083305478096, 0.012691417708992958, -0.15734566748142242, -0.11042901873588562, 0.013097001239657402, 0.04260589927434921, 0.0867474153637886, -0.0852322205901146, 0.09932861477136612, 0.028320766985416412, -0.10404283553361893, -0.23687635362148285, 0.0876312181353569, 0.05689939484000206, -0.008033252321183681, -0.006604872643947601, -0.14199572801589966, 0.1257724016904831, 0.05460929870605469, 0.0015751291066408157, 0.0743943378329277, -0.2538371980190277, -0.06705521047115326, -0.035122670233249664, 0.04992980509996414, -0.16471613943576813, -0.15543214976787567, -0.039519838988780975, -0.03538614511489868, -0.17054963111877441, 0.05521952360868454, -0.023152383044362068, 0.041803326457738876, 0.043792724609375, 0.05939392000436783, 0.06058759242296219, -0.044656842947006226, 0.11078977584838867, 0.0161653533577919, 0.048433903604745865, -0.0748579278588295, -0.08826851099729538, 0.07065035402774811, -0.10805507004261017, 0.12326204776763916, 0.03447640687227249, 0.01597343385219574, -0.05260667949914932, -0.013520762324333191, -0.03823251277208328, 0.07683609426021576, -0.03251716122031212, -0.046532101929187775, -0.08036644011735916, 0.033280614763498306, 0.12052949517965317, 0.017420830205082893, 0.08556678891181946, -0.046381786465644836, -0.012323313392698765, 0.1690869778394699, 0.11294060200452805, -0.016898026689887047, -0.12989535927772522, -0.04549136757850647, 0.008455938659608364, 0.03588585555553436, -0.11960737407207489, 0.05103921517729759, 0.08760231733322144, 0.014994623139500618, 0.10524626076221466, -0.006898971274495125, -0.09615588933229446, 0.013071552850306034, 0.059459902346134186, -0.09570671617984772, -0.1555364429950714, 0.00427967868745327, 0.07729243487119675, -0.1076296865940094, -0.10324249416589737, 0.12874947488307953, 0.00926150567829609, -0.009437515400350094, 0.012818212620913982, 0.08117730915546417, 0.05229645222425461, 0.049121737480163574, 0.009965994395315647, 0.033829860389232635, -0.05948743596673012, 0.1092458963394165, 0.1442432552576065, -0.12074697762727737, -0.0034159827046096325, 0.12772370874881744, -0.04677589610219002, -0.016329985111951828, -0.044307101517915726, 0.06345437467098236, -0.03283572569489479, -0.02808735892176628, 0.03456709533929825, -0.06868081539869308, 0.021863577887415886, 0.11138305068016052, -0.011794150806963444, 0.05236102268099785, 0.029376113787293434, -0.011166112497448921, -0.12150310724973679, 0.1394028216600418, -0.00305960769765079, 0.057483553886413574, -0.10391394793987274, 0.021952204406261444, 0.014151322655379772, 0.024769939482212067, 0.008684190921485424, -0.07305603474378586, -0.07264114171266556, -0.0002255446306662634, -0.05325058102607727, 0.10497605800628662, -0.08771608769893646, -0.01437319628894329, -0.015476791188120842, 0.02028159610927105, -0.019422682002186775, 0.026470467448234558, -0.04197630658745766, -0.06418265402317047, -0.0465804785490036, 0.12919554114341736, -0.1355588585138321, -0.020541798323392868, 0.05431957170367241, -0.08473391830921173, 0.06828545778989792, 0.000627232133410871, -0.039640601724386215, -0.07064118981361389, -0.18031205236911774, -0.030538957566022873, 0.034089345484972, 0.057619061321020126, 0.04829472675919533, -0.08231669664382935, 0.056003328412771225, -0.01597537100315094, -0.09296618402004242, -0.022975048050284386, -0.00814820360392332, -0.10946667194366455, 0.06503366678953171, -0.0775008425116539, -0.03437415882945061, -0.04848106577992439, 0.14103837311267853, 0.04500822350382805, 0.003977815620601177, 0.06455228477716446, -0.04720940813422203, 0.0951554924249649, -0.15394002199172974, -0.03280344605445862, -0.00014172201917972416, -0.03998119384050369, -0.07244975119829178, -0.019839219748973846, 0.07240518182516098, -0.032558370381593704, 0.10489289462566376, 0.1301228255033493, 0.03976490721106529, 0.03610550984740257, -0.02955385111272335, 0.04086272045969963, 0.04991592839360237, -0.02150285802781582, -0.015214630402624607, -0.02568618766963482, 0.06904242932796478, 0.013622480444610119, 0.02000991813838482, 0.10575263202190399, 0.09434960782527924, 0.2271457463502884, 0.1509561687707901, 0.029752641916275024, 0.04884133115410805, -0.07985629886388779, -0.08450409770011902, 0.08398457616567612, -0.06834419071674347, 0.06496633589267731, -0.1029302328824997, 0.0037487277295440435, 0.11657886207103729, -0.17008818686008453, 0.06348608434200287, -0.015036724507808685, -0.01067030243575573, -0.03424042463302612, -0.1254654824733734, -0.05660094693303108, -0.03545570373535156, -0.00783028919249773, -0.11630745232105255, 0.0776798203587532, 0.10962217301130295, -0.010503546334803104, 0.011966063641011715, 0.09156965464353561, -0.08781580626964569, -0.06996893882751465, 0.08951365947723389, 0.027135491371154785, 0.08249612897634506, 0.04575708881020546, 0.03503912687301636, 0.06866880506277084, -0.004042510874569416, 0.09517307579517365, 0.0866859182715416, 0.11558514088392258, 0.039862483739852905, -0.07829602062702179, -0.06890072673559189, 0.03814651817083359, -0.0077630095183849335, -0.031965192407369614, 0.13926827907562256, 0.06929925829172134, 0.012833287008106709, -0.015626056119799614, 0.1779462993144989, -0.025628987699747086, -0.023306626826524734, -0.14643560349941254, 0.0487801618874073, -0.026579178869724274, -0.0013058033073320985, -0.019291095435619354, -0.15509840846061707, 0.0009213947341777384, 0.12455116957426071, 0.07513035088777542, -0.04640772193670273, -0.008746164850890636, -0.015030224807560444, 0.013296668417751789, 0.001683463342487812, 0.05027738958597183, 0.019315730780363083, 0.22629278898239136, -0.04651133343577385, 0.007740844041109085, -0.027856336906552315, -0.01788029819726944, -0.06655478477478027, 0.0836884081363678, -0.018691811710596085, 0.0017231744714081287, -0.06658370792865753, 0.10544340312480927, 0.007718641310930252, -0.18186494708061218, 0.06721552461385727, -0.11179715394973755, -0.0871155709028244, 0.007737573701888323, 0.004053955432027578, -0.0032872057054191828, 0.02321954444050789, 0.013315027579665184, -0.0669601708650589, 0.11083722859621048, 0.026895558461546898, -0.06709843873977661, -0.009070141240954399, -0.0021722533274441957, -0.11910869181156158, 0.2726423144340515, -0.025251735001802444, 0.0008876084466464818, 0.09903465956449509, -0.0132070267572999, -0.13544097542762756, -0.015132707543671131, 0.072524793446064, -0.04980229586362839, -0.0010053752921521664, 0.1193418875336647, -0.007393378298729658, 0.14483627676963806, 0.09207576513290405, -0.08209674060344696, 0.04493925720453262, -0.02345726452767849, 0.010819870047271252, -0.10292985290288925, 0.010999801568686962, -0.08610951155424118, 0.10356732457876205, 0.15413729846477509, 0.0071888999082148075, -0.00323607143945992, -0.03928184509277344, -0.016233067959547043, 0.014577978290617466, 0.10621964186429977, -0.008441098965704441, -0.042894478887319565, 0.00991857424378395, -0.10366597771644592, 0.07911859452724457, -0.10614794492721558, -0.0648159608244896, 0.03403724357485771, -0.00753031624481082, -0.0236586332321167, 0.09009257704019547, 0.05347105860710144, 0.016165534034371376, -0.0521966852247715, -0.11330898851156235, 0.023680303245782852, 0.18069957196712494, -0.012053155340254307, -0.024467820301651955 ]
b5861bc164a75f265e2b2711c66525612a472cdc
# Dataset Card for gynecology-mri ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/gynecology-mri - **Point of Contact:** [email protected] ### Dataset Summary gynecology-mri ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/gynecology-mri ### Citation Information ``` @misc{ gynecology-mri, title = { gynecology mri Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/gynecology-mri } }, url = { https://universe.roboflow.com/object-detection/gynecology-mri }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/gynecology-mri
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:16+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "gynecology-mri", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "gynecology-MRI", "1": "6W", "2": "7W", "3": "EH"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:43+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for gynecology-mri The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary gynecology-mri ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for gynecology-mri\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ngynecology-mri", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for gynecology-mri\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ngynecology-mri", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for gynecology-mri\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ngynecology-mri### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.017737962305545807, 0.17290285229682922, -0.007619872689247131, 0.024106616154313087, 0.09635421633720398, 0.007981441915035248, 0.04603810980916023, 0.08647792041301727, 0.0018903362797573209, 0.16929268836975098, -0.0050068506971001625, 0.06806996464729309, 0.11246845871210098, 0.08494485914707184, -0.01298688817769289, -0.1582813858985901, 0.05831689015030861, -0.05966917797923088, 0.0457313098013401, 0.07074853032827377, 0.08024439215660095, -0.1310984343290329, 0.07687152922153473, -0.0410357229411602, -0.02044636197388172, 0.019373228773474693, -0.05615811422467232, -0.039135660976171494, 0.0055814096704125404, 0.04869776964187622, 0.00783595908433199, 0.03453691676259041, 0.03184102475643158, -0.18747402727603912, 0.020816225558519363, 0.10502365231513977, 0.028157686814665794, 0.01704314351081848, 0.15045469999313354, -0.07791875302791595, 0.07114825397729874, -0.1318551003932953, 0.03562047332525253, 0.017997385933995247, -0.11547143757343292, -0.13848662376403809, -0.12815052270889282, 0.05709134414792061, 0.10592255741357803, 0.04942188784480095, -0.019785381853580475, 0.07626713067293167, -0.02756205014884472, 0.04821588471531868, 0.10577642917633057, -0.07667891681194305, -0.03526414558291435, 0.09940935671329498, 0.030578356236219406, 0.10336875170469284, -0.1260896623134613, -0.006659031845629215, -0.012327352538704872, -0.026608357205986977, 0.011846964247524738, -0.057004690170288086, -0.01866515725851059, 0.0021376307122409344, -0.1061565950512886, -0.1443379819393158, 0.14142678678035736, 0.051874786615371704, -0.04536664858460426, -0.15030255913734436, -0.004684207495301962, 0.06201571971178055, -0.03653711825609207, -0.00474364310503006, 0.04309845715761185, -0.0064385803416371346, 0.059177279472351074, -0.08648692816495895, -0.0997798964381218, 0.04016052186489105, 0.039226509630680084, 0.04540323093533516, -0.012745309621095657, 0.033485617488622665, 0.032880645245313644, 0.08636204153299332, -0.0030940042342990637, -0.10783916711807251, -0.0352264828979969, -0.03617304936051369, -0.06510396301746368, -0.037148427218198776, 0.062372516840696335, -0.14074698090553284, 0.07535187155008316, 0.05698222294449806, -0.08687186986207962, 0.032928217202425, -0.11372785270214081, 0.010812952183187008, 0.10498566180467606, 0.18521206080913544, -0.10221879929304123, -0.07853076606988907, 0.00599566800519824, 0.03573334589600563, 0.016622250899672508, -0.03505881875753403, -0.021077895537018776, -0.01030054036527872, 0.029218487441539764, 0.045139797031879425, 0.0971837267279625, 0.0552852526307106, -0.06167398393154144, -0.07158409804105759, 0.13292646408081055, -0.09573953598737717, 0.048757925629615784, 0.05724514275789261, -0.057549651712179184, 0.048047155141830444, 0.0044619254767894745, 0.0201711505651474, -0.10896304249763489, 0.095342718064785, -0.0282293651252985, 0.00900531280785799, -0.08506675809621811, -0.08486787229776382, 0.05295829474925995, -0.07664530724287033, -0.08481685072183609, -0.0756320208311081, -0.04631742462515831, -0.0872279554605484, 0.03255645930767059, -0.038034528493881226, 0.028107574209570885, 0.018170682713389397, -0.031512826681137085, -0.007941027171909809, 0.011986722238361835, 0.03681374341249466, -0.05583054944872856, 0.04896365851163864, -0.09484296292066574, 0.028524378314614296, 0.10769089311361313, 0.03854046389460564, -0.0921538844704628, 0.058361392468214035, -0.1963779777288437, 0.1327650547027588, -0.061571355909109116, 0.017673227936029434, -0.12732921540737152, 0.008943884633481503, -0.0033584688790142536, -0.04358608275651932, -0.010194280184805393, 0.13224267959594727, -0.05737660080194473, 0.013979042880237103, 0.069064199924469, -0.050717778503894806, -0.04614200070500374, 0.037802182137966156, -0.04024910181760788, -0.02726331725716591, 0.0805944874882698, 0.1467829942703247, -0.03380603343248367, -0.09486919641494751, -0.101559117436409, -0.04813733324408531, -0.04733267426490784, 0.15911075472831726, 0.07747436314821243, -0.04028956592082977, 0.09182898700237274, -0.006127903703600168, -0.030717620626091957, -0.033916205167770386, 0.01471220888197422, -0.0365961529314518, 0.015997622162103653, -0.01778131164610386, -0.07564734667539597, 0.022972874343395233, -0.09548111259937286, 0.00989110954105854, -0.08453696966171265, -0.05594271793961525, 0.019313601776957512, -0.03695010393857956, 0.012846269644796848, -0.03536641597747803, 0.09777133911848068, -0.12323078513145447, 0.001402612659148872, -0.14364036917686462, -0.13059593737125397, 0.06655879318714142, -0.04723662883043289, 0.03969775512814522, -0.07625459879636765, -0.011511681601405144, 0.025842994451522827, 0.023041483014822006, -0.01588308811187744, 0.03404833748936653, -0.020064005628228188, -0.02737751230597496, -0.1255619376897812, -0.035936228930950165, -0.017325272783637047, 0.12057366222143173, -0.12294242531061172, -0.027120841667056084, 0.1594383865594864, 0.11862315237522125, 0.03538888320326805, -0.05668403208255768, 0.08868861198425293, -0.03856378048658371, -0.005749316420406103, -0.0827968493103981, -0.0069044120609760284, -0.005317457020282745, 0.024461202323436737, 0.0915922299027443, -0.1617719680070877, -0.1162629947066307, 0.07522735744714737, 0.029656482860445976, -0.07711299508810043, -0.057558439671993256, -0.05619416385889053, -0.020629798993468285, -0.09369470924139023, -0.03433391824364662, 0.04235280305147171, 0.054063018411397934, 0.08621617406606674, -0.06708390265703201, -0.04224179685115814, 0.027417927980422974, -0.009165245108306408, -0.0773085281252861, 0.07162896543741226, 0.048965439200401306, -0.13369721174240112, 0.10559893399477005, -0.0355527400970459, 0.04164234176278114, 0.10292837023735046, 0.030298437923192978, -0.1103195771574974, 0.016117118299007416, 0.07050415128469467, 0.023271486163139343, 0.101238913834095, -0.04875052347779274, 0.016569258645176888, 0.07851637899875641, -0.011347007006406784, -0.014234358444809914, -0.08623019605875015, 0.06681942194700241, 0.031376320868730545, -0.043772660195827484, 0.03431043028831482, -0.005066760815680027, 0.07593551278114319, 0.10521061718463898, 0.06184423714876175, 0.12132290750741959, -0.04054094851016998, -0.05996658653020859, -0.0829368308186531, 0.12876838445663452, -0.02373489923775196, -0.2608495354652405, -0.061276454478502274, -0.06536517292261124, -0.06835152208805084, -0.008095904253423214, 0.03393367677927017, -0.0019985081162303686, -0.08171635866165161, -0.09239913523197174, 0.0602787584066391, 0.057117264717817307, -0.1023632064461708, -0.12661053240299225, 0.030270971357822418, 0.00413788016885519, -0.08108901977539062, -0.004239117726683617, 0.021526001393795013, -0.0630047544836998, 0.01660224422812462, 0.0480046346783638, 0.13274307548999786, 0.06893907487392426, -0.02177797071635723, 0.018864981830120087, -0.008277562446892262, 0.17319536209106445, -0.17292015254497528, 0.09936540573835373, 0.14129306375980377, 0.025118853896856308, 0.07455483824014664, 0.1865627020597458, -0.007581415586173534, -0.023965878412127495, 0.027625087648630142, 0.08412764966487885, -0.060004133731126785, -0.1898290067911148, -0.07000622898340225, -0.04545105621218681, 0.008165746927261353, 0.1183464378118515, 0.05052397772669792, 0.04066256061196327, 0.08224958926439285, -0.117296501994133, 0.027696527540683746, 0.02805095724761486, 0.09376673400402069, 0.056076232343912125, 0.04465600848197937, 0.03920381888747215, -0.033922646194696426, -0.039683662354946136, 0.09849267452955246, 0.10812783241271973, 0.12344373017549515, -0.1093999519944191, 0.10221633315086365, 0.032208461314439774, 0.032954007387161255, -0.03037147969007492, -0.022274641320109367, -0.036522433161735535, 0.05675807222723961, 0.00009917854185914621, -0.10147202014923096, 0.015203266404569149, 0.07496821880340576, 0.14699622988700867, -0.03910727798938751, 0.0021912266965955496, -0.06895497441291809, 0.0843384638428688, 0.22917212545871735, 0.0006725466810166836, -0.18601460754871368, 0.020023368299007416, 0.03466131538152695, 0.016294866800308228, -0.12168889492750168, -0.0381881445646286, 0.07721740007400513, -0.1713615357875824, 0.06022893264889717, -0.04485761746764183, 0.0999128594994545, -0.15902677178382874, -0.03609294816851616, 0.06413552910089493, 0.03261197730898857, -0.02316705510020256, 0.09170939028263092, -0.1190541535615921, 0.07871745526790619, 0.0401129424571991, 0.028068576008081436, -0.08660228550434113, 0.027273159474134445, 0.017389116808772087, -0.006254076026380062, 0.15940944850444794, -0.012207534164190292, 0.0293019600212574, -0.13940350711345673, -0.11290101706981659, -0.006104407366365194, 0.05737711489200592, -0.09024280309677124, 0.09833306074142456, 0.015283888205885887, -0.03569506108760834, -0.07937848567962646, -0.05728824809193611, -0.07742295414209366, -0.19325414299964905, 0.060266200453042984, -0.01580112800002098, 0.01997997611761093, -0.019765367731451988, 0.027666563168168068, 0.012233941815793514, 0.13660891354084015, -0.026622476056218147, -0.09819760918617249, -0.14888127148151398, 0.0637824609875679, 0.09496714919805527, -0.01908433623611927, -0.019651437178254128, -0.08607834577560425, 0.16956937313079834, -0.025978298857808113, -0.0658913180232048, 0.02827303856611252, -0.048281483352184296, -0.12359301000833511, -0.05522792786359787, 0.11691862344741821, 0.04113668203353882, -0.0020698902662843466, 0.010187739506363869, 0.05725735425949097, 0.014294899068772793, -0.05876836180686951, 0.04416006803512573, 0.10461641103029251, 0.1285327672958374, 0.12683069705963135, 0.019146408885717392, -0.11462454497814178, -0.1245979368686676, -0.012665186077356339, 0.042094822973012924, 0.0952669233083725, -0.07553902268409729, 0.11593934148550034, 0.04231095314025879, -0.08132094889879227, -0.23170410096645355, 0.07323133200407028, 0.05808702111244202, -0.011987165547907352, -0.021905673667788506, -0.15117749571800232, 0.11806664615869522, 0.04829259589314461, -0.010450809262692928, 0.09216859936714172, -0.27930617332458496, -0.07194248586893082, -0.023444214835762978, 0.04246660694479942, -0.23063868284225464, -0.17805281281471252, -0.05753311514854431, -0.03639301657676697, -0.1416577845811844, 0.06527791917324066, -0.008296237327158451, 0.055804260075092316, 0.034136705100536346, 0.033440615981817245, 0.06533437967300415, -0.04832666739821434, 0.11083400249481201, 0.018688412383198738, 0.03154553100466728, -0.07044452428817749, -0.08033225685358047, 0.04498381167650223, -0.08429481834173203, 0.13709867000579834, 0.052439555525779724, 0.01634158194065094, -0.05553382635116577, -0.027300432324409485, -0.040826719254255295, 0.08930137008428574, -0.020809873938560486, -0.049815814942121506, -0.10361606627702713, 0.05135732144117355, 0.12684528529644012, 0.02609913796186447, 0.08028585463762283, -0.052939966320991516, -0.01606123335659504, 0.1280423253774643, 0.10422085225582123, -0.0045664566569030285, -0.15114140510559082, -0.04100753739476204, 0.00839250162243843, 0.040409039705991745, -0.13056370615959167, 0.04756353795528412, 0.09009292721748352, 0.02197139710187912, 0.10400134325027466, -0.00992277916520834, -0.10447097569704056, 0.0118243508040905, 0.04393607750535011, -0.11375360935926437, -0.1356438547372818, 0.008585440926253796, 0.08614083379507065, -0.07937274128198624, -0.11132818460464478, 0.1096353754401207, 0.0009564218344166875, -0.023733269423246384, 0.004666473716497421, 0.07232867181301117, 0.05472901090979576, 0.0662890374660492, 0.02423408254981041, 0.03992733731865883, -0.07020986080169678, 0.10965192317962646, 0.15411053597927094, -0.15534493327140808, -0.001039715949445963, 0.1298445612192154, -0.05949599668383598, -0.028697151690721512, -0.04245823621749878, 0.031453151255846024, -0.008145840838551521, -0.032739631831645966, 0.032838836312294006, -0.04432576149702072, 0.02807784639298916, 0.07872696220874786, 0.00008808329585008323, 0.06885434687137604, 0.026347005739808083, -0.012471433728933334, -0.13724319636821747, 0.1309952586889267, 0.019701285287737846, 0.05401800572872162, -0.0902189165353775, -0.004416630603373051, 0.03254156932234764, 0.01783590577542782, 0.0046645961701869965, -0.06036229804158211, -0.07938755303621292, -0.0020602832082659006, -0.0217796191573143, 0.09225668758153915, -0.07551795989274979, -0.009734085761010647, -0.02054104022681713, 0.011395487934350967, 0.0022203975822776556, 0.037234410643577576, -0.04619626700878143, -0.0809289813041687, -0.04328472912311554, 0.12038572877645493, -0.14357538521289825, -0.031245876103639603, 0.04673660174012184, -0.08533917367458344, 0.08238715678453445, 0.008520661853253841, -0.034459032118320465, -0.08782150596380234, -0.19223204255104065, -0.031586598604917526, 0.019334860146045685, 0.058126479387283325, 0.03554915636777878, -0.08657453209161758, 0.05705289542675018, -0.01310306042432785, -0.09526721388101578, -0.009123120456933975, -0.006402690429240465, -0.11521105468273163, 0.045811645686626434, -0.09484833478927612, -0.01893589273095131, -0.04397791996598244, 0.1292109340429306, 0.05022350326180458, 0.018077664077281952, 0.06155489385128021, -0.05038546398282051, 0.09192768484354019, -0.1250459998846054, -0.03648028522729874, 0.0008307707612402737, -0.03944328427314758, -0.06993328779935837, 0.008798233233392239, 0.07860655337572098, -0.027596889063715935, 0.13553771376609802, 0.12477710843086243, 0.04928756505250931, 0.04191020131111145, -0.005749734118580818, 0.08985155075788498, 0.04963114485144615, -0.01570102944970131, -0.011646195314824581, -0.01999151147902012, 0.08446046710014343, 0.016341356560587883, 0.01090907957404852, 0.08335580676794052, 0.05191799998283386, 0.20951656997203827, 0.1470862478017807, 0.004527710843831301, 0.04296953231096268, -0.09289717674255371, -0.07309244573116302, 0.11416355520486832, -0.04664737731218338, 0.07725296914577484, -0.11214817315340042, 0.04509608820080757, 0.1017720028758049, -0.15542203187942505, 0.07269293069839478, -0.0027393181808292866, -0.02179635316133499, -0.023539721965789795, -0.12192372232675552, -0.06257803738117218, -0.02641434222459793, 0.013858608901500702, -0.10875511169433594, 0.08646349608898163, 0.12512801587581635, 0.002387621672824025, 0.006621829699724913, 0.1086125373840332, -0.05593578517436981, -0.07419334352016449, 0.09043993800878525, 0.01954473741352558, 0.05131792649626732, 0.05670252814888954, 0.05067860707640648, 0.06836201250553131, -0.01071889791637659, 0.08671636134386063, 0.08531597256660461, 0.082842618227005, 0.03167068958282471, -0.07122685760259628, -0.06897610425949097, 0.027411213144659996, -0.010825050063431263, -0.006636044476181269, 0.15090312063694, 0.07393603026866913, 0.01071211975067854, -0.027772510424256325, 0.18287762999534607, -0.011997337453067303, -0.00451194541528821, -0.12424402683973312, 0.033640310168266296, -0.031006833538413048, -0.01527305506169796, -0.006901314482092857, -0.15681657195091248, 0.008539676666259766, 0.1391175240278244, 0.082602359354496, -0.038203150033950806, -0.006223027594387531, -0.00583595409989357, 0.008023783564567566, -0.011487710289657116, 0.040832508355379105, 0.017913255840539932, 0.21524538099765778, -0.06028929725289345, 0.0001378742017550394, -0.037846412509679794, -0.02878056839108467, -0.06465877592563629, 0.10780464112758636, -0.004208386410027742, 0.007435322739183903, -0.07521283626556396, 0.11360859870910645, -0.007096004672348499, -0.19632503390312195, 0.05614230036735535, -0.0916445404291153, -0.07744690775871277, 0.013548759743571281, -0.04351384565234184, -0.0012075697304680943, 0.02486441098153591, 0.007544747553765774, -0.06339360773563385, 0.07253585755825043, 0.032335065305233, -0.08582249283790588, 0.0002877999213524163, 0.002954298397526145, -0.07594699412584305, 0.27830448746681213, -0.03510541096329689, 0.03963737189769745, 0.08526573330163956, -0.029072096571326256, -0.13290703296661377, -0.014863318763673306, 0.08366944640874863, -0.0608389712870121, 0.015373138710856438, 0.1409224569797516, -0.00015314585471060127, 0.14114725589752197, 0.07218880951404572, -0.0880117267370224, 0.06319483369588852, -0.031108448281884193, 0.014008945785462856, -0.11246148496866226, 0.012374388985335827, -0.09335850924253464, 0.11192252486944199, 0.1395290642976761, 0.002586012938991189, -0.005097398534417152, -0.04692142456769943, 0.00808185338973999, 0.0029197060503065586, 0.10558301955461502, 0.0007446895469911397, -0.053100842982530594, 0.012014977633953094, -0.13854314386844635, 0.08238481730222702, -0.12755557894706726, -0.0489422008395195, 0.037459004670381546, -0.0080329068005085, -0.005457060411572456, 0.08419524133205414, 0.03541659191250801, 0.00010681882122298703, -0.05965850129723549, -0.1195301041007042, 0.03214764967560768, 0.15668374300003052, -0.030449992045760155, -0.022139694541692734 ]
5eeeb6796fa3cf668e7c1eda2ee19845c21d8d2c
# Dataset Card for mask-wearing-608pr ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/mask-wearing-608pr - **Point of Contact:** [email protected] ### Dataset Summary mask-wearing-608pr ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/mask-wearing-608pr ### Citation Information ``` @misc{ mask-wearing-608pr, title = { mask wearing 608pr Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/mask-wearing-608pr } }, url = { https://universe.roboflow.com/object-detection/mask-wearing-608pr }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/mask-wearing-608pr
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:28+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "mask-wearing-608pr", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "mask-wearing", "1": "mask", "2": "no-mask"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:42+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for mask-wearing-608pr The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary mask-wearing-608pr ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for mask-wearing-608pr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nmask-wearing-608pr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for mask-wearing-608pr\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nmask-wearing-608pr", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for mask-wearing-608pr\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nmask-wearing-608pr### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01928454078733921, 0.16236001253128052, -0.007422718685120344, 0.023187167942523956, 0.09711296111345291, -0.00002004828093049582, 0.07253753393888474, 0.08058347553014755, -0.002950974041596055, 0.17238332331180573, 0.005839857738465071, 0.05258268490433693, 0.1117955818772316, 0.09852737933397293, -0.014460895210504532, -0.16511954367160797, 0.06308155506849289, -0.07019820064306259, 0.06991248577833176, 0.07730676233768463, 0.07611241936683655, -0.13683927059173584, 0.0842161700129509, -0.03907181695103645, -0.018094023689627647, 0.03476574644446373, -0.0564824715256691, -0.04151582345366478, 0.0008886306313797832, 0.04700819030404091, 0.02293756604194641, 0.025879044085741043, 0.045385707169771194, -0.1954323947429657, 0.02240050584077835, 0.10671793669462204, 0.029478542506694794, 0.023192189633846283, 0.15539032220840454, -0.09484811127185822, 0.06690967828035355, -0.12458602339029312, 0.034871213138103485, 0.016795210540294647, -0.1157056987285614, -0.10753808915615082, -0.11579126864671707, 0.06876534223556519, 0.09541083127260208, 0.060447804629802704, -0.02311277762055397, 0.08740784227848053, -0.024628320708870888, 0.05857245996594429, 0.12566469609737396, -0.04464248567819595, -0.042606353759765625, 0.0768197551369667, 0.03909197822213173, 0.09785366803407669, -0.11542178690433502, -0.020368576049804688, 0.009831911884248257, -0.02128763124346733, 0.0014838785864412785, -0.04816924035549164, -0.04593442380428314, -0.005976572632789612, -0.1029583141207695, -0.1507815718650818, 0.14370399713516235, 0.05575514957308769, -0.05321596562862396, -0.1408451795578003, -0.003406970063224435, 0.06349918991327286, -0.03069422021508217, 0.00775138009339571, 0.044834814965724945, -0.009883425198495388, 0.05051473528146744, -0.0527208186686039, -0.09769649058580399, 0.044707316905260086, 0.031359005719423294, 0.038836769759655, -0.021322093904018402, 0.043262023478746414, 0.015781324356794357, 0.07138524949550629, 0.0033986284397542477, -0.11595933884382248, -0.02889854647219181, -0.04560666158795357, -0.04576719179749489, -0.041579630225896835, 0.05708317086100578, -0.13870869576931, 0.0646243542432785, 0.0738157331943512, -0.08065302670001984, 0.032999347895383835, -0.11567933857440948, 0.012260221876204014, 0.1142905056476593, 0.16895276308059692, -0.08328326046466827, -0.07779908180236816, -0.0034027602523565292, 0.048100877553224564, 0.03163469210267067, -0.02976939082145691, -0.022232061251997948, 0.007539331912994385, 0.017127351835370064, 0.04151681065559387, 0.11468975245952606, 0.04569822922348976, -0.07320435345172882, -0.0645277202129364, 0.13706691563129425, -0.10257187485694885, 0.045170657336711884, 0.05967504158616066, -0.054105743765830994, 0.0727035254240036, 0.012427909299731255, 0.00872501078993082, -0.11777840554714203, 0.09547173976898193, -0.024881860241293907, 0.017273634672164917, -0.0965220183134079, -0.09543856233358383, 0.058524683117866516, -0.07256801426410675, -0.07694976776838303, -0.07809336483478546, -0.042228177189826965, -0.08786767721176147, 0.039200328290462494, -0.03857584670186043, 0.026101158931851387, 0.01875651255249977, -0.04614602401852608, -0.011889634653925896, 0.009050651453435421, 0.05368782952427864, -0.061106424778699875, 0.034177590161561966, -0.08802194893360138, 0.03871617466211319, 0.11097026616334915, 0.04141397029161453, -0.10492619127035141, 0.0630042776465416, -0.20414568483829498, 0.1362847536802292, -0.054108962416648865, 0.022352414205670357, -0.12731005251407623, 0.003727692412212491, -0.018330927938222885, -0.034163180738687515, -0.002509468700736761, 0.1430172622203827, -0.08288919180631638, 0.010748082771897316, 0.0648421049118042, -0.06639288365840912, -0.0567404069006443, 0.036631662398576736, -0.0465347021818161, -0.026943761855363846, 0.08095958083868027, 0.13217124342918396, -0.03980507701635361, -0.12042349576950073, -0.11522704362869263, -0.0356571190059185, -0.04132647439837456, 0.15492770075798035, 0.08057823032140732, -0.04034094512462616, 0.10168296098709106, -0.0119060343131423, -0.017317285761237144, -0.0482044443488121, 0.01163578312844038, -0.035696495324373245, 0.011089712381362915, -0.0011963228462263942, -0.09498676657676697, 0.023986123502254486, -0.10437202453613281, -0.002083403989672661, -0.08946783095598221, -0.037858814001083374, 0.021092666313052177, -0.03346231207251549, 0.014977363869547844, -0.03399641811847687, 0.0944167822599411, -0.11912268400192261, -0.001699321554042399, -0.16439738869667053, -0.11311190575361252, 0.047930024564266205, -0.04838249459862709, 0.0379515178501606, -0.08798139542341232, -0.011368748731911182, 0.023866727948188782, 0.03027721308171749, -0.016111524775624275, 0.031245553866028786, -0.025184139609336853, -0.036874428391456604, -0.13604386150836945, -0.0555114820599556, -0.02842259220778942, 0.09123459458351135, -0.11768072843551636, -0.03204939886927605, 0.12585702538490295, 0.12454286962747574, 0.03594988211989403, -0.051096223294734955, 0.08346594125032425, -0.02311362512409687, -0.022712167352437973, -0.08836432546377182, -0.0069881342351436615, -0.009792188182473183, 0.04056534916162491, 0.0782061219215393, -0.15996284782886505, -0.1428515464067459, 0.09036877751350403, 0.02660040743649006, -0.08361029624938965, -0.04843801259994507, -0.04662078619003296, -0.01217277068644762, -0.10692788660526276, -0.02736237645149231, 0.03772735595703125, 0.06081697717308998, 0.07916974276304245, -0.07937698811292648, -0.02994651161134243, 0.018341708928346634, -0.013335838913917542, -0.08145637810230255, 0.08050842583179474, 0.0679154172539711, -0.11853282153606415, 0.10413026064634323, -0.017714954912662506, 0.04140695556998253, 0.09084321558475494, 0.02639271318912506, -0.12528632581233978, 0.024705268442630768, 0.0654662624001503, 0.023749109357595444, 0.09157098829746246, -0.016717035323381424, 0.022216934710741043, 0.08154095709323883, -0.020806584507226944, -0.01992611214518547, -0.08320720493793488, 0.07170811295509338, 0.03428497910499573, -0.03999408707022667, 0.0012390887131914496, -0.023314690217375755, 0.08252294361591339, 0.0988106057047844, 0.06118406355381012, 0.11074715107679367, -0.044414401054382324, -0.06442371010780334, -0.09549184143543243, 0.13276910781860352, -0.018556158989667892, -0.2603929936885834, -0.08122753351926804, -0.0534038320183754, -0.055445048958063126, -0.009585476480424404, 0.031203368678689003, -0.0012219044147059321, -0.0918266698718071, -0.10938555002212524, 0.0697132796049118, 0.0545407198369503, -0.10730444639921188, -0.1170271560549736, 0.04357064887881279, 0.013043281622231007, -0.0751548558473587, 0.0015047983033582568, 0.024679653346538544, -0.03586393967270851, 0.011816569603979588, 0.03874215483665466, 0.12642517685890198, 0.05410664901137352, -0.01677677035331726, 0.003207378089427948, -0.0037954659201204777, 0.17272189259529114, -0.15180297195911407, 0.09316711872816086, 0.16488677263259888, 0.011894488707184792, 0.0762338861823082, 0.19888617098331451, -0.017885174602270126, -0.020117830485105515, 0.029401805251836777, 0.07778602838516235, -0.06458213925361633, -0.19643673300743103, -0.061608269810676575, -0.04891464114189148, 0.01641727238893509, 0.14425401389598846, 0.03221021965146065, 0.00791078619658947, 0.08793076127767563, -0.12124280631542206, 0.013132346794009209, 0.014174685813486576, 0.10258012264966965, 0.04493609443306923, 0.04528609290719032, 0.04942534118890762, -0.05269160494208336, -0.035787295550107956, 0.0977335050702095, 0.08749780803918839, 0.12598909437656403, -0.10245906561613083, 0.08922746777534485, 0.03410889580845833, 0.02972283400595188, -0.02743901126086712, -0.0009013862581923604, -0.025037791579961777, 0.05274611711502075, -0.005464036017656326, -0.10713288933038712, 0.0017257813597097993, 0.08705998212099075, 0.13543947041034698, -0.012148807756602764, -0.0066435676999390125, -0.03926222771406174, 0.06305128335952759, 0.25379449129104614, 0.013614723458886147, -0.2170499712228775, 0.013008580543100834, 0.03694739192724228, 0.01841673068702221, -0.1181541234254837, -0.04067355394363403, 0.08781655132770538, -0.16758781671524048, 0.07083622366189957, -0.029916636645793915, 0.11553766578435898, -0.1294952929019928, -0.036515239626169205, 0.04945774003863335, 0.04831615090370178, -0.029357390478253365, 0.08427833765745163, -0.10919179767370224, 0.08437231183052063, 0.03218058869242668, 0.03234187513589859, -0.08575695753097534, 0.03634272515773773, 0.017021089792251587, -0.008702327497303486, 0.1481543928384781, -0.017083385959267616, -0.007040323223918676, -0.12308573722839355, -0.1133512407541275, -0.009058792144060135, 0.05557005852460861, -0.06598690152168274, 0.09984613209962845, 0.014610826037824154, -0.029921583831310272, -0.07516150176525116, -0.039780162274837494, -0.07246433943510056, -0.18658500909805298, 0.03340228646993637, -0.013003310188651085, 0.014536552131175995, -0.01631999760866165, 0.016765160486102104, 0.03259706497192383, 0.12750020623207092, -0.033709555864334106, -0.09474357217550278, -0.1434101015329361, 0.06025725230574608, 0.10071727633476257, -0.01980740576982498, -0.02251579426229, -0.09530344605445862, 0.18109849095344543, -0.025366341695189476, -0.07896538078784943, 0.022357376292347908, -0.07083451002836227, -0.1167839840054512, -0.05844937637448311, 0.10666055977344513, 0.025760255753993988, 0.00003692901736940257, -0.0014037780929356813, 0.06187282130122185, 0.004495528060942888, -0.04600038751959801, 0.02352776750922203, 0.10563188046216965, 0.1496676355600357, 0.13785549998283386, 0.008232604712247849, -0.14624178409576416, -0.12191187590360641, -0.004446891602128744, 0.019163427874445915, 0.0991685688495636, -0.06787577271461487, 0.11455201357603073, 0.029531676322221756, -0.07448545098304749, -0.2320164293050766, 0.08097798377275467, 0.07243861258029938, -0.001370346755720675, -0.003982578869909048, -0.1416560560464859, 0.14592036604881287, 0.031220609322190285, 0.0023583597503602505, 0.07336161285638809, -0.2694909870624542, -0.0731794685125351, -0.01765747368335724, 0.0253653172403574, -0.2401701807975769, -0.16501453518867493, -0.05383586138486862, -0.06466089189052582, -0.14110495150089264, 0.05458329617977142, -0.0025038663297891617, 0.049742747098207474, 0.03695053607225418, 0.03588377684354782, 0.06342384219169617, -0.048794087022542953, 0.10832305997610092, 0.01282358355820179, 0.04074552655220032, -0.07968533784151077, -0.07963371276855469, 0.018943514674901962, -0.09593507647514343, 0.14343391358852386, 0.03159232437610626, 0.029844362288713455, -0.05150783061981201, -0.020975667983293533, -0.03282076492905617, 0.09185916185379028, -0.02298411913216114, -0.03377470746636391, -0.09895305335521698, 0.03600500896573067, 0.12663739919662476, 0.028455831110477448, 0.09207367151975632, -0.04952869564294815, -0.013813300989568233, 0.1478002518415451, 0.10754548758268356, 0.003342730225995183, -0.15448956191539764, -0.044257596135139465, 0.0010100682266056538, 0.048922374844551086, -0.13349036872386932, 0.03508588671684265, 0.08341054618358612, 0.025774287059903145, 0.10222750157117844, -0.010204057209193707, -0.0963483676314354, 0.006633416749536991, 0.046871379017829895, -0.09789088368415833, -0.10888764262199402, 0.026386506855487823, 0.10466178506612778, -0.11700225621461868, -0.12251777946949005, 0.11044324189424515, -0.0028257188387215137, -0.013062795624136925, -0.0011839087819680572, 0.07327698171138763, 0.053184736520051956, 0.06296434253454208, 0.021729018539190292, 0.04013654962182045, -0.0742916390299797, 0.11387502402067184, 0.1414816677570343, -0.14707429707050323, 0.006637900602072477, 0.11093676835298538, -0.052594177424907684, -0.02158655785024166, -0.01219077780842781, 0.03197716549038887, -0.014033222571015358, -0.03634503111243248, 0.03346056863665581, -0.050373125821352005, 0.04378504678606987, 0.08606116473674774, 0.005904586054384708, 0.046765949577093124, 0.030119284987449646, -0.01990419253706932, -0.13864350318908691, 0.1251366287469864, 0.02368566393852234, 0.05045558884739876, -0.08379665017127991, 0.009783083572983742, 0.042017862200737, 0.004618262872099876, 0.008344530127942562, -0.054129283875226974, -0.08112382143735886, 0.004304755944758654, -0.03857297822833061, 0.10863857716321945, -0.0863146185874939, -0.0062631708569824696, -0.021379336714744568, 0.005185628309845924, -0.01646745204925537, 0.04001890495419502, -0.0450311079621315, -0.08350485563278198, -0.05027394741773605, 0.12591099739074707, -0.1525728553533554, -0.020444858819246292, 0.05628839135169983, -0.08994985371828079, 0.05598343536257744, 0.016876639798283577, -0.04194875806570053, -0.0990656167268753, -0.18630899488925934, -0.04610740393400192, 0.026073403656482697, 0.07018085569143295, 0.031242232769727707, -0.08020421862602234, 0.055761054158210754, 0.0006343080895021558, -0.09680044651031494, -0.012345770373940468, -0.012092916294932365, -0.11816529184579849, 0.04800883308053017, -0.08142999559640884, -0.03522578999400139, -0.03547399863600731, 0.13906420767307281, 0.058782804757356644, 0.0033200220204889774, 0.09036842733621597, -0.05286663398146629, 0.09892736375331879, -0.13885442912578583, -0.0366002693772316, -0.009418502449989319, -0.029203763231635094, -0.08655679225921631, 0.005838180426508188, 0.07784952223300934, -0.032400425523519516, 0.13039998710155487, 0.1315169781446457, 0.045413851737976074, 0.046863436698913574, 0.009291302412748337, 0.08491634577512741, 0.06336060166358948, -0.005887268111109734, -0.00995556078851223, -0.019319111481308937, 0.08095154911279678, 0.013704000040888786, 0.02343829534947872, 0.09200722724199295, 0.06115967780351639, 0.25196564197540283, 0.12985727190971375, 0.018550384789705276, 0.046303775161504745, -0.07993710041046143, -0.04528260976076126, 0.09758487343788147, -0.038729891180992126, 0.07998025417327881, -0.09356779605150223, 0.0435875803232193, 0.09304433315992355, -0.14202870428562164, 0.06790713965892792, -0.010918786749243736, -0.007190275471657515, -0.033585768193006516, -0.1034415066242218, -0.06216834858059883, -0.023274695500731468, 0.005791556555777788, -0.11283142119646072, 0.08716662973165512, 0.1513698697090149, 0.0017129771877080202, 0.01485425140708685, 0.1039360910654068, -0.06205349788069725, -0.08926653861999512, 0.07718182355165482, 0.015074050053954124, 0.05310693010687828, 0.04929688200354576, 0.04124174267053604, 0.09675835818052292, -0.00908725243061781, 0.08129815757274628, 0.0926213189959526, 0.09996433556079865, 0.03271491825580597, -0.07361872494220734, -0.07630077004432678, 0.030982347205281258, -0.011307474225759506, -0.009369962848722935, 0.16456739604473114, 0.0774061381816864, 0.017466064542531967, -0.02170771174132824, 0.1744374930858612, -0.01648709736764431, -0.02952413260936737, -0.1382233202457428, 0.0556974820792675, -0.045209527015686035, -0.013697940856218338, -0.016901325434446335, -0.15207909047603607, 0.003871120745316148, 0.13397938013076782, 0.08301226049661636, -0.04887628182768822, -0.012745360843837261, -0.020064696669578552, 0.005920492112636566, -0.018399057909846306, 0.041519951075315475, 0.012776429764926434, 0.19401691854000092, -0.057283174246549606, 0.01326164323836565, -0.04476969689130783, -0.03303403779864311, -0.0638478696346283, 0.08569761365652084, -0.010925482027232647, -0.009997832588851452, -0.07713409513235092, 0.11693860590457916, -0.011147393845021725, -0.18644779920578003, 0.06469237804412842, -0.09407883882522583, -0.08403664827346802, 0.010238900780677795, -0.02578887902200222, 0.02349681966006756, 0.030565498396754265, 0.004403621423989534, -0.061671189963817596, 0.07092064619064331, 0.025614561513066292, -0.08195055276155472, -0.023259442299604416, -0.0038151664193719625, -0.10309328138828278, 0.2627406716346741, -0.03173905611038208, 0.050375986844301224, 0.0833790972828865, -0.0187103021889925, -0.13143837451934814, -0.025175586342811584, 0.084418386220932, -0.050311379134655, 0.029698537662625313, 0.12024275958538055, -0.011489295400679111, 0.15287484228610992, 0.08407415449619293, -0.07450877875089645, 0.0507625937461853, -0.019071362912654877, 0.01943722367286682, -0.1188473030924797, 0.00965939275920391, -0.0992060974240303, 0.11259323358535767, 0.14693941175937653, -0.005699053406715393, -0.01785818301141262, -0.04090140387415886, 0.012565591372549534, 0.006194166839122772, 0.07929639518260956, 0.008656921796500683, -0.06074736639857292, 0.010554520413279533, -0.147104412317276, 0.08425220847129822, -0.1567017138004303, -0.04939282685518265, 0.0369613952934742, -0.01853981241583824, -0.0029188652988523245, 0.07315586507320404, 0.029764680191874504, 0.009841986000537872, -0.06286697834730148, -0.10628241300582886, 0.04281586408615112, 0.16223102807998657, -0.01265659835189581, -0.025897372514009476 ]
abc5420a7d6b12fa426f5a2b6fb114f92f01cbda
# Dataset Card for coral-lwptl ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/coral-lwptl - **Point of Contact:** [email protected] ### Dataset Summary coral-lwptl ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/coral-lwptl ### Citation Information ``` @misc{ coral-lwptl, title = { coral lwptl Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/coral-lwptl } }, url = { https://universe.roboflow.com/object-detection/coral-lwptl }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/coral-lwptl
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:30+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "coral-lwptl", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "coral", "1": "Arborescent", "2": "Caespitose-a", "3": "Caespitose-b", "4": "Columnar", "5": "Corymbose", "6": "Digitate", "7": "Encrusting", "8": "Foliose", "9": "Massive-Faviidae", "10": "Massive-Merulinidae", "11": "Massive-Mussidae", "12": "Massive-Poritidae", "13": "Solitary", "14": "Tabular"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:51+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for coral-lwptl The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary coral-lwptl ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for coral-lwptl\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncoral-lwptl", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for coral-lwptl\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncoral-lwptl", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for coral-lwptl\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncoral-lwptl### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.015378953889012337, 0.18595778942108154, -0.00843078549951315, 0.024391673505306244, 0.0927632749080658, 0.0046440488658845425, 0.05352974683046341, 0.08346967399120331, 0.011173795908689499, 0.1788221150636673, -0.009473053738474846, 0.09189201891422272, 0.12857718765735626, 0.07482925802469254, -0.02799704112112522, -0.14439991116523743, 0.05571930482983589, -0.04586208611726761, 0.02794370986521244, 0.0820070132613182, 0.06582804024219513, -0.13258707523345947, 0.09081659466028214, -0.04363473132252693, -0.0110402787104249, 0.009362884797155857, -0.07527907192707062, -0.05410458892583847, 0.008135107345879078, 0.048935022205114365, 0.0415831059217453, 0.027823522686958313, 0.03321954607963562, -0.20490065217018127, 0.019134730100631714, 0.11222483217716217, 0.04499565437436104, 0.023508301004767418, 0.16538415849208832, -0.06515982747077942, 0.048621583729982376, -0.1408831626176834, 0.05560418218374252, 0.010998413898050785, -0.11340895295143127, -0.11182871460914612, -0.1282777488231659, 0.019359689205884933, 0.11116105318069458, 0.053695764392614365, -0.011714574880897999, 0.11330686509609222, -0.02031068503856659, 0.06701072305440903, 0.10873769223690033, -0.07868242263793945, -0.039734598249197006, 0.07811258733272552, 0.03386547416448593, 0.09801323711872101, -0.0985812395811081, -0.013061396777629852, -0.009992399252951145, -0.011725809425115585, 0.0073737832717597485, -0.05791259929537773, -0.048363231122493744, -0.014525216072797775, -0.09876648336648941, -0.12750668823719025, 0.13327854871749878, 0.06251814216375351, -0.05049499124288559, -0.13888996839523315, -0.0029126291628926992, 0.0683288723230362, -0.038856394588947296, 0.016220491379499435, 0.05503334850072861, -0.00838480144739151, 0.056823477149009705, -0.06937190890312195, -0.10644122958183289, 0.046796951442956924, 0.02660914696753025, 0.0408284068107605, -0.017211362719535828, 0.04329831898212433, -0.007966957055032253, 0.05648021399974823, 0.060230474919080734, -0.1073320284485817, -0.03291187062859535, -0.03676497936248779, -0.04952565208077431, -0.037225984036922455, 0.07289164513349533, -0.1342170387506485, 0.07077229022979736, 0.01939939707517624, -0.06812536716461182, 0.048331454396247864, -0.13859224319458008, 0.02054673060774803, 0.1050650104880333, 0.18087737262248993, -0.09454946964979172, -0.07920845597982407, 0.01727885939180851, 0.03328157216310501, 0.027070719748735428, -0.042866237461566925, -0.015516643412411213, 0.008310068398714066, 0.04342593997716904, 0.04194837808609009, 0.13890354335308075, 0.044346313923597336, -0.054914623498916626, -0.08109045028686523, 0.12303167581558228, -0.08900589495897293, 0.049538131803274155, 0.08218872547149658, -0.07037956267595291, 0.08268024772405624, 0.011201874352991581, 0.004514023195952177, -0.11083879321813583, 0.08727429062128067, -0.027495305985212326, 0.022489449009299278, -0.07902371883392334, -0.10223319381475449, 0.05997088551521301, -0.062446050345897675, -0.08643366396427155, -0.08013226091861725, -0.027601473033428192, -0.08726099133491516, 0.027640821412205696, -0.04928939417004585, 0.015360808931291103, 0.02803727053105831, -0.03339337185025215, -0.0242623258382082, 0.008949766866862774, 0.05334772542119026, -0.04893708974123001, 0.04485049471259117, -0.06706666946411133, 0.023503806442022324, 0.11063994467258453, 0.03309589624404907, -0.08544562757015228, 0.05709534138441086, -0.1711980104446411, 0.13915511965751648, -0.051855023950338364, 0.03644782677292824, -0.14961019158363342, -0.0022249261382967234, -0.03308510035276413, -0.039313532412052155, 0.009709418751299381, 0.16370879113674164, -0.09449975192546844, 0.02644283138215542, 0.05566171929240227, -0.03631947934627533, -0.060541097074747086, 0.03636031225323677, -0.04238857701420784, -0.0175639558583498, 0.07314711809158325, 0.11375384032726288, -0.0855882316827774, -0.0915650799870491, -0.10276734828948975, -0.04527103155851364, -0.025642216205596924, 0.1477491706609726, 0.07245323807001114, -0.04002389311790466, 0.1069439947605133, -0.006656520534306765, -0.030135396867990494, -0.028382128104567528, 0.01143596787005663, -0.026648249477148056, 0.027248434722423553, -0.010065368376672268, -0.10567833483219147, 0.010829425416886806, -0.08959803730249405, 0.015755701810121536, -0.0885285809636116, -0.06002851948142052, 0.01118371170014143, -0.045228831470012665, 0.028207771480083466, -0.05677201971411705, 0.1269114464521408, -0.12249884754419327, -0.0035362783819437027, -0.1596624255180359, -0.1352711319923401, 0.07133157551288605, -0.042090095579624176, 0.051115211099386215, -0.11746582388877869, -0.011261031962931156, 0.019649917259812355, 0.05057158321142197, -0.0007693127263337374, 0.05590430274605751, -0.025022312998771667, -0.03445190563797951, -0.12942065298557281, -0.03813505545258522, -0.007868402637541294, 0.15614959597587585, -0.14918960630893707, -0.017224473878741264, 0.1868078112602234, 0.11708981543779373, 0.02333708480000496, -0.05468664690852165, 0.10146667063236237, -0.030001576989889145, -0.012979796156287193, -0.10492813587188721, -0.001218066900037229, 0.013970964588224888, 0.01551229227334261, 0.06767381727695465, -0.18462777137756348, -0.1480436623096466, 0.09675434976816177, 0.0022528241388499737, -0.07992446422576904, -0.041049689054489136, -0.03497457876801491, -0.012997637502849102, -0.08514174073934555, 0.010664227418601513, 0.0343528613448143, 0.09492424875497818, 0.09127095341682434, -0.07626788318157196, -0.03704553842544556, 0.03347811475396156, -0.018878662958741188, -0.07271677255630493, 0.05973834916949272, 0.06071072816848755, -0.1541336178779602, 0.09483398497104645, -0.06289109587669373, 0.03659990057349205, 0.05328837409615517, 0.04587647691369057, -0.1064479649066925, 0.016944104805588722, 0.0833636224269867, 0.03296443819999695, 0.10764303803443909, -0.03296635299921036, 0.01517945434898138, 0.07715193927288055, -0.03256705403327942, -0.004012896679341793, -0.09162242710590363, 0.08121832460165024, 0.04690903052687645, -0.02751906029880047, 0.021015159785747528, -0.019655384123325348, 0.08220512419939041, 0.08740609884262085, 0.055997587740421295, 0.11123966425657272, -0.05766353756189346, -0.06177868694067001, -0.08725631237030029, 0.14659476280212402, -0.006516257766634226, -0.27967384457588196, -0.06569832563400269, -0.08672714233398438, -0.04018621891736984, -0.02808726392686367, 0.026899168267846107, -0.001724226400256157, -0.06554040312767029, -0.09539607167243958, 0.03894580528140068, 0.05376012623310089, -0.09837663918733597, -0.1276800036430359, 0.03635725378990173, -0.003079354530200362, -0.08641248196363449, 0.00570308044552803, 0.009447497315704823, -0.05712799355387688, 0.015271800570189953, 0.03102441504597664, 0.12748685479164124, 0.07804708927869797, -0.021377330645918846, 0.018555520102381706, -0.0031759245321154594, 0.1895885169506073, -0.15606249868869781, 0.09418611973524094, 0.1513143628835678, 0.0184928011149168, 0.07056107372045517, 0.1732455939054489, -0.00983616802841425, -0.030314922332763672, 0.014708204194903374, 0.083609938621521, -0.05803409591317177, -0.22013947367668152, -0.04980462044477463, -0.04727012291550636, 0.019936423748731613, 0.1196114793419838, 0.03775070980191231, 0.026693573221564293, 0.09002866595983505, -0.0910906046628952, 0.03289768472313881, 0.031199926510453224, 0.11606168746948242, 0.05844861641526222, 0.061282865703105927, 0.053005337715148926, -0.0462188646197319, -0.03331189975142479, 0.08700308948755264, 0.10430577397346497, 0.10867469757795334, -0.11012335121631622, 0.10028798878192902, 0.013337478041648865, 0.03959149867296219, -0.03786027804017067, -0.00405579898506403, -0.05402318015694618, 0.06923355907201767, -0.00994467455893755, -0.09420987218618393, -0.013210286386311054, 0.056497298181056976, 0.14930538833141327, -0.041097283363342285, 0.004609310999512672, -0.03823775053024292, 0.06189439818263054, 0.2162449210882187, -0.006298813968896866, -0.1936958283185959, 0.020677372813224792, 0.03917665034532547, 0.0474245548248291, -0.1339404433965683, -0.05339154601097107, 0.06202903389930725, -0.1753091812133789, 0.0574343204498291, -0.05147448182106018, 0.11660462617874146, -0.16364459693431854, -0.04548545926809311, 0.06425518542528152, 0.026998013257980347, -0.022171281278133392, 0.07870373874902725, -0.09043435007333755, 0.09212995320558548, 0.03848664462566376, 0.027896707877516747, -0.07578307390213013, 0.03939129039645195, -0.005370443686842918, 0.0018976146820932627, 0.15220417082309723, -0.01447714027017355, 0.014876795001327991, -0.14147858321666718, -0.12266279011964798, -0.0015212114667519927, 0.04406002536416054, -0.050546132028102875, 0.11772681027650833, 0.029433630406856537, -0.030131056904792786, -0.0776546522974968, -0.03648577257990837, -0.05323389917612076, -0.1994250863790512, 0.048271335661411285, -0.03115665912628174, -0.02250588871538639, -0.011050551198422909, 0.026555081829428673, 0.03690507262945175, 0.12297197431325912, -0.05697087198495865, -0.08584379404783249, -0.13716712594032288, 0.05034398287534714, 0.10378247499465942, -0.024585360661149025, -0.03150317817926407, -0.10590199381113052, 0.17524854838848114, -0.011481772176921368, -0.0470917783677578, 0.030831143260002136, -0.050883594900369644, -0.09682231396436691, -0.059882063418626785, 0.09601221978664398, 0.005182247143238783, -0.0012847034959122539, 0.011979917995631695, 0.04567255824804306, 0.001810758956708014, -0.0471864677965641, 0.020302440971136093, 0.08284176886081696, 0.12641695141792297, 0.1149241179227829, 0.010232490487396717, -0.11213204264640808, -0.15373964607715607, -0.003741827327758074, 0.04456305503845215, 0.1094449907541275, -0.062068063765764236, 0.08962476253509521, 0.029650883749127388, -0.08969011157751083, -0.1805654764175415, 0.08347314596176147, 0.053905244916677475, -0.016519108787178993, -0.019256524741649628, -0.16130046546459198, 0.11734693497419357, 0.01857404224574566, -0.003699271008372307, 0.04853827506303787, -0.2533078193664551, -0.06498188525438309, -0.009590014815330505, 0.0397547110915184, -0.23286819458007812, -0.19788366556167603, -0.061986565589904785, -0.06037074327468872, -0.17484505474567413, 0.09698141366243362, -0.01735398732125759, 0.04825263470411301, 0.046414103358983994, 0.05280713364481926, 0.07056479156017303, -0.04744220897555351, 0.11204744130373001, -0.012103275395929813, 0.019008396193385124, -0.055217962712049484, -0.10991799831390381, 0.023341510444879532, -0.08457817137241364, 0.13026215136051178, 0.06470567733049393, 0.013173658400774002, -0.06504594534635544, -0.019321061670780182, -0.039662204682826996, 0.08466016501188278, -0.030949758365750313, -0.03105776198208332, -0.07255648821592331, 0.04963669180870056, 0.144658163189888, 0.029977217316627502, 0.08484791964292526, -0.04235769808292389, -0.024113386869430542, 0.14059656858444214, 0.11068031936883926, 0.03000781685113907, -0.1542615443468094, -0.04243947193026543, 0.010099535807967186, 0.019637564197182655, -0.1120494157075882, 0.029758749529719353, 0.0705622062087059, 0.023832902312278748, 0.07940613478422165, 0.0006263109971769154, -0.11480656266212463, 0.003655955195426941, 0.03342834860086441, -0.0806867852807045, -0.11609303951263428, 0.0373256653547287, 0.1440686136484146, -0.09559736400842667, -0.12456588447093964, 0.10436271131038666, 0.012467910535633564, -0.033752866089344025, 0.002520980080589652, 0.06361915171146393, 0.06543625146150589, 0.06215539947152138, 0.036302391439676285, 0.03668604791164398, -0.07416309416294098, 0.10184741020202637, 0.1623382270336151, -0.11743589490652084, -0.005332793574780226, 0.13508903980255127, -0.047075968235731125, -0.015519310720264912, -0.02041919156908989, 0.0336037240922451, 0.0024535958655178547, -0.025383181869983673, 0.014551850967109203, -0.040003083646297455, 0.013400940224528313, 0.10043717920780182, 0.009625943377614021, 0.06423232704401016, 0.02107933722436428, -0.026465116068720818, -0.1502082496881485, 0.10834290832281113, 0.026088131591677666, 0.043610166758298874, -0.09800544381141663, 0.02965926192700863, 0.03649137169122696, -0.0028402768075466156, 0.016861742362380028, -0.06417743116617203, -0.07660254836082458, -0.00209605204872787, 0.010147002525627613, 0.11970304697751999, -0.07047045975923538, -0.002569821896031499, -0.02553296647965908, 0.007804090157151222, -0.020245390012860298, 0.02516133151948452, -0.039843812584877014, -0.0777239054441452, -0.056769613176584244, 0.11882265657186508, -0.14603260159492493, -0.035396043211221695, 0.05711504817008972, -0.10802558064460754, 0.048553191125392914, 0.00990980677306652, -0.03815463185310364, -0.09154652804136276, -0.18461954593658447, -0.05004100129008293, 0.015217416919767857, 0.06891840696334839, 0.0344761423766613, -0.10442879050970078, 0.05202614888548851, -0.012139658443629742, -0.07520899921655655, -0.021956201642751694, 0.026667412370443344, -0.11135558038949966, 0.010332578793168068, -0.09722479432821274, -0.03371476009488106, -0.012942708097398281, 0.14507922530174255, 0.048039209097623825, 0.0329110212624073, 0.07033434510231018, -0.03310474008321762, 0.10221889615058899, -0.14433786273002625, -0.03741546720266342, -0.004010932520031929, -0.03565511107444763, -0.06806117296218872, 0.009546356275677681, 0.09358139336109161, -0.016534755006432533, 0.11968455463647842, 0.14094606041908264, 0.053180351853370667, 0.03812197223305702, -0.004018140956759453, 0.07415228337049484, 0.055201206356287, -0.02177305705845356, -0.01677796244621277, -0.007851617410779, 0.11100807040929794, -0.0010927561670541763, 0.007965990342199802, 0.12770991027355194, 0.06236706301569939, 0.23409107327461243, 0.14496080577373505, 0.022968200966715813, 0.057654719799757004, -0.07879335433244705, -0.013503394089639187, 0.10768179595470428, -0.04232403635978699, 0.070673868060112, -0.1019207015633583, 0.08211787790060043, 0.07171627879142761, -0.145077183842659, 0.06553597748279572, -0.021106306463479996, -0.027975229546427727, -0.05770951509475708, -0.07327178120613098, -0.06020481139421463, 0.004394499119371176, 0.006427390966564417, -0.10625139623880386, 0.0768933892250061, 0.11026334017515182, -0.004581728484481573, 0.019359849393367767, 0.08422990888357162, -0.038768962025642395, -0.07504044473171234, 0.07352198660373688, 0.028992870822548866, 0.044427625834941864, 0.03919490799307823, 0.05681412294507027, 0.061241514980793, 0.0026711442042142153, 0.09680590033531189, 0.09096794575452805, 0.08648093044757843, 0.06224716082215309, -0.06191679462790489, -0.08375280350446701, 0.027878262102603912, -0.02575533837080002, -0.005559262353926897, 0.16665767133235931, 0.06739416718482971, 0.015159262344241142, -0.030069909989833832, 0.1880040168762207, -0.009006424807012081, -0.02070271410048008, -0.12791338562965393, 0.0204708743840456, -0.04538719356060028, -0.016111385077238083, -0.0170698594301939, -0.14749553799629211, 0.02318653091788292, 0.1540946513414383, 0.052970461547374725, -0.06212617829442024, -0.022052856162190437, 0.018324866890907288, 0.0047910562716424465, -0.03342120721936226, 0.03679368644952774, 0.02164873108267784, 0.20073378086090088, -0.06603384763002396, 0.005332715343683958, -0.035397905856370926, -0.03456887975335121, -0.07730216532945633, 0.09123853594064713, -0.0030166262295097113, 0.016235560178756714, -0.07899625599384308, 0.11898648738861084, -0.02072650007903576, -0.19791941344738007, 0.04961486905813217, -0.11932096630334854, -0.09763646870851517, -0.00006938728620298207, -0.034910231828689575, -0.005013338290154934, 0.05058247596025467, -0.004547738935798407, -0.06681869924068451, 0.0698528066277504, 0.03872518241405487, -0.07579164952039719, -0.007034333422780037, 0.0030233794823288918, -0.09152614325284958, 0.2857178747653961, -0.026374556124210358, 0.057264141738414764, 0.09246799349784851, -0.03127801790833473, -0.13772374391555786, -0.04314149171113968, 0.07817734777927399, -0.02588229812681675, 0.029130687937140465, 0.12220900505781174, -0.015353728085756302, 0.12340334057807922, 0.08174842596054077, -0.07535756379365921, 0.0706733763217926, -0.03646755963563919, 0.01726808026432991, -0.10901138186454773, -0.011313346214592457, -0.10216467827558517, 0.08763806521892548, 0.13271452486515045, -0.018129926174879074, -0.009926297701895237, -0.04116300120949745, -0.016405636444687843, 0.013536873273551464, 0.10400167107582092, -0.007253096904605627, -0.06405460834503174, -0.0010455675655975938, -0.16770124435424805, 0.09244157373905182, -0.1415466070175171, -0.050354085862636566, 0.04972699657082558, -0.028013169765472412, -0.02373962476849556, 0.07065130025148392, 0.02672923170030117, 0.002475472865626216, -0.06916079670190811, -0.07779888063669205, 0.028412165120244026, 0.1624002605676651, -0.020190389826893806, -0.03328392654657364 ]
7635d0594066f3b6372197a986f256c25373498e
# Dataset Card for sedimentary-features-9eosf ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/sedimentary-features-9eosf - **Point of Contact:** [email protected] ### Dataset Summary sedimentary-features-9eosf ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/sedimentary-features-9eosf ### Citation Information ``` @misc{ sedimentary-features-9eosf, title = { sedimentary features 9eosf Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/sedimentary-features-9eosf } }, url = { https://universe.roboflow.com/object-detection/sedimentary-features-9eosf }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/sedimentary-features-9eosf
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:43+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "sedimentary-features-9eosf", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "sediment", "1": "Cross bedding", "2": "Low angle", "3": "Massive", "4": "Parallel lamination", "5": "mud drape"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:58+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for sedimentary-features-9eosf The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary sedimentary-features-9eosf ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for sedimentary-features-9eosf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsedimentary-features-9eosf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for sedimentary-features-9eosf\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsedimentary-features-9eosf", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 27, 22, 15, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for sedimentary-features-9eosf\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nsedimentary-features-9eosf### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.012061888352036476, 0.17116840183734894, -0.007553610950708389, 0.015798285603523254, 0.09286624938249588, -0.003053823485970497, 0.04233919084072113, 0.07807540148496628, 0.000699212949257344, 0.16356155276298523, -0.0137485945597291, 0.0642595961689949, 0.13632936775684357, 0.08162040263414383, -0.015309554524719715, -0.15190720558166504, 0.05963839963078499, -0.06319417804479599, 0.11140691488981247, 0.059116870164871216, 0.07605346292257309, -0.14523008465766907, 0.08410511910915375, -0.03793858364224434, -0.02699754759669304, 0.03802641108632088, -0.06840136647224426, -0.024402489885687828, 0.012303829193115234, 0.020069343969225883, 0.02646714821457863, 0.03871505334973335, 0.058997444808483124, -0.18399950861930847, 0.022633083164691925, 0.0820387452840805, 0.023536190390586853, 0.02353987842798233, 0.15009823441505432, -0.06455813348293304, 0.007893974892795086, -0.14148379862308502, 0.022152042016386986, 0.00023376441095024347, -0.10556457191705704, -0.08191248774528503, -0.12904180586338043, 0.06417292356491089, 0.10624980926513672, 0.04748387262225151, -0.01677960529923439, 0.05656130984425545, -0.03823011368513107, 0.0367807112634182, 0.1268477439880371, -0.07381924986839294, -0.03566589951515198, 0.10109057277441025, 0.04735003411769867, 0.09187684208154678, -0.11232434958219528, -0.014784435741603374, 0.0043352507054805756, -0.009939410723745823, -0.001220781123265624, -0.03562120348215103, -0.007633056025952101, -0.010038661770522594, -0.0994863212108612, -0.12450377643108368, 0.13596221804618835, 0.061632297933101654, -0.05595846474170685, -0.14592133462429047, -0.00904417596757412, 0.05697542801499367, -0.0328313410282135, -0.0043344381265342236, 0.05807005986571312, -0.003832288784906268, 0.08717810362577438, -0.06681329756975174, -0.11838787794113159, 0.06037716567516327, 0.001599558861926198, 0.03875163570046425, -0.019314143806695938, 0.04051598161458969, 0.028025716543197632, 0.08719474822282791, 0.0297942403703928, -0.11330581456422806, -0.03262794017791748, -0.03627856448292732, -0.04270796850323677, -0.06398114562034607, 0.05916757881641388, -0.09632978588342667, 0.06099246069788933, 0.0729256421327591, -0.05106525495648384, 0.013447802513837814, -0.10592102259397507, 0.013323264196515083, 0.1343136727809906, 0.18530800938606262, -0.09082502126693726, -0.07379588484764099, 0.014548029750585556, 0.04660331830382347, 0.022486792877316475, -0.01894894614815712, -0.03508375585079193, -0.00965423695743084, 0.04124428704380989, 0.042563509196043015, 0.11702107638120651, 0.020553065463900566, -0.0654720664024353, -0.06469451636075974, 0.15971872210502625, -0.09706201404333115, 0.05358932912349701, 0.049090150743722916, -0.06352996826171875, 0.09515440464019775, 0.013385745696723461, 0.027040492743253708, -0.108875572681427, 0.07192663103342056, -0.018813004717230797, 0.01466015912592411, -0.0821273997426033, -0.08411449193954468, 0.06167010962963104, -0.09566745162010193, -0.07773815095424652, -0.09515605866909027, -0.059223633259534836, -0.08675213903188705, 0.03829612210392952, -0.04764757677912712, 0.0016212672926485538, 0.029126303270459175, -0.03733218088746071, -0.017185738310217857, 0.0005207028589211404, 0.030878495424985886, -0.05699694901704788, 0.015892788767814636, -0.1049160584807396, 0.03879014030098915, 0.1002051904797554, 0.04501991719007492, -0.07942339032888412, 0.06045505031943321, -0.18515439331531525, 0.12587811052799225, -0.02365787699818611, 0.032307062298059464, -0.12549149990081787, 0.010134199634194374, -0.03407685086131096, -0.0349193699657917, -0.01076016016304493, 0.14808057248592377, -0.10134967416524887, 0.030857626348733902, 0.040864743292331696, -0.049375019967556, -0.045218147337436676, 0.03787212818861008, -0.037812717258930206, 0.0005314354784786701, 0.08507989346981049, 0.09775537252426147, -0.04261041805148125, -0.12902694940567017, -0.11319378763437271, -0.028009166941046715, -0.0469544380903244, 0.1419462263584137, 0.0713362768292427, -0.030399775132536888, 0.10568307340145111, -0.0112132104113698, 0.00017789934645406902, -0.047464385628700256, 0.010769964195787907, -0.03895416483283043, 0.006094056181609631, -0.005543055944144726, -0.096219003200531, 0.012785866856575012, -0.08518026769161224, 0.028590163215994835, -0.0676015317440033, -0.024444594979286194, 0.010702758096158504, -0.01997426338493824, 0.015735678374767303, -0.03023812361061573, 0.07897444069385529, -0.1254294067621231, -0.0026674012187868357, -0.15261246263980865, -0.10815099626779556, 0.07966388761997223, -0.03935129940509796, 0.03176818788051605, -0.05569698289036751, -0.009768473915755749, 0.008815468288958073, 0.03758293762803078, -0.017361514270305634, 0.05460358411073685, -0.022021325305104256, -0.03064453788101673, -0.11999005079269409, -0.05224577337503433, -0.0202419925481081, 0.09645140916109085, -0.13254393637180328, -0.03695371747016907, 0.12111924588680267, 0.12174706906080246, 0.01677836664021015, -0.034639738500118256, 0.058051180094480515, -0.04677889868617058, -0.02392815239727497, -0.070315882563591, -0.012192572467029095, -0.00281552248634398, 0.04088753089308739, 0.07381761074066162, -0.13271203637123108, -0.11654364317655563, 0.08245549350976944, 0.03790539130568504, -0.0759025514125824, -0.04672502726316452, -0.05702502653002739, -0.028722431510686874, -0.09042444080114365, -0.04520537331700325, 0.03087650239467621, 0.05977217108011246, 0.07634009420871735, -0.07746954262256622, -0.05534333735704422, 0.01701955497264862, -0.011931627057492733, -0.09443823993206024, 0.06328696757555008, 0.05427468568086624, -0.13717658817768097, 0.08164044469594955, -0.03853074088692665, 0.05432773754000664, 0.07582832127809525, 0.030244888737797737, -0.11786860972642899, 0.00997497234493494, 0.0693187266588211, 0.011391155421733856, 0.10663576424121857, 0.0013253953075036407, 0.012956734746694565, 0.07452288269996643, -0.00043999982881359756, 0.0009413158986717463, -0.08397874236106873, 0.07490745186805725, 0.021883459761738777, -0.037705209106206894, 0.02540045790374279, -0.02852449007332325, 0.09420153498649597, 0.10336748510599136, 0.07492034137248993, 0.12246479094028473, -0.0545782744884491, -0.06656718999147415, -0.09601736813783646, 0.13246364891529083, -0.02501029334962368, -0.26542428135871887, -0.08154100179672241, -0.055754754692316055, -0.038509104400873184, -0.004881341941654682, 0.020889727398753166, -0.0036238906905055046, -0.08848829567432404, -0.10479786992073059, 0.071141816675663, 0.048210810869932175, -0.10850173234939575, -0.09017504751682281, 0.02935965545475483, -0.006661213934421539, -0.07703586667776108, -0.0031135324388742447, 0.013576420024037361, -0.04289620369672775, 0.0018326108111068606, 0.03755219653248787, 0.12118600308895111, 0.06164376810193062, -0.027097400277853012, -0.009794916957616806, 0.007215350866317749, 0.17915759980678558, -0.13038669526576996, 0.13077376782894135, 0.17689946293830872, 0.004421714693307877, 0.07620207220315933, 0.21021516621112823, -0.010617789812386036, -0.010792997665703297, 0.01975327916443348, 0.06988202035427094, -0.050531160086393356, -0.20186328887939453, -0.04700302705168724, -0.040517657995224, -0.006160065997391939, 0.14374540746212006, 0.047080911695957184, 0.01238147635012865, 0.08045965433120728, -0.10355612635612488, 0.001991278026252985, 0.034311071038246155, 0.09334443509578705, 0.04758704453706741, 0.03091965802013874, 0.04171866923570633, -0.042420148849487305, -0.04776327684521675, 0.08938105404376984, 0.12834171950817108, 0.10886194556951523, -0.08857670426368713, 0.08743990957736969, 0.03307429328560829, 0.026870962232351303, -0.04938157647848129, -0.0007793700788170099, -0.027627108618617058, 0.04147208482027054, -0.0015685175312682986, -0.08414614200592041, 0.02659963071346283, 0.07723944634199142, 0.1623970866203308, 0.004650947637856007, 0.0019430550746619701, -0.04430312663316727, 0.06463779509067535, 0.2614133954048157, 0.013529696501791477, -0.18131497502326965, 0.018512489274144173, 0.04213806986808777, 0.0035612224601209164, -0.12650896608829498, -0.046251293271780014, 0.07658173888921738, -0.1618737429380417, 0.04750145971775055, -0.01907343603670597, 0.1059790700674057, -0.1308736354112625, -0.048613421618938446, 0.06975118815898895, 0.03923054039478302, -0.010663642548024654, 0.05715499818325043, -0.0800224244594574, 0.06793493032455444, 0.03164196386933327, 0.03601804003119469, -0.08042047917842865, 0.048329755663871765, -0.006307936739176512, -0.019065091386437416, 0.13805019855499268, -0.010254455730319023, 0.018026361241936684, -0.11559658497571945, -0.12882237136363983, -0.01278604380786419, 0.052654508501291275, -0.10511904954910278, 0.10932862013578415, 0.011792553588747978, -0.03193837031722069, -0.07257162779569626, -0.05397648736834526, -0.07314243912696838, -0.1705084592103958, 0.048281583935022354, -0.04368847608566284, 0.004436061717569828, -0.020982610061764717, 0.009784873574972153, -0.024028390645980835, 0.13765372335910797, -0.04394247382879257, -0.09053255617618561, -0.13066793978214264, 0.029163450002670288, 0.09781515598297119, -0.009568003006279469, -0.004436233080923557, -0.0934881642460823, 0.18582062423229218, -0.029143838211894035, -0.08947015553712845, 0.01412079855799675, -0.06767471134662628, -0.0973467156291008, -0.0651542991399765, 0.12302685528993607, 0.04898274689912796, -0.014388438314199448, 0.014974678866565228, 0.04456184059381485, -0.017169049009680748, -0.04173753410577774, 0.035147931426763535, 0.10866986960172653, 0.14506962895393372, 0.13079138100147247, -0.007601625751703978, -0.16590726375579834, -0.10908925533294678, -0.01237834058701992, 0.02765631675720215, 0.11288121342658997, -0.07576426863670349, 0.09881819784641266, 0.04879942536354065, -0.08037592470645905, -0.2304348200559616, 0.08857559412717819, 0.06341390311717987, -0.009186248295009136, -0.02337816171348095, -0.1388755738735199, 0.1668708473443985, 0.034638553857803345, -0.0033779831137508154, 0.07751931995153427, -0.2588837444782257, -0.06949371844530106, -0.014140600338578224, 0.019369320943951607, -0.17139491438865662, -0.15941104292869568, -0.047080595046281815, -0.050975069403648376, -0.1777009814977646, 0.05983264744281769, 0.016079457476735115, 0.038780830800533295, 0.03533559292554855, 0.056353840976953506, 0.0583769716322422, -0.04099832475185394, 0.11284490674734116, 0.021625002846121788, 0.03810770437121391, -0.0654585137963295, -0.08907988667488098, 0.0026030438020825386, -0.10624971240758896, 0.15337559580802917, 0.09593097865581512, 0.022939816117286682, -0.04413958638906479, -0.021083690226078033, -0.054626740515232086, 0.08582688868045807, -0.027371687814593315, -0.030747855082154274, -0.08461358398199081, 0.04204931482672691, 0.13126327097415924, 0.023635251447558403, 0.07676227390766144, -0.04372416064143181, -0.01704200729727745, 0.1125892847776413, 0.11428840458393097, -0.0023101416882127523, -0.12299395352602005, -0.03275587409734726, -0.005372975952923298, 0.026845619082450867, -0.08037451654672623, 0.04691940173506737, 0.09263204038143158, 0.0232746172696352, 0.09250166267156601, -0.01601652055978775, -0.09047301858663559, -0.01764325425028801, 0.048231691122055054, -0.08482760936021805, -0.13205848634243011, 0.02384861931204796, 0.08919936418533325, -0.11381185054779053, -0.10138785094022751, 0.10391533374786377, 0.0155410747975111, -0.030246827751398087, 0.002465909579768777, 0.07631129771471024, 0.0573374405503273, 0.025013722479343414, 0.02204372175037861, 0.033482324331998825, -0.07016593962907791, 0.13668479025363922, 0.13887840509414673, -0.11936136335134506, -0.01751307025551796, 0.10239585489034653, -0.03948862850666046, -0.017387287691235542, -0.03029610589146614, 0.0135956397280097, -0.006667342036962509, -0.02419455721974373, 0.03718392550945282, -0.07920489460229874, 0.04091184213757515, 0.08060909807682037, -0.006150062195956707, 0.060383085161447525, 0.03264094889163971, 0.004542391747236252, -0.13451950252056122, 0.11327194422483444, 0.026311784982681274, 0.051826804876327515, -0.10133347660303116, -0.004700292833149433, 0.015874076634645462, 0.02188357152044773, 0.00864825677126646, -0.04442479833960533, -0.0770806074142456, -0.007515965960919857, -0.04539591073989868, 0.1077653095126152, -0.10615719109773636, 0.0034199380315840244, -0.014978013932704926, 0.013131034560501575, -0.01815202087163925, 0.03313589096069336, -0.04471096396446228, -0.07437624037265778, -0.042112380266189575, 0.1288483589887619, -0.12110487371683121, -0.028948569670319557, 0.04407944530248642, -0.09662659466266632, 0.06662310659885406, 0.01652177795767784, -0.026316342875361443, -0.0950712040066719, -0.1849336475133896, -0.04121621325612068, 0.038842588663101196, 0.06832831352949142, 0.04012641683220863, -0.09740468114614487, 0.05660948157310486, 0.0070408182218670845, -0.10547429323196411, -0.023930029943585396, -0.0330461747944355, -0.11036606878042221, 0.033515337854623795, -0.10534756630659103, -0.027926785871386528, -0.04463481903076172, 0.12665633857250214, 0.06413105875253677, 0.00547051103785634, 0.06062159687280655, -0.04457837715744972, 0.09031474590301514, -0.1477450430393219, -0.04068581387400627, -0.01581341214478016, -0.023194879293441772, -0.07164795696735382, -0.00973554141819477, 0.0691140815615654, -0.01375502534210682, 0.14207209646701813, 0.12153743952512741, 0.04661596938967705, 0.036504775285720825, -0.014669066295027733, 0.05226799100637436, 0.0760592445731163, -0.004473236855119467, -0.02606324851512909, -0.02108061872422695, 0.06850939989089966, 0.008936652913689613, 0.007744641043245792, 0.0740862563252449, 0.058947984129190445, 0.24122457206249237, 0.1453787237405777, 0.024489397183060646, 0.06113829463720322, -0.1039675697684288, -0.05729695409536362, 0.10521082580089569, -0.06477293372154236, 0.057938940823078156, -0.1036885678768158, 0.025786157697439194, 0.07382351905107498, -0.1468753218650818, 0.05651417002081871, -0.026312140747904778, -0.0004011917917523533, -0.02954326756298542, -0.08893679082393646, -0.05673499032855034, 0.0009277297067455947, 0.0032074174378067255, -0.1194879487156868, 0.07533036917448044, 0.0998869463801384, -0.007964994758367538, -0.0000249069544224767, 0.08078374713659286, -0.0395340621471405, -0.09407278150320053, 0.09128012508153915, 0.02141912281513214, 0.06726493686437607, 0.04532909765839577, 0.04262295737862587, 0.09574706107378006, 0.009982206858694553, 0.08276712894439697, 0.08489999920129776, 0.09790093451738358, 0.02820708230137825, -0.06961452215909958, -0.07701651751995087, 0.031729016453027725, -0.02028655633330345, -0.004651798401027918, 0.15872052311897278, 0.06910073012113571, 0.010648773983120918, -0.019064970314502716, 0.15741033852100372, -0.0070110890083014965, -0.024083152413368225, -0.13236205279827118, 0.03505859151482582, -0.04879244789481163, -0.00393857853487134, -0.009590746834874153, -0.15357612073421478, -0.0039395601488649845, 0.1280011385679245, 0.05587415769696236, -0.03843976929783821, -0.014881720766425133, 0.006257473956793547, 0.004218608606606722, -0.02034376561641693, 0.029860423877835274, 0.03135969862341881, 0.20173954963684082, -0.05226685479283333, 0.011453225277364254, -0.036823585629463196, -0.010738278739154339, -0.05465094745159149, 0.09268294274806976, -0.0141855264082551, 0.024357924237847328, -0.08710502088069916, 0.10096027702093124, -0.005610491614788771, -0.19608503580093384, 0.05440394580364227, -0.09858310967683792, -0.08417095988988876, 0.008640068583190441, -0.02633744291961193, -0.012606578879058361, 0.025586603209376335, -0.0011087481398135424, -0.05634721368551254, 0.09931423515081406, 0.01601843163371086, -0.052912332117557526, 0.014531604014337063, 0.010805808007717133, -0.07531200349330902, 0.27607521414756775, -0.037056561559438705, 0.03756869584321976, 0.07787922024726868, -0.015058849938213825, -0.14602208137512207, -0.03809953108429909, 0.06926245987415314, -0.05972787365317345, 0.025496456772089005, 0.12698808312416077, 0.0034350333735346794, 0.12766969203948975, 0.08914966136217117, -0.0810408666729927, 0.04745376482605934, -0.011534616351127625, 0.017725493758916855, -0.12323181331157684, 0.019728895276784897, -0.08816052973270416, 0.11670885235071182, 0.11257695406675339, -0.0035308280494064093, -0.005083031952381134, -0.040452152490615845, 0.008583278395235538, 0.013813932426273823, 0.1259758621454239, 0.008114497177302837, -0.06523820757865906, 0.015397056937217712, -0.14995746314525604, 0.09108101576566696, -0.12409535050392151, -0.0696442723274231, 0.039265044033527374, -0.02069775015115738, -0.02633892558515072, 0.07149562239646912, 0.01826435700058937, 0.02545098029077053, -0.05243555083870888, -0.117909274995327, 0.028383636847138405, 0.15877607464790344, -0.019866131246089935, -0.02356812171638012 ]
f9dfc9f71ce1151ab14f059eb4ed337a8bc993fb
# Dataset Card for chess-pieces-mjzgj ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/chess-pieces-mjzgj - **Point of Contact:** [email protected] ### Dataset Summary chess-pieces-mjzgj ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/chess-pieces-mjzgj ### Citation Information ``` @misc{ chess-pieces-mjzgj, title = { chess pieces mjzgj Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/chess-pieces-mjzgj } }, url = { https://universe.roboflow.com/object-detection/chess-pieces-mjzgj }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/chess-pieces-mjzgj
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:44+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "chess-pieces-mjzgj", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "chess-pieces", "1": "bishop", "2": "black-bishop", "3": "black-king", "4": "black-knight", "5": "black-pawn", "6": "black-queen", "7": "black-rook", "8": "white-bishop", "9": "white-king", "10": "white-knight", "11": "white-pawn", "12": "white-queen", "13": "white-rook"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:31:59+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for chess-pieces-mjzgj The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary chess-pieces-mjzgj ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for chess-pieces-mjzgj\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nchess-pieces-mjzgj", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for chess-pieces-mjzgj\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nchess-pieces-mjzgj", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 29, 22, 17, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for chess-pieces-mjzgj\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nchess-pieces-mjzgj### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.003693685634061694, 0.1245729923248291, -0.008073068223893642, 0.024696873500943184, 0.08648151159286499, 0.010969921946525574, 0.05045783892273903, 0.0879143476486206, -0.0022400645539164543, 0.16769514977931976, -0.016847403720021248, 0.048987433314323425, 0.1237662211060524, 0.08558819442987442, -0.009081846103072166, -0.14342328906059265, 0.04186505451798439, -0.0489455908536911, 0.0918445736169815, 0.05628281831741333, 0.09633342176675797, -0.13182704150676727, 0.08059270679950714, -0.03426705300807953, -0.019527815282344818, 0.02616206742823124, -0.04606588929891586, -0.033113788813352585, 0.009516501799225807, 0.03361794352531433, 0.013637234456837177, 0.01579759269952774, 0.031233852729201317, -0.18210378289222717, 0.02102825418114662, 0.09586183726787567, 0.019765961915254593, 0.030208958312869072, 0.1298062652349472, -0.0818900614976883, 0.03627484291791916, -0.17730902135372162, 0.013602195307612419, 0.012721482664346695, -0.09085984528064728, -0.10988106578588486, -0.13878124952316284, 0.06523741781711578, 0.10619863867759705, 0.03055581822991371, -0.01278618723154068, 0.05407264456152916, -0.037884924560785294, 0.055909693241119385, 0.14036843180656433, -0.08271339535713196, -0.035469476133584976, 0.0881553515791893, 0.026721132919192314, 0.09288986772298813, -0.11650682240724564, -0.0030391013715416193, 0.007670537102967501, -0.014893671497702599, 0.01354666892439127, -0.04499649256467819, -0.0015440573915839195, 0.006554895080626011, -0.0850667804479599, -0.1212950125336647, 0.15226246416568756, 0.051043108105659485, -0.04551483690738678, -0.15249820053577423, -0.001857097609899938, 0.03552290424704552, -0.04030660539865494, 0.0003234123869333416, 0.0478876531124115, -0.016851967200636864, 0.05603140592575073, -0.05410641059279442, -0.10291706025600433, 0.0559287890791893, 0.002663892926648259, 0.05983363837003708, -0.01951904222369194, 0.029552502557635307, 0.01672184094786644, 0.08368337154388428, 0.005634600762277842, -0.11604145914316177, -0.03555553779006004, -0.02480473555624485, -0.04309989884495735, -0.04442392662167549, 0.052770763635635376, -0.0917537659406662, 0.06512418389320374, 0.09048770368099213, -0.06898144632577896, 0.022226911038160324, -0.09999050199985504, 0.003091227263212204, 0.11156240105628967, 0.16189968585968018, -0.10459346324205399, -0.09444183111190796, 0.012598281726241112, 0.02695840410888195, 0.03102961555123329, -0.024870356544852257, -0.04031142592430115, -0.008711433969438076, 0.051543693989515305, 0.043825771659612656, 0.09717638045549393, 0.022538654506206512, -0.07762137055397034, -0.04728583246469498, 0.15985801815986633, -0.10367974638938904, 0.056573156267404556, 0.05112536624073982, -0.058296460658311844, 0.10405872017145157, -0.015952087938785553, 0.007975528948009014, -0.09879427403211594, 0.09815845638513565, -0.027081819251179695, 0.014904522337019444, -0.07570777088403702, -0.0996139794588089, 0.058116912841796875, -0.07619614154100418, -0.07016797363758087, -0.09401410073041916, -0.03456598520278931, -0.08554571866989136, 0.023529913276433945, -0.04873305559158325, 0.035073086619377136, 0.028513707220554352, -0.05568574741482735, -0.005496977362781763, 0.010696183890104294, 0.03872937709093094, -0.059437572956085205, 0.027874993160367012, -0.10321347415447235, 0.04329116269946098, 0.09522588551044464, 0.025088420137763023, -0.08010990917682648, 0.05542455241084099, -0.1712075173854828, 0.13193365931510925, -0.04560793936252594, 0.019798027351498604, -0.12359945476055145, 0.009073426946997643, -0.013301641680300236, -0.040017019957304, -0.0031161801889538765, 0.13907742500305176, -0.09162513166666031, 0.01191362738609314, 0.07043047994375229, -0.027926255017518997, -0.04973766580224037, 0.05203584209084511, -0.038990262895822525, -0.02403349243104458, 0.1097659319639206, 0.08963456004858017, -0.019523726776242256, -0.12447437644004822, -0.13464131951332092, -0.014155004173517227, -0.03205534815788269, 0.16310261189937592, 0.07847308367490768, -0.017826851457357407, 0.092039555311203, -0.002912889001891017, -0.023666145280003548, -0.03858906030654907, 0.009326491504907608, -0.033291131258010864, 0.012405483983457088, 0.0032864350359886885, -0.07059662789106369, 0.0030902400612831116, -0.08150194585323334, -0.0067041125148534775, -0.08827866613864899, -0.03433680161833763, 0.03786281496286392, -0.012551379390060902, 0.02082015946507454, -0.046655233949422836, 0.07587868720293045, -0.11341298371553421, 0.012975341640412807, -0.14273366332054138, -0.1021050363779068, 0.06984904408454895, -0.032714638859033585, 0.029810037463903427, -0.07460317015647888, 0.0012067201314494014, 0.003341724630445242, 0.020654641091823578, -0.01405732799321413, 0.04868021234869957, -0.012699620798230171, -0.03681705892086029, -0.1321081966161728, -0.04985474422574043, -0.02407430298626423, 0.09508196264505386, -0.10000244528055191, -0.02774992026388645, 0.18759970366954803, 0.12795591354370117, 0.038450829684734344, -0.028645407408475876, 0.05432894825935364, -0.024586208164691925, -0.03606528788805008, -0.0723181813955307, -0.02436092123389244, -0.02441311627626419, 0.025885092094540596, 0.09447988122701645, -0.12826715409755707, -0.1285291165113449, 0.08138948678970337, 0.06992828100919724, -0.06960140913724899, -0.038601819425821304, -0.03769979998469353, -0.019337555393576622, -0.07821454107761383, -0.06856082379817963, 0.022357862442731857, 0.05977911129593849, 0.0725293904542923, -0.06573636084794998, -0.05525173246860504, 0.02238433249294758, -0.007886605337262154, -0.08373168855905533, 0.06182178109884262, 0.017073802649974823, -0.11794807016849518, 0.09541117399930954, -0.007769016083329916, 0.048943277448415756, 0.09673822671175003, 0.027520330622792244, -0.10732081532478333, -0.009061629883944988, 0.06610924750566483, 0.02425394207239151, 0.08448231220245361, -0.0054870243184268475, -0.0023000354412943125, 0.0760967880487442, -0.00037401056033559144, -0.013957821764051914, -0.07565131038427353, 0.07826612889766693, 0.02667485550045967, -0.03866606578230858, 0.05272321030497551, -0.020679308101534843, 0.07290623337030411, 0.1014835387468338, 0.07071248441934586, 0.11676649004220963, -0.044610146433115005, -0.053784310817718506, -0.07762682437896729, 0.12202087789773941, -0.04848839342594147, -0.2477961629629135, -0.088931143283844, -0.06762141734361649, -0.05568743124604225, -0.015869302675127983, 0.022796792909502983, -0.030974065884947777, -0.08590772747993469, -0.09981690347194672, 0.032435569912195206, 0.0652598887681961, -0.10439323633909225, -0.09315700083971024, 0.028719743713736534, -0.021501164883375168, -0.0951729416847229, -0.012658909894526005, 0.035637203603982925, -0.03767985850572586, 0.00995505042374134, 0.040543992072343826, 0.13044142723083496, 0.0668996199965477, -0.014027281664311886, -0.0026396019384264946, -0.007224623579531908, 0.15503965318202972, -0.1563471108675003, 0.13589997589588165, 0.14947335422039032, 0.017408324405550957, 0.07260233908891678, 0.18659666180610657, -0.008356917649507523, -0.004727518651634455, 0.01467864029109478, 0.06453084200620651, -0.053804948925971985, -0.20000234246253967, -0.06567328423261642, -0.05322396010160446, 0.019724881276488304, 0.12038629502058029, 0.046675339341163635, 0.01430860161781311, 0.06562275439500809, -0.11331009864807129, 0.035600025206804276, 0.039061252027750015, 0.08360488712787628, 0.03340169042348862, 0.02671440690755844, 0.04150442034006119, -0.044951993972063065, -0.039012666791677475, 0.11704353988170624, 0.12093070149421692, 0.11571866273880005, -0.10778167843818665, 0.14397981762886047, 0.032161977142095566, 0.015763888135552406, -0.05126921087503433, 0.004368775524199009, -0.029972948133945465, 0.05273260176181793, -0.002698606112971902, -0.0981607586145401, 0.0367884635925293, 0.08253813534975052, 0.1342991441488266, -0.0010617586085572839, 0.006877480540424585, -0.03556225821375847, 0.08778972178697586, 0.21618995070457458, 0.02829289250075817, -0.1755167841911316, 0.005664108321070671, 0.05352393537759781, 0.022565964609384537, -0.1099366620182991, -0.04136276617646217, 0.11340373754501343, -0.15603125095367432, 0.0623161680996418, -0.01706569828093052, 0.10113509744405746, -0.13357844948768616, -0.04324633255600929, 0.05438600853085518, 0.06058692932128906, -0.020016798749566078, 0.08028580248355865, -0.14753645658493042, 0.04830173775553703, 0.03810116648674011, 0.045591093599796295, -0.09972867369651794, 0.035853493958711624, 0.013142216950654984, -0.0014809343265369534, 0.12911292910575867, -0.005583867896348238, 0.03516874834895134, -0.1212264895439148, -0.11249130219221115, -0.01141607016324997, 0.06812364608049393, -0.08006156235933304, 0.10512754321098328, 0.018717369064688683, -0.04149895906448364, -0.06458885967731476, -0.09013310819864273, -0.07210633158683777, -0.18426235020160675, 0.049658775329589844, -0.015745624899864197, 0.01693226955831051, -0.028344815596938133, 0.011292028240859509, -0.016076121479272842, 0.12543778121471405, -0.048925451934337616, -0.08611539006233215, -0.1304628849029541, 0.036053672432899475, 0.09026093035936356, -0.0355997309088707, -0.020353833213448524, -0.08632593601942062, 0.17757710814476013, -0.027983607724308968, -0.0731264278292656, 0.02501257136464119, -0.06435142457485199, -0.11403395980596542, -0.05232732743024826, 0.11950482428073883, 0.03370634466409683, -0.000572899472899735, 0.012738971970975399, 0.04214537888765335, 0.00825126376003027, -0.05161913484334946, 0.031244082376360893, 0.1105470210313797, 0.11139301210641861, 0.14316658675670624, 0.00286718737334013, -0.1675683557987213, -0.11816171556711197, -0.006403126288205385, 0.04143945127725601, 0.10702510178089142, -0.08045373111963272, 0.11213621497154236, 0.04018525779247284, -0.08436544984579086, -0.22927546501159668, 0.05924846976995468, 0.043625298887491226, 0.0008869110606610775, 0.0027371402829885483, -0.14019982516765594, 0.14454765617847443, 0.04146220162510872, -0.0000230081204790622, 0.10431540757417679, -0.26758354902267456, -0.07490119338035583, -0.04258710891008377, 0.01875350810587406, -0.18284639716148376, -0.16512829065322876, -0.04886465147137642, -0.06421937048435211, -0.17576174437999725, 0.05903240293264389, -0.014482595026493073, 0.042577650398015976, 0.03637455776333809, 0.046894632279872894, 0.054800670593976974, -0.04268492013216019, 0.11726253479719162, 0.026714537292718887, 0.04897661134600639, -0.07354668527841568, -0.09169020503759384, 0.07132865488529205, -0.09928835928440094, 0.13777197897434235, 0.014433044008910656, 0.02466474659740925, -0.050182875245809555, -0.01280483603477478, -0.049981389194726944, 0.09437278658151627, -0.027316691353917122, -0.03853040561079979, -0.1183767020702362, 0.050632692873477936, 0.11848533153533936, 0.02083483524620533, 0.11061319708824158, -0.0054434859193861485, -0.024726539850234985, 0.10682100057601929, 0.1153949499130249, -0.022654110565781593, -0.10930444300174713, -0.044355135411024094, -0.0027446739841252565, 0.037431199103593826, -0.1306651383638382, 0.04864216595888138, 0.08469726145267487, 0.03276469558477402, 0.10339552164077759, -0.02034771628677845, -0.11280275136232376, -0.0041545783169567585, 0.059237878769636154, -0.08295178413391113, -0.14072249829769135, 0.00957066286355257, 0.06888213008642197, -0.08751504868268967, -0.09083323180675507, 0.11684948205947876, 0.00919709075242281, -0.026886506006121635, 0.004390471614897251, 0.08958432078361511, 0.036764077842235565, 0.0735286995768547, 0.02442174218595028, 0.04039151966571808, -0.07264284789562225, 0.10287411510944366, 0.1347740739583969, -0.12347446382045746, 0.008960925042629242, 0.09575124830007553, -0.05089253559708595, -0.021339302882552147, -0.028473012149333954, 0.02047581411898136, 0.030306778848171234, -0.02299867756664753, 0.03445564955472946, -0.07094268500804901, 0.03557301685214043, 0.058811262249946594, 0.005600598640739918, 0.0726734846830368, 0.027658671140670776, -0.0026558502577245235, -0.13691836595535278, 0.1456451117992401, 0.02437838725745678, 0.05893172696232796, -0.09844405949115753, 0.025096718221902847, 0.02529408223927021, 0.02345411479473114, 0.006102262530475855, -0.045595213770866394, -0.07415880262851715, -0.011507738381624222, -0.08094760030508041, 0.07790876924991608, -0.10941845178604126, -0.006682019215077162, -0.022824157029390335, 0.02851806953549385, -0.018062632530927658, 0.04293207451701164, -0.041431523859500885, -0.0746835246682167, -0.04457259550690651, 0.13572923839092255, -0.12788745760917664, -0.022103849798440933, 0.0468786396086216, -0.09588449448347092, 0.07470269501209259, -0.0012591194827109575, -0.0242158193141222, -0.08180958032608032, -0.17749740183353424, -0.035212866961956024, 0.03949137404561043, 0.0684051513671875, 0.029146449640393257, -0.09340221434831619, 0.05757177993655205, -0.006405230611562729, -0.08858674764633179, -0.013768067583441734, -0.01465632300823927, -0.11173351854085922, 0.04299013316631317, -0.11458195000886917, -0.017612434923648834, -0.048460230231285095, 0.14065125584602356, 0.0549713633954525, -0.006956719793379307, 0.08740434050559998, -0.03531818836927414, 0.08300035446882248, -0.12834589183330536, -0.04686395823955536, -0.025007376447319984, -0.04289574176073074, -0.08958756178617477, -0.002027226146310568, 0.06783518195152283, -0.03359245881438255, 0.13969288766384125, 0.10962817817926407, 0.0061668530106544495, 0.039912138134241104, -0.010322438552975655, 0.02563447505235672, 0.055500518530607224, 0.0031311209313571453, -0.009391122497618198, -0.029677946120500565, 0.03502597659826279, 0.0074814800173044205, 0.01624322310090065, 0.07177787274122238, 0.04582790285348892, 0.22889213263988495, 0.12614117562770844, 0.024775687605142593, 0.055431216955184937, -0.09670471400022507, -0.06997606158256531, 0.09351906180381775, -0.07452958822250366, 0.06421105563640594, -0.09406359493732452, 0.032157380133867264, 0.09350655972957611, -0.14809316396713257, 0.062849260866642, -0.0036031841300427914, -0.012259157374501228, -0.021327044814825058, -0.10659392923116684, -0.06299340724945068, -0.010996402241289616, -0.006483498495072126, -0.11768458783626556, 0.0751589685678482, 0.12613217532634735, 0.0069620744325220585, 0.0021272178273648024, 0.10504157841205597, -0.08566107600927353, -0.08685730397701263, 0.11410649120807648, 0.01402509305626154, 0.03451608866453171, 0.06830889731645584, 0.0340178944170475, 0.06701434403657913, -0.012823723256587982, 0.08821901679039001, 0.09211084246635437, 0.10184759646654129, 0.01814020425081253, -0.06515317410230637, -0.07591742277145386, 0.027452372014522552, -0.010931680910289288, -0.001944148913025856, 0.15910351276397705, 0.0683700442314148, 0.002572920173406601, -0.016122635453939438, 0.14845265448093414, -0.010195216163992882, -0.03652793914079666, -0.12434109300374985, 0.032150425016880035, -0.025780782103538513, -0.00513544213026762, -0.014916541986167431, -0.14730875194072723, -0.0006081801257096231, 0.120693638920784, 0.06929092109203339, -0.03159292787313461, -0.01461365818977356, -0.011138411238789558, 0.007398505229502916, -0.014401516877114773, 0.0628805086016655, 0.011574214324355125, 0.2068169116973877, -0.03529507294297218, 0.013400640338659286, -0.039376214146614075, -0.02874436043202877, -0.07269049435853958, 0.07684851437807083, -0.02381947450339794, 0.007176474668085575, -0.07036075741052628, 0.09782987087965012, 0.002526660682633519, -0.19107601046562195, 0.07216376066207886, -0.09514646977186203, -0.08425106108188629, 0.021694190800189972, -0.006944025866687298, 0.01362772099673748, 0.03779813274741173, 0.018365470692515373, -0.05909358337521553, 0.12388702481985092, 0.020784035325050354, -0.06082092970609665, 0.02306145802140236, 0.007267053239047527, -0.09828809648752213, 0.2404746413230896, -0.03878352791070938, 0.05923400819301605, 0.10045462846755981, -0.02103404700756073, -0.1504044234752655, -0.022112933918833733, 0.07605642080307007, -0.0444440022110939, 0.032327428460121155, 0.12283080071210861, 0.000059463629440870136, 0.1225157156586647, 0.09968522191047668, -0.06681252270936966, 0.041371941566467285, 0.017965897917747498, 0.019661232829093933, -0.13163942098617554, 0.016315607354044914, -0.08648888766765594, 0.10993197560310364, 0.1340365707874298, -0.01571948267519474, -0.007471280172467232, -0.04494163766503334, -0.004301288165152073, 0.0120487529784441, 0.11040817201137543, 0.0022309026680886745, -0.06889786571264267, 0.019666794687509537, -0.11338789016008377, 0.09554396569728851, -0.13378950953483582, -0.04511996731162071, 0.02801092527806759, -0.013586648739874363, -0.013146450743079185, 0.08565133810043335, 0.052322499454021454, 0.019288279116153717, -0.05037162825465202, -0.12558363378047943, 0.02195175550878048, 0.15025915205478668, -0.03164569288492203, -0.015769923105835915 ]
a523fc386ec3121909f1994b5259515ee2e1913a
# Dataset Card for robomasters-285km ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/robomasters-285km - **Point of Contact:** [email protected] ### Dataset Summary robomasters-285km ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/robomasters-285km ### Citation Information ``` @misc{ robomasters-285km, title = { robomasters 285km Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/robomasters-285km } }, url = { https://universe.roboflow.com/object-detection/robomasters-285km }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/robomasters-285km
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:52+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "robomasters-285km", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "robots", "1": "armor", "2": "base", "3": "car", "4": "rune", "5": "rune-blue", "6": "rune-gray", "7": "rune-grey", "8": "rune-red", "9": "watcher"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:32:37+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for robomasters-285km The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary robomasters-285km ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for robomasters-285km\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nrobomasters-285km", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for robomasters-285km\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nrobomasters-285km", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for robomasters-285km\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nrobomasters-285km### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.007673942018300295, 0.15433841943740845, -0.007394927088171244, 0.01910971663892269, 0.10165713727474213, 0.0002775416651275009, 0.06323901563882828, 0.0862026959657669, 0.002700917888432741, 0.1731494665145874, -0.004206299781799316, 0.08528675138950348, 0.11083050817251205, 0.08491453528404236, -0.022158822044730186, -0.1623593419790268, 0.06004323065280914, -0.06029161065816879, 0.06589320302009583, 0.07200974225997925, 0.07599489390850067, -0.14108222723007202, 0.08830182254314423, -0.045939166098833084, -0.029202936217188835, 0.024124599993228912, -0.05565452575683594, -0.04487293213605881, 0.0017607503104954958, 0.0401575043797493, 0.01768423616886139, 0.024972517043352127, 0.03669507056474686, -0.18869619071483612, 0.018836447969079018, 0.10087161511182785, 0.0332423597574234, 0.026973597705364227, 0.14748147130012512, -0.09223362058401108, 0.061809223145246506, -0.12532466650009155, 0.039207663387060165, 0.013308744877576828, -0.11914040148258209, -0.11513223499059677, -0.12222698330879211, 0.06091703474521637, 0.11689367145299911, 0.051305368542671204, -0.017622085288167, 0.08992048352956772, -0.02508341334760189, 0.06019715219736099, 0.12123095244169235, -0.06573668867349625, -0.044044408947229385, 0.08169996738433838, 0.03647902235388756, 0.10147865861654282, -0.1171921044588089, -0.016028938814997673, 0.0012354101054370403, -0.022117527201771736, 0.011397426947951317, -0.06322349607944489, -0.051454272121191025, -0.01003038790076971, -0.09885574132204056, -0.14680474996566772, 0.14080369472503662, 0.05032382532954216, -0.05094974488019943, -0.14351341128349304, -0.0024155101273208857, 0.05990210175514221, -0.03580949828028679, 0.0010037090396508574, 0.042487405240535736, -0.016751604154706, 0.03356991335749626, -0.06557737290859222, -0.09441985934972763, 0.04204527661204338, 0.03432265296578407, 0.056541211903095245, -0.015554266981780529, 0.0357196219265461, 0.013928581029176712, 0.07311703264713287, 0.010409286245703697, -0.10479795187711716, -0.02511814795434475, -0.034794386476278305, -0.05637035146355629, -0.039022304117679596, 0.07192042469978333, -0.14127685129642487, 0.06463979929685593, 0.07577390968799591, -0.06348856538534164, 0.02955259010195732, -0.12267553806304932, 0.019375741481781006, 0.10545898228883743, 0.1790040135383606, -0.08251065015792847, -0.09134365618228912, 0.002228447934612632, 0.03928602486848831, 0.018546313047409058, -0.033652059733867645, -0.02172830142080784, 0.0008993895608000457, 0.03966924175620079, 0.03897843509912491, 0.12095887213945389, 0.04843764752149582, -0.06377074867486954, -0.06231660023331642, 0.13432636857032776, -0.09606268256902695, 0.05021708086133003, 0.053529828786849976, -0.05636123567819595, 0.05738167464733124, 0.0059927841648459435, 0.013839881867170334, -0.11127994954586029, 0.10469067841768265, -0.02649327740073204, 0.008375683799386024, -0.09548992663621902, -0.10293270647525787, 0.056969065219163895, -0.08949365466833115, -0.0749160498380661, -0.08563081175088882, -0.0536884069442749, -0.08703037351369858, 0.039608974009752274, -0.040646687150001526, 0.030154600739479065, 0.015935225412249565, -0.041057031601667404, -0.012650839053094387, 0.0005705575458705425, 0.062104109674692154, -0.055766511708498, 0.04233323410153389, -0.09261279553174973, 0.040441449731588364, 0.11345575749874115, 0.039615828543901443, -0.10066438466310501, 0.058643173426389694, -0.19694063067436218, 0.13167031109333038, -0.05556939169764519, 0.031453363597393036, -0.13196951150894165, 0.016640014946460724, -0.02143567055463791, -0.03042871318757534, -0.0028826126363128424, 0.1351151317358017, -0.05809411033987999, 0.008364271372556686, 0.06692533195018768, -0.05184135213494301, -0.06038261577486992, 0.032847367227077484, -0.04274092987179756, 0.0018829809268936515, 0.08343259245157242, 0.12097293883562088, -0.043347377330064774, -0.11068407446146011, -0.11099165678024292, -0.04531420022249222, -0.03751340135931969, 0.1406213343143463, 0.07060008496046066, -0.03360647335648537, 0.08625879138708115, -0.004700980614870787, -0.018844226375222206, -0.03989802300930023, 0.006411412730813026, -0.028286976739764214, 0.024335889145731926, -0.006025291047990322, -0.08465462177991867, 0.019884204491972923, -0.08796455711126328, 0.0058447918854653835, -0.08324562758207321, -0.04298244044184685, 0.015826886519789696, -0.027662813663482666, 0.01458282582461834, -0.031763285398483276, 0.08770311623811722, -0.14134013652801514, -0.0010141441598534584, -0.16758202016353607, -0.10119158774614334, 0.06401430070400238, -0.04270418733358383, 0.0506756454706192, -0.0721031129360199, -0.005642884876579046, 0.020990153774619102, 0.027297895401716232, -0.0218085628002882, 0.046811871230602264, -0.02401900477707386, -0.04472874104976654, -0.13306066393852234, -0.045046743005514145, -0.028786318376660347, 0.08814649283885956, -0.10899122059345245, -0.02948174625635147, 0.1455930918455124, 0.12527260184288025, 0.05112351104617119, -0.042600300163030624, 0.07849789410829544, -0.017854370176792145, -0.020243162289261818, -0.07865317165851593, -0.009585590101778507, -0.0059062703512609005, 0.029438963159918785, 0.08804523944854736, -0.16178226470947266, -0.13682381808757782, 0.09134071320295334, 0.022964097559452057, -0.08304251730442047, -0.03833270072937012, -0.049814045429229736, -0.019839342683553696, -0.09750930964946747, -0.03539659455418587, 0.03789713978767395, 0.06731197983026505, 0.08367204666137695, -0.06715574860572815, -0.039077695459127426, 0.023698467761278152, -0.020590996369719505, -0.07629220187664032, 0.07818929851055145, 0.04988919943571091, -0.10836616158485413, 0.10959573090076447, -0.03227951377630234, 0.0324656218290329, 0.10000906139612198, 0.040773507207632065, -0.11516482383012772, 0.02005109377205372, 0.0728125050663948, 0.03237299621105194, 0.0911635011434555, -0.03653305023908615, 0.005189354531466961, 0.08133310079574585, -0.016988972201943398, -0.01452135480940342, -0.08450429141521454, 0.07872950285673141, 0.0275008212774992, -0.02939518727362156, 0.043085671961307526, -0.008812959305942059, 0.07744081318378448, 0.10433021187782288, 0.06378483772277832, 0.11735212057828903, -0.04565129429101944, -0.060441989451646805, -0.08436881750822067, 0.12682370841503143, -0.013349647633731365, -0.2580695152282715, -0.0777057632803917, -0.068797267973423, -0.06085275858640671, -0.012809923849999905, 0.03300845995545387, -0.004392868373543024, -0.08504041284322739, -0.0962553322315216, 0.06756086647510529, 0.06746001541614532, -0.10321862995624542, -0.1180732250213623, 0.041157931089401245, -0.003797577228397131, -0.07544698566198349, -0.0054298220202326775, 0.022217586636543274, -0.0568910650908947, 0.020239826291799545, 0.04505406320095062, 0.1359160989522934, 0.05245393142104149, -0.019264154136180878, 0.004207976162433624, -0.0066687436774373055, 0.16390982270240784, -0.15257038176059723, 0.09690045565366745, 0.156691774725914, 0.022299442440271378, 0.0695284754037857, 0.18984872102737427, -0.015752185136079788, -0.01746230386197567, 0.030724335461854935, 0.07955411821603775, -0.060941413044929504, -0.19742289185523987, -0.05640626326203346, -0.04944514110684395, 0.02320984937250614, 0.13805490732192993, 0.03908552601933479, 0.022320719435811043, 0.08939849585294724, -0.11232773959636688, 0.04532145336270332, 0.026708250865340233, 0.11247419565916061, 0.021079957485198975, 0.04046207293868065, 0.04285399615764618, -0.0421755351126194, -0.04492460936307907, 0.09961893409490585, 0.11246053874492645, 0.12981316447257996, -0.10010813176631927, 0.09715473651885986, 0.030996257439255714, 0.023259824141860008, -0.03468888998031616, 0.0022151425946503878, -0.036012861877679825, 0.06022033095359802, -0.005919110029935837, -0.09788144379854202, -0.00642810994759202, 0.0872005894780159, 0.13933230936527252, -0.018680332228541374, 0.009891401045024395, -0.04702886939048767, 0.08277011662721634, 0.24802160263061523, 0.006465348415076733, -0.20682939887046814, 0.01770915277302265, 0.047592177987098694, 0.0188567154109478, -0.12311097234487534, -0.04075571894645691, 0.08075638115406036, -0.17029821872711182, 0.05506774038076401, -0.043116629123687744, 0.11054059118032455, -0.1547631174325943, -0.041499167680740356, 0.03989870846271515, 0.0418308861553669, -0.022673863917589188, 0.08253464847803116, -0.13383525609970093, 0.08273928612470627, 0.038756731897592545, 0.040769606828689575, -0.09605403244495392, 0.031069708988070488, 0.008711992762982845, -0.0363345704972744, 0.15435484051704407, -0.019641539081931114, -0.015380779281258583, -0.14287826418876648, -0.12061572819948196, -0.01380718220025301, 0.05640875920653343, -0.08224216848611832, 0.10654266923666, 0.018575897440314293, -0.035719264298677444, -0.08360427618026733, -0.0669429674744606, -0.06279407441616058, -0.17945298552513123, 0.03746948018670082, -0.01420487742871046, 0.010762816295027733, -0.01634082943201065, 0.031527817249298096, 0.05725352466106415, 0.1177595928311348, -0.04789087921380997, -0.08719947189092636, -0.1469702273607254, 0.056565094739198685, 0.09281712770462036, -0.027381401509046555, -0.028258418664336205, -0.09202369302511215, 0.17918425798416138, -0.03129477798938751, -0.06703320890665054, 0.02879607491195202, -0.06269528716802597, -0.12428966164588928, -0.05776822566986084, 0.10114654898643494, 0.03141087293624878, 0.0009370355401188135, 0.000007645099685760215, 0.06051013618707657, 0.00508872652426362, -0.048910751938819885, 0.03354303166270256, 0.10191952437162399, 0.13694603741168976, 0.13983002305030823, 0.000567765673622489, -0.14062367379665375, -0.12513472139835358, -0.005557945463806391, 0.03306015953421593, 0.1149044781923294, -0.06656447798013687, 0.10159330815076828, 0.053671520203351974, -0.07988438755273819, -0.24115151166915894, 0.08090320229530334, 0.06375116854906082, -0.00771703477948904, -0.01996840350329876, -0.13858845829963684, 0.12842993438243866, 0.0347522534430027, -0.004102339502424002, 0.07627267390489578, -0.2597959041595459, -0.07924602925777435, -0.012122043408453465, 0.04258435219526291, -0.21562956273555756, -0.17231467366218567, -0.04925156757235527, -0.05998023599386215, -0.14778193831443787, 0.0609603188931942, -0.018897268921136856, 0.05028514191508293, 0.03692975267767906, 0.041751451790332794, 0.06179295852780342, -0.05123485252261162, 0.09836217761039734, 0.021843196824193, 0.0465037003159523, -0.06780612468719482, -0.09935586154460907, 0.04605310410261154, -0.09299265593290329, 0.13924449682235718, 0.04478619247674942, 0.01615622639656067, -0.05478039011359215, -0.02247754856944084, -0.04434530809521675, 0.08463844656944275, -0.02523363195359707, -0.046202875673770905, -0.09145835041999817, 0.050976209342479706, 0.12366531044244766, 0.028061991557478905, 0.09975571185350418, -0.04600752145051956, -0.009087972342967987, 0.15819305181503296, 0.09810389578342438, 0.012540124356746674, -0.12652069330215454, -0.04067312926054001, -0.0011682636104524136, 0.043912697583436966, -0.12339571118354797, 0.04240504652261734, 0.08204817771911621, 0.02155507728457451, 0.11218680441379547, -0.013069786131381989, -0.10533034801483154, 0.016670865938067436, 0.04812036454677582, -0.10257062315940857, -0.11746437102556229, 0.026374535635113716, 0.09553404152393341, -0.09799110144376755, -0.12294428795576096, 0.11407037079334259, -0.009049619548022747, -0.020190713927149773, -0.0022547675762325525, 0.07634672522544861, 0.050384290516376495, 0.06731531769037247, 0.020444223657250404, 0.040027134120464325, -0.06816396862268448, 0.1206212043762207, 0.1464424729347229, -0.14865261316299438, -0.0019665092695504427, 0.1140095591545105, -0.04803510382771492, -0.022139690816402435, -0.024967296048998833, 0.0472860150039196, -0.0069496058858931065, -0.02778434194624424, 0.0267652440816164, -0.04546424373984337, 0.029390867799520493, 0.07908472418785095, -0.004617026541382074, 0.05223359540104866, 0.03245779126882553, -0.0049475193955004215, -0.143189936876297, 0.12860484421253204, 0.02872380055487156, 0.05534707009792328, -0.08683113753795624, 0.009749281220138073, 0.031697824597358704, 0.003296895418316126, 0.007074836175888777, -0.05350421741604805, -0.08612595498561859, 0.002821608679369092, -0.024959353730082512, 0.10034135729074478, -0.08731459081172943, -0.008546240627765656, -0.022008152678608894, 0.005200622603297234, -0.014890063554048538, 0.0276046022772789, -0.0534357987344265, -0.07848875969648361, -0.04526205360889435, 0.12572553753852844, -0.14122933149337769, -0.028489520773291588, 0.05808094143867493, -0.09493748098611832, 0.05925270915031433, 0.013925454579293728, -0.03518872335553169, -0.08389285206794739, -0.18184424936771393, -0.037536296993494034, 0.027351509779691696, 0.05920828878879547, 0.047588713467121124, -0.08018320798873901, 0.04911729693412781, -0.0038190626073628664, -0.0792613998055458, -0.01708221435546875, -0.01124957948923111, -0.11849366128444672, 0.05161916837096214, -0.08766284584999084, -0.03575991466641426, -0.040027886629104614, 0.14402692019939423, 0.06589849293231964, 0.014617894776165485, 0.07647969573736191, -0.05166245624423027, 0.09502250701189041, -0.133357435464859, -0.030959824100136757, -0.004195528570562601, -0.04608026519417763, -0.07256066799163818, 0.0022024193312972784, 0.07670585066080093, -0.030865905806422234, 0.13469107449054718, 0.13004927337169647, 0.040097154676914215, 0.043589998036623, -0.01029742881655693, 0.058746978640556335, 0.058845873922109604, -0.028758440166711807, -0.013989037834107876, -0.017430558800697327, 0.06679215282201767, 0.018855921924114227, 0.015656588599085808, 0.09365082532167435, 0.0619826577603817, 0.24348469078540802, 0.15088298916816711, 0.01525653526186943, 0.05547579377889633, -0.07714725285768509, -0.05847914144396782, 0.10404098033905029, -0.05127127096056938, 0.08461981266736984, -0.10650334507226944, 0.05419617146253586, 0.1031215563416481, -0.16167567670345306, 0.06253960728645325, -0.006598098203539848, -0.01108468510210514, -0.026803115382790565, -0.11325005441904068, -0.06697507947683334, -0.01948566362261772, 0.010768112726509571, -0.10973202437162399, 0.07896193861961365, 0.12675514817237854, -0.0003845583414658904, 0.01617930829524994, 0.0993536189198494, -0.05932925269007683, -0.07436585426330566, 0.09035911411046982, 0.016174988821148872, 0.045875366777181625, 0.044952407479286194, 0.039917610585689545, 0.0774255320429802, 0.0027776348870247602, 0.09122153371572495, 0.08928357064723969, 0.07417840510606766, 0.04097343608736992, -0.06906914710998535, -0.07994800806045532, 0.031865645200014114, -0.014255666173994541, -0.006670373026281595, 0.1508912891149521, 0.0757400244474411, 0.007829152047634125, -0.022360607981681824, 0.18187400698661804, -0.023193413391709328, -0.014618907123804092, -0.13586099445819855, 0.030513957142829895, -0.034658946096897125, -0.013574115931987762, -0.011779692023992538, -0.15149174630641937, 0.005526380613446236, 0.13611562550067902, 0.07604066282510757, -0.03632475063204765, -0.01506174448877573, -0.015404600650072098, 0.008155765011906624, -0.022036176174879074, 0.042925480753183365, 0.010169544257223606, 0.20656558871269226, -0.059157487004995346, 0.012501075863838196, -0.03504011407494545, -0.03694123402237892, -0.050748810172080994, 0.09619786590337753, -0.011560965329408646, -0.00396784208714962, -0.08195650577545166, 0.10707898437976837, -0.020300397649407387, -0.21085022389888763, 0.06880681961774826, -0.10208769142627716, -0.08764169365167618, 0.012790318578481674, -0.025619177147746086, 0.014026794582605362, 0.037620820105075836, 0.006144572980701923, -0.06218228116631508, 0.06187729164958, 0.023580769076943398, -0.0745546817779541, -0.013483635149896145, -0.0005851557943969965, -0.06665161997079849, 0.26452770829200745, -0.03547189384698868, 0.03451866656541824, 0.08923841267824173, -0.028084440156817436, -0.13598591089248657, -0.01981213688850403, 0.07587367296218872, -0.059257879853248596, 0.02557721920311451, 0.13961774110794067, -0.015521733090281487, 0.15197797119617462, 0.08415651321411133, -0.09019729495048523, 0.05331600457429886, -0.03134044259786606, 0.010416224598884583, -0.12308423221111298, 0.00423466507345438, -0.09249437600374222, 0.11685355007648468, 0.14742782711982727, -0.004817252047359943, -0.005991291720420122, -0.04210224375128746, 0.009420654736459255, 0.0038334312848746777, 0.09719820320606232, -0.005696902517229319, -0.06386789679527283, 0.005425389856100082, -0.1278669387102127, 0.08295940607786179, -0.15345600247383118, -0.0482979454100132, 0.03207351639866829, -0.018706902861595154, -0.012586787343025208, 0.08143557608127594, 0.03530256822705269, 0.005448783282190561, -0.061660975217819214, -0.133919820189476, 0.03462306410074234, 0.16558438539505005, -0.021227646619081497, -0.030320744961500168 ]
f9c047d91513beccd5072c5e8f2e48340693a576
# Dataset Card for number-ops ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/number-ops - **Point of Contact:** [email protected] ### Dataset Summary number-ops ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/number-ops ### Citation Information ``` @misc{ number-ops, title = { number ops Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/number-ops } }, url = { https://universe.roboflow.com/object-detection/number-ops }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/number-ops
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:54+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "number-ops", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "number-ops", "1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9, "11": "div", "12": "eqv", "13": "minus", "14": "mult", "15": "plus"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:32:20+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for number-ops The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary number-ops ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for number-ops\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nnumber-ops", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for number-ops\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nnumber-ops", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 21, 22, 9, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for number-ops\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nnumber-ops### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.015093805268406868, 0.15851430594921112, -0.008812841959297657, 0.028991876170039177, 0.1191016137599945, -0.009647130034863949, 0.07101345807313919, 0.07021749764680862, 0.01872222125530243, 0.1590881645679474, -0.02163189835846424, 0.06177137419581413, 0.13463981449604034, 0.10902681201696396, -0.02201847918331623, -0.15033073723316193, 0.059917375445365906, -0.06994256377220154, 0.06380631029605865, 0.06380495429039001, 0.06837709993124008, -0.1324346512556076, 0.09320507198572159, -0.03872232139110565, -0.04186936467885971, 0.015919286757707596, -0.021133847534656525, -0.044980671256780624, 0.010020147077739239, 0.02140444703400135, 0.04459935054183006, 0.007699998095631599, 0.04807558283209801, -0.20148208737373352, 0.028059767559170723, 0.10991412401199341, 0.011682025156915188, 0.03753132000565529, 0.12132243812084198, -0.09563752263784409, 0.029497401788830757, -0.1465509533882141, 0.026749443262815475, 0.009086190722882748, -0.12560145556926727, -0.05982710048556328, -0.1275557279586792, 0.0230859387665987, 0.11059731990098953, 0.06027943268418312, -0.010479017160832882, 0.047445040196180344, 0.004657241050153971, 0.058739837259054184, 0.1143605038523674, -0.07753253728151321, -0.06443263590335846, 0.08515655994415283, 0.009401845745742321, 0.11764287203550339, -0.12672792375087738, -0.006337188649922609, -0.0027960410807281733, -0.030352221801877022, 0.006302029825747013, -0.06866138428449631, -0.04120603948831558, 0.00194849306717515, -0.09139269590377808, -0.13151682913303375, 0.15341053903102875, 0.053997986018657684, -0.05018164962530136, -0.0839458778500557, -0.031227238476276398, 0.020132597535848618, -0.022112328559160233, -0.0075920578092336655, 0.0466495156288147, 0.018694855272769928, 0.06569847464561462, -0.056594282388687134, -0.11552929133176804, 0.05950549617409706, -0.007992776110768318, 0.056749433279037476, -0.04268914833664894, 0.04715830460190773, 0.018664106726646423, 0.0716654360294342, 0.00634157657623291, -0.12467152625322342, -0.03309524059295654, -0.036831773817539215, -0.0780133530497551, -0.035148147493600845, 0.05437379702925682, -0.11366433650255203, 0.059681735932826996, 0.06958843767642975, -0.07515831291675568, 0.03663531690835953, -0.10871124267578125, 0.025022245943546295, 0.09219994395971298, 0.1868617981672287, -0.06664004921913147, -0.08333680033683777, 0.005912149325013161, 0.02411477267742157, 0.036715541034936905, -0.05535413697361946, -0.03689788281917572, -0.012725754640996456, 0.010852452367544174, 0.023464404046535492, 0.09528026729822159, 0.016066011041402817, -0.07056950032711029, -0.05008680000901222, 0.08074597269296646, -0.1124679371714592, 0.05850455164909363, 0.04233551397919655, -0.01041474100202322, 0.08452059328556061, 0.017494836822152138, 0.02983134053647518, -0.09364721179008484, 0.06300490349531174, -0.0422184057533741, 0.03530118614435196, -0.0901854857802391, -0.06201357766985893, 0.043986208736896515, -0.07990507036447525, -0.0806603953242302, -0.0872969925403595, -0.03871169313788414, -0.09374792873859406, 0.045626576989889145, -0.03994389995932579, 0.032918721437454224, 0.010600598528981209, -0.040384016931056976, -0.009513522498309612, 0.020671015605330467, 0.023808622732758522, -0.054733213037252426, 0.030583662912249565, -0.09925361722707748, 0.027486314997076988, 0.05907053127884865, 0.02811788022518158, -0.07776019722223282, 0.05732991546392441, -0.16383185982704163, 0.12625637650489807, -0.030194999650120735, 0.03868339583277702, -0.12024363875389099, 0.02638380602002144, -0.03235296905040741, -0.04524669423699379, 0.008402803912758827, 0.11501778662204742, -0.10263790190219879, 0.02547026425600052, 0.0652158260345459, -0.057790618389844894, -0.03995600715279579, 0.03675432875752449, -0.04535077139735222, 0.005016900133341551, 0.07244278490543365, 0.09699679166078568, -0.009884114377200603, -0.11927896738052368, -0.12336169928312302, -0.05098801851272583, -0.04972679167985916, 0.14476615190505981, 0.06457531452178955, -0.02907949686050415, 0.06631419062614441, -0.004256881307810545, -0.028525730594992638, -0.030752014368772507, 0.021783791482448578, -0.04568776115775108, 0.013416170142591, 0.019498080015182495, -0.07469075918197632, 0.016063988208770752, -0.11036694794893265, 0.017542630434036255, -0.07412590086460114, -0.05970470979809761, 0.007323021534830332, -0.028085652738809586, 0.028307989239692688, -0.03920302912592888, 0.08457286655902863, -0.10825452953577042, -0.01382840983569622, -0.13652531802654266, -0.10111425071954727, 0.06095778942108154, 0.05056536942720413, 0.043226540088653564, -0.06567049771547318, 0.00096298468997702, 0.016010450199246407, 0.03872663527727127, -0.007091529201716185, 0.04027864709496498, -0.024338943883776665, -0.02820448763668537, -0.13179726898670197, -0.018881481140851974, -0.025903047993779182, 0.12029851227998734, -0.12010202556848526, -0.028256051242351532, 0.15701213479042053, 0.11483548581600189, 0.03504572808742523, -0.045963894575834274, 0.044464822858572006, -0.016115594655275345, -0.040150608867406845, -0.07204098254442215, -0.018431998789310455, 0.0075005050748586655, 0.04476451873779297, 0.06097635626792908, -0.2007971554994583, -0.14784839749336243, 0.07475518435239792, 0.0003179602208547294, -0.07346509397029877, -0.07873307913541794, -0.04516417905688286, -0.004974893759936094, -0.1014617457985878, -0.03823832422494888, 0.07399270683526993, 0.04713566228747368, 0.07231367379426956, -0.0577000267803669, -0.028664380311965942, 0.030173899605870247, -0.02561078779399395, -0.08283616602420807, 0.026713643223047256, 0.045359089970588684, -0.10015752166509628, 0.09689588844776154, 0.006150842644274235, 0.023748548701405525, 0.12563835084438324, 0.03126326948404312, -0.09854442626237869, -0.01781468465924263, 0.08492539077997208, 0.027185218408703804, 0.11267728358507156, -0.045593004673719406, 0.018503673374652863, 0.06822919100522995, -0.004465600475668907, -0.038619618862867355, -0.09013506025075912, 0.07096293568611145, 0.020696062594652176, -0.03696330264210701, 0.07438163459300995, -0.04261065647006035, 0.07113898545503616, 0.09369412809610367, 0.04713877663016319, 0.08035747706890106, -0.05573219060897827, -0.06578118354082108, -0.08463351428508759, 0.11498641222715378, -0.055504459887742996, -0.2248770296573639, -0.09263473004102707, -0.08549387007951736, -0.057339444756507874, 0.014578953385353088, 0.025780510157346725, -0.006555426865816116, -0.07907381653785706, -0.08266911655664444, 0.028279444202780724, 0.07685331255197525, -0.09358710795640945, -0.07239099591970444, 0.023449284955859184, -0.005295632407069206, -0.06817474216222763, -0.014125016517937183, 0.021363629028201103, -0.07578915357589722, 0.016750086098909378, 0.04727291688323021, 0.12892434000968933, 0.08487517386674881, -0.028578152880072594, 0.009779228828847408, -0.006120192352682352, 0.1633695662021637, -0.15451033413410187, 0.12736761569976807, 0.14997059106826782, 0.0005090622580610216, 0.08647392690181732, 0.22138163447380066, -0.01380904484540224, 0.0008237982983700931, 0.014091962948441505, 0.057505495846271515, -0.07389579713344574, -0.19787344336509705, -0.0456167571246624, -0.07154802978038788, 0.007557952310889959, 0.11057813465595245, 0.03654973581433296, 0.01709318719804287, 0.09920964390039444, -0.09893455356359482, 0.027213580906391144, 0.04393266513943672, 0.09145735204219818, 0.03449277952313423, 0.037731677293777466, 0.04752006754279137, -0.03902537375688553, -0.03961282595992088, 0.09725797176361084, 0.13503576815128326, 0.12464406341314316, -0.10192080587148666, 0.1097668707370758, 0.030873684212565422, 0.02074751816689968, -0.04154866561293602, 0.008981403894722462, -0.020600803196430206, 0.05660942569375038, -0.0016888378886505961, -0.09821721911430359, -0.019908683374524117, 0.07623111456632614, 0.11169904470443726, 0.008924336172640324, 0.012526839040219784, 0.010532050393521786, 0.09061146527528763, 0.20187699794769287, 0.028485948219895363, -0.17879165709018707, 0.024282773956656456, 0.0339924618601799, 0.040773045271635056, -0.1323637068271637, -0.03390849754214287, 0.125278502702713, -0.1575293093919754, 0.06953535974025726, -0.04186326265335083, 0.10102418810129166, -0.12036406993865967, -0.03350156545639038, 0.05407068878412247, 0.06304019689559937, -0.02554972469806671, 0.07432323694229126, -0.10363257676362991, 0.09798596799373627, 0.038139913231134415, 0.04075814038515091, -0.07948168367147446, 0.05134957656264305, 0.012226651422679424, -0.012492884881794453, 0.13110610842704773, 0.00605009077116847, -0.056119244545698166, -0.14128710329532623, -0.10676056891679764, -0.0018012943910434842, 0.05987367779016495, -0.06876105070114136, 0.10758837312459946, -0.003342904383316636, -0.03880081698298454, -0.06023940071463585, -0.04578040540218353, -0.04536249488592148, -0.19359664618968964, 0.048487622290849686, -0.009100849740207195, 0.024524908512830734, -0.016281859949231148, 0.030688438564538956, 0.016917604953050613, 0.10223140567541122, -0.04690470173954964, -0.0696585401892662, -0.13936470448970795, 0.03416106104850769, 0.04013225808739662, -0.03241446986794472, -0.0272821094840765, -0.09144111722707748, 0.1801125705242157, -0.02817443199455738, -0.05784012749791145, 0.022238081321120262, -0.03541882336139679, -0.09142573177814484, -0.07664790004491806, 0.12479890882968903, 0.02490326575934887, -0.01791885867714882, 0.020522823557257652, 0.06647519767284393, 0.0013119431678205729, -0.06257656961679459, 0.04660579189658165, 0.1135668233036995, 0.11962113529443741, 0.16059422492980957, 0.012872048653662205, -0.1502237766981125, -0.11104641109704971, 0.014471659436821938, 0.05045915022492409, 0.09764384478330612, -0.08002325147390366, 0.09023844450712204, 0.014585725963115692, -0.11282598972320557, -0.21384042501449585, 0.06446076929569244, 0.06411363929510117, -0.004923200234770775, -0.014596776105463505, -0.1291944980621338, 0.143695667386055, 0.05527380853891373, 0.008295434527099133, 0.051020532846450806, -0.2113097757101059, -0.05535760521888733, -0.03302159532904625, 0.04406451806426048, -0.129678875207901, -0.14663106203079224, -0.03792693093419075, -0.04196202754974365, -0.16571281850337982, 0.07027362287044525, -0.03888944908976555, 0.0485583059489727, 0.04458741471171379, 0.028865616768598557, 0.061614636331796646, -0.03893885016441345, 0.12529127299785614, 0.016942134127020836, 0.037710726261138916, -0.08024816960096359, -0.08727506548166275, 0.08337119966745377, -0.10986512154340744, 0.10301186144351959, 0.041657429188489914, 0.012035895138978958, -0.03789755329489708, -0.01889246515929699, -0.0271967351436615, 0.07801270484924316, -0.030711226165294647, -0.04925326257944107, -0.08297500014305115, 0.027328260242938995, 0.1288878470659256, 0.026290878653526306, 0.09626003354787827, -0.027461232617497444, 0.00548468716442585, 0.1783822625875473, 0.11422467976808548, -0.012768739834427834, -0.12035108357667923, -0.04736660048365593, 0.009252306073904037, 0.024171018972992897, -0.09165797382593155, 0.05795082077383995, 0.09570939093828201, 0.01616768166422844, 0.0968581959605217, -0.00005772985241492279, -0.0949803814291954, 0.009167400188744068, 0.06422820687294006, -0.09180594980716705, -0.14708304405212402, -0.006443948484957218, 0.08657689392566681, -0.11250828951597214, -0.11041411757469177, 0.1404159665107727, 0.009270258247852325, -0.007379569113254547, 0.014715053141117096, 0.0763915479183197, 0.03775770589709282, 0.03970876708626747, 0.012993082404136658, 0.032861318439245224, -0.05902041122317314, 0.09808747470378876, 0.1475645750761032, -0.09228818118572235, -0.0027297199703752995, 0.11351524293422699, -0.04748288542032242, -0.016595015302300453, -0.032077331095933914, 0.06609324365854263, -0.02420181781053543, -0.017766905948519707, 0.026449618861079216, -0.0760677233338356, 0.009245115332305431, 0.08285332471132278, -0.010829458013176918, 0.05715729296207428, 0.028903240337967873, -0.006267705466598272, -0.1237199455499649, 0.13368457555770874, -0.00955719780176878, 0.049893416464328766, -0.10383667051792145, 0.03289420157670975, 0.009829217568039894, 0.03310117498040199, 0.008551781997084618, -0.0863407552242279, -0.07364170253276825, -0.0016448243986815214, -0.05318599194288254, 0.10805683583021164, -0.09537388384342194, -0.014077707193791866, -0.010554886423051357, 0.016116913408041, -0.030529795214533806, 0.03117869794368744, -0.04057934880256653, -0.05458465591073036, -0.04975423961877823, 0.11767948418855667, -0.12482846528291702, -0.018269073218107224, 0.05745396763086319, -0.08724426478147507, 0.06541024893522263, 0.008990844711661339, -0.03246085345745087, -0.07080844044685364, -0.1947825402021408, -0.017925402149558067, 0.043009478598833084, 0.0603693425655365, 0.03846439719200134, -0.0778624415397644, 0.055901046842336655, -0.006107616703957319, -0.09007612615823746, -0.018779542297124863, 0.011521948501467705, -0.10543636232614517, 0.04988298565149307, -0.06709996610879898, -0.028659824281930923, -0.048448577523231506, 0.1402338743209839, 0.0318121500313282, 0.016504710540175438, 0.06677817553281784, -0.05139746889472008, 0.09900879859924316, -0.15954308211803436, -0.038363393396139145, -0.005495502147823572, -0.03472054377198219, -0.0677381157875061, -0.030955081805586815, 0.07524468004703522, -0.024468472227454185, 0.10462716221809387, 0.13174393773078918, 0.040866900235414505, 0.02615545317530632, -0.04074715077877045, 0.06154683977365494, 0.061001650989055634, 0.00002511208731448278, -0.005975252948701382, -0.02794729918241501, 0.0773133635520935, 0.0010148114524781704, 0.035062093287706375, 0.10669152438640594, 0.08709027618169785, 0.21697144210338593, 0.1631014496088028, 0.02374635450541973, 0.05617748573422432, -0.08544818311929703, -0.06708631664514542, 0.077097587287426, -0.08543389290571213, 0.04739838466048241, -0.0959358960390091, -0.03418724983930588, 0.10746841132640839, -0.17175479233264923, 0.05735917389392853, -0.020555652678012848, -0.019002076238393784, -0.0389668233692646, -0.12426741421222687, -0.05331691727042198, -0.04481038451194763, -0.012867097742855549, -0.12503141164779663, 0.06615730375051498, 0.12594139575958252, -0.013991684652864933, 0.011852339841425419, 0.07738865166902542, -0.08254172652959824, -0.06439099460840225, 0.08196099102497101, 0.0251859612762928, 0.09179822355508804, 0.045656584203243256, 0.028634395450353622, 0.0693470910191536, -0.00588283920660615, 0.0921919196844101, 0.08483612537384033, 0.1479591280221939, 0.04189976304769516, -0.07224337756633759, -0.07114791125059128, 0.046762872487306595, -0.022719522938132286, -0.021522974595427513, 0.1324710100889206, 0.07246927917003632, 0.023582587018609047, -0.002055461285635829, 0.18675892055034637, -0.011936584487557411, -0.03237125650048256, -0.1577109843492508, 0.024791812524199486, -0.03174542635679245, -0.00008514134970027953, -0.027530241757631302, -0.15193834900856018, 0.002589076990261674, 0.11032405495643616, 0.05189800262451172, -0.04166455566883087, 0.00221244222484529, -0.013442871160805225, 0.011469846591353416, 0.007307836785912514, 0.04947943985462189, 0.014934674836695194, 0.20280702412128448, -0.05257497355341911, -0.012375833466649055, -0.02405378594994545, -0.015314366668462753, -0.0735841765999794, 0.06803431361913681, -0.02990807592868805, 0.0031858421862125397, -0.06851260364055634, 0.10134774446487427, 0.0015681316144764423, -0.1656865030527115, 0.06239361688494682, -0.12075716257095337, -0.09630921483039856, 0.009262165986001492, 0.008168024942278862, -0.0001811855472624302, 0.020212138071656227, 0.01226294506341219, -0.06600956618785858, 0.12154798954725266, 0.03212049975991249, -0.06274085491895676, 0.0012991423718631268, 0.004531636368483305, -0.12459017336368561, 0.268851101398468, -0.025409044697880745, 0.009760475717484951, 0.09976428747177124, 0.0017151677748188376, -0.13655276596546173, -0.02274542674422264, 0.0701436772942543, -0.04868048429489136, 0.004476751200854778, 0.11034687608480453, -0.011448550969362259, 0.12033111602067947, 0.10414241999387741, -0.05690201371908188, 0.04422098025679588, -0.007268434856086969, 0.03493443876504898, -0.09457674622535706, 0.004210338927805424, -0.09894271939992905, 0.10309155285358429, 0.14126917719841003, -0.002167311729863286, -0.0074456180445849895, -0.034802742302417755, -0.009175652638077736, 0.007511230185627937, 0.10748826712369919, -0.010839630849659443, -0.056148119270801544, 0.0016680497210472822, -0.0950305238366127, 0.07833588868379593, -0.09909424930810928, -0.06991566717624664, 0.033018071204423904, -0.013553677126765251, -0.023806944489479065, 0.09382987022399902, 0.0456605963408947, 0.02006850205361843, -0.05681200698018074, -0.09805849939584732, 0.019423678517341614, 0.17350873351097107, -0.012366375885903835, -0.025562498718500137 ]
5d98f8ebc2437e51f3e1adcadc6a725c9cb02699
# Dataset Card for stomata-cells ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/stomata-cells - **Point of Contact:** [email protected] ### Dataset Summary stomata-cells ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/stomata-cells ### Citation Information ``` @misc{ stomata-cells, title = { stomata cells Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/stomata-cells } }, url = { https://universe.roboflow.com/object-detection/stomata-cells }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/stomata-cells
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:31:59+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "stomata-cells", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "stomata-cells", "1": "close", "2": "open"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:32:34+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for stomata-cells The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary stomata-cells ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for stomata-cells\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nstomata-cells", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for stomata-cells\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nstomata-cells", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for stomata-cells\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nstomata-cells### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.019963502883911133, 0.1625172197818756, -0.008479124866425991, 0.023552436381578445, 0.11409246176481247, 0.003352836240082979, 0.050519220530986786, 0.07276003807783127, 0.0014568606857210398, 0.1669493317604065, -0.011119546368718147, 0.08338751643896103, 0.12346777319908142, 0.10791590809822083, -0.018349720165133476, -0.15465159714221954, 0.06176136061549187, -0.06534954905509949, 0.06984198838472366, 0.06882646679878235, 0.07781735807657242, -0.1278166025876999, 0.09168777614831924, -0.04630345478653908, -0.0436466708779335, 0.024128366261720657, -0.03168357163667679, -0.04164240509271622, 0.020065633580088615, 0.02653913013637066, 0.030660493299365044, 0.02941238135099411, 0.045137546956539154, -0.18085016310214996, 0.02228565327823162, 0.09702636301517487, 0.028881322592496872, 0.03057040460407734, 0.14112113416194916, -0.0896724984049797, 0.05605315417051315, -0.13406871259212494, 0.027137460187077522, 0.016084905713796616, -0.12015144526958466, -0.11816761642694473, -0.13337762653827667, 0.04272417351603508, 0.10932255536317825, 0.03558923304080963, -0.009394184686243534, 0.07226673513650894, -0.009476376697421074, 0.057500265538692474, 0.12041430175304413, -0.07832406461238861, -0.034690722823143005, 0.09418769925832748, 0.02807261236011982, 0.10011287033557892, -0.10423313826322556, -0.020871000364422798, -0.00029376850579865277, -0.028233885765075684, 0.015126130543649197, -0.07086476683616638, -0.04449468478560448, -0.0020362394861876965, -0.09152579307556152, -0.13850492238998413, 0.15252001583576202, 0.052896346896886826, -0.0502789244055748, -0.1291167438030243, -0.017251884564757347, 0.054861970245838165, -0.031311143189668655, -0.012292671948671341, 0.04291312023997307, -0.00001626834273338318, 0.061018262058496475, -0.06508250534534454, -0.09941896051168442, 0.0399932786822319, 0.01320047676563263, 0.006398464553058147, -0.022792736068367958, 0.03205542638897896, 0.007138887420296669, 0.07463919371366501, -0.020806455984711647, -0.10137127339839935, -0.02053716592490673, -0.03965556249022484, -0.07324366271495819, -0.041592612862586975, 0.06840349733829498, -0.15702278912067413, 0.06377048045396805, 0.04000750556588173, -0.06489469110965729, 0.03661654517054558, -0.12396074831485748, 0.020861856639385223, 0.10821294784545898, 0.17721064388751984, -0.08142830431461334, -0.08982332050800323, -0.0021462435834109783, 0.028203876689076424, 0.02229941636323929, -0.0335787795484066, -0.02548614889383316, 0.0009524832130409777, 0.044298864901065826, 0.02958393283188343, 0.10825012624263763, 0.039403192698955536, -0.07593924552202225, -0.052491623908281326, 0.10830564796924591, -0.1037946417927742, 0.05570016801357269, 0.052127718925476074, -0.03872762620449066, 0.08268411457538605, 0.0054346974939107895, 0.006738300435245037, -0.10722620040178299, 0.09877918660640717, -0.03508393093943596, 0.025316588580608368, -0.09080084413290024, -0.08902756124734879, 0.04847006872296333, -0.098871611058712, -0.09542609006166458, -0.08184561878442764, -0.06227611005306244, -0.09229417145252228, 0.03544240817427635, -0.045166682451963425, 0.030646948143839836, 0.01432841643691063, -0.04583935812115669, -0.006186240818351507, 0.002047392074018717, 0.014778864569962025, -0.04724923521280289, 0.042261507362127304, -0.09821470826864243, 0.03097422607243061, 0.09042681008577347, 0.03107396326959133, -0.08504799008369446, 0.06111123040318489, -0.21088790893554688, 0.13098719716072083, -0.04539226368069649, 0.03439756855368614, -0.12988528609275818, 0.0071910978294909, -0.024765249341726303, -0.038996003568172455, 0.0009917288552969694, 0.15105514228343964, -0.1067858561873436, 0.01341252587735653, 0.08970044553279877, -0.054998502135276794, -0.03741425648331642, 0.03980328142642975, -0.04333745688199997, 0.007665532175451517, 0.08877286314964294, 0.11904014647006989, -0.030190711840987206, -0.09442654997110367, -0.11352499574422836, -0.049272410571575165, -0.047228701412677765, 0.14326158165931702, 0.05301264300942421, -0.040788475424051285, 0.09315276890993118, -0.005290494300425053, -0.01580248400568962, -0.03637099266052246, 0.0186269860714674, -0.025535421445965767, 0.012091065756976604, -0.0021282543893903494, -0.07281742244958878, 0.019292078912258148, -0.0950644463300705, 0.011763958260416985, -0.06805144250392914, -0.032239243388175964, 0.008478337898850441, -0.02399253100156784, 0.02026146464049816, -0.04137434810400009, 0.09833045303821564, -0.11670278012752533, -0.0029295652639120817, -0.16824626922607422, -0.09647690504789352, 0.0618569441139698, -0.021144572645425797, 0.04332324117422104, -0.07018176466226578, -0.001970217563211918, 0.011728405021131039, 0.02837991528213024, -0.00956657063215971, 0.0463515929877758, -0.02286921814084053, -0.025410711765289307, -0.12692369520664215, -0.031406644731760025, -0.026322606950998306, 0.11477605253458023, -0.12742801010608673, -0.023106396198272705, 0.1695535033941269, 0.11405874788761139, 0.047188080847263336, -0.05604470521211624, 0.06999404728412628, -0.02452932856976986, -0.025480924174189568, -0.07870478183031082, -0.018944958224892616, -0.006536380387842655, 0.02415931038558483, 0.08611109107732773, -0.1749836504459381, -0.10692884773015976, 0.07772721350193024, 0.01910550333559513, -0.09068576246500015, -0.04371841624379158, -0.042172059416770935, -0.010629755444824696, -0.09165346622467041, -0.04496026784181595, 0.01690836437046528, 0.06740536540746689, 0.08568180352449417, -0.06016696244478226, -0.02922680601477623, 0.025187097489833832, -0.022335393354296684, -0.07342115789651871, 0.05321188643574715, 0.04877657815814018, -0.1099388599395752, 0.09845919162034988, -0.025207769125699997, 0.04439203441143036, 0.09338215738534927, 0.03710317239165306, -0.10048694908618927, 0.0015092191752046347, 0.07711608707904816, 0.036408327519893646, 0.09986472129821777, -0.012374192476272583, 0.0042282938957214355, 0.07869558036327362, 0.0037628684658557177, -0.02178371138870716, -0.08158156275749207, 0.08466088026762009, 0.028001992031931877, -0.036659933626651764, 0.0297712255269289, -0.024636490270495415, 0.08486486971378326, 0.10884127020835876, 0.04097278043627739, 0.10459224879741669, -0.04985884949564934, -0.05655936524271965, -0.08954544365406036, 0.11941706389188766, -0.031003739684820175, -0.2550215423107147, -0.0861579105257988, -0.0616944245994091, -0.05268482863903046, 0.00019842907204292715, 0.02071152999997139, 0.006980885285884142, -0.0807134285569191, -0.09184036403894424, 0.03755154460668564, 0.07590193301439285, -0.10236411541700363, -0.11878927797079086, 0.025430230423808098, 0.008950367569923401, -0.07141505926847458, -0.004959407728165388, 0.022741833701729774, -0.06938140839338303, 0.022763367742300034, 0.03816836699843407, 0.13891194760799408, 0.06769553571939468, -0.015908578410744667, 0.005854501388967037, -0.009610416367650032, 0.1556524634361267, -0.14948146045207977, 0.1296115219593048, 0.14932063221931458, 0.020744193345308304, 0.0827769786119461, 0.19169117510318756, -0.014952193014323711, -0.02027490921318531, 0.02416805364191532, 0.067353256046772, -0.06341444700956345, -0.19854426383972168, -0.05150257423520088, -0.05698882415890694, 0.01984277181327343, 0.1119219958782196, 0.043678682297468185, 0.018229663372039795, 0.0911366268992424, -0.09147381037473679, 0.03192988783121109, 0.03952145576477051, 0.10063927620649338, 0.03872162103652954, 0.03829588368535042, 0.042168036103248596, -0.04943309724330902, -0.03675062581896782, 0.10992738604545593, 0.11633367836475372, 0.1270827203989029, -0.10340423882007599, 0.11297578364610672, 0.027514226734638214, 0.029465235769748688, -0.053240735083818436, 0.005807042121887207, -0.026624808087944984, 0.06180296838283539, -0.012171149253845215, -0.08537707477807999, -0.014475810341536999, 0.06564425677061081, 0.13872979581356049, -0.00971902534365654, 0.017230255529284477, -0.021677199751138687, 0.09673300385475159, 0.20623303949832916, 0.010390768758952618, -0.1871517449617386, 0.030096570029854774, 0.04448879510164261, 0.02706548571586609, -0.13132447004318237, -0.037986237555742264, 0.1081928238272667, -0.16623042523860931, 0.06777488440275192, -0.04843418672680855, 0.10797266662120819, -0.144834503531456, -0.030544646084308624, 0.03152215853333473, 0.04147922992706299, -0.01672503352165222, 0.08267732709646225, -0.1417473405599594, 0.08866823464632034, 0.0379287488758564, 0.03151131421327591, -0.081270731985569, 0.03529517725110054, 0.008076217025518417, -0.006216891575604677, 0.1462096869945526, -0.0055761500261723995, -0.037714190781116486, -0.12170521169900894, -0.09950778633356094, -0.017145531252026558, 0.06156238168478012, -0.0639662966132164, 0.10073133558034897, 0.00794736947864294, -0.03360070288181305, -0.08399225771427155, -0.06288912892341614, -0.05295403301715851, -0.18571685254573822, 0.05051615089178085, -0.007807143498212099, 0.011363399215042591, -0.01993531361222267, 0.03570860996842384, 0.019202379509806633, 0.11717114597558975, -0.07294360548257828, -0.07363293319940567, -0.15288905799388885, 0.042537249624729156, 0.07200112193822861, -0.02733585424721241, -0.03252210095524788, -0.07668486982584, 0.1612817794084549, -0.029516179114580154, -0.05526145175099373, 0.03517233207821846, -0.05140066146850586, -0.10954245924949646, -0.062007684260606766, 0.10426988452672958, 0.034856460988521576, -0.006597907282412052, 0.012630178593099117, 0.05822623893618584, 0.01365162618458271, -0.061511795967817307, 0.039028655737638474, 0.11326015740633011, 0.13219958543777466, 0.14457039535045624, 0.02011096477508545, -0.15717458724975586, -0.11602240055799484, 0.013073237612843513, 0.051632631570100784, 0.08894912898540497, -0.086634062230587, 0.10810253024101257, 0.02885851263999939, -0.09708156436681747, -0.22918328642845154, 0.09176322817802429, 0.05697653442621231, -0.00936442892998457, 0.0021099841687828302, -0.14491625130176544, 0.11532070487737656, 0.046001601964235306, -0.0035043719690293074, 0.05773530155420303, -0.2538328468799591, -0.07148291915655136, -0.02180996537208557, 0.04064011946320534, -0.1831425130367279, -0.16490401327610016, -0.052007485181093216, -0.05871035158634186, -0.17240479588508606, 0.05709397792816162, -0.010807032696902752, 0.03810733184218407, 0.0529978945851326, 0.057558801025152206, 0.06553231924772263, -0.05446290969848633, 0.11478272825479507, 0.035117823630571365, 0.04843056574463844, -0.0748867467045784, -0.07905689626932144, 0.05832428112626076, -0.09531912952661514, 0.13566483557224274, 0.04868779703974724, 0.012042701244354248, -0.07162722945213318, -0.011194129474461079, -0.03936702013015747, 0.08793466538190842, -0.02336380071938038, -0.03267008811235428, -0.08284489065408707, 0.037936750799417496, 0.13092964887619019, 0.02213159389793873, 0.07866282761096954, -0.05183587968349457, -0.008397686295211315, 0.14505314826965332, 0.11767862737178802, -0.005558990407735109, -0.13472673296928406, -0.043068043887615204, 0.00873006321489811, 0.020795010030269623, -0.10461204499006271, 0.05496804416179657, 0.08859864622354507, 0.014230827800929546, 0.11337664723396301, -0.010224628262221813, -0.0997675284743309, 0.02070479467511177, 0.0597212091088295, -0.10133850574493408, -0.13119831681251526, 0.024048078805208206, 0.10205019265413284, -0.09868533909320831, -0.09324679523706436, 0.1154104620218277, 0.007750746328383684, -0.01737341657280922, 0.006346279289573431, 0.08899063616991043, 0.054788727313280106, 0.06248540058732033, 0.018724652007222176, 0.04068247228860855, -0.06891295313835144, 0.11333945393562317, 0.14733412861824036, -0.1396961659193039, -0.0009608589462004602, 0.1113104373216629, -0.05479364097118378, -0.008638300932943821, -0.036454424262046814, 0.04223080351948738, -0.001976479310542345, -0.03670390322804451, 0.020825354382395744, -0.05439275875687599, 0.02160358428955078, 0.09790690243244171, -0.005486504174768925, 0.06404359638690948, 0.018801117315888405, -0.018620677292346954, -0.1379527598619461, 0.11989926546812057, 0.034625839442014694, 0.05887334421277046, -0.1003558337688446, 0.02831030637025833, 0.01718939282000065, 0.01539247389882803, 0.006735743954777718, -0.05861113592982292, -0.0735776275396347, -0.0027484640013426542, -0.023497695103287697, 0.10330083221197128, -0.08970554172992706, -0.01545389648526907, -0.015223685652017593, 0.01309986226260662, -0.013013231568038464, 0.023466123268008232, -0.052160825580358505, -0.06937730312347412, -0.0418228879570961, 0.13003303110599518, -0.14424799382686615, -0.017081620171666145, 0.06117993965744972, -0.09093941748142242, 0.07422792166471481, 0.015275194309651852, -0.047576043754816055, -0.06743011623620987, -0.17914460599422455, -0.04673616960644722, 0.033432185649871826, 0.06095272675156593, 0.048538144677877426, -0.08490029722452164, 0.05299258604645729, 0.00090456020552665, -0.08491182327270508, -0.014745071530342102, -0.011986490339040756, -0.10706810653209686, 0.06496403366327286, -0.08676876872777939, -0.03439025208353996, -0.04434170573949814, 0.1310628354549408, 0.050708603113889694, 0.012726315297186375, 0.07483802735805511, -0.04907418042421341, 0.08671806007623672, -0.1370677947998047, -0.03661445155739784, -0.008993078023195267, -0.044389691203832626, -0.07621660828590393, -0.009576475247740746, 0.07971309125423431, -0.016901452094316483, 0.12070091813802719, 0.11122576147317886, 0.025403451174497604, 0.03598274290561676, -0.007322994060814381, 0.04213607311248779, 0.04600236937403679, -0.04398031905293465, -0.013478673063218594, -0.023845205083489418, 0.07689731568098068, 0.015082154422998428, 0.007445971015840769, 0.09567977488040924, 0.08443106710910797, 0.21296294033527374, 0.1327419877052307, 0.020805785432457924, 0.04384918510913849, -0.06700477749109268, -0.0543997697532177, 0.11226393282413483, -0.06745176017284393, 0.07289209216833115, -0.10230162739753723, 0.03313165158033371, 0.10211683809757233, -0.16333916783332825, 0.06864520907402039, -0.012162800878286362, -0.01984894834458828, -0.032981254160404205, -0.1166214868426323, -0.06087406724691391, -0.025997642427682877, -0.005677408073097467, -0.10929123312234879, 0.07187389582395554, 0.12948402762413025, -0.011072085238993168, 0.015710381790995598, 0.08892049640417099, -0.08815427124500275, -0.0692724734544754, 0.08565810322761536, 0.013197807595133781, 0.05375480651855469, 0.04466911777853966, 0.035358864814043045, 0.06308038532733917, 0.017185909673571587, 0.10563770681619644, 0.09171375632286072, 0.11370086669921875, 0.034592606127262115, -0.07976662367582321, -0.06694810837507248, 0.03182649239897728, -0.009643414057791233, -0.027572723105549812, 0.12917377054691315, 0.07543285936117172, 0.0057802964001894, -0.0244856309145689, 0.18558797240257263, -0.023306770250201225, -0.01792503148317337, -0.14846515655517578, 0.03442106768488884, -0.02535092830657959, -0.006886808201670647, -0.014264123514294624, -0.156386598944664, 0.014041941612958908, 0.11374665051698685, 0.07299431413412094, -0.04397571459412575, -0.011292717419564724, -0.026100831106305122, 0.011238026432693005, -0.0012816733215004206, 0.04831519350409508, 0.01896391622722149, 0.2139369547367096, -0.04436899349093437, 0.012535957619547844, -0.040352895855903625, -0.023138243705034256, -0.06279335916042328, 0.09101292490959167, -0.028697213158011436, 0.009037905372679234, -0.07074092328548431, 0.1195252388715744, -0.0010210347827523947, -0.19985388219356537, 0.043420664966106415, -0.09296765178442001, -0.08323929458856583, 0.01728695072233677, 0.0022159512154757977, 0.007490804418921471, 0.02226829156279564, 0.007179116830229759, -0.05493909493088722, 0.08631833642721176, 0.028534704819321632, -0.0673053190112114, 0.003919674549251795, 0.0023569674231112003, -0.11222357302904129, 0.2600429356098175, -0.03130334988236427, 0.023393698036670685, 0.09468556940555573, -0.03207334503531456, -0.1374431699514389, -0.019539590924978256, 0.0702534168958664, -0.040485430508852005, 0.011582178063690662, 0.1311115324497223, -0.0043121580965816975, 0.13165739178657532, 0.08265677839517593, -0.09543952345848083, 0.0464349202811718, -0.030532842501997948, 0.015123107470571995, -0.11579927057027817, 0.011070799082517624, -0.0896611288189888, 0.10609086602926254, 0.1449570655822754, -0.003340019378811121, 0.00864123273640871, -0.046199727803468704, -0.005828048102557659, -0.0007536500925198197, 0.09780389815568924, -0.005608238745480776, -0.060992393642663956, -0.001141300774179399, -0.12894393503665924, 0.07938864827156067, -0.10189095884561539, -0.04998220503330231, 0.031914468854665756, -0.013299460522830486, -0.01672881282866001, 0.08874420821666718, 0.030148331075906754, 0.012894856743514538, -0.0626402273774147, -0.11090640723705292, 0.02738315612077713, 0.18337510526180267, -0.014886847697198391, -0.02059026248753071 ]
1f4416ad8ff21fec12ae8742d9c79d43781c7fae
# Dataset Card for mitosis-gjs3g ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/mitosis-gjs3g - **Point of Contact:** [email protected] ### Dataset Summary mitosis-gjs3g ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/mitosis-gjs3g ### Citation Information ``` @misc{ mitosis-gjs3g, title = { mitosis gjs3g Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/mitosis-gjs3g } }, url = { https://universe.roboflow.com/object-detection/mitosis-gjs3g }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/mitosis-gjs3g
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:32:00+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "mitosis-gjs3g", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "mitosis", "1": "Mitosis"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:32:18+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for mitosis-gjs3g The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary mitosis-gjs3g ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for mitosis-gjs3g\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nmitosis-gjs3g", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for mitosis-gjs3g\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nmitosis-gjs3g", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for mitosis-gjs3g\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nmitosis-gjs3g### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.019033711403608322, 0.1664953976869583, -0.007283889688551426, 0.021344266831874847, 0.08935306966304779, 0.0028629691805690527, 0.06547242403030396, 0.0849773958325386, -0.004217378795146942, 0.16660580039024353, 0.0015670577995479107, 0.052386023104190826, 0.1118180900812149, 0.09528636187314987, -0.012026872485876083, -0.15886272490024567, 0.06286795437335968, -0.06652230024337769, 0.06718096137046814, 0.07675276696681976, 0.08132047206163406, -0.12794765830039978, 0.08050709217786789, -0.0387548953294754, -0.02281954698264599, 0.03302089497447014, -0.06100974604487419, -0.04343130439519882, -0.001583522534929216, 0.04667915031313896, 0.006353168748319149, 0.029054293408989906, 0.032034263014793396, -0.19162820279598236, 0.0223341453820467, 0.10099874436855316, 0.03570355102419853, 0.023643434047698975, 0.15863291919231415, -0.08864875882863998, 0.06340904533863068, -0.12210909277200699, 0.02858005091547966, 0.015704812481999397, -0.1108812466263771, -0.10475657135248184, -0.11863671988248825, 0.06418851763010025, 0.09610434621572495, 0.050789278000593185, -0.023215321823954582, 0.08207710087299347, -0.02757476642727852, 0.051953330636024475, 0.13177567720413208, -0.041664473712444305, -0.04269253835082054, 0.09475041925907135, 0.04018807038664818, 0.10602651536464691, -0.11537071317434311, -0.013855515979230404, 0.008381242863833904, -0.02307293191552162, -0.000032044208637671545, -0.04905881732702255, -0.027553904801607132, 0.006233516149222851, -0.09950196743011475, -0.1456521898508072, 0.15262550115585327, 0.044007085263729095, -0.05255850404500961, -0.14827002584934235, 0.0038020340725779533, 0.0803033784031868, -0.023704996332526207, 0.00005764040179201402, 0.0411551371216774, -0.007103085517883301, 0.05017304793000221, -0.060920361429452896, -0.09677191823720932, 0.04329251870512962, 0.036042362451553345, 0.048321645706892014, -0.020425081253051758, 0.038712210953235626, 0.0187469981610775, 0.08296482264995575, -0.0086416807025671, -0.11669020354747772, -0.03370639681816101, -0.04478422552347183, -0.03990229591727257, -0.04239945858716965, 0.05626613274216652, -0.14493826031684875, 0.06798917055130005, 0.06849617511034012, -0.07559099793434143, 0.027868589386343956, -0.10588550567626953, 0.00918210856616497, 0.12048492580652237, 0.16090717911720276, -0.08804895728826523, -0.08988513052463531, -0.0011258841259405017, 0.04435521736741066, 0.026453156024217606, -0.029173722490668297, -0.0183563232421875, 0.0038148898165673018, 0.02072548307478428, 0.04337642714381218, 0.11105483025312424, 0.0436323806643486, -0.06904763728380203, -0.07116223871707916, 0.14871543645858765, -0.09834536910057068, 0.04353019595146179, 0.055820781737565994, -0.060193732380867004, 0.06565176695585251, 0.0005053939530625939, 0.012897913344204426, -0.11500915884971619, 0.09497734159231186, -0.02728758566081524, 0.015084294602274895, -0.08945927768945694, -0.08960694074630737, 0.05608150362968445, -0.06627405434846878, -0.07497818768024445, -0.07937338203191757, -0.04539547115564346, -0.08153598755598068, 0.03711885213851929, -0.04418701305985451, 0.025780119001865387, 0.022635381668806076, -0.04157087579369545, -0.011570132337510586, 0.007999341934919357, 0.052002619951963425, -0.05931953340768814, 0.03467357158660889, -0.08754399418830872, 0.0338737927377224, 0.11303333193063736, 0.042516984045505524, -0.10867424309253693, 0.059960052371025085, -0.205471470952034, 0.13915115594863892, -0.05898909270763397, 0.023907404392957687, -0.13199137151241302, 0.006771465297788382, -0.002569926204159856, -0.039523895829916, -0.005524556618183851, 0.13978935778141022, -0.06734509766101837, 0.006870553363114595, 0.04591668024659157, -0.06323687732219696, -0.048778682947158813, 0.031960319727659225, -0.042756762355566025, -0.018593378365039825, 0.08178271353244781, 0.15894865989685059, -0.0371372252702713, -0.10268718749284744, -0.11580667644739151, -0.036328062415122986, -0.03620874509215355, 0.16126008331775665, 0.08647874742746353, -0.03720380365848541, 0.09724325686693192, -0.005938281305134296, -0.035727359354496, -0.040310803800821304, 0.016224544495344162, -0.03477372229099274, 0.009702932089567184, -0.002762439427897334, -0.08409177511930466, 0.020003950223326683, -0.09754326939582825, -0.0035313323605805635, -0.08068211376667023, -0.024196255952119827, 0.023823533207178116, -0.03224567696452141, 0.010955484583973885, -0.02928846888244152, 0.09105038642883301, -0.1329955756664276, 0.0009796021040529013, -0.14860446751117706, -0.11202161759138107, 0.05885681137442589, -0.07039692252874374, 0.03597249090671539, -0.08176062256097794, -0.013908617198467255, 0.028603194281458855, 0.025791803374886513, -0.014579146169126034, 0.039810337126255035, -0.02393576130270958, -0.027101438492536545, -0.13092397153377533, -0.05193565413355827, -0.02596033178269863, 0.09298654645681381, -0.11561023443937302, -0.02821355313062668, 0.13536645472049713, 0.11913494765758514, 0.0296062882989645, -0.05547209829092026, 0.09123382717370987, -0.03730305656790733, -0.020483994856476784, -0.09008760750293732, -0.011679152958095074, -0.0019837566651403904, 0.03596217557787895, 0.08671732246875763, -0.15725281834602356, -0.1413380652666092, 0.08452636003494263, 0.04936588928103447, -0.07714764028787613, -0.0570266991853714, -0.04902230575680733, -0.021116482093930244, -0.09688916802406311, -0.026809128001332283, 0.0407644547522068, 0.05357740819454193, 0.07411304116249084, -0.08235548436641693, -0.043005503714084625, 0.015134403482079506, -0.01680479384958744, -0.08090684562921524, 0.07454414665699005, 0.05440123379230499, -0.12873519957065582, 0.10432616621255875, -0.02828635647892952, 0.04380447790026665, 0.10501765459775925, 0.03551661968231201, -0.12196380645036697, 0.021899821236729622, 0.0687786340713501, 0.02233647182583809, 0.09070496261119843, -0.02730225957930088, 0.02330932579934597, 0.08296258747577667, -0.01357228308916092, -0.013466967269778252, -0.07961523532867432, 0.0655641257762909, 0.03380017355084419, -0.041410502046346664, 0.014329778030514717, -0.015971940010786057, 0.0698697417974472, 0.09461008757352829, 0.06007363647222519, 0.12904298305511475, -0.041572846472263336, -0.05896838754415512, -0.09473578631877899, 0.13063280284404755, -0.02435401640832424, -0.26036107540130615, -0.07686582952737808, -0.05438130721449852, -0.06720290333032608, -0.008410627022385597, 0.03533089905977249, -0.0030169025994837284, -0.08865603804588318, -0.10457519441843033, 0.0704396590590477, 0.0555795282125473, -0.11046833544969559, -0.1142134889960289, 0.03540204092860222, 0.00666587520390749, -0.08320505917072296, 0.0014054737985134125, 0.032704535871744156, -0.04682769626379013, 0.012207315303385258, 0.03956106677651405, 0.12426965683698654, 0.05522880703210831, -0.015764357522130013, 0.004010152071714401, -0.002635145327076316, 0.1692054718732834, -0.15469048917293549, 0.09586406499147415, 0.15151768922805786, 0.0167642030864954, 0.06890124827623367, 0.19633282721042633, -0.01766103506088257, -0.014844203367829323, 0.02448289841413498, 0.0699235200881958, -0.06667276471853256, -0.2005506455898285, -0.06090965121984482, -0.04561786726117134, 0.020608192309737206, 0.13344243168830872, 0.0390346422791481, 0.025934886187314987, 0.09150581061840057, -0.12270709872245789, 0.015821460634469986, 0.022539332509040833, 0.10334872454404831, 0.03762422502040863, 0.04736503213644028, 0.048665329813957214, -0.0451948344707489, -0.029045766219496727, 0.10120624303817749, 0.09910230338573456, 0.12712712585926056, -0.11127741634845734, 0.09511135518550873, 0.036333370953798294, 0.028972424566745758, -0.02805497497320175, -0.009388931095600128, -0.034283097833395004, 0.052240852266550064, -0.007963552139699459, -0.10959578305482864, 0.010328839533030987, 0.08677537739276886, 0.12816017866134644, -0.011403162963688374, 0.00398661196231842, -0.052082810550928116, 0.07270105928182602, 0.22911740839481354, 0.0035657607950270176, -0.20642666518688202, 0.00822631549090147, 0.043141547590494156, 0.013898457400500774, -0.11237781494855881, -0.04334790259599686, 0.10020679980516434, -0.1667521446943283, 0.06706330925226212, -0.029186541214585304, 0.10617002099752426, -0.13200654089450836, -0.03630168363451958, 0.0626685619354248, 0.04858405515551567, -0.029264677315950394, 0.09065257757902145, -0.11168234050273895, 0.07191885262727737, 0.034238141030073166, 0.03218443691730499, -0.08471695333719254, 0.03769184276461601, 0.014457310549914837, -0.009891354478895664, 0.14180916547775269, -0.010945281945168972, 0.01023306604474783, -0.1142783984541893, -0.11366446316242218, -0.0061902133747935295, 0.04835226386785507, -0.07651768624782562, 0.09213615208864212, 0.015025315806269646, -0.02510918863117695, -0.0807095542550087, -0.039389558136463165, -0.07646504044532776, -0.19316338002681732, 0.048400603234767914, -0.019756846129894257, 0.017453614622354507, -0.0235179103910923, 0.019380690529942513, 0.04498474672436714, 0.14551092684268951, -0.0166371650993824, -0.10278815031051636, -0.14123553037643433, 0.058040082454681396, 0.10356253385543823, -0.01974426954984665, -0.024416856467723846, -0.09139622002840042, 0.1758771687746048, -0.02728932723402977, -0.07524976134300232, 0.020913846790790558, -0.07239001244306564, -0.1139805018901825, -0.05430052801966667, 0.10751554369926453, 0.03310305252671242, 0.0023329698015004396, 0.00283825327642262, 0.059084732085466385, 0.00626927288249135, -0.05161856859922409, 0.01740638166666031, 0.11188597232103348, 0.142518550157547, 0.12726013362407684, 0.02058158442378044, -0.1439325511455536, -0.12227475643157959, -0.018480803817510605, 0.014609220437705517, 0.09428151696920395, -0.06289281696081161, 0.12330980598926544, 0.044091690331697464, -0.07724716514348984, -0.2199064940214157, 0.08444108068943024, 0.06834201514720917, -0.008670937269926071, -0.009901640936732292, -0.1448940634727478, 0.14426927268505096, 0.04084236919879913, 0.0017226532800123096, 0.07724549621343613, -0.28049543499946594, -0.07034780085086823, -0.03448057919740677, 0.0272247064858675, -0.23877300322055817, -0.1711004078388214, -0.06492356956005096, -0.05491438880562782, -0.15246719121932983, 0.046500612050294876, 0.0014021017123013735, 0.05162867531180382, 0.035087380558252335, 0.0428001694381237, 0.06335759162902832, -0.05305410176515579, 0.11823120713233948, 0.02320048213005066, 0.03202144801616669, -0.08377198874950409, -0.08015230298042297, 0.0198929775506258, -0.090387724339962, 0.14689958095550537, 0.02987898327410221, 0.03027079999446869, -0.04786941409111023, -0.022731974720954895, -0.04064556956291199, 0.0901486724615097, -0.0209290012717247, -0.04537858068943024, -0.10590286552906036, 0.040464118123054504, 0.12161590903997421, 0.029287295415997505, 0.07738955318927765, -0.04744386300444603, -0.012945734895765781, 0.13603967428207397, 0.10363063216209412, -0.012481066398322582, -0.15094596147537231, -0.0459279790520668, 0.0045802709646523, 0.04990436136722565, -0.136409729719162, 0.03422030061483383, 0.08154699951410294, 0.027413001284003258, 0.10478141158819199, -0.016274236142635345, -0.09999968111515045, 0.007779618725180626, 0.045794516801834106, -0.10846751928329468, -0.10339970141649246, 0.01748269610106945, 0.11884038150310516, -0.10151446610689163, -0.11539068818092346, 0.11183461546897888, -0.003955805208534002, -0.022479020059108734, -0.0009489255025982857, 0.07655069977045059, 0.049713972955942154, 0.0738966166973114, 0.01652074232697487, 0.036832187324762344, -0.07519569247961044, 0.11231498420238495, 0.14292630553245544, -0.1368805468082428, 0.0002647749788593501, 0.1125665009021759, -0.055323828011751175, -0.02283676527440548, -0.02639828622341156, 0.019941505044698715, -0.012759032659232616, -0.028138570487499237, 0.03807651251554489, -0.04548175260424614, 0.036508284509181976, 0.05982987582683563, 0.006220006849616766, 0.0515710711479187, 0.02397327497601509, -0.013868297450244427, -0.13593247532844543, 0.12547852098941803, 0.030100932344794273, 0.05868406966328621, -0.08062157034873962, 0.0020918669179081917, 0.036764003336429596, -0.0007273846422322094, 0.009811109863221645, -0.05520622432231903, -0.07822603732347488, -0.0015607394743710756, -0.042263638228178024, 0.10401598364114761, -0.09426053613424301, -0.006991491187363863, -0.0202348455786705, 0.0013433113927021623, -0.010446242056787014, 0.03926125168800354, -0.04370320588350296, -0.08191406726837158, -0.055014271289110184, 0.12871070206165314, -0.1482883095741272, -0.018173933029174805, 0.05519145354628563, -0.08745236694812775, 0.06497293710708618, 0.018578246235847473, -0.040065914392471313, -0.09707336127758026, -0.18519264459609985, -0.04894198477268219, 0.025877900421619415, 0.06307349354028702, 0.028155552223324776, -0.08797456324100494, 0.055122554302215576, 0.002434883965179324, -0.09638898819684982, -0.01464772503823042, -0.015259548090398312, -0.11763692647218704, 0.04568449780344963, -0.0883903056383133, -0.031220318749547005, -0.041667964309453964, 0.1376419961452484, 0.0651886910200119, 0.002555291401222348, 0.07389777898788452, -0.04840995743870735, 0.0899776965379715, -0.13116313517093658, -0.04012994468212128, -0.0060849860310554504, -0.03764998912811279, -0.08953587710857391, 0.01303387712687254, 0.07088173925876617, -0.030086860060691833, 0.13428929448127747, 0.12573684751987457, 0.027993926778435707, 0.04314359650015831, 0.008972146548330784, 0.11132685095071793, 0.059474922716617584, -0.0007017698371782899, -0.011911305598914623, -0.01443879771977663, 0.07080090045928955, 0.02044706977903843, 0.019426487386226654, 0.06942898780107498, 0.046996425837278366, 0.24077288806438446, 0.12404296547174454, 0.012605748139321804, 0.036840785294771194, -0.08529777824878693, -0.054122667759656906, 0.10539031773805618, -0.035080697387456894, 0.08001888543367386, -0.09219928085803986, 0.050344645977020264, 0.10515440255403519, -0.15369001030921936, 0.06540095061063766, -0.007223646622151136, -0.01110129151493311, -0.022435637190937996, -0.11677193641662598, -0.057869814336299896, -0.029671967029571533, 0.005945957265794277, -0.11622212827205658, 0.09343613684177399, 0.14033766090869904, 0.007877872325479984, 0.01037654560059309, 0.10492951422929764, -0.045042164623737335, -0.0910118967294693, 0.0747283399105072, 0.012398893013596535, 0.047743070870637894, 0.05192726477980614, 0.04459519684314728, 0.09064407646656036, 0.002906316425651312, 0.08577784895896912, 0.09130380302667618, 0.09987509250640869, 0.022946465760469437, -0.07106544822454453, -0.0730610117316246, 0.025162028148770332, -0.01439746655523777, -0.01299335341900587, 0.15485188364982605, 0.07432443648576736, 0.012828921899199486, -0.017232634127140045, 0.18208719789981842, -0.008328042924404144, -0.030013466253876686, -0.13196521997451782, 0.035762540996074677, -0.04337938129901886, -0.010168869979679585, -0.012229987420141697, -0.1512381136417389, 0.0008683833875693381, 0.12288469821214676, 0.08991459757089615, -0.039027441293001175, -0.016661325469613075, -0.018371885642409325, 0.004361551254987717, -0.018629850819706917, 0.03951805830001831, 0.007916607894003391, 0.19564542174339294, -0.05552954599261284, 0.017580267041921616, -0.04115290939807892, -0.03242380544543266, -0.06442412734031677, 0.0934208407998085, -0.00985671579837799, -0.008450253866612911, -0.07567161321640015, 0.11151394248008728, 0.00036378635559231043, -0.1817379742860794, 0.04573984444141388, -0.08543925732374191, -0.0832461267709732, 0.01375322975218296, -0.02308562770485878, 0.012941417284309864, 0.02995644323527813, 0.008741440251469612, -0.056988008320331573, 0.06803920120000839, 0.02990487404167652, -0.08668160438537598, -0.017512626945972443, 0.006349053233861923, -0.0931677520275116, 0.262996643781662, -0.03248859941959381, 0.04345041140913963, 0.07789110392332077, -0.02345961704850197, -0.1393120437860489, -0.02737092599272728, 0.08588907122612, -0.05566242337226868, 0.02594374120235443, 0.1289602369070053, -0.007299012504518032, 0.15194456279277802, 0.08515895158052444, -0.07310274243354797, 0.05015212297439575, -0.019391236826777458, 0.025972947478294373, -0.11990227550268173, 0.0038070050068199635, -0.09594220668077469, 0.11472972482442856, 0.13907794654369354, -0.006835740525275469, -0.015473512001335621, -0.0444287545979023, 0.018429508432745934, 0.008579597808420658, 0.09491750597953796, 0.014636503532528877, -0.06575579941272736, 0.009549617767333984, -0.15093505382537842, 0.09278111159801483, -0.1458693891763687, -0.050180528312921524, 0.037187278270721436, -0.016452286392450333, -0.0016723308945074677, 0.08115659654140472, 0.035951483994722366, 0.006560531444847584, -0.06115202605724335, -0.1196964830160141, 0.037761397659778595, 0.1555931568145752, -0.010223599150776863, -0.02343573607504368 ]
0e304ea035f5ac7f3c724d073534668274d680d7
# Dataset Card for smoke-uvylj ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/smoke-uvylj - **Point of Contact:** [email protected] ### Dataset Summary smoke-uvylj ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/smoke-uvylj ### Citation Information ``` @misc{ smoke-uvylj, title = { smoke uvylj Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/smoke-uvylj } }, url = { https://universe.roboflow.com/object-detection/smoke-uvylj }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/smoke-uvylj
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:32:19+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "smoke-uvylj", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "smoke-0", "1": "smoke"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:32:38+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for smoke-uvylj The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary smoke-uvylj ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for smoke-uvylj\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsmoke-uvylj", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for smoke-uvylj\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsmoke-uvylj", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for smoke-uvylj\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nsmoke-uvylj### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.021594006568193436, 0.1743752509355545, -0.007921126671135426, 0.017176713794469833, 0.09637338668107986, 0.009008528664708138, 0.06641288846731186, 0.0891585499048233, 0.01055934838950634, 0.1688152551651001, -0.0016297539696097374, 0.07330475002527237, 0.11238714307546616, 0.09475786238908768, -0.016972556710243225, -0.150419220328331, 0.05563553795218468, -0.06444162875413895, 0.06502176076173782, 0.07402926683425903, 0.07338499277830124, -0.1339390128850937, 0.08154347538948059, -0.03479409217834473, -0.020149698480963707, 0.02140393853187561, -0.06272910535335541, -0.04530582204461098, 0.008143046870827675, 0.048790786415338516, 0.02154940739274025, 0.024040360003709793, 0.029600078240036964, -0.18690744042396545, 0.022665496915578842, 0.10613643378019333, 0.033810146152973175, 0.030234629288315773, 0.15880697965621948, -0.09469149261713028, 0.06279005110263824, -0.13629412651062012, 0.03153359144926071, 0.014781699515879154, -0.11599572002887726, -0.12397248297929764, -0.12421173602342606, 0.06191270425915718, 0.11336309462785721, 0.04753526300191879, -0.01701951213181019, 0.08055992424488068, -0.019862351939082146, 0.055920299142599106, 0.1229332759976387, -0.05781681090593338, -0.042375750839710236, 0.0783512219786644, 0.022825874388217926, 0.0892125591635704, -0.11250454187393188, -0.017185045406222343, -0.0074026919901371, -0.02948925644159317, 0.005652072839438915, -0.05809060111641884, -0.04966522008180618, -0.004301740787923336, -0.0952083095908165, -0.1423584520816803, 0.14382445812225342, 0.05002644658088684, -0.0488194040954113, -0.1438603401184082, -0.004894733428955078, 0.06169900670647621, -0.03515063226222992, -0.009290231391787529, 0.04216226562857628, -0.006047142203897238, 0.06272942572832108, -0.06685853749513626, -0.09918145835399628, 0.0446908101439476, 0.04790031909942627, 0.03350599482655525, -0.02002185583114624, 0.03580740839242935, 0.0139439906924963, 0.0733589455485344, 0.015996677801012993, -0.10909635573625565, -0.025135662406682968, -0.036758631467819214, -0.06324552744626999, -0.039517100900411606, 0.0679871067404747, -0.1355658322572708, 0.07272499799728394, 0.05736793577671051, -0.05816274508833885, 0.03096039965748787, -0.11936792731285095, 0.020910091698169708, 0.10106737166643143, 0.18358932435512543, -0.0767592266201973, -0.09539230167865753, -0.0010295197134837508, 0.038549236953258514, 0.024111201986670494, -0.03445691242814064, -0.023803040385246277, -0.0023446395061910152, 0.0369684137403965, 0.04443202167749405, 0.1057562455534935, 0.04506955295801163, -0.0694105327129364, -0.06394676119089127, 0.1475008875131607, -0.09912121295928955, 0.05367960408329964, 0.06220278516411781, -0.05085783824324608, 0.07723891735076904, 0.011831570416688919, 0.014791958034038544, -0.11308951675891876, 0.10744471102952957, -0.022613462060689926, 0.021848030388355255, -0.08947661519050598, -0.09085559099912643, 0.056146565824747086, -0.08319566398859024, -0.08191662281751633, -0.07925128191709518, -0.051616694778203964, -0.08456268906593323, 0.044140249490737915, -0.04188520461320877, 0.03352292254567146, 0.016788631677627563, -0.040655579417943954, -0.011198394931852818, 0.013468822464346886, 0.044247567653656006, -0.05500000715255737, 0.03734052553772926, -0.09966772049665451, 0.036709390580654144, 0.11752890795469284, 0.03768694028258324, -0.09993482381105423, 0.06175049766898155, -0.19732610881328583, 0.13365089893341064, -0.05300571396946907, 0.02759428136050701, -0.13863490521907806, 0.010577617213129997, -0.013961493037641048, -0.04624122381210327, 0.0016515507595613599, 0.14197202026844025, -0.08667746186256409, 0.016042394563555717, 0.051338981837034225, -0.0568121112883091, -0.0658547654747963, 0.0381852425634861, -0.03915782645344734, -0.0006661954103037715, 0.08061032742261887, 0.1292959600687027, -0.024751238524913788, -0.11607962101697922, -0.11142841726541519, -0.031202252954244614, -0.04147813841700554, 0.15511485934257507, 0.07611788064241409, -0.039711300283670425, 0.0949060246348381, -0.006739355158060789, -0.013958299532532692, -0.03913362696766853, 0.016372637823224068, -0.04053441062569618, 0.01880866475403309, -0.005949319340288639, -0.08442667126655579, 0.014299236238002777, -0.09760820865631104, 0.00431824242696166, -0.08329620212316513, -0.05307704955339432, 0.023105038329958916, -0.022325407713651657, 0.014806780032813549, -0.03381172567605972, 0.09167125076055527, -0.13160866498947144, 0.004156867507845163, -0.1542033702135086, -0.10929052531719208, 0.05626189336180687, -0.045581430196762085, 0.030351541936397552, -0.08115307986736298, -0.011962296441197395, 0.021632075309753418, 0.03797909989953041, -0.022060338407754898, 0.043555982410907745, -0.025554047897458076, -0.03965332731604576, -0.13350898027420044, -0.05270267650485039, -0.020975910127162933, 0.10381052643060684, -0.11435624957084656, -0.025372430682182312, 0.13871078193187714, 0.11230660229921341, 0.0327291265130043, -0.04360060393810272, 0.08125397562980652, -0.0317157506942749, -0.018899422138929367, -0.087851382791996, -0.007319394964724779, -0.004622914362698793, 0.02630179189145565, 0.08538274466991425, -0.15754088759422302, -0.12813711166381836, 0.08333467692136765, 0.02910829335451126, -0.07636041939258575, -0.05067652836441994, -0.05499948933720589, -0.024829741567373276, -0.09842352569103241, -0.026806214824318886, 0.02839049883186817, 0.07708648592233658, 0.07620202004909515, -0.06950932741165161, -0.03899656608700752, 0.020752983167767525, -0.01976168528199196, -0.07802635431289673, 0.06683182716369629, 0.055216237902641296, -0.12042666226625443, 0.10116210579872131, -0.019563959911465645, 0.04076166823506355, 0.09201314300298691, 0.040287669748067856, -0.11224208772182465, 0.015948640182614326, 0.07745092362165451, 0.02805720455944538, 0.09356814622879028, -0.03370551019906998, 0.015961816534399986, 0.08012567460536957, -0.018290452659130096, -0.01859319768846035, -0.08266912400722504, 0.07263047248125076, 0.03275372460484505, -0.039578188210725784, 0.026632830500602722, -0.004604971967637539, 0.07881154865026474, 0.10102365911006927, 0.05498548224568367, 0.12057077139616013, -0.04783565178513527, -0.06163831055164337, -0.08746613562107086, 0.11882712692022324, -0.02218088135123253, -0.26987695693969727, -0.0730380043387413, -0.054644085466861725, -0.05283312126994133, -0.01237583626061678, 0.03627416118979454, 0.00001129817155742785, -0.08013050258159637, -0.09267216920852661, 0.059063494205474854, 0.06757975369691849, -0.09647657722234726, -0.1234283596277237, 0.03673473373055458, 0.006621764972805977, -0.0787186548113823, -0.000501790433190763, 0.03101854957640171, -0.0478360652923584, 0.011867760680615902, 0.048321936279535294, 0.13240806758403778, 0.05520499125123024, -0.017812376841902733, 0.008457343094050884, -0.006917246151715517, 0.17470161616802216, -0.15612544119358063, 0.10872026532888412, 0.15584632754325867, 0.01077727135270834, 0.07538904249668121, 0.17778702080249786, -0.015559099614620209, -0.01592770405113697, 0.021117713302373886, 0.07700300961732864, -0.06031394004821777, -0.1969398409128189, -0.05863374099135399, -0.04885323718190193, 0.023630615323781967, 0.134394571185112, 0.037796806544065475, 0.024163348600268364, 0.09284491837024689, -0.11805221438407898, 0.0392877422273159, 0.028372369706630707, 0.1015639677643776, 0.029660658910870552, 0.048661813139915466, 0.042759377509355545, -0.04729665070772171, -0.03259434923529625, 0.09412026405334473, 0.10715784132480621, 0.12326453626155853, -0.10661765187978745, 0.09707827121019363, 0.032684650272130966, 0.03393993154168129, -0.03929726034402847, -0.0008028859156183898, -0.03651795536279678, 0.062354739755392075, -0.007247505709528923, -0.10736330598592758, -0.0023109642788767815, 0.08678999543190002, 0.1259821355342865, -0.011473992839455605, 0.013681923970580101, -0.0305115208029747, 0.09003345668315887, 0.23021718859672546, 0.004186088219285011, -0.19440573453903198, 0.01564629189670086, 0.04139498993754387, 0.03140746057033539, -0.11880500614643097, -0.04572773724794388, 0.08299063891172409, -0.16831274330615997, 0.05874987691640854, -0.04025628790259361, 0.11111783981323242, -0.14055059850215912, -0.03738776221871376, 0.06029603257775307, 0.04119906947016716, -0.023199768736958504, 0.09551503509283066, -0.132242351770401, 0.07465621829032898, 0.0408300906419754, 0.041523661464452744, -0.09688710421323776, 0.03744550421833992, 0.014743778854608536, -0.02034354768693447, 0.15226395428180695, -0.015861928462982178, 0.014237061142921448, -0.13115917146205902, -0.12017043679952621, -0.012431451119482517, 0.048019636422395706, -0.07001800835132599, 0.09526427835226059, 0.016476238146424294, -0.03830631822347641, -0.07914857566356659, -0.03756766393780708, -0.06831464171409607, -0.18928873538970947, 0.046564631164073944, -0.005380112212151289, 0.00871969573199749, -0.012702243402600288, 0.030643898993730545, 0.039361849427223206, 0.12320476770401001, -0.029016757383942604, -0.09255188703536987, -0.1436150223016739, 0.054529815912246704, 0.0978400707244873, -0.02308119274675846, -0.032026708126068115, -0.08657655119895935, 0.17846758663654327, -0.029819784685969353, -0.06846113502979279, 0.019484298303723335, -0.0717938020825386, -0.1260915845632553, -0.05707329139113426, 0.11547014117240906, 0.028631510213017464, -0.004406495485454798, 0.004547298885881901, 0.0565737746655941, 0.0020916778594255447, -0.0563572458922863, 0.036303095519542694, 0.10333780944347382, 0.1304783970117569, 0.1231159046292305, 0.015131643041968346, -0.12764893472194672, -0.12671244144439697, -0.003374016610905528, 0.023045629262924194, 0.09868180006742477, -0.07594603300094604, 0.11750715970993042, 0.030402055010199547, -0.08954338729381561, -0.21391093730926514, 0.08148079365491867, 0.06678420305252075, -0.011779656633734703, -0.016851866617798805, -0.14361751079559326, 0.13206344842910767, 0.040023934096097946, -0.0030421768315136433, 0.07886233925819397, -0.27228206396102905, -0.07395784556865692, -0.014177895151078701, 0.030906951054930687, -0.22679544985294342, -0.16876141726970673, -0.05141143128275871, -0.05893427133560181, -0.1394089162349701, 0.053854696452617645, -0.015366743318736553, 0.038994573056697845, 0.04132911562919617, 0.0364655926823616, 0.06622038781642914, -0.04904075711965561, 0.10800500959157944, 0.022529158741235733, 0.04149606451392174, -0.06673254072666168, -0.08698423206806183, 0.040251027792692184, -0.09173424541950226, 0.1477629840373993, 0.03397683426737785, 0.021546296775341034, -0.045963916927576065, -0.017291400581598282, -0.0349746011197567, 0.09057258814573288, -0.033065687865018845, -0.04237741604447365, -0.08856616169214249, 0.04238946735858917, 0.13232006132602692, 0.0247556883841753, 0.08732243627309799, -0.035487543791532516, -0.01168660819530487, 0.12801645696163177, 0.09850743412971497, 0.0017686983337625861, -0.14617426693439484, -0.03750951588153839, 0.004567185882478952, 0.04381804168224335, -0.11729749292135239, 0.043700210750103, 0.08140448480844498, 0.016963031142950058, 0.10589610785245895, -0.007922566495835781, -0.10388617217540741, 0.0045405663549900055, 0.043812163174152374, -0.10864502936601639, -0.10903993993997574, 0.018265467137098312, 0.10937511920928955, -0.09802553802728653, -0.11795410513877869, 0.10846350342035294, -0.00581909017637372, -0.017443779855966568, 0.0027215539012104273, 0.07886668294668198, 0.05348430201411247, 0.06594642251729965, 0.015557459555566311, 0.042433179914951324, -0.06610585004091263, 0.11021900922060013, 0.1488793045282364, -0.14765667915344238, 0.00022607491700910032, 0.11676851660013199, -0.05526941642165184, -0.026530155912041664, -0.022573834285140038, 0.046337902545928955, 0.012060706503689289, -0.03503776341676712, 0.03261938691139221, -0.035385407507419586, 0.03273432329297066, 0.07316725701093674, 0.0033325194381177425, 0.05936630442738533, 0.02323574386537075, -0.018314769491553307, -0.14031745493412018, 0.13431134819984436, 0.02394932508468628, 0.04863636940717697, -0.08978857100009918, 0.014237834140658379, 0.03808922320604324, 0.005309030879288912, 0.01264078076928854, -0.05747228488326073, -0.07818566262722015, 0.00016055905143730342, -0.020418597385287285, 0.1080719530582428, -0.09176313132047653, -0.0063770548440515995, -0.020782221108675003, 0.008897352032363415, -0.00849893968552351, 0.029058808460831642, -0.04473377391695976, -0.08261535316705704, -0.04733467847108841, 0.12886564433574677, -0.15113508701324463, -0.02693244256079197, 0.051944177597761154, -0.09357741475105286, 0.059829194098711014, 0.019716400653123856, -0.03943372145295143, -0.09236037731170654, -0.1786499172449112, -0.03656794875860214, 0.030257629230618477, 0.06529738008975983, 0.040282148867845535, -0.09565789997577667, 0.0492430254817009, -0.004301858600229025, -0.09123361110687256, -0.01573358103632927, 0.0003943646152038127, -0.11340145766735077, 0.05024930462241173, -0.08762039989233017, -0.02841269224882126, -0.03891981020569801, 0.13622024655342102, 0.0555277056992054, 0.019072534516453743, 0.07825087010860443, -0.046859052032232285, 0.10543018579483032, -0.13645735383033752, -0.03789186105132103, -0.009825734421610832, -0.03525295853614807, -0.08209816366434097, -0.0006331365439109504, 0.07804105430841446, -0.034391630440950394, 0.12735570967197418, 0.13037720322608948, 0.05576316639780998, 0.038789160549640656, -0.003667514305561781, 0.05663326382637024, 0.052763182669878006, -0.026658356189727783, -0.016813211143016815, -0.015737760812044144, 0.08248724043369293, 0.017112713307142258, 0.013504056259989738, 0.090083546936512, 0.06090307980775833, 0.22623293101787567, 0.14387385547161102, 0.01852557435631752, 0.04234873130917549, -0.09222522377967834, -0.06201431527733803, 0.09587740153074265, -0.04896994307637215, 0.08053208887577057, -0.10429059714078903, 0.06000255420804024, 0.097132608294487, -0.15859264135360718, 0.06694734841585159, -0.008268188685178757, -0.011549444869160652, -0.03392193093895912, -0.11323840171098709, -0.05828823521733284, -0.0171272624284029, -0.0007323969039134681, -0.10655098408460617, 0.08376731723546982, 0.1128525510430336, -0.0043716030195355415, 0.01320163905620575, 0.10186324268579483, -0.05241735652089119, -0.07694870978593826, 0.07840313017368317, 0.015602161176502705, 0.04985387623310089, 0.039453234523534775, 0.050134725868701935, 0.07588930428028107, -0.00021453548106364906, 0.08758427947759628, 0.08468549698591232, 0.0929846242070198, 0.03708147630095482, -0.07331334054470062, -0.07970137149095535, 0.03176484256982803, -0.015109987929463387, -0.012418948113918304, 0.14251965284347534, 0.08034078031778336, 0.01724654994904995, -0.02763378992676735, 0.18198783695697784, -0.017552688717842102, -0.018604891374707222, -0.1357685774564743, 0.02079181745648384, -0.038634058088064194, -0.020764285698533058, -0.018105383962392807, -0.14753511548042297, 0.011371185071766376, 0.1317237913608551, 0.08903324604034424, -0.038415443152189255, -0.00975227914750576, -0.021022576838731766, 0.00791356060653925, -0.01751428097486496, 0.04124348610639572, 0.022090496495366096, 0.20253142714500427, -0.058198317885398865, 0.014451281167566776, -0.04491487145423889, -0.036002423614263535, -0.05748099088668823, 0.10814394801855087, -0.018818344920873642, -0.0023369374684989452, -0.06862802803516388, 0.11026687920093536, -0.014002157375216484, -0.2035321444272995, 0.054774414747953415, -0.0956837385892868, -0.08421368151903152, 0.011580811813473701, -0.018280545249581337, 0.005741809494793415, 0.03326450660824776, 0.004426065366715193, -0.06658652424812317, 0.08795451372861862, 0.026254789903759956, -0.07863334566354752, -0.014168947003781796, -0.0025076197925955057, -0.08863647282123566, 0.25555863976478577, -0.027699464932084084, 0.03858962655067444, 0.08398547023534775, -0.017015721648931503, -0.14141099154949188, -0.03029940463602543, 0.0808435007929802, -0.04848773777484894, 0.02459423616528511, 0.1196550503373146, -0.009380882605910301, 0.14442181587219238, 0.0898888111114502, -0.09303732961416245, 0.04930327460169792, -0.029087183997035027, 0.01353514101356268, -0.11642128229141235, 0.004702223464846611, -0.09454594552516937, 0.1065603718161583, 0.1434338539838791, -0.00931699201464653, -0.009325571358203888, -0.03786885738372803, 0.008457385934889317, 0.0002938233083114028, 0.09265822172164917, -0.0012728787260130048, -0.052199725061655045, 0.006868272554129362, -0.14571528136730194, 0.0878695547580719, -0.11832648515701294, -0.049908220767974854, 0.036184974014759064, -0.02248295396566391, -0.0112601388245821, 0.07575244456529617, 0.02072421833872795, 0.005811124108731747, -0.06156468763947487, -0.1176445335149765, 0.04029599949717522, 0.16446581482887268, -0.01827867701649666, -0.023576637730002403 ]
c6611cc56c054fee1083089edb71614866ac8f96
# Dataset Card for aerial-spheres ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/aerial-spheres - **Point of Contact:** [email protected] ### Dataset Summary aerial-spheres ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/aerial-spheres ### Citation Information ``` @misc{ aerial-spheres, title = { aerial spheres Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/aerial-spheres } }, url = { https://universe.roboflow.com/object-detection/aerial-spheres }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/aerial-spheres
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:32:21+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "aerial-spheres", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "aerial-spheres", "1": "green_sphero", "2": "orange-sphero", "3": "orange_sphero", "4": "purple_sphero", "5": "red_sphero", "6": "yellow_sphero"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:32:36+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for aerial-spheres The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary aerial-spheres ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for aerial-spheres\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naerial-spheres", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for aerial-spheres\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naerial-spheres", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for aerial-spheres\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\naerial-spheres### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.016688410192728043, 0.1688372641801834, -0.007562829181551933, 0.024675767868757248, 0.10213198512792587, 0.00033063680166378617, 0.0620492547750473, 0.07978211343288422, 0.005724024027585983, 0.17368607223033905, -0.0033600558526813984, 0.07375027239322662, 0.11287391930818558, 0.08783961087465286, -0.02219877392053604, -0.15868636965751648, 0.057613249868154526, -0.06104119494557381, 0.05941716954112053, 0.07146474719047546, 0.07412754744291306, -0.13587595522403717, 0.08405967056751251, -0.039138391613960266, -0.022618180140852928, 0.028064187616109848, -0.053991854190826416, -0.04637756943702698, 0.007898797281086445, 0.04359082877635956, 0.022614359855651855, 0.022423740476369858, 0.03461945429444313, -0.19220373034477234, 0.020472489297389984, 0.10610460489988327, 0.03687550500035286, 0.02523161843419075, 0.15533894300460815, -0.08433176577091217, 0.05617564171552658, -0.126255065202713, 0.03917340189218521, 0.017215000465512276, -0.1192849650979042, -0.11769706755876541, -0.12225811183452606, 0.05925941467285156, 0.1124681904911995, 0.04853703826665878, -0.01696486957371235, 0.0768149271607399, -0.01273862924426794, 0.05830267071723938, 0.10911381244659424, -0.06857284158468246, -0.04127635806798935, 0.0770423635840416, 0.0337548702955246, 0.1099533885717392, -0.11134279519319534, -0.01606196165084839, 0.0003307595325168222, -0.024173008278012276, 0.01137597393244505, -0.05725531280040741, -0.04822683706879616, -0.006617461796849966, -0.10085639357566833, -0.14413639903068542, 0.14430201053619385, 0.05041520670056343, -0.04826168343424797, -0.14675387740135193, -0.007437368854880333, 0.05930735170841217, -0.03338096663355827, -0.00798666849732399, 0.04543463513255119, -0.005511985160410404, 0.06559273600578308, -0.07324862480163574, -0.10032770782709122, 0.050566624850034714, 0.04095650464296341, 0.04145422577857971, -0.018551761284470558, 0.03800930082798004, 0.01579989865422249, 0.07057897746562958, 0.01015606988221407, -0.10798513144254684, -0.021931957453489304, -0.039212677627801895, -0.05777916684746742, -0.043713606894016266, 0.06496484577655792, -0.14526502788066864, 0.059569504112005234, 0.05993851646780968, -0.0657389760017395, 0.032991934567689896, -0.12852640450000763, 0.01797022484242916, 0.10648693889379501, 0.1799544245004654, -0.07976370304822922, -0.09139958024024963, -0.0007296195835806429, 0.041671570390462875, 0.022199522703886032, -0.03402968868613243, -0.022111129015684128, 0.005011312197893858, 0.028531743213534355, 0.03653009608387947, 0.10941804945468903, 0.044152770191431046, -0.07001909613609314, -0.06413571536540985, 0.13628387451171875, -0.09795275330543518, 0.0529741495847702, 0.058008115738630295, -0.05288621038198471, 0.0705389603972435, 0.010764949023723602, 0.014403997920453548, -0.11537359654903412, 0.10087214410305023, -0.02906300686299801, 0.015932144597172737, -0.09092245250940323, -0.09565667062997818, 0.05234503000974655, -0.08251462131738663, -0.08257070183753967, -0.07927095890045166, -0.04653434082865715, -0.08642464131116867, 0.04354562237858772, -0.039553239941596985, 0.029222648590803146, 0.01982388272881508, -0.03986938297748566, -0.012388167902827263, 0.008641614578664303, 0.033318281173706055, -0.05516115203499794, 0.03816341981291771, -0.09623847901821136, 0.03617402911186218, 0.11189616471529007, 0.041361115872859955, -0.097849041223526, 0.06069045513868332, -0.20176589488983154, 0.13512124121189117, -0.0554143525660038, 0.021412137895822525, -0.13463811576366425, 0.014573446474969387, -0.007953123189508915, -0.03557957336306572, -0.00016619036614429206, 0.13958849012851715, -0.07714905589818954, 0.016988299787044525, 0.05519123375415802, -0.057002633810043335, -0.06073106452822685, 0.03592279553413391, -0.04298112541437149, 0.0009309389861300588, 0.07964606583118439, 0.12880398333072662, -0.052431534975767136, -0.11100857704877853, -0.1033884584903717, -0.04355435073375702, -0.03344225138425827, 0.15291184186935425, 0.07019437849521637, -0.04057041555643082, 0.09706219285726547, -0.010331139899790287, -0.013929716311395168, -0.043055590242147446, 0.014268212020397186, -0.03589519485831261, 0.018479766324162483, -0.006571420002728701, -0.08298288285732269, 0.018730251118540764, -0.09579651057720184, 0.00695226201787591, -0.08116141706705093, -0.03764813765883446, 0.011302645318210125, -0.03146107867360115, 0.018847113475203514, -0.03059343248605728, 0.0902944877743721, -0.13577894866466522, -0.004659823141992092, -0.16015127301216125, -0.1099887564778328, 0.06149585545063019, -0.03897470608353615, 0.04288069158792496, -0.07673221826553345, -0.010952401906251907, 0.02358427084982395, 0.03340095281600952, -0.016601692885160446, 0.04268660396337509, -0.019729364663362503, -0.042631663382053375, -0.12887555360794067, -0.048315104097127914, -0.023007940500974655, 0.10783255100250244, -0.12586180865764618, -0.025736939162015915, 0.14051848649978638, 0.11617664992809296, 0.04488667473196983, -0.048298902809619904, 0.07734961807727814, -0.02413254790008068, -0.020317841321229935, -0.0831180289387703, -0.00938273873180151, -0.00248060398735106, 0.030084526166319847, 0.08470296114683151, -0.16458666324615479, -0.13110464811325073, 0.08257849514484406, 0.021788710728287697, -0.08243400603532791, -0.050684671849012375, -0.049625102430582047, -0.021306950598955154, -0.09232213348150253, -0.030896782875061035, 0.03563716262578964, 0.07216207683086395, 0.08678466081619263, -0.06893262267112732, -0.032275985926389694, 0.02312690205872059, -0.020457543432712555, -0.07861451804637909, 0.06509171426296234, 0.05410175025463104, -0.11915291100740433, 0.10514072328805923, -0.020129775628447533, 0.03711972013115883, 0.08889062702655792, 0.03842231258749962, -0.11614076793193817, 0.02270897477865219, 0.07294856011867523, 0.029128771275281906, 0.09442660957574844, -0.025807499885559082, 0.014746199361979961, 0.07928583770990372, -0.016537390649318695, -0.0184317734092474, -0.08235923200845718, 0.0778040736913681, 0.037927571684122086, -0.030385475605726242, 0.0377313531935215, -0.013943157158792019, 0.08013568818569183, 0.10105898976325989, 0.0611252635717392, 0.11605331301689148, -0.04555632919073105, -0.0587434396147728, -0.08842410147190094, 0.12252971529960632, -0.022473659366369247, -0.2591904401779175, -0.07505419850349426, -0.06328371167182922, -0.05965273827314377, -0.008676986210048199, 0.034168507903814316, 0.003299776930361986, -0.08372410386800766, -0.09902235120534897, 0.06151637062430382, 0.06733553111553192, -0.10865652561187744, -0.12077204883098602, 0.03191306069493294, 0.005309340078383684, -0.07704294472932816, 0.0003666908014565706, 0.02468845248222351, -0.05271648243069649, 0.00971151702105999, 0.04638243094086647, 0.12960760295391083, 0.061522264033555984, -0.01817590929567814, 0.004630117677152157, -0.0079403817653656, 0.1715434491634369, -0.15885470807552338, 0.10856519639492035, 0.15745382010936737, 0.007601588498800993, 0.07647626101970673, 0.1914907842874527, -0.012704281136393547, -0.019927654415369034, 0.024645021185278893, 0.07846678793430328, -0.06039445474743843, -0.19744254648685455, -0.06186436116695404, -0.0485377162694931, 0.019400054588913918, 0.13611872494220734, 0.037885382771492004, 0.020347226411104202, 0.09388530999422073, -0.1107967272400856, 0.031192563474178314, 0.023959213867783546, 0.10609619319438934, 0.04371391236782074, 0.04291967302560806, 0.044235676527023315, -0.042445987462997437, -0.03557733818888664, 0.09758354723453522, 0.12067970633506775, 0.11231905221939087, -0.1016487330198288, 0.09542197734117508, 0.027864696457982063, 0.026323571801185608, -0.04129471629858017, -0.00282694841735065, -0.03365933895111084, 0.058921534568071365, -0.0063478886149823666, -0.10052525252103806, -0.0038718050345778465, 0.08831353485584259, 0.13086137175559998, -0.020310569554567337, 0.007672543171793222, -0.042879074811935425, 0.08101942390203476, 0.24154417216777802, 0.009152236394584179, -0.20150621235370636, 0.015550698153674603, 0.04042070731520653, 0.021440284326672554, -0.12706318497657776, -0.03629507124423981, 0.0869491770863533, -0.1670359969139099, 0.057417694479227066, -0.044470515102148056, 0.1101783886551857, -0.14843451976776123, -0.03940369933843613, 0.06207135319709778, 0.02992824651300907, -0.022759301587939262, 0.08037318289279938, -0.11684153228998184, 0.0750701054930687, 0.04036502167582512, 0.03289583697915077, -0.0905783548951149, 0.03797420859336853, 0.00797470472753048, -0.016695797443389893, 0.15146207809448242, -0.0197858028113842, 0.007687023375183344, -0.13544000685214996, -0.1121809259057045, -0.01652294583618641, 0.05197472870349884, -0.07539323717355728, 0.0974910631775856, 0.01711568795144558, -0.0316566601395607, -0.08151586353778839, -0.048646412789821625, -0.06708570569753647, -0.1921093612909317, 0.04389817640185356, -0.004614925943315029, 0.011681224219501019, -0.01167265884578228, 0.02809588424861431, 0.02858629636466503, 0.1251181960105896, -0.03925280645489693, -0.09379023313522339, -0.14768534898757935, 0.05145280063152313, 0.09081628918647766, -0.016887890174984932, -0.019928934052586555, -0.08986055850982666, 0.17569400370121002, -0.032849352806806564, -0.0654168352484703, 0.029841581359505653, -0.06250123679637909, -0.11794991791248322, -0.061342738568782806, 0.10668904334306717, 0.02979518286883831, -0.007648026570677757, 0.003500835271552205, 0.06191887706518173, 0.00756062800064683, -0.04734442010521889, 0.03053724206984043, 0.09735259413719177, 0.13737916946411133, 0.1307600736618042, 0.0074768573977053165, -0.13339759409427643, -0.12339412420988083, 0.0003813637013081461, 0.03219444677233696, 0.10180673748254776, -0.07482884079217911, 0.10782361030578613, 0.04054303839802742, -0.08407716453075409, -0.22698494791984558, 0.08881942182779312, 0.06669867038726807, -0.012083960697054863, -0.00698079401627183, -0.14550812542438507, 0.13229010999202728, 0.03824715316295624, -0.006069097202271223, 0.07794497162103653, -0.26455971598625183, -0.07385589182376862, -0.018450355157256126, 0.038682274520397186, -0.23387861251831055, -0.1743178516626358, -0.04911383241415024, -0.05142508074641228, -0.14419683814048767, 0.05540848895907402, -0.0013676725793629885, 0.04390955716371536, 0.0421539805829525, 0.039362259209156036, 0.06647060066461563, -0.04883675277233124, 0.1039147898554802, 0.018706033006310463, 0.03937290981411934, -0.07004966586828232, -0.0841708779335022, 0.036342814564704895, -0.09424706548452377, 0.1431358903646469, 0.044853199273347855, 0.016730083152651787, -0.05656730383634567, -0.017282981425523758, -0.03590600565075874, 0.0854649692773819, -0.028672857210040092, -0.04411887004971504, -0.08967509865760803, 0.042115334421396255, 0.13119442760944366, 0.02724757045507431, 0.09355108439922333, -0.04876507818698883, -0.00869739893823862, 0.15574657917022705, 0.09833210706710815, 0.008116177283227444, -0.1483297199010849, -0.04088675603270531, 0.0031758141703903675, 0.04496840387582779, -0.12670493125915527, 0.04385156184434891, 0.08448676019906998, 0.015041119419038296, 0.10678965598344803, -0.01078334916383028, -0.09866445511579514, 0.009079216979444027, 0.04391083866357803, -0.10512524098157883, -0.11678718030452728, 0.02316148206591606, 0.10746554285287857, -0.09639348834753036, -0.11632326990365982, 0.11680281907320023, -0.0054026274010539055, -0.01784992590546608, 0.0015578485326841474, 0.07658109068870544, 0.05589425191283226, 0.056817494332790375, 0.017447561025619507, 0.038161084055900574, -0.06480686366558075, 0.11616656929254532, 0.15225403010845184, -0.16122537851333618, 0.0006908195209689438, 0.12355997413396835, -0.048813771456480026, -0.022414429113268852, -0.024281775578856468, 0.03156208619475365, -0.006730628199875355, -0.03010333888232708, 0.036054715514183044, -0.04177676886320114, 0.0272725410759449, 0.08323809504508972, -0.0021373566705733538, 0.051129210740327835, 0.021983740851283073, -0.01683431677520275, -0.140934556722641, 0.132309690117836, 0.020555224269628525, 0.053063325583934784, -0.09108907729387283, 0.004416837822645903, 0.028834424912929535, 0.002191169885918498, 0.009128413163125515, -0.05768259987235069, -0.07518855482339859, 0.0004122104437556118, -0.024944040924310684, 0.10350016504526138, -0.08351816236972809, -0.00841175951063633, -0.019631262868642807, 0.010556253604590893, -0.008335625752806664, 0.0283478032797575, -0.047197725623846054, -0.07768339663743973, -0.04401671141386032, 0.1276348978281021, -0.14734899997711182, -0.025335468351840973, 0.051262613385915756, -0.09455230832099915, 0.06381427496671677, 0.0075549171306192875, -0.04479941353201866, -0.09556449204683304, -0.17565608024597168, -0.03403065726161003, 0.02717212401330471, 0.06338225305080414, 0.04403747618198395, -0.07831075042486191, 0.050876274704933167, -0.006528777070343494, -0.09095094352960587, -0.017782870680093765, -0.000417597679188475, -0.11308000236749649, 0.04676831513643265, -0.08127202838659286, -0.02787506766617298, -0.03762783482670784, 0.13433098793029785, 0.057471513748168945, 0.011959260329604149, 0.07150237262248993, -0.048973582684993744, 0.09846267104148865, -0.12947465479373932, -0.036892712116241455, -0.004560304805636406, -0.034884095191955566, -0.07381774485111237, 0.0018249473068863153, 0.07661129534244537, -0.03373311460018158, 0.13064134120941162, 0.1283644288778305, 0.045077335089445114, 0.0444968044757843, -0.00630901288241148, 0.06393742561340332, 0.059819985181093216, -0.028682976961135864, -0.016396135091781616, -0.018656568601727486, 0.07388630509376526, 0.017499148845672607, 0.015149780549108982, 0.10263236612081528, 0.059938136488199234, 0.23343926668167114, 0.13643541932106018, 0.017666425555944443, 0.041716568171978, -0.08333676308393478, -0.06022779643535614, 0.09822273999452591, -0.051696475595235825, 0.08666791766881943, -0.10574451088905334, 0.04580724984407425, 0.09485014528036118, -0.15402290225028992, 0.0648234486579895, -0.011345752514898777, -0.011572279967367649, -0.028355304151773453, -0.10509410500526428, -0.05925195291638374, -0.01847671903669834, 0.0028741953428834677, -0.10979793965816498, 0.08484180271625519, 0.12840931117534637, -0.0025976980105042458, 0.014092265628278255, 0.10556668043136597, -0.06053519248962402, -0.07732675969600677, 0.0850236788392067, 0.020911170169711113, 0.0562642440199852, 0.040932800620794296, 0.041552357375621796, 0.07281821221113205, 0.0011816334445029497, 0.08761344105005264, 0.08977802842855453, 0.09123434126377106, 0.038584690541028976, -0.07328569889068604, -0.07468882948160172, 0.03211662545800209, -0.011895649135112762, -0.010398405604064465, 0.1528102457523346, 0.07274820655584335, 0.013938688673079014, -0.026852184906601906, 0.17749913036823273, -0.021185342222452164, -0.012015972286462784, -0.13715940713882446, 0.03665648773312569, -0.0372171513736248, -0.011447704397141933, -0.01650320366024971, -0.15252834558486938, 0.005849289242178202, 0.13220828771591187, 0.07790222764015198, -0.04830895736813545, -0.014022745192050934, -0.014681731350719929, 0.007432319689542055, -0.021783923730254173, 0.04256705939769745, 0.010301194153726101, 0.20528848469257355, -0.05871257558465004, 0.011499084532260895, -0.04181268438696861, -0.0355069637298584, -0.0620308481156826, 0.10535986721515656, -0.016174055635929108, -0.0004756659618578851, -0.07377642393112183, 0.11169115453958511, -0.007457918953150511, -0.20307058095932007, 0.06203443184494972, -0.09909763932228088, -0.08321114629507065, 0.012373714707791805, -0.020029321312904358, 0.0032605163287371397, 0.028685560449957848, 0.008312460035085678, -0.06673569232225418, 0.07712572067975998, 0.02561292238533497, -0.0636761337518692, -0.007486674003303051, -0.0025909971445798874, -0.10175694525241852, 0.2673615515232086, -0.027946656569838524, 0.03570107743144035, 0.08293557167053223, -0.019458506256341934, -0.13608457148075104, -0.029296811670064926, 0.08370576053857803, -0.05094778910279274, 0.017826298251748085, 0.12769858539104462, -0.008855496533215046, 0.15117639303207397, 0.08545427024364471, -0.09647763520479202, 0.05532849580049515, -0.03568198159337044, 0.009423378854990005, -0.11453865468502045, 0.0031746935565024614, -0.0929884985089302, 0.11354436725378036, 0.14016053080558777, -0.0059273745864629745, -0.007131359074264765, -0.037154972553253174, 0.002054889453575015, 0.0018789342138916254, 0.0994921550154686, 0.0011202304158359766, -0.05898667126893997, 0.008897301740944386, -0.14674358069896698, 0.08685986697673798, -0.13181553781032562, -0.050155945122241974, 0.03891487792134285, -0.016423316672444344, -0.014467728324234486, 0.07611355930566788, 0.034537483006715775, -0.0010260209674015641, -0.06143379956483841, -0.12432602792978287, 0.03665418177843094, 0.16474051773548126, -0.011639239266514778, -0.02290518768131733 ]
1b7367b5b3e359d23ace87d8f89053e7e6ee43fa
# Dataset Card for excavators-czvg9 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/excavators-czvg9 - **Point of Contact:** [email protected] ### Dataset Summary excavators-czvg9 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/excavators-czvg9 ### Citation Information ``` @misc{ excavators-czvg9, title = { excavators czvg9 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/excavators-czvg9 } }, url = { https://universe.roboflow.com/object-detection/excavators-czvg9 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/excavators-czvg9
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:32:37+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "excavators-czvg9", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "excavators", "1": "EXCAVATORS", "2": "dump truck", "3": "wheel loader"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:33:23+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for excavators-czvg9 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary excavators-czvg9 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for excavators-czvg9\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nexcavators-czvg9", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for excavators-czvg9\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nexcavators-czvg9", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for excavators-czvg9\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nexcavators-czvg9### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.013616292737424374, 0.17753252387046814, -0.007527179550379515, 0.020512495189905167, 0.09259990602731705, 0.0020130814518779516, 0.04462994635105133, 0.07908498495817184, -0.004335982259362936, 0.17699767649173737, -0.0009944490157067776, 0.063249371945858, 0.12845443189144135, 0.071036696434021, -0.02002953179180622, -0.14361338317394257, 0.06369540840387344, -0.06607239693403244, 0.09374535083770752, 0.07059858739376068, 0.07627682387828827, -0.13860446214675903, 0.08312595635652542, -0.019911935552954674, -0.022319640964269638, 0.017848076298832893, -0.06551767140626907, -0.027891995385289192, 0.0037786168977618217, 0.03248969092965126, 0.03464731574058533, 0.026945369318127632, 0.06500708311796188, -0.1781207025051117, 0.016946526244282722, 0.0955626368522644, 0.030700378119945526, 0.020881736651062965, 0.16195493936538696, -0.07767749577760696, 0.018930690363049507, -0.1300140619277954, 0.025501016527414322, 0.019790083169937134, -0.10686495155096054, -0.07631795108318329, -0.13513752818107605, 0.055569346994161606, 0.09156394749879837, 0.055892057716846466, -0.02044754847884178, 0.07772938907146454, -0.0336858294904232, 0.048163220286369324, 0.1424100250005722, -0.06965824216604233, -0.04001875966787338, 0.09538022428750992, 0.06332030147314072, 0.07708212733268738, -0.11432216316461563, -0.015029661357402802, 0.012820172123610973, -0.018379002809524536, -0.005257377400994301, -0.038371507078409195, -0.03805418312549591, -0.007167808711528778, -0.10562131553888321, -0.14443960785865784, 0.13747471570968628, 0.06142174452543259, -0.05928332358598709, -0.13555563986301422, -0.00720839062705636, 0.04818972572684288, -0.030274523422122, -0.0012418191181495786, 0.04827585816383362, -0.006906500551849604, 0.06682948023080826, -0.05344769358634949, -0.1084900051355362, 0.04726004973053932, 0.020605461671948433, 0.026456166058778763, -0.020472200587391853, 0.03676588833332062, 0.02914053574204445, 0.08304555714130402, 0.014704864472150803, -0.1096900999546051, -0.022282982245087624, -0.03751169890165329, -0.05346259847283363, -0.04857029393315315, 0.055671487003564835, -0.11684425920248032, 0.06365470588207245, 0.05921633169054985, -0.04993052035570145, 0.01788187585771084, -0.11070438474416733, 0.011056827381253242, 0.12212395668029785, 0.18512357771396637, -0.0980161800980568, -0.08001143485307693, -0.007088472135365009, 0.042685262858867645, 0.009953312575817108, -0.024613916873931885, -0.03406998887658119, -0.01470014825463295, 0.03627605363726616, 0.042514730244874954, 0.10477253794670105, 0.034323859959840775, -0.07350628077983856, -0.0630878210067749, 0.15532051026821136, -0.09178758412599564, 0.052098438143730164, 0.0564536452293396, -0.06706167757511139, 0.09166088700294495, 0.0057529122568666935, 0.021739453077316284, -0.119049571454525, 0.07191266119480133, -0.028023000806570053, 0.00876718107610941, -0.09506604820489883, -0.10349433869123459, 0.055969130247831345, -0.08862832188606262, -0.07791804522275925, -0.07562775164842606, -0.04738477244973183, -0.09291047602891922, 0.035123005509376526, -0.04177797958254814, 0.01629798114299774, 0.013455795124173164, -0.0484260730445385, -0.012435657903552055, 0.00990835390985012, 0.045543842017650604, -0.059884071350097656, 0.0310252346098423, -0.10651421546936035, 0.03451168164610863, 0.10430415719747543, 0.04127753525972366, -0.08548880368471146, 0.06710538268089294, -0.1783546507358551, 0.12118975818157196, -0.036118585616350174, 0.02866269275546074, -0.12600496411323547, 0.0027599595487117767, -0.0026028971187770367, -0.04076587036252022, -0.002118003321811557, 0.13335007429122925, -0.09824161231517792, 0.029306096956133842, 0.04816439002752304, -0.03820819407701492, -0.052356231957674026, 0.042521070688962936, -0.0434018112719059, -0.014387411065399647, 0.08118777722120285, 0.10697491466999054, -0.029835673049092293, -0.12588021159172058, -0.11838966608047485, -0.049769554287195206, -0.04786749556660652, 0.15662631392478943, 0.07001039385795593, -0.04225523769855499, 0.10461905598640442, -0.010051378048956394, -0.015012317337095737, -0.05579471215605736, 0.0034614535979926586, -0.03660425543785095, 0.005418649408966303, -0.00733741233125329, -0.07241527736186981, 0.003187017049640417, -0.10226140916347504, 0.010408042930066586, -0.07770860195159912, -0.049741942435503006, 0.02053682878613472, -0.020822647958993912, 0.01002582535147667, -0.03325268253684044, 0.0826866552233696, -0.11879070848226547, -0.003583700628951192, -0.1480102390050888, -0.11498727649450302, 0.06350945681333542, -0.05791259929537773, 0.035028401762247086, -0.06717123836278915, -0.01730775460600853, 0.014229902066290379, 0.046148303896188736, -0.011793962679803371, 0.03735845908522606, -0.026187743991613388, -0.043904270976781845, -0.11034489423036575, -0.06283198297023773, -0.01541797537356615, 0.08790098130702972, -0.12180963903665543, -0.03214807063341141, 0.11710654944181442, 0.12158571928739548, 0.018718672916293144, -0.04604681208729744, 0.06711816787719727, -0.04125694930553436, -0.01744200848042965, -0.07484377175569534, -0.017539022490382195, -0.005716335494071245, 0.04601290822029114, 0.07095178216695786, -0.1502261608839035, -0.14712530374526978, 0.08560901135206223, 0.03352673724293709, -0.07997149974107742, -0.05395130813121796, -0.04371727630496025, -0.018247459083795547, -0.09601770341396332, -0.039820995181798935, 0.027890676632523537, 0.06230764091014862, 0.07704800367355347, -0.08135917037725449, -0.04709334671497345, 0.022252917289733887, -0.0118236243724823, -0.07930473983287811, 0.07089041918516159, 0.06459559500217438, -0.1260996013879776, 0.08856110274791718, -0.02390393428504467, 0.049553342163562775, 0.07972227782011032, 0.03924471139907837, -0.12293830513954163, 0.010408624075353146, 0.0757247731089592, 0.0198419988155365, 0.09099910408258438, -0.016937414184212685, 0.01806751824915409, 0.08254528790712357, -0.009081026539206505, -0.017167413607239723, -0.08734636008739471, 0.07506594061851501, 0.029747353866696358, -0.04233352094888687, 0.021212227642536163, -0.02564454823732376, 0.09008800238370895, 0.0984625369310379, 0.07517673075199127, 0.10426032543182373, -0.047913216054439545, -0.0679730474948883, -0.09075244516134262, 0.12031646072864532, -0.026681439951062202, -0.24114194512367249, -0.07723616063594818, -0.05956507474184036, -0.058208856731653214, -0.0030628812965005636, 0.02021215297281742, 0.000742594653274864, -0.09410823881626129, -0.09496133029460907, 0.058221638202667236, 0.04646636173129082, -0.10492005944252014, -0.10429271310567856, 0.0377529039978981, -0.00030167296063154936, -0.08520840853452682, 0.0037627278361469507, 0.023668818175792694, -0.049710482358932495, 0.000875704106874764, 0.040630560368299484, 0.13417087495326996, 0.06489818543195724, -0.025744328275322914, -0.0027906622271984816, 0.007706721778959036, 0.1794179528951645, -0.14792564511299133, 0.10014370083808899, 0.15676166117191315, 0.015420235693454742, 0.0758156031370163, 0.19103124737739563, -0.017213869839906693, -0.014947199262678623, 0.028173396363854408, 0.0749807134270668, -0.050317488610744476, -0.19016820192337036, -0.0681174173951149, -0.043905071914196014, 0.00018569808162283152, 0.13962514698505402, 0.03424818813800812, 0.01040253322571516, 0.08728770911693573, -0.11839622259140015, 0.013055253773927689, 0.014899631030857563, 0.09271835535764694, 0.034298259764909744, 0.04192382097244263, 0.039297256618738174, -0.040789246559143066, -0.044506754726171494, 0.08806310594081879, 0.12415950745344162, 0.12197569757699966, -0.08903048932552338, 0.10940086096525192, 0.03191715106368065, 0.049481309950351715, -0.03627146780490875, -0.0016297894762828946, -0.020740440115332603, 0.045209892094135284, -0.002404767321422696, -0.09086081385612488, 0.015205108560621738, 0.08133579045534134, 0.14986850321292877, -0.00674769701436162, -0.014212372712790966, -0.057719338685274124, 0.06841250509023666, 0.25702032446861267, 0.017874224111437798, -0.20314837992191315, 0.017797423526644707, 0.035872187465429306, 0.007335682865232229, -0.12705473601818085, -0.04227282851934433, 0.08025138825178146, -0.16828712821006775, 0.04712679609656334, -0.024756206199526787, 0.11279536783695221, -0.13390278816223145, -0.03721653297543526, 0.05308448150753975, 0.04616380110383034, -0.023985721170902252, 0.07371363043785095, -0.08327498286962509, 0.07263718545436859, 0.03343399986624718, 0.03307952359318733, -0.08803177624940872, 0.03638031333684921, 0.005117273889482021, -0.03350071981549263, 0.14331530034542084, -0.017528200522065163, 0.024501169100403786, -0.12841744720935822, -0.112172432243824, -0.013387605547904968, 0.06322865933179855, -0.07379014045000076, 0.11883113533258438, 0.014177841134369373, -0.02891327068209648, -0.07093148678541183, -0.031431619077920914, -0.06533059477806091, -0.17097759246826172, 0.039104122668504715, -0.020334282889962196, 0.014076570980250835, -0.015487855300307274, 0.020671529695391655, -0.018410339951515198, 0.13152211904525757, -0.04090359807014465, -0.08853640407323837, -0.12925651669502258, 0.036315370351076126, 0.10749799758195877, -0.009483922272920609, -0.0009395593078806996, -0.08971381187438965, 0.1861366182565689, -0.02713935635983944, -0.06815934926271439, 0.018581045791506767, -0.06490454822778702, -0.12021184712648392, -0.059262465685606, 0.11123930662870407, 0.04650415852665901, -0.0007618179661221802, 0.00741387577727437, 0.047898899763822556, -0.012551614083349705, -0.0467834398150444, 0.021113093942403793, 0.0997978150844574, 0.1411065012216568, 0.14149565994739532, 0.009539065882563591, -0.15546084940433502, -0.1148618683218956, -0.003669213270768523, 0.02824481949210167, 0.09369894862174988, -0.06974679976701736, 0.099770188331604, 0.036335885524749756, -0.07035742700099945, -0.22136393189430237, 0.08109141886234283, 0.06820151209831238, 0.00034909139503724873, -0.01593569666147232, -0.11926191300153732, 0.1414833813905716, 0.04638668894767761, -0.003150344593450427, 0.09179381281137466, -0.2830716371536255, -0.06813457608222961, -0.022826295346021652, 0.017180142924189568, -0.22756309807300568, -0.16001774370670319, -0.051772523671388626, -0.05983319133520126, -0.17962394654750824, 0.05792051926255226, 0.007795453537255526, 0.05061951279640198, 0.03760126605629921, 0.06294337660074234, 0.06272294372320175, -0.04439222812652588, 0.1133706346154213, 0.02533029206097126, 0.035540904849767685, -0.07753998786211014, -0.08935826271772385, 0.018061622977256775, -0.09729956835508347, 0.14971581101417542, 0.060232553631067276, 0.026483792811632156, -0.050710856914520264, -0.016605651006102562, -0.048027195036411285, 0.08147326856851578, -0.026907162740826607, -0.03533363342285156, -0.10210683941841125, 0.03643623739480972, 0.12824425101280212, 0.031021330505609512, 0.06918366998434067, -0.03694356232881546, -0.024474812671542168, 0.13002672791481018, 0.103750079870224, -0.006769753061234951, -0.13579951226711273, -0.0361001156270504, 0.002104788087308407, 0.04119378700852394, -0.087470144033432, 0.03887758031487465, 0.09635647386312485, 0.025760427117347717, 0.09285170584917068, -0.008438104763627052, -0.09547256678342819, 0.0036992551758885384, 0.03311922401189804, -0.08613213151693344, -0.10831881314516068, 0.03315986320376396, 0.10434374213218689, -0.12352798134088516, -0.1060045063495636, 0.10832217335700989, 0.00911963265389204, -0.02411256544291973, -0.002367212437093258, 0.07360924780368805, 0.05186379328370094, 0.056936874985694885, 0.026430746540427208, 0.03505488485097885, -0.07771645486354828, 0.11445016413927078, 0.14616785943508148, -0.11759693920612335, -0.006069579627364874, 0.10373686254024506, -0.049238432198762894, -0.01914343796670437, -0.02038468047976494, 0.020734349265694618, -0.031171170994639397, -0.021958131343126297, 0.044535137712955475, -0.06442328542470932, 0.04394162818789482, 0.06770467758178711, 0.004223922733217478, 0.05923200398683548, 0.03744382783770561, -0.011443475261330605, -0.1412430703639984, 0.11794065684080124, 0.033037591725587845, 0.05167806148529053, -0.09355451166629791, 0.0067798662930727005, 0.01739467866718769, 0.01428445428609848, 0.0119674913585186, -0.04694231599569321, -0.07646103203296661, 0.00861360039561987, -0.05718003958463669, 0.10253468155860901, -0.10115423053503036, -0.0031142744701355696, -0.020028691738843918, 0.010645841248333454, -0.0136337298899889, 0.030916700139641762, -0.044843483716249466, -0.08821070194244385, -0.047762490808963776, 0.12976598739624023, -0.1315474659204483, -0.020143704488873482, 0.052688807249069214, -0.08640401065349579, 0.056519538164138794, 0.011101244017481804, -0.029631638899445534, -0.09356170147657394, -0.19667832553386688, -0.060230523347854614, 0.029026826843619347, 0.06928132474422455, 0.04717348515987396, -0.0852539986371994, 0.04822179302573204, 0.0003290949098300189, -0.10048207640647888, -0.02075226977467537, -0.020144181326031685, -0.11691130697727203, 0.029850943014025688, -0.09016886353492737, -0.02245110645890236, -0.03959464281797409, 0.13178043067455292, 0.060416508466005325, 0.0017516774823889136, 0.07279790937900543, -0.03639655187726021, 0.0944378450512886, -0.13680000603199005, -0.03716303035616875, -0.017476383596658707, -0.022456010803580284, -0.06415970623493195, 0.00909130647778511, 0.07301528006792068, -0.027220511808991432, 0.12712034583091736, 0.11420649290084839, 0.054325465112924576, 0.03640683367848396, 0.01292314101010561, 0.05968652293086052, 0.06532513350248337, -0.009930280968546867, -0.010667623952031136, -0.018032066524028778, 0.07036980241537094, 0.019964586943387985, 0.01638835109770298, 0.06495904177427292, 0.055531952530145645, 0.22701433300971985, 0.13809795677661896, 0.024065297096967697, 0.05858834087848663, -0.09790030866861343, -0.06521208584308624, 0.11080005019903183, -0.053979139775037766, 0.07823251187801361, -0.09736081212759018, 0.02459600940346718, 0.08781230449676514, -0.1447276920080185, 0.06637588888406754, -0.015491006895899773, -0.0007124393596313894, -0.011737421154975891, -0.10527730733156204, -0.060495924204587936, -0.00940705370157957, 0.0031254661735147238, -0.11029072850942612, 0.09478971362113953, 0.12598685920238495, -0.0023461487144231796, 0.00923178344964981, 0.08961377292871475, -0.056646764278411865, -0.09294349700212479, 0.07763968408107758, 0.01656455360352993, 0.06570802628993988, 0.046600934118032455, 0.03786759078502655, 0.10005873441696167, 0.01247994415462017, 0.08777763694524765, 0.08999444544315338, 0.09461640566587448, 0.02163194864988327, -0.06536690145730972, -0.074127696454525, 0.028338836506009102, -0.014191658236086369, -0.00685256440192461, 0.15370957553386688, 0.06972268968820572, 0.018669890239834785, -0.024805312976241112, 0.15237466990947723, -0.012057358399033546, -0.02749546989798546, -0.13655467331409454, 0.01140523236244917, -0.03733466938138008, -0.013055144809186459, -0.008939978666603565, -0.1519041359424591, 0.0057571628130972385, 0.135125994682312, 0.07433127611875534, -0.058692190796136856, -0.014145287685096264, -0.007844556123018265, 0.001963899005204439, -0.023025058209896088, 0.031333088874816895, 0.024755269289016724, 0.21447022259235382, -0.05942239612340927, 0.013742559589445591, -0.039277881383895874, -0.022925090044736862, -0.05623016878962517, 0.07643818110227585, -0.012858651578426361, 0.008776226080954075, -0.08032504469156265, 0.11203612387180328, -0.0010594597551971674, -0.1775418370962143, 0.050086427479982376, -0.07879853993654251, -0.08710002154111862, 0.016799645498394966, -0.0330343060195446, 0.00746535649523139, 0.03747733309864998, -0.0010508708655834198, -0.05586373805999756, 0.0885423868894577, 0.014134115539491177, -0.06208479404449463, -0.012652987614274025, 0.004380315076559782, -0.0713493600487709, 0.2824583351612091, -0.025937112048268318, 0.03415121138095856, 0.07658017426729202, -0.014914880506694317, -0.14090994000434875, -0.027162466198205948, 0.08268552273511887, -0.055785540491342545, 0.03268151357769966, 0.11643703281879425, -0.004632489290088415, 0.13655225932598114, 0.08650342375040054, -0.08568450808525085, 0.05342172086238861, -0.004274928942322731, 0.03803148493170738, -0.12535344064235687, 0.013944446109235287, -0.09298142790794373, 0.11743652075529099, 0.1371339112520218, -0.004304482601583004, -0.005839180201292038, -0.033379729837179184, 0.010618885047733784, 0.004567665513604879, 0.10633295029401779, 0.005566039588302374, -0.06520756334066391, 0.020757853984832764, -0.149316668510437, 0.07856450974941254, -0.11944027245044708, -0.05765162408351898, 0.036146510392427444, -0.02340891771018505, -0.002034459263086319, 0.07296289503574371, 0.026428421959280968, 0.012851628474891186, -0.05623840168118477, -0.09252552688121796, 0.027130814269185066, 0.15866942703723907, -0.01948879472911358, -0.03657475486397743 ]
1b6e0d5603507d44663b66c61c581220bc3d8d60
# Dataset Card for signatures-xc8up ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/signatures-xc8up - **Point of Contact:** [email protected] ### Dataset Summary signatures-xc8up ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/signatures-xc8up ### Citation Information ``` @misc{ signatures-xc8up, title = { signatures xc8up Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/signatures-xc8up } }, url = { https://universe.roboflow.com/object-detection/signatures-xc8up }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/signatures-xc8up
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:33:06+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "signatures-xc8up", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "signatures", "1": "signature"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:33:26+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for signatures-xc8up The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary signatures-xc8up ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for signatures-xc8up\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsignatures-xc8up", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for signatures-xc8up\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nsignatures-xc8up", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for signatures-xc8up\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nsignatures-xc8up### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.014372500590980053, 0.17996859550476074, -0.007607005070894957, 0.017830248922109604, 0.09425872564315796, -0.0036630260292440653, 0.0660121738910675, 0.08284090459346771, -0.004685074556618929, 0.17264121770858765, 0.009014626033604145, 0.05625137314200401, 0.1118631437420845, 0.09669788181781769, -0.018251920118927956, -0.15962699055671692, 0.0643238052725792, -0.06955063343048096, 0.07621938735246658, 0.07186565548181534, 0.07375995814800262, -0.1368233859539032, 0.0841415524482727, -0.040678780525922775, -0.012465221807360649, 0.037214577198028564, -0.05702415108680725, -0.040445342659950256, -0.003763401648029685, 0.05091617628931999, 0.010008350946009159, 0.031113818287849426, 0.0397317111492157, -0.20429734885692596, 0.022783681750297546, 0.10616297274827957, 0.030420450493693352, 0.02246619388461113, 0.15561418235301971, -0.09116481989622116, 0.06540393829345703, -0.1149304136633873, 0.031430140137672424, 0.014484202489256859, -0.11303816735744476, -0.1074013039469719, -0.1167745515704155, 0.07014747709035873, 0.09508223086595535, 0.05638608708977699, -0.01896478980779648, 0.08803099393844604, -0.02002953737974167, 0.05671239644289017, 0.12002019584178925, -0.03598696365952492, -0.04226047173142433, 0.07422736287117004, 0.04471978172659874, 0.10243647545576096, -0.11194275319576263, -0.021849269047379494, 0.009320351295173168, -0.023845333606004715, -0.0010186749277636409, -0.049297068268060684, -0.055755406618118286, 0.0006879632128402591, -0.09765788912773132, -0.15455548465251923, 0.13579204678535461, 0.05305567383766174, -0.053766608238220215, -0.14275676012039185, 0.0003345978038851172, 0.06020914390683174, -0.029492121189832687, 0.0006142724305391312, 0.04798209294676781, -0.003520567901432514, 0.05293839052319527, -0.05772436782717705, -0.0984463095664978, 0.049582842737436295, 0.037560638040304184, 0.029148491099476814, -0.0207928866147995, 0.04382302984595299, 0.019568437710404396, 0.07695817202329636, 0.0009099383023567498, -0.11440660059452057, -0.03158290684223175, -0.04311101511120796, -0.042426079511642456, -0.043700236827135086, 0.05676424503326416, -0.1331666111946106, 0.0714205875992775, 0.07318608462810516, -0.08053372800350189, 0.028796404600143433, -0.11305313557386398, 0.00909792073071003, 0.11502072215080261, 0.17417675256729126, -0.08307217061519623, -0.07149960845708847, 0.00007933753659017384, 0.04718632251024246, 0.028004826977849007, -0.02847660891711712, -0.021731596440076828, 0.004992777481675148, 0.02326892502605915, 0.04592958837747574, 0.11518917232751846, 0.0381183922290802, -0.06930676847696304, -0.06525778770446777, 0.1429213285446167, -0.09819303452968597, 0.04720664769411087, 0.06108313053846359, -0.05907437950372696, 0.07647448033094406, 0.009046564809978008, 0.012525254860520363, -0.1206795945763588, 0.08983093500137329, -0.024066152051091194, 0.019170671701431274, -0.09173408895730972, -0.09002729505300522, 0.0628492534160614, -0.0773840844631195, -0.07378258556127548, -0.07922770082950592, -0.03988296166062355, -0.08923470973968506, 0.03888537362217903, -0.04256967827677727, 0.02283325232565403, 0.019644813612103462, -0.041889239102602005, -0.014892512932419777, 0.004565749317407608, 0.04646916314959526, -0.06286997348070145, 0.0327535904943943, -0.09149627387523651, 0.032443903386592865, 0.11184115707874298, 0.04042607173323631, -0.10796688497066498, 0.061669427901506424, -0.19850113987922668, 0.1354675441980362, -0.04431314021348953, 0.0295177660882473, -0.13073396682739258, 0.008688833564519882, -0.008881288580596447, -0.03654072806239128, -0.003593159606680274, 0.1410827934741974, -0.07646830379962921, 0.012997650541365147, 0.049764376133680344, -0.059957992285490036, -0.05707487836480141, 0.032607268542051315, -0.04309611767530441, -0.020985879004001617, 0.08023840188980103, 0.13525928556919098, -0.03922342509031296, -0.12181862443685532, -0.11821649968624115, -0.03465590253472328, -0.03625159710645676, 0.1492139995098114, 0.08009649068117142, -0.03863624483346939, 0.10891859233379364, -0.010058736428618431, -0.0152439521625638, -0.05043063312768936, 0.012596335262060165, -0.03718600794672966, 0.009868636727333069, -0.0016135253245010972, -0.10341701656579971, 0.02404935471713543, -0.10313690453767776, -0.0001902279764181003, -0.08692800253629684, -0.03481142222881317, 0.020176878198981285, -0.034887392073869705, 0.017059333622455597, -0.032651983201503754, 0.09172885119915009, -0.12516799569129944, -0.0008618285064585507, -0.1580873429775238, -0.11200504004955292, 0.0546417161822319, -0.05709584429860115, 0.04016968980431557, -0.09065010398626328, -0.014435332268476486, 0.02188163995742798, 0.035966210067272186, -0.015133246779441833, 0.042899440973997116, -0.025713836774230003, -0.036624401807785034, -0.1322786957025528, -0.05451307073235512, -0.027721405029296875, 0.09343022853136063, -0.12408663332462311, -0.03248417004942894, 0.13212746381759644, 0.12416331470012665, 0.034265246242284775, -0.04992259293794632, 0.08389980345964432, -0.02314315363764763, -0.022098766639828682, -0.08413226902484894, -0.010722927749156952, -0.004469916690140963, 0.03667210415005684, 0.08304707705974579, -0.1627853363752365, -0.13665638864040375, 0.08684320747852325, 0.03965691477060318, -0.08131163567304611, -0.05703190341591835, -0.0443195216357708, -0.014920077286660671, -0.09462188184261322, -0.022222258150577545, 0.039912208914756775, 0.06129983812570572, 0.08275293558835983, -0.0815621018409729, -0.0356173999607563, 0.018049350008368492, -0.014309742487967014, -0.08230805397033691, 0.08098446577787399, 0.057473041117191315, -0.10864908993244171, 0.10289556533098221, -0.024309581145644188, 0.044705744832754135, 0.09014944732189178, 0.028565868735313416, -0.12445301562547684, 0.022677188739180565, 0.06721878051757812, 0.022395621985197067, 0.08379852771759033, -0.016565503552556038, 0.026590319350361824, 0.08087512105703354, -0.01955549418926239, -0.019595028832554817, -0.08302072435617447, 0.07406874746084213, 0.03501683846116066, -0.04200245067477226, 0.0067881206050515175, -0.01854131743311882, 0.081140898168087, 0.09432428330183029, 0.06106524169445038, 0.11669110506772995, -0.04683683440089226, -0.063327357172966, -0.09645837545394897, 0.13169202208518982, -0.018651602789759636, -0.25625666975975037, -0.0835849717259407, -0.061154261231422424, -0.055801354348659515, -0.010768144391477108, 0.03830236569046974, 0.0008822240051813424, -0.08903253823518753, -0.11169421672821045, 0.06053585559129715, 0.058532942086458206, -0.11005917936563492, -0.12187077850103378, 0.04283856227993965, 0.010009735822677612, -0.07712803781032562, 0.0031475296709686518, 0.026409070938825607, -0.03510172292590141, 0.004852022044360638, 0.04235171526670456, 0.12439063936471939, 0.056331366300582886, -0.017300955951213837, 0.00042995071271434426, -0.002674899296835065, 0.17368927597999573, -0.15030509233474731, 0.08751942962408066, 0.17287608981132507, 0.010656497441232204, 0.07249896228313446, 0.19768907129764557, -0.019919754937291145, -0.015339118428528309, 0.026321640238165855, 0.06887714564800262, -0.06596051156520844, -0.19605715572834015, -0.05780940502882004, -0.042473580688238144, 0.018593335524201393, 0.14388170838356018, 0.036022208631038666, 0.015123295597732067, 0.08849316090345383, -0.119561105966568, 0.0125010646879673, 0.01378028653562069, 0.10313481092453003, 0.052474841475486755, 0.0466737374663353, 0.04655952379107475, -0.051902953535318375, -0.02959294803440571, 0.09828044474124908, 0.09656763821840286, 0.10715223103761673, -0.10443419218063354, 0.09077975898981094, 0.029975563287734985, 0.029579298570752144, -0.03227638080716133, -0.007720939815044403, -0.027788594365119934, 0.053362585604190826, -0.004802268464118242, -0.10937816649675369, 0.003679221495985985, 0.09012135863304138, 0.13166284561157227, -0.011006060056388378, -0.010228591971099377, -0.05305187404155731, 0.06380774080753326, 0.25312790274620056, 0.008817417547106743, -0.2185182422399521, 0.008591868914663792, 0.036645449697971344, 0.011262304149568081, -0.11582089215517044, -0.04373038187623024, 0.08820124715566635, -0.16714319586753845, 0.06648498773574829, -0.0264222901314497, 0.11520907282829285, -0.1303270161151886, -0.03463556617498398, 0.057759203016757965, 0.04923461005091667, -0.026733051985502243, 0.08292445540428162, -0.10050242394208908, 0.07274509221315384, 0.03436079993844032, 0.03311239182949066, -0.08086863160133362, 0.03861862048506737, 0.009524003602564335, -0.010855507105588913, 0.14452439546585083, -0.021215565502643585, -0.005806002300232649, -0.12361827492713928, -0.11566190421581268, -0.008032196201384068, 0.05195970460772514, -0.06887204200029373, 0.09928157925605774, 0.01316958386451006, -0.03018021769821644, -0.0793502926826477, -0.043331973254680634, -0.062275152653455734, -0.18874794244766235, 0.03215555101633072, -0.00710330531001091, 0.026285186409950256, -0.013933692127466202, 0.020687690004706383, 0.03705470263957977, 0.12783300876617432, -0.03271854296326637, -0.09257753938436508, -0.1396440714597702, 0.054118212312459946, 0.10537827014923096, -0.019168002530932426, -0.023229079321026802, -0.09840606153011322, 0.17675472795963287, -0.021893352270126343, -0.07779306918382645, 0.0205208919942379, -0.07072377949953079, -0.11836172640323639, -0.056837089359760284, 0.10553602874279022, 0.020620398223400116, -0.0036911875940859318, -0.0014240790624171495, 0.060939691960811615, -0.004716591443866491, -0.04485690966248512, 0.019932245835661888, 0.11297614872455597, 0.15300264954566956, 0.1319822520017624, 0.008482187986373901, -0.14278332889080048, -0.12338220328092575, -0.010238612070679665, 0.01556170079857111, 0.10246432572603226, -0.06735517829656601, 0.12074685841798782, 0.04171106591820717, -0.07947149127721786, -0.22335799038410187, 0.08034814894199371, 0.06864695250988007, -0.008985145017504692, -0.00838522706180811, -0.1394411027431488, 0.14289462566375732, 0.04035591706633568, 0.0054646022617816925, 0.07254772633314133, -0.2745613753795624, -0.07231455296278, -0.026524780318140984, 0.022175459191203117, -0.2380019873380661, -0.16889366507530212, -0.05425400286912918, -0.06608010828495026, -0.14549195766448975, 0.049392249435186386, 0.006643139757215977, 0.044801656156778336, 0.035034216940402985, 0.028810521587729454, 0.06522925943136215, -0.0460556298494339, 0.10714602470397949, 0.010716326534748077, 0.038579076528549194, -0.07737768441438675, -0.07828477770090103, 0.010309361852705479, -0.09855414181947708, 0.1461774706840515, 0.03400183096528053, 0.02758742682635784, -0.047953471541404724, -0.022238580510020256, -0.03030911274254322, 0.08514644205570221, -0.021863779053092003, -0.03301229700446129, -0.10073253512382507, 0.030619336292147636, 0.127534881234169, 0.027931613847613335, 0.09385789930820465, -0.05447648838162422, -0.005175793543457985, 0.16488857567310333, 0.10556907951831818, -0.006767783779650927, -0.1485871970653534, -0.04030114784836769, 0.0008127344772219658, 0.0446159727871418, -0.12745743989944458, 0.03452397882938385, 0.08451564610004425, 0.020414873957633972, 0.09903892874717712, -0.014267307706177235, -0.09599783271551132, 0.00797999557107687, 0.04248274490237236, -0.10031801462173462, -0.10921256244182587, 0.025377338752150536, 0.10925430059432983, -0.11353306472301483, -0.12051963806152344, 0.11597917228937149, -0.003642010735347867, -0.017552880570292473, -0.0029419241473078728, 0.07366735488176346, 0.05805868282914162, 0.061347875744104385, 0.015918347984552383, 0.037395279854536057, -0.07218413054943085, 0.11397427320480347, 0.14427435398101807, -0.15643586218357086, 0.0039772153832018375, 0.11369539797306061, -0.047513701021671295, -0.022360553964972496, -0.021688031032681465, 0.021852994337677956, -0.024013984948396683, -0.03619874641299248, 0.03162582218647003, -0.045250922441482544, 0.04512779787182808, 0.09441512823104858, 0.0037094862200319767, 0.04946475476026535, 0.031240075826644897, -0.019688546657562256, -0.14179694652557373, 0.1289084106683731, 0.022432295605540276, 0.05056330934166908, -0.0869162529706955, 0.006543835159391165, 0.03754754364490509, 0.0072561828419566154, 0.012315815314650536, -0.059389982372522354, -0.07955730706453323, 0.0028218079824000597, -0.03864675015211105, 0.11064742505550385, -0.08960002660751343, -0.005715414881706238, -0.01865113154053688, 0.007416310254484415, -0.015772607177495956, 0.03572880104184151, -0.04531882703304291, -0.0812203586101532, -0.05215634033083916, 0.13318343460559845, -0.15186278522014618, -0.018532929942011833, 0.051298223435878754, -0.08749052882194519, 0.05928467586636543, 0.01743338629603386, -0.04402169957756996, -0.09748347848653793, -0.18643535673618317, -0.04239162057638168, 0.02719845250248909, 0.06717723608016968, 0.03170895203948021, -0.07992435246706009, 0.055744949728250504, 0.004152474459260702, -0.1027606651186943, -0.015051400288939476, -0.013525850139558315, -0.11795809864997864, 0.03955027461051941, -0.07761894911527634, -0.03418155387043953, -0.03864848613739014, 0.13801318407058716, 0.05742953345179558, 0.0038454243913292885, 0.08642487972974777, -0.05223589017987251, 0.09634318947792053, -0.1352735161781311, -0.037903398275375366, -0.011187811382114887, -0.031196141615509987, -0.0918690413236618, 0.005862480495125055, 0.07521025836467743, -0.03016338124871254, 0.136005699634552, 0.12991149723529816, 0.04894588515162468, 0.046362441033124924, -0.002242534188553691, 0.09327331185340881, 0.06597016751766205, -0.007876585237681866, -0.007093858905136585, -0.015892794355750084, 0.07499022036790848, 0.018234770745038986, 0.022704117000102997, 0.08456040173768997, 0.05005618929862976, 0.2500667870044708, 0.13411884009838104, 0.021854152902960777, 0.04513821005821228, -0.07925969362258911, -0.038037221878767014, 0.0992940291762352, -0.039431262761354446, 0.08342143893241882, -0.09717602282762527, 0.052134159952402115, 0.09641223400831223, -0.1452038288116455, 0.06489056348800659, -0.009631367400288582, -0.0016543957171961665, -0.03508690744638443, -0.10197374224662781, -0.06202317774295807, -0.03152238950133324, 0.0007088035345077515, -0.11361493915319443, 0.09318356215953827, 0.1450936496257782, 0.0018890866776928306, 0.013115719892084599, 0.08979681134223938, -0.051761139184236526, -0.08676125109195709, 0.07257740199565887, 0.016181522980332375, 0.0574362613260746, 0.049995627254247665, 0.04512198269367218, 0.09917697310447693, -0.012250635772943497, 0.08256342262029648, 0.0959775298833847, 0.10855557769536972, 0.030924290418624878, -0.07703177630901337, -0.07436815649271011, 0.03223005682229996, -0.009122046642005444, -0.010470928624272346, 0.157377690076828, 0.07662049680948257, 0.013002801686525345, -0.018649013713002205, 0.1831846386194229, -0.015848247334361076, -0.020184362307190895, -0.1367381066083908, 0.06393540650606155, -0.04002143070101738, -0.011208108626306057, -0.012906390242278576, -0.14863714575767517, 0.002502874471247196, 0.12697938084602356, 0.07735331356525421, -0.04770166054368019, -0.013313671573996544, -0.01982204243540764, 0.005514977034181356, -0.023064197972416878, 0.040964383631944656, 0.017735473811626434, 0.19847403466701508, -0.05538620427250862, 0.018902424722909927, -0.040014564990997314, -0.027853339910507202, -0.0662524402141571, 0.08818590641021729, -0.019833188503980637, -0.00884696003049612, -0.07452941685914993, 0.11467057466506958, -0.009242331609129906, -0.18172013759613037, 0.06272999197244644, -0.09225761890411377, -0.08063902705907822, 0.009609476663172245, -0.02464144304394722, 0.016948118805885315, 0.029110291972756386, 0.0038264526519924402, -0.06707245856523514, 0.07114709913730621, 0.025452859699726105, -0.08041247725486755, -0.025603242218494415, 0.0008971294737420976, -0.09546856582164764, 0.2618544101715088, -0.033422473818063736, 0.046127572655677795, 0.07962355762720108, -0.018756050616502762, -0.13576209545135498, -0.027292976155877113, 0.0856487974524498, -0.06048959866166115, 0.032635398209095, 0.11180584132671356, -0.009632845409214497, 0.1605261117219925, 0.08563985675573349, -0.07448558509349823, 0.05103706195950508, -0.03287702798843384, 0.019995976239442825, -0.11617539077997208, 0.002049690345302224, -0.09664948284626007, 0.11020059883594513, 0.14073477685451508, -0.00832730159163475, -0.015382252633571625, -0.03951812908053398, 0.016159119084477425, 0.005671519786119461, 0.08191768825054169, 0.013144295662641525, -0.058224890381097794, 0.014937036670744419, -0.14264678955078125, 0.08858740329742432, -0.152922585606575, -0.05230945348739624, 0.04227454587817192, -0.01560904923826456, -0.0015393808716908097, 0.07488570362329483, 0.03055575303733349, 0.0061864606104791164, -0.06418526917695999, -0.10754501819610596, 0.04131437838077545, 0.16112732887268066, -0.006946839392185211, -0.028888171538710594 ]
a23cb6c1a333daf110532c3fad58ed564b14ae4b
# Dataset Card for underwater-objects-5v7p8 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/underwater-objects-5v7p8 - **Point of Contact:** [email protected] ### Dataset Summary underwater-objects-5v7p8 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/underwater-objects-5v7p8 ### Citation Information ``` @misc{ underwater-objects-5v7p8, title = { underwater objects 5v7p8 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/underwater-objects-5v7p8 } }, url = { https://universe.roboflow.com/object-detection/underwater-objects-5v7p8 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/underwater-objects-5v7p8
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:36:52+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "underwater-objects-5v7p8", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "underwater-objects", "1": "echinus", "2": "holothurian", "3": "scallop", "4": "starfish", "5": "waterweeds"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:38:39+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for underwater-objects-5v7p8 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary underwater-objects-5v7p8 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for underwater-objects-5v7p8\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nunderwater-objects-5v7p8", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for underwater-objects-5v7p8\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nunderwater-objects-5v7p8", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 28, 22, 16, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for underwater-objects-5v7p8\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nunderwater-objects-5v7p8### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.009683296084403992, 0.14387476444244385, -0.008007939904928207, 0.014588641934096813, 0.09160684049129486, 0.005444758106023073, 0.055938512086868286, 0.07182759046554565, -0.004712145775556564, 0.16192521154880524, -0.01712212525308132, 0.04629550874233246, 0.1412736028432846, 0.07437925040721893, -0.011388326063752174, -0.16176585853099823, 0.054067183285951614, -0.05077148228883743, 0.11593452095985413, 0.06109686195850372, 0.07887201756238937, -0.14046192169189453, 0.08565222471952438, -0.03760027885437012, -0.008105483837425709, 0.039045125246047974, -0.05544706806540489, -0.028883248567581177, 0.014893505722284317, 0.025809774175286293, 0.02381022274494171, 0.03308141231536865, 0.05299333855509758, -0.20391549170017242, 0.01619539223611355, 0.08613023906946182, 0.028531460091471672, 0.025890925899147987, 0.14133356511592865, -0.07018587738275528, 0.009874200448393822, -0.1611783653497696, 0.030854571610689163, 0.00011998025729553774, -0.08959545195102692, -0.10756683349609375, -0.1208091750741005, 0.07898649573326111, 0.11717360466718674, 0.035573165863752365, -0.01530767884105444, 0.06111650913953781, -0.033975474536418915, 0.048017196357250214, 0.1377054899930954, -0.109873928129673, -0.02494761161506176, 0.09292099624872208, 0.025233328342437744, 0.09090724587440491, -0.10768616944551468, -0.016863100230693817, 0.004341436084359884, -0.010783589445054531, 0.0038599229883402586, -0.03572240099310875, -0.008686286397278309, -0.009958119131624699, -0.08849624544382095, -0.12196311354637146, 0.1489829272031784, 0.05239715427160263, -0.05283236503601074, -0.15901224315166473, 0.0020378055050969124, 0.036367643624544144, -0.04203174263238907, -0.013022549450397491, 0.072026826441288, -0.001866000471636653, 0.06842629611492157, -0.040010470896959305, -0.11061637848615646, 0.0618145652115345, 0.0018768174340948462, 0.034266047179698944, -0.012581674382090569, 0.04029068350791931, 0.013953973539173603, 0.08527621626853943, 0.011782660149037838, -0.1156143918633461, -0.030049698427319527, -0.028583841398358345, -0.03087073750793934, -0.056455519050359726, 0.060970842838287354, -0.10239310562610626, 0.056617431342601776, 0.0712059810757637, -0.0698339194059372, 0.022831277921795845, -0.10977432876825333, 0.011422468349337578, 0.13264581561088562, 0.1743413507938385, -0.10603032261133194, -0.08078645914793015, 0.0076467059552669525, 0.021222783252596855, 0.035421233624219894, -0.022263962775468826, -0.035354241728782654, 0.004304784815758467, 0.05310831591486931, 0.040627751499414444, 0.10656583309173584, 0.020528346300125122, -0.07381849735975266, -0.050743747502565384, 0.13878120481967926, -0.1016528382897377, 0.053123291581869125, 0.04841331019997597, -0.054909251630306244, 0.12095613032579422, 0.0010260108392685652, 0.020279409363865852, -0.11529512703418732, 0.10477467626333237, -0.022736480459570885, 0.016811881214380264, -0.07148026674985886, -0.08823710680007935, 0.06027696654200554, -0.07600861042737961, -0.07099688798189163, -0.09786003828048706, -0.04592813923954964, -0.07656055688858032, 0.036315999925136566, -0.0496465303003788, 0.021019119769334793, 0.03588933125138283, -0.04284311458468437, -0.018615949898958206, -0.0030791359022259712, 0.015155634842813015, -0.0632404237985611, 0.02077147737145424, -0.102081298828125, 0.03836333379149437, 0.09794201701879501, 0.036467891186475754, -0.09208120405673981, 0.057249270379543304, -0.17059645056724548, 0.1268262267112732, -0.029416698962450027, 0.021278152242302895, -0.12906979024410248, -0.0031646655406802893, -0.028722241520881653, -0.037055853754282, -0.008749199099838734, 0.15677718818187714, -0.0884934589266777, 0.021393854171037674, 0.06040539592504501, -0.05791805684566498, -0.039556413888931274, 0.03877187520265579, -0.03418387472629547, -0.016086265444755554, 0.10962218791246414, 0.09456368535757065, -0.0418701134622097, -0.12793979048728943, -0.13961680233478546, -0.00992260966449976, -0.04010569304227829, 0.1512240320444107, 0.07375172525644302, -0.008767141960561275, 0.10005500167608261, -0.001801375299692154, -0.013895034790039062, -0.048221711069345474, 0.008656460791826248, -0.039909183979034424, 0.008724749088287354, 0.002823479240760207, -0.08952834457159042, 0.016624582931399345, -0.08529026061296463, 0.017681868746876717, -0.07683083415031433, -0.010042761452496052, 0.018526911735534668, -0.018260784447193146, 0.018089231103658676, -0.05057558789849281, 0.08156142383813858, -0.11774744838476181, 0.004824865609407425, -0.15119031071662903, -0.0895114541053772, 0.06807035952806473, -0.023173829540610313, 0.023425962775945663, -0.04667440056800842, -0.0008430184097960591, 0.0057375323958694935, 0.026043573394417763, -0.014480364508926868, 0.05980944633483887, -0.015554322861135006, -0.02993272803723812, -0.1342090219259262, -0.0492478683590889, -0.016776373609900475, 0.10004971921443939, -0.12390436977148056, -0.03280942514538765, 0.16679921746253967, 0.12561774253845215, 0.029700875282287598, -0.03293981775641441, 0.050784315913915634, -0.03708072751760483, -0.030599022284150124, -0.07076071947813034, -0.02046140469610691, -0.01534265000373125, 0.035191610455513, 0.071067675948143, -0.12442109733819962, -0.0851125568151474, 0.08569496124982834, 0.04135588929057121, -0.07497337460517883, -0.0377030111849308, -0.048856478184461594, -0.021119017153978348, -0.08059583604335785, -0.04892345517873764, 0.03477875888347626, 0.06849820166826248, 0.07239790260791779, -0.06808988749980927, -0.05285080522298813, 0.030123336240649223, -0.012459944002330303, -0.08864472061395645, 0.05485745519399643, 0.030671391636133194, -0.12224334478378296, 0.08648695051670074, -0.01811741292476654, 0.06518876552581787, 0.07802647352218628, 0.025997787714004517, -0.11086335778236389, 0.0055582416243851185, 0.07440736889839172, 0.01175607182085514, 0.1040840893983841, 0.0029134030919522047, 0.007680256385356188, 0.07410477101802826, 0.003660441841930151, -0.009422261267900467, -0.07957129925489426, 0.0789567306637764, 0.030657190829515457, -0.03784007206559181, 0.020120935514569283, -0.040608759969472885, 0.08565036952495575, 0.10711240023374557, 0.0709514170885086, 0.12440361827611923, -0.050919994711875916, -0.056818537414073944, -0.0909474715590477, 0.1375095099210739, -0.02836950309574604, -0.2591712474822998, -0.07619743049144745, -0.06192469224333763, -0.044399164617061615, -0.02135384827852249, 0.024216212332248688, -0.02846430614590645, -0.08919569104909897, -0.10420925915241241, 0.04993981495499611, 0.05303247645497322, -0.10994435101747513, -0.10077708959579468, 0.028334474191069603, -0.010411578230559826, -0.09306435286998749, -0.007457867730408907, 0.022179828956723213, -0.04997922107577324, 0.005305762402713299, 0.04349108412861824, 0.1130116805434227, 0.06994195282459259, -0.03477630764245987, -0.01111860666424036, 0.000863864494021982, 0.1699591428041458, -0.12982149422168732, 0.12005887925624847, 0.15683643519878387, 0.011985966935753822, 0.07288413494825363, 0.20740801095962524, -0.011522882618010044, -0.0162883959710598, 0.0046123331412673, 0.068392314016819, -0.05109400674700737, -0.20828109979629517, -0.054485101252794266, -0.03533191606402397, 0.015810001641511917, 0.12933304905891418, 0.04730186611413956, -0.0007225964800454676, 0.07566134631633759, -0.10501551628112793, 0.028088923543691635, 0.034087009727954865, 0.09160653501749039, 0.056143950670957565, 0.02243734523653984, 0.048962343484163284, -0.04705668240785599, -0.04812087118625641, 0.10223747789859772, 0.116764597594738, 0.10868148505687714, -0.09819508343935013, 0.08815260976552963, 0.03227680176496506, 0.022354383021593094, -0.06279901415109634, 0.013870169408619404, -0.03374246135354042, 0.04552941769361496, 0.0012372841592878103, -0.09298490732908249, 0.015016863122582436, 0.07569236308336258, 0.13530373573303223, 0.00728718051686883, 0.0021377154625952244, -0.039614487439394, 0.06930825114250183, 0.25141641497612, 0.012472773902118206, -0.17855304479599, 0.011685747653245926, 0.05215953290462494, 0.011675425805151463, -0.12407076358795166, -0.03856934607028961, 0.10187560319900513, -0.15517039597034454, 0.05958309397101402, -0.021375490352511406, 0.10593920201063156, -0.14984646439552307, -0.03785263001918793, 0.0541013702750206, 0.033645279705524445, -0.008099849335849285, 0.07221947610378265, -0.09952246397733688, 0.058126915246248245, 0.03862777724862099, 0.04444625973701477, -0.08907010406255722, 0.04511002451181412, -0.009993448853492737, 0.014825939200818539, 0.13774943351745605, 0.0004359842569101602, 0.017927655950188637, -0.1478470265865326, -0.1204925999045372, -0.002215352840721607, 0.05352728068828583, -0.07638275623321533, 0.10013678669929504, 0.01563604548573494, -0.032834492623806, -0.07353277504444122, -0.08446688950061798, -0.08392955362796783, -0.17432543635368347, 0.05260363966226578, -0.036815010011196136, 0.023439563810825348, -0.02087346650660038, 0.007630569860339165, -0.007349309511482716, 0.13330700993537903, -0.0756923034787178, -0.09657510370016098, -0.12776316702365875, 0.04260740429162979, 0.07870376110076904, -0.0218619666993618, -0.025054778903722763, -0.08756130933761597, 0.17500005662441254, -0.028078461065888405, -0.08179349452257156, 0.02253059111535549, -0.062276195734739304, -0.10093130171298981, -0.054439593106508255, 0.10692496597766876, 0.035240255296230316, -0.006336563266813755, 0.02004120871424675, 0.03670647740364075, 0.004709052387624979, -0.05041461065411568, 0.03193264082074165, 0.10684461146593094, 0.1304931491613388, 0.12693040072917938, -0.0015707770362496376, -0.18147045373916626, -0.10673585534095764, 0.011429541744291782, 0.038005076348781586, 0.10988624393939972, -0.08193866163492203, 0.1055339127779007, 0.05304243788123131, -0.08699023723602295, -0.2197415977716446, 0.08416953682899475, 0.035957809537649155, -0.011303512379527092, 0.01161039900034666, -0.14737121760845184, 0.17080268263816833, 0.034913066774606705, -0.00496784970164299, 0.08743804693222046, -0.2586705684661865, -0.06854522228240967, -0.01583610102534294, 0.03703749179840088, -0.1507425755262375, -0.17086711525917053, -0.0453115738928318, -0.06788647919893265, -0.197193443775177, 0.04636397957801819, -0.0048469970934093, 0.03435930609703064, 0.03838171064853668, 0.04787331447005272, 0.05908345803618431, -0.03893677890300751, 0.10746580362319946, 0.02170206420123577, 0.04997636005282402, -0.06765012443065643, -0.0786152109503746, 0.03527144715189934, -0.09508728235960007, 0.15930116176605225, 0.050812799483537674, 0.024306606501340866, -0.05653225630521774, -0.018364569172263145, -0.03776339814066887, 0.08961380273103714, -0.025151845067739487, -0.03990967571735382, -0.0936131551861763, 0.0479426234960556, 0.13174359500408173, 0.018426386639475822, 0.08605270832777023, -0.031407468020915985, -0.02337559126317501, 0.10237099975347519, 0.12991389632225037, -0.012433650903403759, -0.12101985514163971, -0.04320374131202698, -0.008558056317269802, 0.04014359787106514, -0.11826502531766891, 0.05354255810379982, 0.08352405577898026, 0.024036109447479248, 0.09340198338031769, -0.016234835609793663, -0.10061228275299072, -0.01716749183833599, 0.05695453658699989, -0.08378778398036957, -0.1387031078338623, 0.022733062505722046, 0.10491323471069336, -0.09556755423545837, -0.08304765075445175, 0.11167248338460922, -0.005139089655131102, -0.024837251752614975, 0.0012174161383882165, 0.08669278025627136, 0.043575845658779144, 0.04920731112360954, 0.00892335083335638, 0.04018300771713257, -0.07813199609518051, 0.11927139759063721, 0.13549867272377014, -0.13274329900741577, 0.0038263783790171146, 0.08176667988300323, -0.038435593247413635, -0.018448857590556145, -0.018683169037103653, 0.01536671444773674, 0.03432333096861839, -0.03706414997577667, 0.03337316960096359, -0.08385322988033295, 0.036399900913238525, 0.05989819020032883, -0.0053842091001570225, 0.07187815755605698, 0.03277549147605896, 0.0014874968910589814, -0.13801716268062592, 0.12559448182582855, 0.022576825693249702, 0.05094652622938156, -0.11037423461675644, 0.003504959400743246, 0.03543867915868759, 0.0173821859061718, 0.0067618475295603275, -0.05170827358961105, -0.07711873203516006, -0.013232273980975151, -0.06188373640179634, 0.08867023140192032, -0.1015414148569107, 0.0008645923808217049, -0.020750505849719048, 0.030449749901890755, -0.023424288257956505, 0.03878962621092796, -0.03713726997375488, -0.06693703681230545, -0.04259899631142616, 0.1355540007352829, -0.13593703508377075, -0.01578829064965248, 0.049916308373212814, -0.09936535358428955, 0.07149094343185425, 0.0008235819404944777, -0.035088565200567245, -0.08885591477155685, -0.1801871508359909, -0.039897747337818146, 0.03938921540975571, 0.06411747634410858, 0.029942862689495087, -0.0873062014579773, 0.05689850449562073, 0.00803069956600666, -0.09243454784154892, -0.015280050225555897, -0.012529530562460423, -0.11135724186897278, 0.03714735060930252, -0.1232769563794136, -0.028717048466205597, -0.04465034604072571, 0.1256684958934784, 0.06524956226348877, -0.008468770422041416, 0.08516331762075424, -0.041358549147844315, 0.08479972183704376, -0.14135125279426575, -0.05196309834718704, -0.010366247966885567, -0.02793477475643158, -0.07532770931720734, -0.009684938006103039, 0.05831966921687126, -0.025874316692352295, 0.15602821111679077, 0.12619327008724213, 0.022154057398438454, 0.04290935769677162, -0.003177338046953082, 0.03790424391627312, 0.06644831597805023, 0.003457985818386078, -0.014997588470578194, -0.025593657046556473, 0.048529621213674545, 0.01036838535219431, 0.0013369094813242555, 0.07950112223625183, 0.04448120668530464, 0.2453508824110031, 0.11683868616819382, 0.027010664343833923, 0.05872876197099686, -0.08788832277059555, -0.07220982760190964, 0.1024845689535141, -0.06887146830558777, 0.06598196923732758, -0.10066085308790207, 0.040840283036231995, 0.08761341869831085, -0.14472028613090515, 0.05705379694700241, -0.014330163598060608, -0.005924278404563665, -0.038536787033081055, -0.09724490344524384, -0.05247525870800018, -0.015947291627526283, 0.002294144593179226, -0.11473190784454346, 0.06713275611400604, 0.13473385572433472, 0.00007617364462930709, 0.006308803800493479, 0.08769775927066803, -0.07597903907299042, -0.07725808769464493, 0.09739256650209427, 0.01791333220899105, 0.04680159315466881, 0.04872305318713188, 0.037747327238321304, 0.08584476262331009, -0.0003087696968577802, 0.08909186720848083, 0.09111236035823822, 0.09920112788677216, 0.025385431945323944, -0.0649198591709137, -0.07868874818086624, 0.02874898537993431, -0.01235128752887249, -0.00363587005995214, 0.16377320885658264, 0.06550459563732147, 0.0012599416077136993, -0.02389374189078808, 0.15375496447086334, -0.014849285595119, -0.02348771132528782, -0.12544819712638855, 0.036164455115795135, -0.035924848169088364, 0.0031366338953375816, -0.01199537143111229, -0.15063415467739105, -0.0021701904479414225, 0.1284952312707901, 0.05247270315885544, -0.02222040481865406, -0.018126508221030235, -0.0016784353647381067, 0.00479385768994689, -0.0215372983366251, 0.05053131654858589, 0.019774194806814194, 0.20470236241817474, -0.049259770661592484, 0.01650521345436573, -0.037705037742853165, -0.028136353939771652, -0.06343374401330948, 0.07618090510368347, -0.01841108314692974, 0.019892707467079163, -0.08711429685354233, 0.10965707153081894, -0.00004817855733563192, -0.18548908829689026, 0.07517779618501663, -0.09362700581550598, -0.07907009869813919, 0.01695743016898632, -0.005368039011955261, 0.0037210427690297365, 0.028074121102690697, 0.011257784441113472, -0.05520140379667282, 0.11442598700523376, 0.02053576521575451, -0.06525243073701859, 0.021443279460072517, 0.004956470802426338, -0.07273443043231964, 0.26082873344421387, -0.03335251659154892, 0.05774557217955589, 0.08601036667823792, -0.008626719005405903, -0.14346618950366974, -0.04507508501410484, 0.06475087255239487, -0.05427880212664604, 0.012201518751680851, 0.1249818280339241, -0.0016438590828329325, 0.12539000809192657, 0.09670164436101913, -0.08891899138689041, 0.03860606998205185, -0.0011166735785081983, 0.01623532734811306, -0.12387580424547195, 0.015877671539783478, -0.0789191797375679, 0.10603798180818558, 0.12003935128450394, -0.006561080925166607, -0.012020714581012726, -0.05310540273785591, 0.0022356475237756968, 0.008999238722026348, 0.10700108855962753, 0.010177824646234512, -0.06463605165481567, 0.011518772691488266, -0.1304069459438324, 0.09453225880861282, -0.13589106500148773, -0.05636725574731827, 0.047737058252096176, -0.015220127999782562, -0.02869691699743271, 0.08060771226882935, 0.044347163289785385, 0.02519545704126358, -0.054820574820041656, -0.15349239110946655, 0.030881624668836594, 0.1574268937110901, -0.015787048265337944, -0.018350088968873024 ]
298ab316ba94d7eb381bb3403ed5119fa6067d0b
# Dataset Card for people-in-paintings ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/people-in-paintings - **Point of Contact:** [email protected] ### Dataset Summary people-in-paintings ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/people-in-paintings ### Citation Information ``` @misc{ people-in-paintings, title = { people in paintings Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/people-in-paintings } }, url = { https://universe.roboflow.com/object-detection/people-in-paintings }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/people-in-paintings
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:36:52+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "people-in-paintings", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "people-in-paintings", "1": "Human"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:37:23+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for people-in-paintings The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary people-in-paintings ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for people-in-paintings\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npeople-in-paintings", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for people-in-paintings\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npeople-in-paintings", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for people-in-paintings\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\npeople-in-paintings### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.007794924080371857, 0.17473939061164856, -0.007612937595695257, 0.016804389655590057, 0.09935032576322556, -0.004127519205212593, 0.06446893513202667, 0.07692524790763855, -0.0031828328501433134, 0.1744532436132431, -0.0014518096577376127, 0.05197685956954956, 0.11337442696094513, 0.08077044785022736, -0.009288342669606209, -0.17528404295444489, 0.06569253653287888, -0.06311370432376862, 0.06893769651651382, 0.07705610245466232, 0.07499699294567108, -0.1371425986289978, 0.0853743925690651, -0.036448363214731216, -0.014585638418793678, 0.035686686635017395, -0.06136072054505348, -0.04707109555602074, 0.006026101298630238, 0.05212438479065895, 0.021900109946727753, 0.030390512198209763, 0.03893056884407997, -0.2014806568622589, 0.020642489194869995, 0.10902945697307587, 0.028198542073369026, 0.022784240543842316, 0.15927112102508545, -0.08928030729293823, 0.08114414662122726, -0.12382519990205765, 0.037259962409734726, 0.015693459659814835, -0.1180795356631279, -0.10008234530687332, -0.11127445846796036, 0.06749387830495834, 0.10253935307264328, 0.05976279824972153, -0.021359186619520187, 0.08244973421096802, -0.03296948969364166, 0.058511797338724136, 0.12566915154457092, -0.04375454783439636, -0.04277563467621803, 0.07599092274904251, 0.05608947202563286, 0.09651830047369003, -0.11648671329021454, -0.017990564927458763, 0.00048705757944844663, -0.021705973893404007, -0.001742059481330216, -0.05334009975194931, -0.04687594249844551, -0.005077544134110212, -0.09787650406360626, -0.14909100532531738, 0.14296123385429382, 0.06121215224266052, -0.051322128623723984, -0.14695298671722412, -0.002427235711365938, 0.07396949082612991, -0.03397407382726669, -0.00036887344322167337, 0.04572727903723717, -0.009724189527332783, 0.0483006052672863, -0.05749480426311493, -0.09956343472003937, 0.05092210695147514, 0.03670733422040939, 0.03407086059451103, -0.02322111465036869, 0.03997493535280228, 0.015572956763207912, 0.07945237308740616, 0.010648471303284168, -0.11239655315876007, -0.029582416638731956, -0.04591885209083557, -0.052076537162065506, -0.04304511472582817, 0.05646093934774399, -0.12480375915765762, 0.0670875832438469, 0.07150789350271225, -0.0703231692314148, 0.03304518014192581, -0.11977629363536835, 0.01155591756105423, 0.11670573055744171, 0.1755889654159546, -0.08211281150579453, -0.07828017324209213, -0.0057928068563342094, 0.039770595729351044, 0.02673223614692688, -0.030375000089406967, -0.026550374925136566, -0.0002960996062029153, 0.01678413152694702, 0.041417766362428665, 0.11008965224027634, 0.0453893318772316, -0.07469475269317627, -0.06325167417526245, 0.13683335483074188, -0.09709902107715607, 0.04907697066664696, 0.061626750975847244, -0.05790368840098381, 0.07868221402168274, 0.007587088737636805, 0.007835015654563904, -0.1240682378411293, 0.09381486475467682, -0.023548323661088943, 0.017435511574149132, -0.09809949994087219, -0.09217526018619537, 0.058773018419742584, -0.0745563805103302, -0.0752871111035347, -0.07281971722841263, -0.04106460511684418, -0.09178820997476578, 0.041255366057157516, -0.04380913823843002, 0.013886875472962856, 0.015258892439305782, -0.042374130338430405, -0.007190571166574955, 0.009918439202010632, 0.04456320405006409, -0.05757191404700279, 0.03669347986578941, -0.09830810874700546, 0.03706805408000946, 0.11659305542707443, 0.0446750782430172, -0.10527554154396057, 0.06237751245498657, -0.20681007206439972, 0.13486965000629425, -0.04996874928474426, 0.02338341251015663, -0.1257994920015335, 0.003205072833225131, -0.006966009736061096, -0.03134980797767639, -0.00899779424071312, 0.1438530534505844, -0.07205455750226974, 0.00842135027050972, 0.05550376698374748, -0.05800437554717064, -0.04748640954494476, 0.033551644533872604, -0.048782575875520706, -0.018896164372563362, 0.08720985800027847, 0.12706288695335388, -0.044262949377298355, -0.11098598688840866, -0.10985389351844788, -0.03256731480360031, -0.0428975485265255, 0.15675559639930725, 0.07968877255916595, -0.03421527519822121, 0.1077866330742836, -0.00917213037610054, -0.013741929084062576, -0.049625299870967865, 0.013603586703538895, -0.029450159519910812, 0.015389420092105865, 0.003532825969159603, -0.09124358743429184, 0.02263391576707363, -0.1025485172867775, 0.0042125326581299305, -0.08540429174900055, -0.024006573483347893, 0.021356932818889618, -0.03173229843378067, 0.014661409892141819, -0.03454463183879852, 0.0886482521891594, -0.10239569842815399, -0.000664888066239655, -0.1621411293745041, -0.10137378424406052, 0.05095818266272545, -0.03509979695081711, 0.03812841325998306, -0.07738044112920761, -0.015170812606811523, 0.017732547596096992, 0.0353916771709919, -0.016890589147806168, 0.030791999772191048, -0.02797543816268444, -0.032344866544008255, -0.12258652597665787, -0.05215201526880264, -0.028469720855355263, 0.0930720716714859, -0.11993802338838577, -0.03332459554076195, 0.13246627151966095, 0.12992122769355774, 0.04120589792728424, -0.04789099469780922, 0.0816158801317215, -0.022830158472061157, -0.021292364224791527, -0.08524473011493683, -0.005476200487464666, -0.00645056739449501, 0.04003410413861275, 0.07662000507116318, -0.15847954154014587, -0.13999342918395996, 0.08488355576992035, 0.027098270133137703, -0.08656757324934006, -0.05375553295016289, -0.04513616859912872, -0.0075850458815693855, -0.10114388912916183, -0.03171807900071144, 0.0356413759291172, 0.06649156659841537, 0.07945860177278519, -0.07555903494358063, -0.038210853934288025, 0.014884056523442268, -0.010228762403130531, -0.08294264227151871, 0.08144409954547882, 0.06777644902467728, -0.11962231993675232, 0.10099728405475616, -0.030755270272493362, 0.043084558099508286, 0.0863465890288353, 0.0289616696536541, -0.11855156719684601, 0.02166556380689144, 0.06566386669874191, 0.022173436358571053, 0.09044785797595978, -0.025636568665504456, 0.02282682992517948, 0.07901790738105774, -0.025673074647784233, -0.026298534125089645, -0.0821591392159462, 0.06981176137924194, 0.03444598987698555, -0.034327853471040726, 0.014758341014385223, -0.021233322098851204, 0.08570457994937897, 0.10058614611625671, 0.059905800968408585, 0.1109313815832138, -0.046385813504457474, -0.06437312066555023, -0.09344147890806198, 0.13333748281002045, -0.018448134884238243, -0.2743348181247711, -0.0796605721116066, -0.06532362103462219, -0.05021452158689499, -0.00948631577193737, 0.03294379636645317, 0.0017646180931478739, -0.09012643992900848, -0.10611392557621002, 0.07322472333908081, 0.05493425950407982, -0.11580361425876617, -0.10890712589025497, 0.03822440281510353, 0.01034304779022932, -0.07396519184112549, 0.005946099292486906, 0.02506106346845627, -0.037978142499923706, 0.01429286040365696, 0.04029037430882454, 0.1257413923740387, 0.05739574134349823, -0.012699590064585209, 0.0012240806827321649, -0.005189811810851097, 0.18021628260612488, -0.1578061729669571, 0.10146364569664001, 0.16607467830181122, 0.008476167917251587, 0.07750328630208969, 0.20075805485248566, -0.01606147550046444, -0.01836618036031723, 0.03058777190744877, 0.080571748316288, -0.0623311884701252, -0.18541237711906433, -0.060104142874479294, -0.04774140566587448, 0.010017509572207928, 0.14512091875076294, 0.033180706202983856, 0.0034526847302913666, 0.09173952788114548, -0.12209764122962952, 0.0172403696924448, 0.023137524724006653, 0.10376249253749847, 0.05758478492498398, 0.040672216564416885, 0.04347936809062958, -0.05041712149977684, -0.04455840587615967, 0.09335768967866898, 0.09056459367275238, 0.1108304038643837, -0.10110192000865936, 0.0878392830491066, 0.029178230091929436, 0.0188616830855608, -0.028268322348594666, -0.006993548013269901, -0.031294602900743484, 0.04913961514830589, -0.007604032289236784, -0.10073575377464294, 0.011579077690839767, 0.08148429542779922, 0.1338929831981659, -0.02518019825220108, -0.01209001149982214, -0.048575397580862045, 0.06375279277563095, 0.2450360804796219, 0.00853422936052084, -0.20704521238803864, 0.018205666914582253, 0.040364038199186325, 0.01503229234367609, -0.1288764327764511, -0.03700016811490059, 0.08770477771759033, -0.17081747949123383, 0.06986961513757706, -0.03086526319384575, 0.11586218327283859, -0.13017895817756653, -0.03822995722293854, 0.05495021119713783, 0.04086853191256523, -0.029632536694407463, 0.08652890473604202, -0.1031981036067009, 0.06913107633590698, 0.03224581852555275, 0.030905885621905327, -0.07997988164424896, 0.034974027425050735, 0.008694595657289028, -0.0008650110685266554, 0.147526815533638, -0.017695968970656395, -0.010191450826823711, -0.13042636215686798, -0.10328845679759979, -0.008810995146632195, 0.048854678869247437, -0.0732516422867775, 0.10222633928060532, 0.015256855636835098, -0.026964889839291573, -0.07816869765520096, -0.04766223952174187, -0.06880401074886322, -0.1959523856639862, 0.028561057522892952, -0.016444090753793716, 0.0289777759462595, -0.01629151776432991, 0.023235656321048737, 0.02738853171467781, 0.1252855360507965, -0.03228283300995827, -0.09045591205358505, -0.13924762606620789, 0.059764035046100616, 0.09428945183753967, -0.021604089066386223, -0.02127579040825367, -0.09409168362617493, 0.18306797742843628, -0.028894471004605293, -0.07840219885110855, 0.016001706942915916, -0.06632392853498459, -0.11636852473020554, -0.05511866509914398, 0.10755853354930878, 0.02966325916349888, -0.0009878386044874787, -0.0002042286650976166, 0.059274427592754364, 0.005729576572775841, -0.04541100561618805, 0.02144072949886322, 0.10859169811010361, 0.14307698607444763, 0.12891066074371338, 0.010738341137766838, -0.1420397162437439, -0.12289955466985703, -0.007160143926739693, 0.029646964743733406, 0.09579194337129593, -0.07311490178108215, 0.12254658341407776, 0.03803667798638344, -0.07853744179010391, -0.23023277521133423, 0.08201242983341217, 0.06646520644426346, -0.0007266968605108559, -0.0026742741465568542, -0.15047724545001984, 0.1375119835138321, 0.02948838286101818, 0.004857289604842663, 0.0673157274723053, -0.2812073230743408, -0.072564497590065, -0.013199038803577423, 0.027492908760905266, -0.23712636530399323, -0.1623028963804245, -0.052199315279722214, -0.06703241169452667, -0.1412489414215088, 0.06259128451347351, 0.009981080889701843, 0.0459916926920414, 0.03580275550484657, 0.040242619812488556, 0.06609313189983368, -0.04394945874810219, 0.11061958223581314, 0.008667170070111752, 0.04212164133787155, -0.08622398227453232, -0.0890592485666275, 0.012688116170465946, -0.09517005831003189, 0.13497798144817352, 0.03610481321811676, 0.022334473207592964, -0.05467837676405907, -0.01877312734723091, -0.03879617154598236, 0.09073147177696228, -0.02893773280084133, -0.03246887028217316, -0.10809224843978882, 0.038468699902296066, 0.12718947231769562, 0.02575845643877983, 0.0851529985666275, -0.04847383126616478, -0.01058858074247837, 0.1515742838382721, 0.10636316239833832, 0.007798972073942423, -0.15500840544700623, -0.04510580003261566, 0.007729947566986084, 0.05199429392814636, -0.11871449649333954, 0.029478807002305984, 0.08757726103067398, 0.02265254408121109, 0.11151660233736038, -0.01488801371306181, -0.09848501533269882, 0.007192505523562431, 0.044896338135004044, -0.10040849447250366, -0.1130487248301506, 0.018377581611275673, 0.11746194958686829, -0.11755823343992233, -0.12695281207561493, 0.10627853125333786, 0.0017193708335980773, -0.017864137887954712, 0.002620740095153451, 0.07386845350265503, 0.05903405696153641, 0.056723445653915405, 0.009928342886269093, 0.04296219348907471, -0.06931478530168533, 0.10567710548639297, 0.14939868450164795, -0.15833504498004913, 0.0013179413508623838, 0.11560431867837906, -0.05040394887328148, -0.018973449245095253, -0.005953160580247641, 0.031202327460050583, -0.022541917860507965, -0.03155430033802986, 0.03580980747938156, -0.06133062019944191, 0.04897061735391617, 0.08901093155145645, 0.0038526849821209908, 0.04844484105706215, 0.026061050593852997, -0.017456931993365288, -0.13486047089099884, 0.12415935099124908, 0.022951064631342888, 0.04661563038825989, -0.08894851058721542, 0.004990893881767988, 0.04393387585878372, 0.0042673684656620026, 0.010910989716649055, -0.06983530521392822, -0.08549277484416962, 0.00704097468405962, -0.0343657024204731, 0.11100734025239944, -0.09254014492034912, -0.0038056783378124237, -0.025143906474113464, 0.01255797129124403, -0.01231821347028017, 0.030294746160507202, -0.04792175441980362, -0.07764632999897003, -0.05319203436374664, 0.13168536126613617, -0.14978118240833282, -0.01755375973880291, 0.05808619037270546, -0.09015815705060959, 0.058993153274059296, 0.006294013001024723, -0.04535416513681412, -0.10205524414777756, -0.18698090314865112, -0.04241590201854706, 0.02500802092254162, 0.0662708654999733, 0.03177913278341293, -0.07902725785970688, 0.055699095129966736, -0.005560857243835926, -0.09925197064876556, -0.01584288664162159, -0.019266601651906967, -0.11829787492752075, 0.045263148844242096, -0.08409732580184937, -0.04156219959259033, -0.04171667993068695, 0.14081525802612305, 0.05211236700415611, -0.00016007793601602316, 0.08789495378732681, -0.053375326097011566, 0.09841124713420868, -0.13632676005363464, -0.03526950627565384, -0.00312832766212523, -0.02606317214667797, -0.07844336330890656, 0.0029899291694164276, 0.07602723687887192, -0.026663795113563538, 0.12735506892204285, 0.1329995095729828, 0.038387447595596313, 0.04405922815203667, 0.0034875001292675734, 0.07816983014345169, 0.06431828439235687, -0.012211118824779987, -0.014759169891476631, -0.018538517877459526, 0.07774627208709717, 0.00941481813788414, 0.019299574196338654, 0.09506522119045258, 0.062459394335746765, 0.24990324676036835, 0.1338021606206894, 0.012166625820100307, 0.04531371220946312, -0.07487060874700546, -0.041007932275533676, 0.09780623018741608, -0.03991992399096489, 0.08413874357938766, -0.0964745357632637, 0.043692696839571, 0.08967183530330658, -0.14264851808547974, 0.07003999501466751, -0.017743464559316635, -0.004234059248119593, -0.029459429904818535, -0.12175203859806061, -0.059820134192705154, -0.027064459398388863, 0.0037316770758479834, -0.11199614405632019, 0.09162762761116028, 0.1378779411315918, -0.00038025336107239127, 0.01147595513612032, 0.0949699729681015, -0.06249253824353218, -0.09392685443162918, 0.0776887908577919, 0.018078239634633064, 0.053853657096624374, 0.04195544868707657, 0.04871700331568718, 0.09214901924133301, -0.00023348259855993092, 0.08057723194360733, 0.09205369651317596, 0.10467178374528885, 0.028525639325380325, -0.07620716840028763, -0.06813836097717285, 0.037036310881376266, -0.008748524822294712, -0.008337651379406452, 0.1637422740459442, 0.07479830831289291, 0.017240053042769432, -0.024927055463194847, 0.177720844745636, -0.014782866463065147, -0.026150092482566833, -0.13636747002601624, 0.050822872668504715, -0.047268882393836975, -0.01879659853875637, -0.010932900942862034, -0.14821191132068634, 0.0009958000155165792, 0.13608263432979584, 0.07576576620340347, -0.04586123675107956, -0.012838462367653847, -0.024382125586271286, 0.00783037580549717, -0.01312993373721838, 0.04336235672235489, 0.01578172668814659, 0.2060558944940567, -0.060902081429958344, 0.016148453578352928, -0.0490797683596611, -0.030885616317391396, -0.0596187449991703, 0.0939640924334526, -0.0053062946535646915, -0.006146549712866545, -0.08043474704027176, 0.11890382319688797, -0.017282938584685326, -0.18020212650299072, 0.060302671045064926, -0.08936978876590729, -0.08078089356422424, 0.010605649091303349, -0.017497174441814423, 0.01568705216050148, 0.030736757442355156, 0.004284183029085398, -0.06603354215621948, 0.0661764144897461, 0.030199158936738968, -0.07903497666120529, -0.02057679370045662, 0.0031988664995878935, -0.09828195720911026, 0.26220282912254333, -0.031153278425335884, 0.043170344084501266, 0.08241218328475952, -0.014991438016295433, -0.13024485111236572, -0.03320182114839554, 0.08651254326105118, -0.04913349822163582, 0.02908642403781414, 0.12095081061124802, -0.0045232707634568214, 0.15833178162574768, 0.08317042142152786, -0.0756312906742096, 0.05898042768239975, -0.03028513863682747, 0.024300191551446915, -0.1207432672381401, 0.014851088635623455, -0.0988854318857193, 0.1070852130651474, 0.14414933323860168, -0.0038112541660666466, -0.020680148154497147, -0.03982960060238838, 0.00825316458940506, 0.0006628737901337445, 0.07635731250047684, 0.009490229189395905, -0.056594572961330414, 0.009546946734189987, -0.14339028298854828, 0.08460219204425812, -0.14998532831668854, -0.05592929571866989, 0.040032047778367996, -0.01657235063612461, -0.0036792270839214325, 0.07878100126981735, 0.028116777539253235, 0.0077416072599589825, -0.06100273132324219, -0.11893664300441742, 0.03773157671093941, 0.16709883511066437, -0.007517190184444189, -0.020055977627635002 ]
96171862061a06f46e26625356d4b09633000c1b
# Dataset Card for washroom-rf1fa ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/washroom-rf1fa - **Point of Contact:** [email protected] ### Dataset Summary washroom-rf1fa ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/washroom-rf1fa ### Citation Information ``` @misc{ washroom-rf1fa, title = { washroom rf1fa Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/washroom-rf1fa } }, url = { https://universe.roboflow.com/object-detection/washroom-rf1fa }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/washroom-rf1fa
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:36:53+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "washroom-rf1fa", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "washroom", "1": "bathtub", "2": "c", "3": "geyser", "4": "mirror", "5": "showerhead", "6": "sink", "7": "toilet", "8": "towel", "9": "washbasin", "10": "wc"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:37:37+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for washroom-rf1fa The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary washroom-rf1fa ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for washroom-rf1fa\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nwashroom-rf1fa", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for washroom-rf1fa\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nwashroom-rf1fa", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for washroom-rf1fa\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nwashroom-rf1fa### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.015035339631140232, 0.16407182812690735, -0.0074620735831558704, 0.020400257781147957, 0.09535248577594757, -0.0018913141684606671, 0.0584777407348156, 0.08040878921747208, -0.010191412642598152, 0.17126360535621643, 0.0019119143253192306, 0.05030141398310661, 0.11338675022125244, 0.09334482252597809, -0.02249874733388424, -0.15747299790382385, 0.0630737915635109, -0.07000579684972763, 0.07035749405622482, 0.07402773946523666, 0.07926889508962631, -0.13232150673866272, 0.08606328815221786, -0.03901670500636101, -0.020304257050156593, 0.03669275715947151, -0.05818365141749382, -0.04005398228764534, 0.00001333395266556181, 0.056384626775979996, 0.01709863916039467, 0.0344708114862442, 0.040863990783691406, -0.1982431560754776, 0.025625264272093773, 0.10871105641126633, 0.025512652471661568, 0.025764165446162224, 0.15025530755519867, -0.09643589705228806, 0.0756620392203331, -0.10243900120258331, 0.030335765331983566, 0.021013885736465454, -0.11592600494623184, -0.11133486032485962, -0.1176750585436821, 0.07876065373420715, 0.08725389838218689, 0.05858511105179787, -0.019643504172563553, 0.0764128640294075, -0.02556086704134941, 0.059988632798194885, 0.12687474489212036, -0.03907217085361481, -0.04310150817036629, 0.07921794801950455, 0.03969661891460419, 0.10003279149532318, -0.11999969184398651, -0.021264471113681793, 0.010810510255396366, -0.016790147870779037, -0.002808150602504611, -0.050181176513433456, -0.05095510184764862, -0.00180550548247993, -0.09995583444833755, -0.14918720722198486, 0.13825200498104095, 0.05436306074261665, -0.057053226977586746, -0.13728678226470947, -0.0016390508972108364, 0.05862743780016899, -0.03379715606570244, 0.006764022167772055, 0.03536184877157211, -0.005470293574035168, 0.05079541355371475, -0.05873829871416092, -0.09924357384443283, 0.04556463658809662, 0.036063436418771744, 0.04300333559513092, -0.022082893177866936, 0.04659777879714966, 0.015182838775217533, 0.07631687819957733, 0.001504839165136218, -0.11630464345216751, -0.028404511511325836, -0.04715816676616669, -0.04674139991402626, -0.036572325974702835, 0.054820675402879715, -0.1328108012676239, 0.0702534168958664, 0.07698439061641693, -0.0858750119805336, 0.03053925558924675, -0.1142679825425148, 0.009174995124340057, 0.11091253161430359, 0.16601231694221497, -0.08781623840332031, -0.07583077251911163, -0.0014674983685836196, 0.04576707258820534, 0.018498549237847328, -0.026619739830493927, -0.0199769027531147, 0.009224112145602703, 0.01673380844295025, 0.04281308874487877, 0.1113537847995758, 0.03975282609462738, -0.06761720776557922, -0.06496600806713104, 0.1524607390165329, -0.09971550107002258, 0.04430002346634865, 0.06886031478643417, -0.054384563118219376, 0.07084685564041138, 0.016400601714849472, 0.007412238512188196, -0.11247555911540985, 0.09413711726665497, -0.024342568591237068, 0.00822664238512516, -0.08824155479669571, -0.09583567827939987, 0.055629413574934006, -0.08382196724414825, -0.06979896873235703, -0.08525325357913971, -0.04719018563628197, -0.08827072381973267, 0.037561796605587006, -0.046813175082206726, 0.021669013425707817, 0.02655843086540699, -0.04968874901533127, -0.014719883911311626, 0.011570234782993793, 0.05789587274193764, -0.0571347251534462, 0.03615814447402954, -0.08968771994113922, 0.0342855378985405, 0.1052536591887474, 0.0423121340572834, -0.10136614739894867, 0.06423193216323853, -0.19389605522155762, 0.14095309376716614, -0.0573449581861496, 0.02128485217690468, -0.1299932301044464, 0.00870557688176632, -0.02464214526116848, -0.03829206898808479, -0.006461788900196552, 0.14039501547813416, -0.08058279752731323, 0.006410612724721432, 0.05869454890489578, -0.07040899246931076, -0.04755862429738045, 0.03362629562616348, -0.04493198171257973, -0.019745294004678726, 0.07783953100442886, 0.125799298286438, -0.02791321463882923, -0.11346250772476196, -0.11835286021232605, -0.03601508587598801, -0.0402585044503212, 0.1580374836921692, 0.07720500975847244, -0.033126652240753174, 0.1005992442369461, -0.007646572310477495, -0.009690762497484684, -0.03826623409986496, 0.009920580312609673, -0.03430440276861191, 0.008350694552063942, -0.00603947089985013, -0.099156454205513, 0.021296048536896706, -0.09883522987365723, 0.0016436281148344278, -0.08329394459724426, -0.042480483651161194, 0.024607229977846146, -0.03241478651762009, 0.010345530696213245, -0.033201731741428375, 0.09655628353357315, -0.11641911417245865, 0.002228128956630826, -0.16498026251792908, -0.10750425606966019, 0.04970160871744156, -0.04749060794711113, 0.037374358624219894, -0.08077102154493332, -0.009962301701307297, 0.023262126371264458, 0.03198325261473656, -0.014613346196711063, 0.0356004498898983, -0.022505950182676315, -0.03018701821565628, -0.12778939306735992, -0.05524501949548721, -0.031008712947368622, 0.10398698598146439, -0.1338474452495575, -0.031142182648181915, 0.1300056427717209, 0.1339116394519806, 0.03657521307468414, -0.04994884878396988, 0.08108063042163849, -0.02814040333032608, -0.02035950869321823, -0.08318275213241577, -0.013676494359970093, -0.004353909753262997, 0.04392575845122337, 0.07951648533344269, -0.15147219598293304, -0.13903865218162537, 0.08503776043653488, 0.04533916711807251, -0.0892033502459526, -0.051651544868946075, -0.05089772865176201, -0.009664145298302174, -0.09867794066667557, -0.027063898742198944, 0.04196850582957268, 0.06367649883031845, 0.08354021608829498, -0.0774621069431305, -0.03323617950081825, 0.024715492501854897, -0.011851719580590725, -0.07804281264543533, 0.08614253252744675, 0.06026976555585861, -0.12597866356372833, 0.10158270597457886, -0.028279870748519897, 0.04438904672861099, 0.09222926199436188, 0.023726936429739, -0.12795573472976685, 0.026810213923454285, 0.06512728333473206, 0.02429962530732155, 0.08517584949731827, -0.00492992764338851, 0.02785412408411503, 0.0835176557302475, -0.024934379383921623, -0.016439342871308327, -0.07856080681085587, 0.07325641810894012, 0.035892874002456665, -0.041147202253341675, 0.014334280975162983, -0.013841964304447174, 0.08420567214488983, 0.09504616260528564, 0.051626674830913544, 0.10900905728340149, -0.047210171818733215, -0.06055596098303795, -0.09584400057792664, 0.132771298289299, -0.014801448211073875, -0.25676828622817993, -0.08457864075899124, -0.05340656265616417, -0.05542084574699402, -0.016092440113425255, 0.03510863333940506, -0.00009771109762368724, -0.09111325442790985, -0.10959308594465256, 0.06334567815065384, 0.06105519086122513, -0.10880826413631439, -0.11596457660198212, 0.03907772898674011, 0.014341571368277073, -0.07707858085632324, 0.004869847092777491, 0.025506913661956787, -0.03711995109915733, 0.012221763841807842, 0.03955214470624924, 0.12639980018138885, 0.0519258938729763, -0.01762314699590206, 0.0062504601664841175, 0.0030529324430972338, 0.18912509083747864, -0.14988946914672852, 0.09489323943853378, 0.16753163933753967, 0.00650536734610796, 0.0715065598487854, 0.19584639370441437, -0.01848677545785904, -0.0144071439281106, 0.025415610522031784, 0.07806643098592758, -0.06541208177804947, -0.19413234293460846, -0.06076011061668396, -0.045034259557724, 0.0134752057492733, 0.13320015370845795, 0.04221535101532936, 0.012412024661898613, 0.08605115115642548, -0.1167750433087349, 0.003370707854628563, 0.015670279040932655, 0.09737391024827957, 0.052329953759908676, 0.0432007759809494, 0.047574665397405624, -0.05401327833533287, -0.031970344483852386, 0.09854744374752045, 0.08763185888528824, 0.12231723964214325, -0.10403969138860703, 0.09340472519397736, 0.03356311842799187, 0.025085749104619026, -0.025332605466246605, -0.0013761940645053983, -0.03408296778798103, 0.04880280792713165, -0.005338423885405064, -0.10175235569477081, 0.00904576014727354, 0.08503250032663345, 0.1285896748304367, -0.012212658300995827, -0.0014512573834508657, -0.049498073756694794, 0.06138400733470917, 0.2523999810218811, 0.0042120120488107204, -0.2129504233598709, 0.006456482224166393, 0.032007861882448196, 0.011475792154669762, -0.11509722471237183, -0.047062378376722336, 0.09300053864717484, -0.16743257641792297, 0.06076941266655922, -0.02751428820192814, 0.11503071337938309, -0.12818656861782074, -0.03467598930001259, 0.05004730448126793, 0.04917781054973602, -0.02738296426832676, 0.0807347372174263, -0.09886116534471512, 0.0744703933596611, 0.033387213945388794, 0.025851985439658165, -0.08004886656999588, 0.03454340994358063, 0.010558197274804115, -0.01028212159872055, 0.1453273892402649, -0.020357444882392883, -0.000944887287914753, -0.13361115753650665, -0.11029906570911407, -0.007127321325242519, 0.052233681082725525, -0.07081267982721329, 0.10158830136060715, 0.013574041426181793, -0.03150520101189613, -0.07830971479415894, -0.0327669121325016, -0.06667502969503403, -0.1910378336906433, 0.033309001475572586, -0.010048873722553253, 0.014157838188111782, -0.018023135140538216, 0.02095787599682808, 0.0354040302336216, 0.1221269965171814, -0.022891391068696976, -0.0921686515212059, -0.1470087766647339, 0.0601004995405674, 0.11003144085407257, -0.023927267640829086, -0.02163919247686863, -0.0990733727812767, 0.17855577170848846, -0.030112940818071365, -0.07972749322652817, 0.013933451846241951, -0.07382433861494064, -0.12087339162826538, -0.051341913640499115, 0.10336294025182724, 0.03200481832027435, -0.0009824457811191678, 0.0019469053950160742, 0.05924367532134056, 0.003413457190617919, -0.0481271930038929, 0.020356733351945877, 0.10302300751209259, 0.13968397676944733, 0.12621642649173737, 0.007259272038936615, -0.13725699484348297, -0.12226079404354095, -0.006078305188566446, 0.022013679146766663, 0.09766236692667007, -0.0730869323015213, 0.11576690524816513, 0.034206539392471313, -0.07008469104766846, -0.22296077013015747, 0.0693092942237854, 0.07346717268228531, -0.0028790009673684835, -0.007256608456373215, -0.14338935911655426, 0.1412978172302246, 0.03151797875761986, 0.0015084942569956183, 0.0884581133723259, -0.2630773186683655, -0.06685014814138412, -0.010764988139271736, 0.020362570881843567, -0.24414056539535522, -0.1707131266593933, -0.05769926682114601, -0.05933525785803795, -0.15038485825061798, 0.05237217992544174, -0.005226983223110437, 0.04800129681825638, 0.03787573054432869, 0.030878307297825813, 0.06371594965457916, -0.04304464906454086, 0.10704214870929718, 0.014680799096822739, 0.0371829979121685, -0.07313106954097748, -0.07544940710067749, 0.003709282260388136, -0.08817128092050552, 0.14473024010658264, 0.03405584394931793, 0.03255162015557289, -0.05148835480213165, -0.022722680121660233, -0.04124884307384491, 0.0895448550581932, -0.021566059440374374, -0.03202397748827934, -0.09897749125957489, 0.037508074194192886, 0.12284217029809952, 0.02828625962138176, 0.07469169050455093, -0.05648164078593254, -0.005243583582341671, 0.18244244158267975, 0.09745725244283676, 0.0029475805349648, -0.15389327704906464, -0.04683290794491768, 0.0012940799351781607, 0.04261922463774681, -0.12348359823226929, 0.036825235933065414, 0.08065242320299149, 0.02264103665947914, 0.11174722015857697, -0.01674073562026024, -0.10385199636220932, 0.004438179079443216, 0.04771312326192856, -0.09839104861021042, -0.10166230797767639, 0.019781585782766342, 0.10101544857025146, -0.11419999599456787, -0.1265360713005066, 0.11500084400177002, -0.004105219617486, -0.018199628219008446, -0.004902902524918318, 0.07124769687652588, 0.05049433559179306, 0.0638929009437561, 0.024386156350374222, 0.040131863206624985, -0.07756514847278595, 0.10975251346826553, 0.14234861731529236, -0.140394389629364, 0.0023749861866235733, 0.1151784360408783, -0.05281843990087509, -0.022694531828165054, -0.027024276554584503, 0.030380448326468468, -0.025444692000746727, -0.03385544195771217, 0.03159455209970474, -0.055131711065769196, 0.047347500920295715, 0.09276467561721802, 0.0027050848584622145, 0.047167133539915085, 0.027188247069716454, -0.01951560564339161, -0.13939757645130157, 0.1283106505870819, 0.03188270702958107, 0.04525008797645569, -0.08540359139442444, 0.003507590154185891, 0.03957686573266983, 0.009429722093045712, 0.009174597449600697, -0.05324413999915123, -0.07717616856098175, 0.0009799316758289933, -0.05038594827055931, 0.10773266106843948, -0.08137752115726471, -0.006391100585460663, -0.019836392253637314, 0.003078064415603876, -0.015635740011930466, 0.03427538275718689, -0.0510358065366745, -0.08187691867351532, -0.050653040409088135, 0.12965382635593414, -0.14936499297618866, -0.021316654980182648, 0.055705875158309937, -0.08672693371772766, 0.05743526667356491, 0.024661550298333168, -0.04305614158511162, -0.09175658226013184, -0.17862707376480103, -0.050712957978248596, 0.02930486761033535, 0.06489618867635727, 0.03549836575984955, -0.0823691263794899, 0.05782005563378334, -0.001721873297356069, -0.10339561849832535, -0.015550009906291962, -0.020006168633699417, -0.12044540792703629, 0.04002080485224724, -0.08593611419200897, -0.03085695393383503, -0.038528893142938614, 0.13042153418064117, 0.05987298861145973, 0.009816356934607029, 0.08271179348230362, -0.05326281860470772, 0.09962008148431778, -0.1440950483083725, -0.03882521763443947, -0.013234984129667282, -0.030874008312821388, -0.08426936715841293, 0.005800385028123856, 0.07265113294124603, -0.026697250083088875, 0.1295831799507141, 0.1276262253522873, 0.035601284354925156, 0.04422083869576454, -0.0029544485732913017, 0.08500712364912033, 0.060633473098278046, -0.004938229452818632, -0.0009665621328167617, -0.01339752972126007, 0.07081685960292816, 0.013873299583792686, 0.018543550744652748, 0.08721348643302917, 0.05268606171011925, 0.25042447447776794, 0.12420310825109482, 0.014584971591830254, 0.050499167293310165, -0.089246466755867, -0.019533466547727585, 0.10774628818035126, -0.04864431917667389, 0.07717286795377731, -0.09635067731142044, 0.0440242663025856, 0.10528306663036346, -0.14683771133422852, 0.06675992906093597, -0.006713726092129946, -0.001954107778146863, -0.034513864666223526, -0.10158370435237885, -0.06459156423807144, -0.02549654245376587, 0.007054217159748077, -0.1140156090259552, 0.08975469321012497, 0.14282454550266266, 0.002992571098729968, 0.01805916242301464, 0.09452655166387558, -0.04939865693449974, -0.09025810658931732, 0.0769229605793953, 0.016083845868706703, 0.0536857545375824, 0.04800398647785187, 0.048699188977479935, 0.10199663788080215, -0.002768509555608034, 0.08030758798122406, 0.09357970952987671, 0.10465462505817413, 0.034563563764095306, -0.07411310821771622, -0.07503286004066467, 0.03046208620071411, -0.009553181938827038, -0.00805183220654726, 0.16507206857204437, 0.07606583833694458, 0.02044939063489437, -0.02269688807427883, 0.17458583414554596, -0.014851962216198444, -0.02573820762336254, -0.1439744234085083, 0.05444905906915665, -0.04417847469449043, -0.008824137039482594, -0.015264270827174187, -0.15068431198596954, -0.0013827214716002345, 0.13759124279022217, 0.08547461777925491, -0.0514305979013443, -0.009677364490926266, -0.01337448600679636, 0.0062946742400527, -0.01660972833633423, 0.03358866274356842, 0.017317157238721848, 0.2015145719051361, -0.06276599317789078, 0.01743660680949688, -0.04619240388274193, -0.03259679675102234, -0.06301338225603104, 0.09541711956262589, -0.01209320779889822, -0.007250991649925709, -0.07615505903959274, 0.11314380168914795, -0.012845358811318874, -0.19232717156410217, 0.05596350133419037, -0.09063075482845306, -0.08287236839532852, 0.002510747639462352, -0.043379366397857666, 0.026369893923401833, 0.029042424634099007, -0.0013820703607052565, -0.06273287534713745, 0.0799831673502922, 0.022928470745682716, -0.07614780217409134, -0.01940217614173889, 0.003151383949443698, -0.09948087483644485, 0.2507385313510895, -0.03415798395872116, 0.04083561524748802, 0.08211330324411392, -0.023485735058784485, -0.1329633891582489, -0.021545544266700745, 0.08097276836633682, -0.058231648057699203, 0.024712849408388138, 0.12447348237037659, -0.0066973487846553326, 0.149976909160614, 0.08050740510225296, -0.08426546305418015, 0.0553504154086113, -0.019779544323682785, 0.014448057860136032, -0.11190154403448105, 0.0057144491001963615, -0.09532470256090164, 0.11424526572227478, 0.15165530145168304, -0.007447419222444296, -0.015046091750264168, -0.04317504167556763, 0.016614176332950592, 0.013671589083969593, 0.07743266969919205, 0.011204351671040058, -0.05734485387802124, 0.01460564136505127, -0.14166653156280518, 0.08308903127908707, -0.154783695936203, -0.04566166549921036, 0.04052330181002617, -0.01623096875846386, 0.004271133337169886, 0.0771535336971283, 0.031121671199798584, 0.01219946052879095, -0.05912419781088829, -0.10387948155403137, 0.03853147104382515, 0.15566304326057434, -0.011395622976124287, -0.021723337471485138 ]
5f30c22dc73827bf76ad87d140c0dcee6e633030
# Dataset Card for farcry6-videogame ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/farcry6-videogame - **Point of Contact:** [email protected] ### Dataset Summary farcry6-videogame ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/farcry6-videogame ### Citation Information ``` @misc{ farcry6-videogame, title = { farcry6 videogame Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/farcry6-videogame } }, url = { https://universe.roboflow.com/object-detection/farcry6-videogame }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/farcry6-videogame
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:37:23+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "farcry6-videogame", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "farcry6", "1": "assassin", "2": "atv", "3": "car", "4": "gun", "5": "gun menu", "6": "healthbar", "7": "horse", "8": "hud", "9": "map", "10": "person", "11": "surroundings"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:37:41+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for farcry6-videogame The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary farcry6-videogame ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for farcry6-videogame\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nfarcry6-videogame", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for farcry6-videogame\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nfarcry6-videogame", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for farcry6-videogame\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nfarcry6-videogame### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.0047700912691652775, 0.167512446641922, -0.006714513525366783, 0.05899762362241745, 0.11011262238025665, -0.009613657370209694, 0.04177026450634003, 0.09555388242006302, -0.02998333051800728, 0.16753768920898438, 0.008574828505516052, 0.037049561738967896, 0.12322469800710678, 0.1158277690410614, 0.008745244704186916, -0.15246130526065826, 0.06211816519498825, -0.061588238924741745, 0.07238174229860306, 0.07439758628606796, 0.06205206364393234, -0.13757728040218353, 0.08625627309083939, -0.031248770654201508, -0.016237881034612656, 0.02538944222033024, -0.061738621443510056, -0.037608109414577484, -0.00388030125759542, 0.03810176998376846, 0.005062554031610489, -0.008281794376671314, 0.028268778696656227, -0.21043755114078522, 0.02857077866792679, 0.10672392696142197, 0.04140964150428772, 0.000001266044478143158, 0.17535066604614258, -0.049676667898893356, 0.055737320333719254, -0.09410227835178375, 0.05205436423420906, 0.0395999550819397, -0.11446833610534668, -0.13727207481861115, -0.10806261748075485, 0.022236894816160202, 0.09881380200386047, 0.05642686039209366, -0.025553589686751366, 0.0799110010266304, -0.009343684650957584, 0.04675392806529999, 0.1345047801733017, -0.04521484300494194, -0.0653904527425766, 0.10157248377799988, 0.0513179786503315, 0.1250859797000885, -0.1257217675447464, -0.02799961343407631, 0.014885680750012398, -0.018237166106700897, -0.011158480308949947, -0.03461784869432449, -0.034574057906866074, 0.014897087588906288, -0.07773465663194656, -0.15518762171268463, 0.10939737409353256, 0.05220438912510872, -0.03626303747296333, -0.14815184473991394, 0.01744411326944828, 0.02172432653605938, -0.04117878898978233, -0.0036342297680675983, 0.04293099045753479, -0.014578692615032196, 0.040104180574417114, -0.04505976289510727, -0.09484196454286575, 0.03963369503617287, 0.041981685906648636, 0.017316320911049843, -0.035929903388023376, 0.03456724062561989, -0.01790330372750759, 0.08692049980163574, 0.012757121585309505, -0.11708158254623413, -0.044908199459314346, -0.04135448858141899, -0.08907702565193176, -0.04753135144710541, 0.05058365687727928, -0.11849190294742584, 0.07236114889383316, 0.07524381577968597, -0.05885101482272148, 0.04468511790037155, -0.12166372686624527, 0.0012977144215255976, 0.09946417808532715, 0.15277960896492004, -0.08118198812007904, -0.11628831177949905, -0.007317680865526199, 0.07116104662418365, 0.0397256575524807, -0.04066852852702141, -0.030831342563033104, 0.027098340913653374, 0.005080975126475096, 0.04555350914597511, 0.12236765027046204, 0.0387759767472744, -0.08384154736995697, -0.05063216760754585, 0.17803797125816345, -0.08774346113204956, 0.054975319653749466, 0.08360403031110764, -0.07292678207159042, 0.06422228366136551, -0.019073648378252983, 0.011939255520701408, -0.08719896525144577, 0.05827280133962631, -0.035389244556427, 0.014800633303821087, -0.10885664075613022, -0.0827430710196495, 0.09541861712932587, -0.07240462303161621, -0.07397628575563431, -0.07354102283716202, -0.005963854491710663, -0.07825972884893417, 0.03220190107822418, -0.04445025697350502, 0.03276093676686287, -0.00656199362128973, -0.06386411190032959, -0.016114551573991776, 0.030410878360271454, 0.07045920938253403, -0.06251347064971924, 0.04248842969536781, -0.09069168567657471, 0.04588216170668602, 0.11020685732364655, 0.04181424155831337, -0.10384251177310944, 0.0607060007750988, -0.22151151299476624, 0.13574233651161194, -0.048781558871269226, 0.002043090993538499, -0.11676423996686935, 0.012290379032492638, 0.004449512343853712, -0.0483405664563179, -0.010140844620764256, 0.1331515610218048, -0.09760281443595886, 0.0003649878199212253, 0.03702849522233009, -0.05669198930263519, -0.07712644338607788, 0.03516978397965431, -0.056537847965955734, -0.05635002627968788, 0.07229526340961456, 0.1377972811460495, -0.003571967128664255, -0.12436499446630478, -0.0924065038561821, -0.028829652816057205, -0.060248780995607376, 0.152642622590065, 0.10659608989953995, -0.012515373528003693, 0.14412681758403778, -0.0076623042114079, -0.040878407657146454, -0.011376932263374329, 0.009325733408331871, -0.03441041335463524, 0.02476400136947632, -0.01640988700091839, -0.108381487429142, 0.02986825257539749, -0.09284038841724396, -0.01186499185860157, -0.07104264199733734, -0.024570424109697342, 0.023308075964450836, -0.029542982578277588, 0.025702964514493942, -0.04661037027835846, 0.10853911191225052, -0.12841252982616425, -0.0033087083138525486, -0.16976313292980194, -0.1400628238916397, 0.04826895520091057, -0.05421065911650658, 0.035710740834474564, -0.08162936568260193, 0.001430381671525538, 0.05163130536675453, 0.038637056946754456, -0.02668851800262928, 0.012884273193776608, -0.02095778100192547, -0.01069676410406828, -0.14272084832191467, -0.0686168372631073, -0.049574851989746094, 0.09612283855676651, -0.10656027495861053, -0.04779468849301338, 0.1353488266468048, 0.13213975727558136, 0.03179188445210457, -0.07146565616130829, 0.06881195306777954, -0.03244287893176079, -0.020393526181578636, -0.09517478942871094, -0.009516336023807526, -0.0041540502570569515, 0.033654432743787766, 0.06705372035503387, -0.16501393914222717, -0.12846145033836365, 0.11505013704299927, 0.054248664528131485, -0.06924514472484589, -0.039610933512449265, -0.03326947242021561, -0.021578675135970116, -0.08819993585348129, -0.014720871113240719, 0.047716233879327774, 0.08109015226364136, 0.10001928359270096, -0.08655890077352524, -0.02352866344153881, 0.034973666071891785, -0.005104132927954197, -0.07523460686206818, 0.06965294480323792, 0.04032080993056297, -0.13032913208007812, 0.11604076623916626, -0.04315398633480072, 0.06486605852842331, 0.1361238956451416, 0.020313605666160583, -0.12822581827640533, 0.02487684041261673, 0.07093634456396103, 0.019516153261065483, 0.078382208943367, -0.012909972108900547, 0.03029494918882847, 0.07892529666423798, -0.04172559082508087, -0.04072633758187294, -0.0831020176410675, 0.04746129363775253, 0.04881897196173668, -0.033806003630161285, 0.015947533771395683, -0.004793586675077677, 0.0798192173242569, 0.09946468472480774, 0.07249371707439423, 0.10699620842933655, -0.019787251949310303, -0.07592937350273132, -0.09585747867822647, 0.1161639392375946, -0.04906805604696274, -0.251432865858078, -0.08525478094816208, -0.06855417042970657, -0.06737146526575089, 0.00027779705123975873, 0.0368526466190815, -0.028199873864650726, -0.07632376998662949, -0.09562735259532928, 0.04932147264480591, 0.02740064449608326, -0.12294106930494308, -0.10646478086709976, 0.04998975619673729, -0.00951665360480547, -0.07442448288202286, 0.01299244910478592, 0.038307417184114456, -0.06565356254577637, -0.0024141643662005663, 0.04830886423587799, 0.15253256261348724, 0.061859291046857834, -0.019231168553233147, 0.01655370555818081, -0.017756985500454903, 0.16343392431735992, -0.14633169770240784, 0.09876187890768051, 0.16491329669952393, 0.0038360015023499727, 0.08006881177425385, 0.16495080292224884, -0.005125916562974453, 0.008357377722859383, 0.029611442238092422, 0.05608314275741577, -0.06842624396085739, -0.173570454120636, -0.04334921017289162, -0.047589924186468124, 0.04428469389677048, 0.1552518755197525, 0.01903942972421646, 0.0077035091817379, 0.07982129603624344, -0.1035521849989891, -0.0017812018049880862, 0.035740893334150314, 0.11340901255607605, 0.035407088696956635, 0.04470954090356827, 0.023892944678664207, -0.05366453900933266, -0.01972861960530281, 0.11578569561243057, 0.09413085132837296, 0.11180981993675232, -0.10833589732646942, 0.10408122837543488, 0.028908852487802505, 0.012575137428939342, -0.030260885134339333, 0.002556796884164214, -0.012804296799004078, 0.048482757061719894, -0.015126113779842854, -0.10144386440515518, 0.005467715207487345, 0.09290909767150879, 0.13496443629264832, -0.0046831644140183926, -0.013035577721893787, -0.01060610730201006, 0.06540659070014954, 0.2305322140455246, -0.01611662469804287, -0.2229118049144745, 0.023848554119467735, 0.037255410104990005, 0.0176098495721817, -0.13785260915756226, -0.018973050639033318, 0.1013302132487297, -0.17880387604236603, 0.07802476733922958, -0.026269597932696342, 0.09587010741233826, -0.09925288707017899, -0.04074334725737572, 0.09815696626901627, 0.04883803054690361, -0.02603103779256344, 0.08093421161174774, -0.11451194435358047, 0.045185744762420654, 0.025245359167456627, 0.03055458702147007, -0.07681456208229065, 0.019684262573719025, 0.018379518762230873, -0.03440665081143379, 0.13846950232982635, -0.023219730705022812, 0.020202303305268288, -0.15225188434123993, -0.07468803972005844, -0.018960554152727127, 0.049092743545770645, -0.053524184972047806, 0.10428112000226974, 0.010558989830315113, -0.021536532789468765, -0.07695024460554123, -0.0628974586725235, -0.02456028200685978, -0.20101411640644073, 0.006530975457280874, -0.00037961950874887407, 0.025461874902248383, -0.015071413479745388, 0.024247389286756516, 0.005143296904861927, 0.11396598815917969, -0.014307878911495209, -0.09602272510528564, -0.13386110961437225, 0.0756288468837738, 0.09270859509706497, -0.01673658937215805, 0.011608355678617954, -0.12456830590963364, 0.20571203529834747, -0.05811724439263344, -0.0672115907073021, 0.005031135398894548, -0.06895272433757782, -0.12262166291475296, -0.046514902263879776, 0.08819747716188431, 0.04087198153138161, -0.001718662097118795, -0.00624986132606864, 0.061465971171855927, 0.011564747430384159, -0.04667132347822189, 0.008199666626751423, 0.10147397220134735, 0.1311316192150116, 0.07769358158111572, 0.05919322744011879, -0.11778965592384338, -0.11178246885538101, 0.0020020368974655867, 0.019980406388640404, 0.12003237009048462, -0.09180779755115509, 0.12803864479064941, 0.00018115330021828413, -0.0583442747592926, -0.212127685546875, 0.06708001345396042, 0.07438842207193375, -0.03907284140586853, 0.017407812178134918, -0.1433039754629135, 0.15751676261425018, 0.0022498867474496365, 0.0010511577129364014, 0.09952063113451004, -0.2459903061389923, -0.062100596725940704, -0.03701765462756157, 0.046472035348415375, -0.2541467845439911, -0.15828949213027954, -0.033569760620594025, -0.03906131535768509, -0.17702840268611908, 0.04497489333152771, 0.016749359667301178, 0.04849906638264656, 0.028382809832692146, 0.032151371240615845, 0.06450130045413971, -0.05576394125819206, 0.12864623963832855, 0.010765728540718555, 0.06083241477608681, -0.0625196024775505, -0.08679275214672089, 0.03783900663256645, -0.10163064301013947, 0.12553146481513977, 0.05861242115497589, 0.005843792110681534, -0.06546710431575775, -0.007388092111796141, -0.03153999522328377, 0.05405348911881447, -0.013852253556251526, -0.01833517849445343, -0.11736498028039932, 0.051923807710409164, 0.11651043593883514, 0.03790052980184555, 0.10022814571857452, -0.0337236262857914, -0.02372138388454914, 0.15757739543914795, 0.08609434217214584, 0.005495205521583557, -0.17956943809986115, -0.05445833504199982, -0.0036994514521211386, 0.04513917863368988, -0.10919251292943954, 0.026256553828716278, 0.08626294881105423, 0.031891364604234695, 0.0792621299624443, 0.0013529505813494325, -0.11024432629346848, 0.0439295656979084, 0.04087991639971733, -0.07771831005811691, -0.08821241557598114, 0.03064558282494545, 0.09808020293712616, -0.08652395755052567, -0.1601826697587967, 0.08294356614351273, 0.005987438373267651, -0.014210925437510014, -0.0013865780783817172, 0.06334373354911804, 0.04534940794110298, 0.03328395634889603, 0.016523251309990883, 0.04179457575082779, -0.10489556938409805, 0.1425221711397171, 0.11902009695768356, -0.14409750699996948, 0.008439590223133564, 0.10272137820720673, -0.06136536970734596, -0.010921585373580456, -0.02407762035727501, 0.03456166014075279, -0.01361057162284851, -0.06172584369778633, 0.03877067565917969, -0.04920579493045807, 0.06332048773765564, 0.06521332263946533, 0.014787882566452026, 0.047984302043914795, 0.018678365275263786, -0.006646980065852404, -0.14248688519001007, 0.14142368733882904, 0.020274434238672256, 0.02850762940943241, -0.08809821307659149, 0.004509469959884882, 0.05652943253517151, 0.0018656904576346278, 0.013042176142334938, -0.06786023080348969, -0.06315237283706665, 0.023880625143647194, -0.029917437583208084, 0.10187079757452011, -0.09071774035692215, -0.001192025258205831, -0.030350031331181526, 0.007727379444986582, -0.0051770806312561035, 0.03747164458036423, -0.04913972318172455, -0.08729343861341476, -0.043251462280750275, 0.13023240864276886, -0.1769663542509079, -0.03175470978021622, 0.041706815361976624, -0.09097542613744736, 0.04484395682811737, 0.013868594542145729, -0.03946852311491966, -0.0904260128736496, -0.20866014063358307, -0.058477431535720825, 0.029060564935207367, 0.05984952673316002, 0.04078742116689682, -0.06746348738670349, 0.04996078833937645, -0.0017232734244316816, -0.11768869310617447, -0.0163235105574131, -0.00958298146724701, -0.11696048080921173, 0.04709838703274727, -0.07116759568452835, -0.03660821542143822, -0.04639550298452377, 0.1361934244632721, 0.08460237085819244, -0.0057007623836398125, 0.08408499509096146, -0.031618960201740265, 0.10462424904108047, -0.16362714767456055, -0.05067110434174538, -0.012275359593331814, -0.025176431983709335, -0.11762671172618866, 0.010782552883028984, 0.0678778886795044, -0.027919210493564606, 0.11959871649742126, 0.10979170352220535, 0.05379071831703186, 0.04326137527823448, -0.0034226858988404274, 0.09974469989538193, 0.07682855427265167, -0.004754968453198671, -0.01595141738653183, -0.0058092172257602215, 0.09324099123477936, 0.03568805754184723, 0.0371529757976532, 0.0797128900885582, 0.045101348310709, 0.21863499283790588, 0.09688134491443634, 0.026059569790959358, 0.016654834151268005, -0.06473176926374435, -0.044642213732004166, 0.12959949672222137, -0.041401468217372894, 0.056701041758060455, -0.09315689653158188, 0.04511168599128723, 0.10957368463277817, -0.16455598175525665, 0.0553942508995533, -0.012377851642668247, 0.016673043370246887, -0.018586335703730583, -0.07995164394378662, -0.06253392994403839, -0.056192342191934586, 0.020836180076003075, -0.12273676693439484, 0.13064773380756378, 0.12138678878545761, 0.029208162799477577, 0.013738535344600677, 0.1130371242761612, -0.0445682518184185, -0.07605484873056412, 0.07097644358873367, 0.010727627202868462, 0.05970724672079086, 0.07556068897247314, 0.0425831563770771, 0.10994323343038559, -0.03148172050714493, 0.07733632624149323, 0.10428524762392044, 0.08825527876615524, 0.04581465572118759, -0.05963480845093727, -0.07425080984830856, 0.04592214524745941, -0.02037731371819973, -0.018214084208011627, 0.17724190652370453, 0.08364704251289368, 0.02696688286960125, -0.020835308358073235, 0.14386077225208282, 0.0011099546682089567, -0.03961331397294998, -0.12934722006320953, 0.06892978399991989, -0.04557446017861366, -0.026956530287861824, -0.02078860066831112, -0.15947329998016357, -0.01237761415541172, 0.13258777558803558, 0.06282433122396469, -0.0661022812128067, -0.02883310616016388, -0.04112846776843071, 0.004839413333684206, -0.019051341339945793, 0.06227124482393265, -0.007432459853589535, 0.1622954159975052, -0.08817551285028458, -0.006253332830965519, -0.06504736095666885, -0.046130090951919556, -0.031869400292634964, 0.07216238975524902, 0.016846921294927597, 0.004752922337502241, -0.0925961434841156, 0.10285571217536926, -0.035640448331832886, -0.1846482753753662, 0.07968045026063919, -0.06469578295946121, -0.05837199091911316, 0.020444905385375023, -0.0057052429765462875, 0.006473331246525049, 0.04047621414065361, 0.019907839596271515, -0.05062085762619972, 0.069792740046978, 0.023810114711523056, -0.09524727612733841, -0.018280571326613426, 0.008963512256741524, -0.12302802503108978, 0.2585616707801819, -0.03958363085985184, 0.04210197553038597, 0.07819120585918427, -0.015192678198218346, -0.1279185712337494, -0.02726098522543907, 0.09078595042228699, -0.033644359558820724, 0.011119743809103966, 0.1134088858962059, 0.012829612009227276, 0.15875102579593658, 0.07329771667718887, -0.06532946974039078, 0.06095173582434654, -0.028760531917214394, 0.0016474869335070252, -0.13499636948108673, -0.004213900305330753, -0.08195558935403824, 0.1195593997836113, 0.1293037086725235, -0.01096345018595457, -0.003988820128142834, -0.03852196782827377, 0.020798703655600548, 0.0031845022458583117, 0.09914014488458633, 0.021844226866960526, -0.0514240488409996, 0.01835658773779869, -0.14557664096355438, 0.08298765122890472, -0.13603200018405914, -0.05345810204744339, 0.022879252210259438, -0.031770020723342896, 0.0176649522036314, 0.06603226810693741, 0.004426227416843176, -0.00110467872582376, -0.062751404941082, -0.08224210143089294, 0.047335922718048096, 0.16795673966407776, -0.007834883406758308, -0.01865212805569172 ]
a3bdbe6542b77b62f9bdce0532e912b62ed15f27
# Dataset Card for grass-weeds ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/grass-weeds - **Point of Contact:** [email protected] ### Dataset Summary grass-weeds ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/grass-weeds ### Citation Information ``` @misc{ grass-weeds, title = { grass weeds Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/grass-weeds } }, url = { https://universe.roboflow.com/object-detection/grass-weeds }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/grass-weeds
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:37:38+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "grass-weeds", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "grass-weeds", "1": "0 ridderzuring"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:39:10+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for grass-weeds The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary grass-weeds ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for grass-weeds\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ngrass-weeds", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for grass-weeds\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ngrass-weeds", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for grass-weeds\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ngrass-weeds### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.020175067707896233, 0.17379245162010193, -0.007779525127261877, 0.028061997145414352, 0.10258793830871582, -0.010785029269754887, 0.04673159122467041, 0.08554331958293915, 0.009375232271850109, 0.178972065448761, 0.00499902106821537, 0.09737451374530792, 0.1128700003027916, 0.07966673374176025, -0.016079694032669067, -0.15386395156383514, 0.0548480749130249, -0.0621560774743557, 0.05342113971710205, 0.06975112110376358, 0.08203717321157455, -0.13596221804618835, 0.08712195605039597, -0.03221112862229347, -0.04172201827168465, 0.02736266516149044, -0.05681261792778969, -0.04304447025060654, 0.016810420900583267, 0.04292231798171997, 0.006702392362058163, 0.022454265505075455, 0.028430037200450897, -0.19255898892879486, 0.022200627252459526, 0.10355611145496368, 0.03873779997229576, 0.03324323892593384, 0.16661784052848816, -0.07664679735898972, 0.04488658532500267, -0.12701325118541718, 0.032994840294122696, 0.016873162239789963, -0.11876992881298065, -0.12041521817445755, -0.12627023458480835, 0.04789585992693901, 0.11131381243467331, 0.04451078921556473, -0.012078299187123775, 0.07299447059631348, -0.009862324222922325, 0.05974746495485306, 0.12237045168876648, -0.07355257868766785, -0.043190743774175644, 0.07827351242303848, 0.035268791019916534, 0.09745383262634277, -0.12806864082813263, -0.020415915176272392, -0.0033393024932593107, -0.027446551248431206, 0.014178524725139141, -0.05308588966727257, -0.04135351628065109, -0.0005928807076998055, -0.09883003681898117, -0.14371417462825775, 0.14026284217834473, 0.056846823543310165, -0.04780571162700653, -0.14723607897758484, -0.007183575537055731, 0.07762204855680466, -0.03915134444832802, -0.015513471327722073, 0.054807402193546295, 0.0025379613507539034, 0.06905646622180939, -0.07639569789171219, -0.10213612765073776, 0.05471131205558777, 0.04645387828350067, 0.03075217828154564, -0.014653918333351612, 0.034206025302410126, 0.018821336328983307, 0.06339464336633682, 0.019964493811130524, -0.10820256173610687, -0.022317415103316307, -0.03768004849553108, -0.05420181527733803, -0.04366452619433403, 0.06185488775372505, -0.14356715977191925, 0.07574152946472168, 0.06308984011411667, -0.05370577052235603, 0.032421231269836426, -0.1260404735803604, 0.021613234654068947, 0.1059822142124176, 0.17835396528244019, -0.07962331175804138, -0.09137724339962006, 0.009919192641973495, 0.04151118919253349, 0.019808301702141762, -0.03178232163190842, -0.017310218885540962, 0.016224807128310204, 0.03681036829948425, 0.033847421407699585, 0.11827512830495834, 0.0395977608859539, -0.07278921455144882, -0.06112107262015343, 0.1519305258989334, -0.1004992127418518, 0.044623132795095444, 0.05406500771641731, -0.04819254204630852, 0.08407332748174667, 0.005571257788687944, 0.017633521929383278, -0.10975421965122223, 0.08757179230451584, -0.036353565752506256, 0.015014294534921646, -0.07899037003517151, -0.08577023446559906, 0.053593091666698456, -0.08597224950790405, -0.07893247902393341, -0.07756832242012024, -0.04959198832511902, -0.08872601389884949, 0.04285008832812309, -0.03883696720004082, 0.016099441796541214, 0.02130874991416931, -0.03701015189290047, -0.01662295311689377, 0.019935281947255135, 0.03965160250663757, -0.04657701030373573, 0.038941364735364914, -0.10327661037445068, 0.03944813087582588, 0.12479006499052048, 0.04715825244784355, -0.10281047224998474, 0.060555245727300644, -0.1952039748430252, 0.14017683267593384, -0.06063593924045563, 0.03761738911271095, -0.1427966058254242, 0.019020602107048035, -0.003812800394371152, -0.044629137963056564, -0.0066064647398889065, 0.13839535415172577, -0.0726068913936615, 0.01747961901128292, 0.05811284855008125, -0.0542415976524353, -0.06338787823915482, 0.04271043837070465, -0.04209911450743675, 0.0010224446887150407, 0.08510033786296844, 0.1438666135072708, -0.04630674421787262, -0.10857723653316498, -0.09863154590129852, -0.030211828649044037, -0.03731147572398186, 0.15915541350841522, 0.0697966143488884, -0.04758546128869057, 0.08369779586791992, -0.001087129581719637, -0.027758387848734856, -0.04487898200750351, 0.016587326303124428, -0.03610607981681824, 0.0077719176188111305, -0.013852965086698532, -0.07578407973051071, 0.017844848334789276, -0.09366077184677124, 0.010148418135941029, -0.07240461558103561, -0.05161488056182861, 0.012536142952740192, -0.027585100382566452, 0.020894743502140045, -0.023763122037053108, 0.09250441193580627, -0.12854044139385223, -0.0003595599555410445, -0.16441158950328827, -0.10175452381372452, 0.06651710718870163, -0.03996027633547783, 0.03937312215566635, -0.07679899036884308, -0.0201422069221735, 0.019105464220046997, 0.04209132865071297, -0.011400706134736538, 0.045176390558481216, -0.02284105308353901, -0.04010942205786705, -0.13836930692195892, -0.04394537955522537, -0.02380775287747383, 0.09416669607162476, -0.1310792714357376, -0.03199051320552826, 0.13970409333705902, 0.10827645659446716, 0.041055962443351746, -0.052035074681043625, 0.07970501482486725, -0.03463611379265785, -0.020510265603661537, -0.08532488346099854, -0.005559224169701338, 0.0021939584985375404, 0.04295716434717178, 0.08517690747976303, -0.14152605831623077, -0.12533685564994812, 0.07889784127473831, 0.017909657210111618, -0.08263596892356873, -0.04777256399393082, -0.05543837696313858, -0.024944601580500603, -0.09777293354272842, -0.03315402939915657, 0.03161825239658356, 0.06761793792247772, 0.08938183635473251, -0.07521230727434158, -0.0382537767291069, 0.022668007761240005, -0.020855678245425224, -0.07641511410474777, 0.0656602531671524, 0.04300333932042122, -0.11384125798940659, 0.10420794785022736, -0.018715564161539078, 0.04886256903409958, 0.08007825165987015, 0.03530532494187355, -0.11218398064374924, 0.014660429209470749, 0.0856231153011322, 0.025035474449396133, 0.08071921765804291, -0.031846024096012115, 0.013115433044731617, 0.07801824063062668, -0.017558332532644272, -0.015720752999186516, -0.08611887693405151, 0.07735562324523926, 0.036040835082530975, -0.03342101722955704, 0.06090381741523743, -0.011417029425501823, 0.07490961253643036, 0.09634781628847122, 0.05879330635070801, 0.11664147675037384, -0.040463127195835114, -0.055443838238716125, -0.0884636864066124, 0.12657476961612701, -0.028577757999300957, -0.2733623683452606, -0.07345005869865417, -0.06290393322706223, -0.056855473667383194, -0.00917795579880476, 0.03554469347000122, 0.0032233840320259333, -0.08368143439292908, -0.09674058109521866, 0.05432473123073578, 0.0649375468492508, -0.10861308872699738, -0.11405672878026962, 0.0342402346432209, 0.00659329304471612, -0.08059433102607727, 0.003217402845621109, 0.03278335556387901, -0.04693321883678436, 0.003961303737014532, 0.04914674535393715, 0.1271633356809616, 0.055737920105457306, -0.01101337093859911, -0.0006274507031776011, -0.006619472987949848, 0.18632523715496063, -0.15149806439876556, 0.12223488092422485, 0.1574479043483734, 0.009874672628939152, 0.08352816849946976, 0.1764262616634369, -0.013134319335222244, -0.020724717527627945, 0.026819217950105667, 0.07300670444965363, -0.05988849326968193, -0.21334047615528107, -0.053121186792850494, -0.04373970627784729, 0.02174588292837143, 0.14240622520446777, 0.04483916610479355, 0.02001706324517727, 0.09619946032762527, -0.1066778302192688, 0.04313964769244194, 0.018295668065547943, 0.10226888209581375, 0.05025877058506012, 0.04163874313235283, 0.04390532150864601, -0.04062109813094139, -0.027270149439573288, 0.09561903029680252, 0.11921153962612152, 0.12321718037128448, -0.0892578661441803, 0.11414406448602676, 0.03708011656999588, 0.04113982245326042, -0.05160922184586525, -0.01283202599734068, -0.03501266986131668, 0.05759207531809807, -0.007761061657220125, -0.09962578117847443, 0.004938713274896145, 0.08373893052339554, 0.12827114760875702, -0.022900639101862907, 0.015821876004338264, -0.033422958105802536, 0.0806693285703659, 0.24050170183181763, -0.0013774598482996225, -0.18409807980060577, 0.01719493791460991, 0.03614785149693489, 0.01644996739923954, -0.12247031927108765, -0.030146397650241852, 0.07395531237125397, -0.17594179511070251, 0.04921572655439377, -0.04449602589011192, 0.10871106386184692, -0.143090158700943, -0.040692634880542755, 0.05179066210985184, 0.03925831615924835, -0.015391114167869091, 0.08289343118667603, -0.11492783576250076, 0.07192638516426086, 0.036714207381010056, 0.029228202998638153, -0.08963213860988617, 0.04117368161678314, 0.010488907806575298, -0.02201986312866211, 0.15801741182804108, -0.017103539779782295, 0.002418961375951767, -0.12338529527187347, -0.11213784664869308, -0.022666608914732933, 0.05257486552000046, -0.07944345474243164, 0.08831049501895905, 0.012609301134943962, -0.03443401679396629, -0.08326925337314606, -0.04476941004395485, -0.06613944470882416, -0.19219473004341125, 0.04610626772046089, -0.012607966549694538, 0.018625756725668907, -0.011364169418811798, 0.02964625507593155, 0.006907171104103327, 0.14037230610847473, -0.04402342438697815, -0.09597219526767731, -0.1453801393508911, 0.052066370844841, 0.08596114814281464, -0.019435467198491096, -0.014362313784658909, -0.09973569959402084, 0.1830107867717743, -0.03549875691533089, -0.06691479682922363, 0.026984550058841705, -0.0665469542145729, -0.12331698834896088, -0.058809321373701096, 0.11529626697301865, 0.030252955853939056, -0.012438487261533737, 0.014732100069522858, 0.06503529101610184, -0.002550424775108695, -0.055574964731931686, 0.037957385182380676, 0.08944404870271683, 0.12086494266986847, 0.12061775475740433, 0.010086214169859886, -0.1279001086950302, -0.12689104676246643, -0.014647823758423328, 0.04316297546029091, 0.10152173787355423, -0.07880080491304398, 0.11855803430080414, 0.04449547827243805, -0.09723242372274399, -0.225897416472435, 0.08784043043851852, 0.07268697023391724, -0.020342594012618065, 0.002362834755331278, -0.1551503837108612, 0.1509278118610382, 0.05044523626565933, -0.005903753452003002, 0.08619173616170883, -0.26522135734558105, -0.07457692176103592, -0.02028396725654602, 0.037696924060583115, -0.2318224459886551, -0.17973701655864716, -0.05824509635567665, -0.05023210868239403, -0.13728339970111847, 0.052999347448349, 0.009707145392894745, 0.040404148399829865, 0.03626735508441925, 0.03165533393621445, 0.06295394897460938, -0.04806767776608467, 0.10866773128509521, 0.030552787706255913, 0.04753617197275162, -0.06477593630552292, -0.08625638484954834, 0.04569130390882492, -0.08565884828567505, 0.1467272788286209, 0.047443754971027374, 0.02740786224603653, -0.049736786633729935, -0.016232436522841454, -0.04916154593229294, 0.08158043026924133, -0.03587666153907776, -0.04028377681970596, -0.09674346446990967, 0.03918951004743576, 0.13631507754325867, 0.03208024054765701, 0.09134513884782791, -0.03759348392486572, -0.009308947250247002, 0.1620039939880371, 0.08270145952701569, 0.005436446517705917, -0.1716691553592682, -0.04638608545064926, 0.0010681207058951259, 0.036327820271253586, -0.13319699466228485, 0.04014115035533905, 0.08383169025182724, 0.023760011419653893, 0.10102567076683044, -0.015545211732387543, -0.10100673884153366, 0.007961721159517765, 0.03566696122288704, -0.10612921416759491, -0.12543649971485138, 0.017246346920728683, 0.10776349157094955, -0.10135640949010849, -0.12433809787034988, 0.11108919233083725, -0.0011623926693573594, -0.01966032199561596, 0.002339007332921028, 0.07678692787885666, 0.06703954190015793, 0.0545746386051178, 0.02687114290893078, 0.03747649863362312, -0.06593448668718338, 0.1138719841837883, 0.15347756445407867, -0.15671181678771973, -0.005464561749249697, 0.11570356786251068, -0.049166832119226456, -0.021210607141256332, -0.030152613297104836, 0.01907775178551674, 0.0070853387005627155, -0.022358736023306847, 0.03754771873354912, -0.04134926572442055, 0.0334864966571331, 0.07288113981485367, 0.0034212206955999136, 0.05756106600165367, 0.024312863126397133, -0.024741318076848984, -0.14257588982582092, 0.13627871870994568, 0.018209395930171013, 0.053496479988098145, -0.08601579070091248, 0.0021353501360863447, 0.0300819743424654, 0.00830254890024662, 0.013554171659052372, -0.06268113851547241, -0.06788041442632675, -0.008416862227022648, -0.018266797065734863, 0.1152755469083786, -0.09223812818527222, -0.009541253559291363, -0.022379975765943527, 0.012079022824764252, 0.0009673157474026084, 0.03362346813082695, -0.04423125088214874, -0.0848073810338974, -0.040859878063201904, 0.1310829073190689, -0.15071649849414825, -0.030497262254357338, 0.05767543986439705, -0.09342820197343826, 0.058157362043857574, 0.004164769314229488, -0.041647449135780334, -0.09741032123565674, -0.17410098016262054, -0.03458838164806366, 0.030232371762394905, 0.06087096035480499, 0.0381409116089344, -0.09596332907676697, 0.04377671331167221, -0.011955342255532742, -0.09170198440551758, -0.018385622650384903, 0.0017720286268740892, -0.126006081700325, 0.048471007496118546, -0.08340810239315033, -0.027182741090655327, -0.036887604743242264, 0.12288467586040497, 0.051782116293907166, 0.003485173685476184, 0.07497920095920563, -0.047971028834581375, 0.10200337320566177, -0.13803382217884064, -0.03425460308790207, -0.01223083771765232, -0.0402287058532238, -0.07999531179666519, 0.005846226587891579, 0.07029253989458084, -0.03022589534521103, 0.13604046404361725, 0.11988640576601028, 0.04511459916830063, 0.04613368213176727, 0.004947662819176912, 0.055003177374601364, 0.058596741408109665, -0.03183944895863533, -0.01572456583380699, -0.016709838062524796, 0.07752693444490433, 0.015259835869073868, 0.016346126794815063, 0.08734333515167236, 0.050668004900217056, 0.23476801812648773, 0.13275709748268127, 0.014742651022970676, 0.03712664917111397, -0.07802648097276688, -0.07068634778261185, 0.11304763704538345, -0.05254417657852173, 0.08850721269845963, -0.09525006264448166, 0.0442512221634388, 0.10175679624080658, -0.1582280993461609, 0.06621755659580231, -0.004525487311184406, -0.014545079320669174, -0.026766646653413773, -0.10494857281446457, -0.06223243474960327, -0.015084431506693363, 0.0031660841777920723, -0.11335399746894836, 0.08923157304525375, 0.12417404353618622, -0.007831760682165623, 0.00862980168312788, 0.10203297436237335, -0.04678887128829956, -0.08669037371873856, 0.09083103388547897, 0.012040483765304089, 0.04716533422470093, 0.04064837470650673, 0.041632309556007385, 0.07020068913698196, 0.0012474916875362396, 0.08297783881425858, 0.09013161063194275, 0.09824150055646896, 0.03539007902145386, -0.0806938037276268, -0.07761155068874359, 0.033759843558073044, -0.011964376084506512, -0.016721496358513832, 0.13401907682418823, 0.07502496987581253, 0.01059683132916689, -0.02504727616906166, 0.174457386136055, -0.009828039444983006, -0.00475116865709424, -0.13098293542861938, 0.018391791731119156, -0.03305809199810028, -0.01445893757045269, -0.009743581525981426, -0.14503683149814606, 0.014636154286563396, 0.14088256657123566, 0.07227971404790878, -0.0398232564330101, -0.013401862233877182, -0.020309841260313988, 0.004721614066511393, -0.012886662036180496, 0.04115449637174606, 0.013798859901726246, 0.18969948589801788, -0.06526091694831848, 0.0015294398181140423, -0.050595637410879135, -0.038043756037950516, -0.07861308008432388, 0.09903787821531296, -0.012652644887566566, 0.00010856812878046185, -0.07098757475614548, 0.11097829788923264, -0.008317808620631695, -0.20260655879974365, 0.05619774013757706, -0.08936086297035217, -0.08752735704183578, 0.007146445568650961, -0.030230438336730003, 0.0027533986140042543, 0.02839832380414009, 0.015924815088510513, -0.0609113983809948, 0.09222279489040375, 0.02477593533694744, -0.06884682178497314, -0.0006565637304447591, 0.0010567917488515377, -0.09849817305803299, 0.2521272301673889, -0.026630014181137085, 0.03912808746099472, 0.0806121975183487, -0.01565839909017086, -0.14926381409168243, -0.03816315904259682, 0.08245230466127396, -0.04389986768364906, 0.0274039339274168, 0.11676456034183502, 0.004183921031653881, 0.1498197466135025, 0.08948580175638199, -0.07951758801937103, 0.051111120730638504, -0.01631501317024231, 0.011446342803537846, -0.11493236571550369, 0.007760149892419577, -0.09706050902605057, 0.10783252120018005, 0.13455736637115479, -0.014612828381359577, -0.014774276874959469, -0.03341297432780266, 0.0007941407966427505, 0.0025572502054274082, 0.09467126429080963, -0.005242538172751665, -0.06371985375881195, 0.014051196165382862, -0.1355094164609909, 0.08661012351512909, -0.12726742029190063, -0.06193143501877785, 0.03969976678490639, -0.020189519971609116, -0.015047634951770306, 0.07776503264904022, 0.0245728250592947, -0.0035019901115447283, -0.05660974979400635, -0.11298820376396179, 0.029424892738461494, 0.1667158603668213, -0.010979678481817245, -0.023405905812978745 ]
d71741576660c41403e43972e07796e55ca292eb
# Dataset Card for wine-labels ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/wine-labels - **Point of Contact:** [email protected] ### Dataset Summary wine-labels ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/wine-labels ### Citation Information ``` @misc{ wine-labels, title = { wine labels Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/wine-labels } }, url = { https://universe.roboflow.com/object-detection/wine-labels }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/wine-labels
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:37:41+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "wine-labels", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "wine-labels", "1": "AlcoholPercentage", "2": "Appellation AOC DOC AVARegion", "3": "Appellation QualityLevel", "4": "CountryCountry", "5": "Distinct Logo", "6": "Established YearYear", "7": "Maker-Name", "8": "Organic", "9": "Sustainable", "10": "Sweetness-Brut-SecSweetness-Brut-Sec", "11": "TypeWine Type", "12": "VintageYear"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:38:32+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for wine-labels The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary wine-labels ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for wine-labels\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nwine-labels", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for wine-labels\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nwine-labels", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for wine-labels\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nwine-labels### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.03005552850663662, 0.18128031492233276, -0.008081614971160889, 0.02546251006424427, 0.0961112529039383, 0.0007414635620079935, 0.0558890663087368, 0.08121463656425476, 0.05303396284580231, 0.16780716180801392, -0.009939993731677532, 0.08767508715391159, 0.11286225914955139, 0.11932072788476944, -0.015054062008857727, -0.12867268919944763, 0.05627759173512459, -0.06763190031051636, 0.10102365911006927, 0.0696324035525322, 0.08454663306474686, -0.1374039649963379, 0.09865378588438034, -0.058699317276477814, -0.05854127183556557, 0.016526512801647186, -0.016088105738162994, -0.04642767459154129, 0.03027433156967163, 0.04120735824108124, 0.015569713898003101, 0.016461074352264404, 0.035108428448438644, -0.17996442317962646, 0.02686362899839878, 0.09870263934135437, 0.017361901700496674, 0.033115487545728683, 0.12974153459072113, -0.07885127514600754, 0.05722791329026222, -0.11847104132175446, 0.033412784337997437, 0.028336700052022934, -0.12043426185846329, -0.06699005514383316, -0.1387355923652649, 0.04356307536363602, 0.08220165222883224, 0.05366035923361778, -0.00893061887472868, 0.07320517301559448, -0.016165094450116158, 0.04667862132191658, 0.13386045396327972, -0.08365830779075623, -0.04454251378774643, 0.10688138753175735, 0.02280321903526783, 0.11661025136709213, -0.10797934979200363, 0.0015160231851041317, -0.005908124148845673, -0.02632269635796547, -0.0013321746373549104, -0.06756281852722168, -0.031242717057466507, -0.005109217017889023, -0.08603770285844803, -0.1452227383852005, 0.16464067995548248, 0.05373860523104668, -0.06898115575313568, -0.12349113076925278, -0.025952154770493507, 0.07484740018844604, -0.037734366953372955, -0.019420133903622627, 0.0505589134991169, 0.0009761229739524424, 0.08388291299343109, -0.060582276433706284, -0.10801422595977783, 0.039528604596853256, 0.007234370801597834, 0.03242328390479088, -0.031786516308784485, 0.042320169508457184, 0.015605725347995758, 0.07469501346349716, -0.03181605786085129, -0.10309410095214844, -0.028773950412869453, -0.04384608939290047, -0.07134751230478287, -0.044051431119441986, 0.055326737463474274, -0.08775179088115692, 0.07076500356197357, 0.069156214594841, -0.09360860288143158, 0.021485866978764534, -0.11296258866786957, 0.01032441109418869, 0.08748400211334229, 0.21006743609905243, -0.0556609109044075, -0.10409723222255707, -0.009306252002716064, 0.008772159926593304, 0.009886694140732288, -0.02422296814620495, -0.03957086801528931, -0.022347424179315567, 0.014164854772388935, 0.032435592263936996, 0.11978496611118317, 0.006900205742567778, -0.07510724663734436, -0.0773313045501709, 0.1250636726617813, -0.10232293605804443, 0.07471360266208649, 0.05273410677909851, -0.030923373997211456, 0.0937407985329628, -0.0066712163388729095, 0.012856293469667435, -0.10851779580116272, 0.07404264807701111, -0.04299293830990791, 0.022531548514962196, -0.10804060846567154, -0.07480461895465851, 0.054688647389411926, -0.08628680557012558, -0.09620771557092667, -0.07657637447118759, -0.059905294328927994, -0.0941278338432312, 0.045267511159181595, -0.03972500562667847, 0.01513388380408287, 0.01369963213801384, -0.014385001733899117, -0.016804786399006844, 0.0051599666476249695, 0.013201551511883736, -0.038687437772750854, 0.025121504440903664, -0.1071881428360939, 0.026206716895103455, 0.07743227481842041, 0.0410320870578289, -0.08437059819698334, 0.04977412894368172, -0.20398582518100739, 0.13201388716697693, -0.020564096048474312, 0.029383229091763496, -0.15220677852630615, 0.03725893795490265, -0.022979576140642166, -0.035496827214956284, -0.004413900896906853, 0.14801223576068878, -0.14475542306900024, 0.018333688378334045, 0.08953236788511276, -0.05790681391954422, -0.04689886420965195, 0.05512715503573418, -0.03675346076488495, 0.005932244006544352, 0.11200977116823196, 0.09521234035491943, -0.02792826108634472, -0.1126914694905281, -0.1224399209022522, -0.05937352031469345, -0.04106758534908295, 0.12697283923625946, 0.06586030125617981, -0.04634799063205719, 0.0895596444606781, -0.011877009645104408, -0.026987917721271515, -0.06129533052444458, 0.014728961512446404, -0.03789884224534035, 0.004845722112804651, 0.01212686114013195, -0.06612947583198547, 0.018062392249703407, -0.11349819600582123, 0.022863643243908882, -0.08127261698246002, -0.0737396627664566, 0.012173471041023731, -0.011776619590818882, 0.0263664647936821, -0.040859296917915344, 0.11530935764312744, -0.06469159573316574, 0.0018175565637648106, -0.14032410085201263, -0.08570078015327454, 0.08309304714202881, 0.013417670503258705, 0.05633999779820442, -0.08480419963598251, -0.010465876199305058, 0.020699074491858482, 0.04594893753528595, -0.00942495558410883, 0.043777842074632645, -0.03757607936859131, -0.014913934282958508, -0.14007946848869324, -0.009677885100245476, -0.027942370623350143, 0.09781929105520248, -0.12905313074588776, -0.03762179613113403, 0.1550607681274414, 0.10601300746202469, 0.03994711861014366, -0.046925462782382965, 0.033372633159160614, -0.025340093299746513, -0.032125771045684814, -0.07350077480077744, -0.012902605347335339, -0.021091366186738014, 0.03613434359431267, 0.09471067786216736, -0.16684362292289734, -0.12864373624324799, 0.08117315918207169, 0.01876169629395008, -0.07594116777181625, -0.07594121992588043, -0.04057959094643593, 0.002654977375641465, -0.08772678673267365, -0.03605613112449646, 0.04660290479660034, 0.06811709702014923, 0.06789080053567886, -0.06222888454794884, -0.03498949483036995, 0.03003152273595333, -0.004144872538745403, -0.08898551762104034, 0.04325586557388306, 0.0525832436978817, -0.1063479483127594, 0.0850573182106018, 0.031733643263578415, 0.06348393112421036, 0.09659362584352493, 0.037551768124103546, -0.09828915446996689, -0.01781008020043373, 0.08580759167671204, 0.01873302087187767, 0.10912412405014038, -0.02437075600028038, 0.009551568888127804, 0.07090548425912857, -0.009610078297555447, -0.04612124711275101, -0.09156227856874466, 0.08444570749998093, 0.028450865298509598, -0.03479679301381111, 0.07780317962169647, -0.030349185690283775, 0.07112640887498856, 0.10999946296215057, 0.054809026420116425, 0.06708572804927826, -0.05942680686712265, -0.05717006325721741, -0.09421014040708542, 0.12724384665489197, -0.03844675421714783, -0.24481132626533508, -0.0730331763625145, -0.07124774158000946, -0.045704349875450134, 0.01599211059510708, 0.030111119151115417, 0.009657296352088451, -0.08089938014745712, -0.07638762146234512, 0.05130888149142265, 0.08529488742351532, -0.10728013515472412, -0.1019069105386734, 0.011852851137518883, -0.021192846819758415, -0.0690247118473053, -0.01709866151213646, 0.01210838183760643, -0.08508025109767914, 0.008957887068390846, 0.032931964844465256, 0.130960151553154, 0.08246012777090073, -0.03842990845441818, 0.012344865128397942, -0.007920809090137482, 0.175324484705925, -0.15342219173908234, 0.1326141208410263, 0.168751060962677, 0.03872869163751602, 0.07657919824123383, 0.2041243612766266, -0.007817242294549942, -0.006985683925449848, 0.009860455058515072, 0.05988705903291702, -0.04991919919848442, -0.20277293026447296, -0.07218944281339645, -0.05476272478699684, 0.015450133010745049, 0.11173778027296066, 0.03677408769726753, 0.04206651821732521, 0.08500446379184723, -0.11720515042543411, 0.022956624627113342, 0.03818528726696968, 0.10720481723546982, 0.0621362067759037, 0.02186804823577404, 0.04584940895438194, -0.045126933604478836, -0.011064794845879078, 0.11127930879592896, 0.13761211931705475, 0.13096027076244354, -0.07725049555301666, 0.12896233797073364, 0.03273340314626694, 0.0022380882874131203, -0.043891794979572296, -0.01975141279399395, -0.028011150658130646, 0.05657772347331047, -0.01936742663383484, -0.10366999357938766, -0.010865113697946072, 0.08186394721269608, 0.10866709798574448, -0.02409791760146618, 0.009109233506023884, -0.0027923353482037783, 0.09106740355491638, 0.20244120061397552, 0.014415751211345196, -0.18119080364704132, 0.012356915511190891, 0.037272609770298004, 0.02495039626955986, -0.12605085968971252, -0.023493599146604538, 0.10368098318576813, -0.1695956587791443, 0.04434129223227501, -0.03077259659767151, 0.11544488370418549, -0.12006904184818268, -0.02627413533627987, 0.0413755439221859, 0.05709591507911682, -0.016713665798306465, 0.06611094623804092, -0.13919290900230408, 0.10484232753515244, 0.0465673990547657, 0.03130945563316345, -0.0859823003411293, 0.03748003765940666, -0.004590334836393595, 0.008104991167783737, 0.15507376194000244, 0.0061401138082146645, -0.05561407282948494, -0.1118408814072609, -0.08709876984357834, -0.02052256092429161, 0.038852155208587646, -0.06093306094408035, 0.09161491692066193, 0.008314071223139763, -0.04618043079972267, -0.06818156689405441, -0.03758816048502922, -0.06161757931113243, -0.17353692650794983, 0.03853820264339447, 0.002467326121404767, -0.0022496299352496862, -0.014984212815761566, 0.031112482771277428, 0.021570121869444847, 0.08101937174797058, -0.0654827207326889, -0.05959524214267731, -0.1321464329957962, 0.013437760062515736, 0.05860903486609459, -0.0406513437628746, -0.017085542902350426, -0.10184965282678604, 0.1824667751789093, -0.06104752793908119, -0.048632387071847916, 0.03052082657814026, -0.06394465267658234, -0.08468754589557648, -0.07503531128168106, 0.1266212910413742, 0.0282531026750803, -0.007923224940896034, 0.023702407255768776, 0.06566887348890305, -0.001469952636398375, -0.06522508710622787, 0.034503769129514694, 0.12330366671085358, 0.1213885173201561, 0.145883247256279, 0.004659578204154968, -0.1847493052482605, -0.11694607138633728, 0.00893386360257864, 0.04246706888079643, 0.08863557875156403, -0.09882529824972153, 0.12804649770259857, 0.028309354558587074, -0.11190889030694962, -0.2202882170677185, 0.08528478443622589, 0.04229888692498207, -0.02282024547457695, -0.009446241892874241, -0.1510482281446457, 0.11778251081705093, 0.029170164838433266, -0.0076647256501019, 0.06563778966665268, -0.24299322068691254, -0.06690390408039093, -0.03124345652759075, 0.043010372668504715, -0.15696005523204803, -0.1388959437608719, -0.04236406460404396, -0.04492761939764023, -0.16264700889587402, 0.062158264219760895, 0.017797809094190598, 0.03393211588263512, 0.03566483035683632, 0.05746931582689285, 0.06952249258756638, -0.042182933539152145, 0.09220469743013382, 0.031482845544815063, 0.03384212777018547, -0.06371892243623734, -0.09343305230140686, 0.059037961065769196, -0.08773979544639587, 0.12602229416370392, 0.048124201595783234, 0.02231607399880886, -0.04439988359808922, -0.019472097977995872, -0.038059890270233154, 0.07658622413873672, -0.048457976430654526, -0.03633679822087288, -0.07271776348352432, 0.04614931344985962, 0.11486200243234634, 0.027519457042217255, 0.051899272948503494, -0.039372581988573074, -0.01819106936454773, 0.1562134176492691, 0.10136600583791733, -0.013909850269556046, -0.1484222412109375, -0.037326470017433167, 0.012701096013188362, 0.03616553544998169, -0.10658822953701019, 0.049942176789045334, 0.09379365295171738, 0.013796752318739891, 0.10838370770215988, -0.026019424200057983, -0.10473594069480896, -0.013804915361106396, 0.050823722034692764, -0.0993272140622139, -0.16054238379001617, -0.0041643898002803326, 0.10453047603368759, -0.09065593034029007, -0.10627618432044983, 0.12377896159887314, 0.005519882310181856, -0.028099365532398224, 0.003935902379453182, 0.07251385599374771, 0.054746679961681366, 0.05112125724554062, -0.007973827421665192, 0.037047140300273895, -0.06751219928264618, 0.09185472130775452, 0.15311837196350098, -0.12080089747905731, -0.010325687006115913, 0.1393667757511139, -0.04084324836730957, -0.020984817296266556, -0.04246717691421509, 0.057598188519477844, -0.07224109023809433, -0.03009653277695179, 0.01869000867009163, -0.06088382750749588, 0.038376692682504654, 0.10162190347909927, -0.0021733534522354603, 0.05840127170085907, 0.029181037098169327, -0.025398945435881615, -0.10969873517751694, 0.13363443315029144, 0.008964118547737598, 0.04746405780315399, -0.09594059735536575, 0.006266915239393711, 0.014763734303414822, 0.015030266717076302, 0.014932122081518173, -0.08365128934383392, -0.05372150242328644, -0.006119648460298777, -0.05573517084121704, 0.11265964806079865, -0.07749613374471664, -0.007294353563338518, -0.02894842065870762, 0.01260765828192234, 0.0030015010852366686, 0.034116074442863464, -0.043213386088609695, -0.06891290843486786, -0.05614975094795227, 0.15269610285758972, -0.15359438955783844, -0.014885692857205868, 0.051048219203948975, -0.07446309924125671, 0.06465208530426025, -0.0006212806329131126, -0.0316658690571785, -0.08735489100217819, -0.19424358010292053, -0.03368077799677849, 0.012921247631311417, 0.06584888696670532, 0.05053792521357536, -0.09807152301073074, 0.05826346203684807, -0.0021054521203041077, -0.08547431975603104, -0.036453552544116974, -0.021737540140748024, -0.10826380550861359, 0.04892385005950928, -0.05781631916761398, -0.05908231809735298, -0.03968917205929756, 0.1426694542169571, 0.03137940540909767, 0.006447337567806244, 0.05204933136701584, -0.04566975682973862, 0.09347398579120636, -0.1493474394083023, -0.03282758593559265, -0.00796272698789835, -0.032681237906217575, -0.11430063843727112, -0.009294803254306316, 0.06665609031915665, -0.018831437453627586, 0.09821862727403641, 0.1443074494600296, 0.054460559040308, 0.04646708443760872, -0.026440167799592018, 0.03152937814593315, 0.04999013617634773, -0.04158772528171539, -0.022546695545315742, -0.004034698475152254, 0.059932392090559006, 0.01587766222655773, 0.005312394816428423, 0.12042038142681122, 0.07789495587348938, 0.25090980529785156, 0.16817636787891388, 0.014510112814605236, 0.060900166630744934, -0.06619614362716675, -0.09414225816726685, 0.09823586046695709, -0.07650897651910782, 0.060901325196027756, -0.11523960530757904, -0.004298628773540258, 0.10723942518234253, -0.1883479505777359, 0.07387454062700272, -0.020571058616042137, -0.00801096111536026, -0.03153133764863014, -0.13637372851371765, -0.0715406984090805, -0.03213079646229744, -0.008522039279341698, -0.1163000613451004, 0.10326812416315079, 0.07360967993736267, -0.014359303750097752, -0.0017096977680921555, 0.07850822806358337, -0.08588901162147522, -0.06591615080833435, 0.09324460476636887, 0.037556763738393784, 0.09391564875841141, 0.055367641150951385, 0.041665419936180115, 0.06226717680692673, -0.010905937291681767, 0.09356341511011124, 0.08292745053768158, 0.1345883309841156, 0.040800660848617554, -0.06595654785633087, -0.06018694490194321, 0.044191520661115646, -0.022137222811579704, -0.01492791622877121, 0.1582205891609192, 0.07103120535612106, 0.012091130018234253, -0.006516007706522942, 0.1802860051393509, -0.013443652540445328, -0.03967612236738205, -0.1313447803258896, 0.07971172034740448, -0.017507856711745262, -0.00017948454478755593, -0.018360605463385582, -0.12881198525428772, 0.007775579113513231, 0.0993204265832901, 0.08395072817802429, -0.03384310379624367, -0.02164938859641552, -0.018586616963148117, 0.008282930590212345, 0.0107950484380126, 0.056918010115623474, 0.00719609297811985, 0.24109432101249695, -0.049649424850940704, 0.01682843267917633, -0.0292176753282547, -0.005817071069031954, -0.07581951469182968, 0.0732952207326889, -0.019700685515999794, 0.0057866135612130165, -0.06145772337913513, 0.11322193592786789, 0.031605012714862823, -0.19275985658168793, 0.0574728362262249, -0.13307461142539978, -0.0796799585223198, 0.004995792172849178, 0.006506732665002346, 0.009980829432606697, 0.03296556696295738, 0.010205904953181744, -0.06748145818710327, 0.09557389467954636, 0.026067035272717476, -0.07555171102285385, -0.011687912978231907, 0.012924646958708763, -0.13532140851020813, 0.29085543751716614, -0.031457848846912384, 0.032597918063402176, 0.09723840653896332, -0.011329781264066696, -0.14555254578590393, -0.03656451031565666, 0.065109983086586, -0.0626949593424797, 0.009721212089061737, 0.10778912156820297, -0.01126993726938963, 0.16349643468856812, 0.09129716455936432, -0.0775744691491127, 0.04992732033133507, -0.009554796852171421, 0.013056334108114243, -0.10025595128536224, 0.04313701018691063, -0.0955476462841034, 0.11295052617788315, 0.13527429103851318, 0.00003312079206807539, -0.002717287978157401, -0.04761229082942009, -0.006051800213754177, 0.017813829705119133, 0.09709606319665909, -0.006020164117217064, -0.039807893335819244, 0.025251060724258423, -0.10360699892044067, 0.08101975917816162, -0.10602641105651855, -0.06995733082294464, 0.03623617812991142, 0.007752855308353901, -0.03626573458313942, 0.09175357222557068, 0.0613960362970829, 0.011863755993545055, -0.0530339740216732, -0.14310330152511597, 0.012765273451805115, 0.1673734188079834, 0.0022137737832963467, -0.033232592046260834 ]
964a5e5047b50596292e7c1bb47dd9f0f9293aa7
# Dataset Card for pests-2xlvx ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/pests-2xlvx - **Point of Contact:** [email protected] ### Dataset Summary pests-2xlvx ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/pests-2xlvx ### Citation Information ``` @misc{ pests-2xlvx, title = { pests 2xlvx Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/pests-2xlvx } }, url = { https://universe.roboflow.com/object-detection/pests-2xlvx }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/pests-2xlvx
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:38:33+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "pests-2xlvx", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "pests", "1": "Agrotis", "2": "Athetis lepigone", "3": "Athetis lineosa", "4": "Chilo suppressalis", "5": "Cnaphalocrocis medinalis Guenee", "6": "Creatonotus transiens", "7": "Diaphania indica", "8": "Endotricha consocia", "9": "Euproctis sparsa", "10": "Gryllidae", "11": "Gryllotalpidae", "12": "Helicoverpa armigera", "13": "Holotrichia oblita Faldermann", "14": "Loxostege sticticalis", "15": "Mamestra brassicae", "16": "Maruca testulalis Geyer", "17": "Mythimna separata", "18": "Naranga aenescens Moore", "19": "Nilaparvata", "20": "Paracymoriza taiwanalis", "21": "Sesamia inferens", "22": "Sirthenea flavipes", "23": "Sogatella furcifera", "24": "Spodoptera exigua", "25": "Spoladea recurvalis", "26": "Staurophora celsia", "27": "Timandra Recompta", "28": "Trichoptera"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:39:02+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for pests-2xlvx The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary pests-2xlvx ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for pests-2xlvx\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npests-2xlvx", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for pests-2xlvx\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\npests-2xlvx", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for pests-2xlvx\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\npests-2xlvx### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.021112261340022087, 0.16636261343955994, -0.007800115738064051, 0.02123265154659748, 0.102191261947155, 0.002583901397883892, 0.060335349291563034, 0.08546403795480728, 0.015482839196920395, 0.17575334012508392, -0.005212701857089996, 0.08780039846897125, 0.11258356273174286, 0.0801469087600708, -0.01653631217777729, -0.14357343316078186, 0.06056642159819603, -0.06028282642364502, 0.05206821858882904, 0.07136061042547226, 0.07821088284254074, -0.13409528136253357, 0.0828603059053421, -0.03572528809309006, -0.028800727799534798, 0.024565910920500755, -0.05099708214402199, -0.03721167519688606, 0.011796984821557999, 0.040915388613939285, 0.020062891766428947, 0.022796425968408585, 0.0386025607585907, -0.19190086424350739, 0.01868179813027382, 0.10246329754590988, 0.03480115532875061, 0.027525944635272026, 0.16463257372379303, -0.08309381455183029, 0.05327136814594269, -0.13558754324913025, 0.03784749284386635, 0.019882135093212128, -0.11864694952964783, -0.1242472380399704, -0.12927761673927307, 0.06476335227489471, 0.11348213255405426, 0.05083032697439194, -0.012908820994198322, 0.08825427293777466, -0.008851920254528522, 0.06397716701030731, 0.1299383044242859, -0.08075089752674103, -0.04195931926369667, 0.07400389015674591, 0.04043857753276825, 0.10130715370178223, -0.11353889107704163, -0.013630194589495659, -0.0008927472517825663, -0.022913450375199318, 0.00642008613795042, -0.060207296162843704, -0.03857489675283432, -0.010559196583926678, -0.10330599546432495, -0.14853975176811218, 0.13358481228351593, 0.052008576691150665, -0.0498029962182045, -0.14366783201694489, -0.00533814262598753, 0.055897168815135956, -0.03902588039636612, -0.00924466922879219, 0.04761181399226189, -0.0054512592032551765, 0.06824963539838791, -0.07134514302015305, -0.09879596531391144, 0.0505317747592926, 0.04980787634849548, 0.040302447974681854, -0.01823209598660469, 0.03682374581694603, 0.011978552676737309, 0.06636521965265274, 0.01630483753979206, -0.10540937632322311, -0.021705182269215584, -0.03491648659110069, -0.06174993887543678, -0.04600150138139725, 0.06986843049526215, -0.14872437715530396, 0.06792096793651581, 0.06619418412446976, -0.07132679969072342, 0.029239896684885025, -0.13151432573795319, 0.017639100551605225, 0.10332994163036346, 0.18327319622039795, -0.0837196409702301, -0.09338409453630447, 0.008638419210910797, 0.040046822279691696, 0.02380857616662979, -0.026656363159418106, -0.020889246836304665, 0.00281278183683753, 0.041228845715522766, 0.047067537903785706, 0.1226542741060257, 0.04007429629564285, -0.07265907526016235, -0.06285407394170761, 0.13174305856227875, -0.09901543706655502, 0.052232131361961365, 0.05916040763258934, -0.04595484212040901, 0.07456453889608383, 0.007959218695759773, 0.009120367467403412, -0.11546572297811508, 0.09036474674940109, -0.03245352953672409, 0.016021275892853737, -0.08591139316558838, -0.10412866622209549, 0.05506297945976257, -0.0883057713508606, -0.0803944319486618, -0.0797547772526741, -0.04978010430932045, -0.08300824463367462, 0.039465852081775665, -0.03824923187494278, 0.02025092951953411, 0.021445320919156075, -0.0428953655064106, -0.012075033970177174, 0.014342513866722584, 0.03777873143553734, -0.05219384282827377, 0.04084540903568268, -0.09657488018274307, 0.03516319766640663, 0.11697494983673096, 0.036660198122262955, -0.09740705788135529, 0.06279151886701584, -0.19831927120685577, 0.1318187117576599, -0.05749710276722908, 0.03690273314714432, -0.13751788437366486, 0.014591935090720654, -0.002775074215605855, -0.03731560334563255, -0.001439821906387806, 0.13898155093193054, -0.06944373995065689, 0.017394429072737694, 0.06693023443222046, -0.057849664241075516, -0.06588362157344818, 0.039410535246133804, -0.0355478897690773, 0.003196256933733821, 0.0884934738278389, 0.11963129788637161, -0.042788952589035034, -0.11471836268901825, -0.10821447521448135, -0.03812402859330177, -0.03942577540874481, 0.1537420153617859, 0.06707736849784851, -0.04335583746433258, 0.08782659471035004, -0.010694709606468678, -0.023731285706162453, -0.03574438393115997, 0.0125379404053092, -0.03341412544250488, 0.013527452945709229, -0.010016840882599354, -0.07973336428403854, 0.014040154404938221, -0.09423553943634033, 0.007851747795939445, -0.08215337991714478, -0.050576336681842804, 0.018425676971673965, -0.029309501871466637, 0.020687954500317574, -0.03363596647977829, 0.10005651414394379, -0.13608509302139282, 0.00014591698709409684, -0.16952306032180786, -0.10837095975875854, 0.061557136476039886, -0.042181868106126785, 0.04190775007009506, -0.07474720478057861, -0.009942129254341125, 0.017490379512310028, 0.0369836650788784, -0.017735429108142853, 0.038948699831962585, -0.02244814671576023, -0.04835498332977295, -0.13500156998634338, -0.04823297634720802, -0.023829462006688118, 0.10766354203224182, -0.12523573637008667, -0.025012435391545296, 0.14439380168914795, 0.11441601812839508, 0.04623044654726982, -0.04844435304403305, 0.08109867572784424, -0.025487147271633148, -0.02003357745707035, -0.08374291658401489, -0.007042525336146355, -0.003037037095054984, 0.03452305495738983, 0.07777730375528336, -0.1567048728466034, -0.1374369114637375, 0.0819723978638649, 0.022437533363699913, -0.08578850328922272, -0.02927190251648426, -0.0497618243098259, -0.014898398891091347, -0.09489557892084122, -0.04063735157251358, 0.027412492781877518, 0.07497610151767731, 0.08646063506603241, -0.06989441812038422, -0.03580952808260918, 0.021299025043845177, -0.020119160413742065, -0.07415597140789032, 0.07326309382915497, 0.0542275607585907, -0.11462872475385666, 0.10665756464004517, -0.024026818573474884, 0.03757449612021446, 0.0796600729227066, 0.03914846107363701, -0.11304762214422226, 0.019388146698474884, 0.07955346256494522, 0.03208914399147034, 0.08911535143852234, -0.024619977921247482, 0.017878355458378792, 0.08068980276584625, -0.023313863202929497, -0.01933433674275875, -0.08828067034482956, 0.0799194723367691, 0.034729234874248505, -0.037315819412469864, 0.036777693778276443, -0.008911372162401676, 0.0793256014585495, 0.10319731384515762, 0.0551106221973896, 0.11112827807664871, -0.04521642625331879, -0.05549066513776779, -0.09580368548631668, 0.12090513855218887, -0.024231938645243645, -0.2672162652015686, -0.07436902821063995, -0.060539450496435165, -0.05858798697590828, -0.013012132607400417, 0.03479568660259247, 0.001728717819787562, -0.08656781166791916, -0.09505987167358398, 0.059431497007608414, 0.06104021519422531, -0.10423139482736588, -0.10953265428543091, 0.0384165421128273, 0.007974780164659023, -0.08277993649244308, 0.0008688903180882335, 0.02497461438179016, -0.055717833340168, 0.009481023997068405, 0.049808163195848465, 0.1312367171049118, 0.058775123208761215, -0.013177400454878807, 0.0006756240618415177, -0.007142935413867235, 0.18563266098499298, -0.15270796418190002, 0.10581566393375397, 0.15995244681835175, 0.015998704358935356, 0.07915551960468292, 0.18840032815933228, -0.011702618561685085, -0.019634461030364037, 0.02080635353922844, 0.07478481531143188, -0.056065332144498825, -0.20478320121765137, -0.05916156992316246, -0.05169370770454407, 0.01760166883468628, 0.1374080926179886, 0.038558878004550934, 0.028296463191509247, 0.08741333335638046, -0.1130998283624649, 0.04156915470957756, 0.025633178651332855, 0.11040620505809784, 0.038421228528022766, 0.04683765396475792, 0.038516752421855927, -0.04542062059044838, -0.03360515460371971, 0.09440625458955765, 0.11088522523641586, 0.12322244793176651, -0.08995595574378967, 0.11326904594898224, 0.030970435589551926, 0.02288343571126461, -0.04416406899690628, 0.00006278001092141494, -0.0379643589258194, 0.05900600925087929, -0.00495101185515523, -0.1006326824426651, -0.0003097326843999326, 0.08086761087179184, 0.13690657913684845, -0.016080794855952263, 0.009871118701994419, -0.04666351526975632, 0.08430300652980804, 0.2464202642440796, 0.005798783153295517, -0.19382312893867493, 0.01909710094332695, 0.03992548584938049, 0.02034655399620533, -0.12286035716533661, -0.04558373987674713, 0.06607262790203094, -0.17254512012004852, 0.05955762416124344, -0.041955478489398956, 0.11308793723583221, -0.14027424156665802, -0.03949468955397606, 0.03934335336089134, 0.036311402916908264, -0.020941298454999924, 0.08057807385921478, -0.12232247740030289, 0.08107390254735947, 0.042681194841861725, 0.03518547862768173, -0.08696150779724121, 0.03852486610412598, 0.009252072311937809, -0.01258135586977005, 0.15589046478271484, -0.017670704051852226, 0.004044356755912304, -0.13862918317317963, -0.11586487293243408, -0.019967036321759224, 0.04501420259475708, -0.07537814974784851, 0.10256775468587875, 0.014771061949431896, -0.039173997938632965, -0.08421918004751205, -0.05938456207513809, -0.0712922140955925, -0.18414829671382904, 0.04754683002829552, -0.012977413833141327, 0.011280988343060017, -0.012296771630644798, 0.029380854219198227, 0.019003627821803093, 0.12932178378105164, -0.05824431777000427, -0.09734270721673965, -0.14802731573581696, 0.05532696098089218, 0.08926160633563995, -0.021525869145989418, -0.02266029454767704, -0.09183236211538315, 0.17886026203632355, -0.036425355821847916, -0.06296806037425995, 0.02303960733115673, -0.06937030702829361, -0.12199456989765167, -0.05835668742656708, 0.11248766630887985, 0.02821487747132778, -0.002101083053275943, 0.009515651501715183, 0.05677278712391853, 0.009085534140467644, -0.04989185929298401, 0.027446236461400986, 0.10753054171800613, 0.1278037130832672, 0.12908945977687836, -0.0016127992421388626, -0.14286255836486816, -0.13560423254966736, -0.00355320586822927, 0.042795512825250626, 0.11604141443967819, -0.07766105979681015, 0.11142370104789734, 0.033963195979595184, -0.08876872062683105, -0.22184772789478302, 0.08413770794868469, 0.07257554680109024, -0.013761517591774464, -0.0016645343275740743, -0.14485348761081696, 0.13011735677719116, 0.03625572472810745, -0.002882912987843156, 0.08697696030139923, -0.27749398350715637, -0.07277599722146988, -0.02122427336871624, 0.03642500564455986, -0.2332649976015091, -0.17355118691921234, -0.05041677504777908, -0.05392030254006386, -0.14378109574317932, 0.06072280928492546, 0.004221650771796703, 0.039576683193445206, 0.04100220650434494, 0.034359902143478394, 0.06722822040319443, -0.04947168752551079, 0.11090992391109467, 0.020644547417759895, 0.041609104722738266, -0.06155223771929741, -0.08552904427051544, 0.04413367435336113, -0.09183861315250397, 0.1432400792837143, 0.045743752270936966, 0.01432889886200428, -0.06809429079294205, -0.012993103824555874, -0.0397576242685318, 0.08630970865488052, -0.03117460384964943, -0.036088306456804276, -0.08933676034212112, 0.03951672837138176, 0.13571374118328094, 0.0300323236733675, 0.09566129744052887, -0.04214947670698166, -0.01314140297472477, 0.15033794939517975, 0.09585747122764587, 0.005840156693011522, -0.16111116111278534, -0.042615070939064026, 0.002727377926930785, 0.03957578167319298, -0.1125301867723465, 0.04503259435296059, 0.08134457468986511, 0.021106170490384102, 0.10667577385902405, -0.012794519774615765, -0.10194437950849533, 0.008689607493579388, 0.04126396030187607, -0.10094969719648361, -0.11664611101150513, 0.024346595630049706, 0.10701457411050797, -0.10149089246988297, -0.12180587649345398, 0.12223797291517258, 0.0008352393051609397, -0.0223129540681839, 0.0022938186302781105, 0.08033697307109833, 0.056785788387060165, 0.06179235130548477, 0.016670729964971542, 0.03891671076416969, -0.06666740030050278, 0.10515141487121582, 0.15405382215976715, -0.14782312512397766, -0.002291235839948058, 0.12005997449159622, -0.048750169575214386, -0.022545045241713524, -0.01984974928200245, 0.035331156104803085, -0.005375264212489128, -0.02654331736266613, 0.029639968648552895, -0.039879102259874344, 0.028731031343340874, 0.09182653576135635, 0.0010511991567909718, 0.05294737219810486, 0.024880515411496162, -0.02064763568341732, -0.14068201184272766, 0.12978781759738922, 0.024882150813937187, 0.053083326667547226, -0.09474970400333405, 0.017402248457074165, 0.032688599079847336, 0.0006474727997556329, 0.012281077913939953, -0.05594174563884735, -0.07796673476696014, 0.000022391313905245624, -0.020461993291974068, 0.11038009822368622, -0.08660570532083511, -0.007148437667638063, -0.019835270941257477, 0.008598643355071545, -0.010647296905517578, 0.028984928503632545, -0.05116629600524902, -0.08535294979810715, -0.04363538697361946, 0.12709181010723114, -0.14776256680488586, -0.03140334412455559, 0.05211504176259041, -0.09811675548553467, 0.05942731723189354, 0.00998618919402361, -0.037179309874773026, -0.09038576483726501, -0.1869853436946869, -0.04476146399974823, 0.027144290506839752, 0.06519580632448196, 0.040527526289224625, -0.09344801306724548, 0.04775969311594963, -0.008441638201475143, -0.08857569098472595, -0.012484721839427948, -0.006057808641344309, -0.1163666844367981, 0.04698595777153969, -0.08271592855453491, -0.027252953499555588, -0.03506677970290184, 0.13128605484962463, 0.06212051585316658, 0.010363810695707798, 0.08228392153978348, -0.045747146010398865, 0.0991116464138031, -0.13501331210136414, -0.03252631798386574, -0.013166862539947033, -0.03076620027422905, -0.07618426531553268, 0.003714798716828227, 0.07559332251548767, -0.030440406873822212, 0.11953993141651154, 0.12394224107265472, 0.051602303981781006, 0.044803984463214874, 0.004855518229305744, 0.05824020877480507, 0.054117340594530106, -0.029921891167759895, -0.01522153615951538, -0.011362548917531967, 0.07284756749868393, 0.012438510544598103, 0.02025001496076584, 0.09070009738206863, 0.06887385249137878, 0.22463305294513702, 0.1355365365743637, 0.021818965673446655, 0.04409313574433327, -0.08323138952255249, -0.05852134898304939, 0.09882516413927078, -0.05141478776931763, 0.0844205915927887, -0.10024029016494751, 0.06321084499359131, 0.09964635223150253, -0.15508121252059937, 0.06401533633470535, -0.004357623402029276, -0.01032903604209423, -0.02828645147383213, -0.09848741441965103, -0.05875957012176514, -0.018422367051243782, 0.001225173706188798, -0.10817243158817291, 0.08532792329788208, 0.12240076810121536, -0.005390968173742294, 0.017004236578941345, 0.09081781655550003, -0.058206312358379364, -0.07926556468009949, 0.0784374251961708, 0.017095010727643967, 0.0516500361263752, 0.04123765975236893, 0.04548120126128197, 0.07359959185123444, 0.004732730332762003, 0.0895891785621643, 0.09342356771230698, 0.089097760617733, 0.037422992289066315, -0.0734378769993782, -0.07852668315172195, 0.03187200054526329, -0.01079205796122551, -0.012614334933459759, 0.1569865196943283, 0.07697002589702606, 0.010386783629655838, -0.027842547744512558, 0.17565323412418365, -0.018295280635356903, -0.01587635651230812, -0.13551655411720276, 0.039182424545288086, -0.035810090601444244, -0.014741387218236923, -0.010903027839958668, -0.15202400088310242, 0.011652237735688686, 0.13658927381038666, 0.07449934631586075, -0.0425691083073616, -0.012333013117313385, -0.02500518225133419, 0.006692454684525728, -0.02096712402999401, 0.03807873651385307, 0.012912144884467125, 0.2107536941766739, -0.06544945389032364, 0.0140158012509346, -0.047051697969436646, -0.03201264142990112, -0.0749620795249939, 0.0966935083270073, -0.02068593166768551, -0.001039458205923438, -0.06849146634340286, 0.11769194155931473, -0.0036058761179447174, -0.20580503344535828, 0.05542013421654701, -0.09295082837343216, -0.08546522259712219, 0.013713521882891655, -0.022527437657117844, 0.007375930901616812, 0.032448846846818924, 0.00634763715788722, -0.06827723979949951, 0.0864771157503128, 0.02002965845167637, -0.0690547451376915, -0.018194109201431274, 0.0072348453104496, -0.08972422033548355, 0.2636222541332245, -0.02792382799088955, 0.042179178446531296, 0.0856882631778717, -0.025905493646860123, -0.1422424614429474, -0.035594791173934937, 0.08178803324699402, -0.050999715924263, 0.026807041838765144, 0.12756364047527313, -0.01082772109657526, 0.14292052388191223, 0.08418986201286316, -0.08771287649869919, 0.05010424181818962, -0.02061007358133793, 0.012233047746121883, -0.11131429672241211, 0.002503233728930354, -0.09624327719211578, 0.10779555886983871, 0.14083077013492584, -0.012391830794513226, -0.00729026086628437, -0.036875877529382706, 0.0019882747437804937, 0.00517989182844758, 0.09608802199363708, -0.00683957664296031, -0.07259984314441681, 0.015281135216355324, -0.14206799864768982, 0.08743400126695633, -0.12423594295978546, -0.05721218138933182, 0.03669896349310875, -0.016859449446201324, -0.01714283786714077, 0.0761014074087143, 0.0274000596255064, -0.002638711128383875, -0.05681302025914192, -0.11592608690261841, 0.033059027045965195, 0.16719362139701843, -0.012608636170625687, -0.026332898065447807 ]
bbacc478b69d401033b5327100ab5112702644fd
# Dataset Card for currency-v4f8j ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/currency-v4f8j - **Point of Contact:** [email protected] ### Dataset Summary currency-v4f8j ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/currency-v4f8j ### Citation Information ``` @misc{ currency-v4f8j, title = { currency v4f8j Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/currency-v4f8j } }, url = { https://universe.roboflow.com/object-detection/currency-v4f8j }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/currency-v4f8j
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:38:40+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "currency-v4f8j", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "currency", "1": "Dime", "2": "Nickel", "3": "Penny", "4": "Quarter", "5": "fifty", "6": "five", "7": "hundred", "8": "one", "9": "ten", "10": "twenty"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:39:07+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for currency-v4f8j The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary currency-v4f8j ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for currency-v4f8j\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncurrency-v4f8j", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for currency-v4f8j\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncurrency-v4f8j", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for currency-v4f8j\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncurrency-v4f8j### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.011636151932179928, 0.17271357774734497, -0.007529701106250286, 0.027559340000152588, 0.09767922013998032, -0.0009139229659922421, 0.07247397303581238, 0.0832505151629448, -0.006757138762623072, 0.17621710896492004, 0.005285399500280619, 0.05376461520791054, 0.1211787760257721, 0.10183310508728027, -0.015208447352051735, -0.16190871596336365, 0.06604333221912384, -0.06928402930498123, 0.08156240731477737, 0.0692531019449234, 0.07460328936576843, -0.13534009456634521, 0.08434832841157913, -0.04202607274055481, -0.012939156033098698, 0.03783189877867699, -0.059987179934978485, -0.04299522563815117, -0.0025003296323120594, 0.05912128835916519, 0.01584988832473755, 0.030434872955083847, 0.037374235689640045, -0.1957634836435318, 0.02223001793026924, 0.09584551304578781, 0.023166939616203308, 0.016172459349036217, 0.14941276609897614, -0.09402471780776978, 0.07341279834508896, -0.11847712099552155, 0.03447499871253967, 0.010095619596540928, -0.11062800139188766, -0.1176360473036766, -0.12114660441875458, 0.0672803670167923, 0.0906621515750885, 0.05437854677438736, -0.02235218696296215, 0.08238214999437332, -0.027523139491677284, 0.05157599598169327, 0.12226845324039459, -0.05141950398683548, -0.03752058371901512, 0.08196792006492615, 0.02649267017841339, 0.11039455235004425, -0.11253651976585388, -0.025521455332636833, 0.00971858762204647, -0.022941991686820984, -0.0028200503438711166, -0.05215386301279068, -0.06421902775764465, 0.0004128183354623616, -0.10851745307445526, -0.15464471280574799, 0.1479249894618988, 0.05510443076491356, -0.04854917153716087, -0.1356496512889862, 0.004420402459800243, 0.05386367440223694, -0.03748849779367447, 0.0037530006375163794, 0.04531232267618179, -0.006327385548502207, 0.06785569339990616, -0.05167084559798241, -0.09797871857881546, 0.06297080218791962, 0.028087805956602097, 0.028847133740782738, -0.02315639704465866, 0.04762492701411247, 0.012703623622655869, 0.07308438420295715, -0.016864946112036705, -0.11433050036430359, -0.028333401307463646, -0.038488034158945084, -0.039844054728746414, -0.03820038586854935, 0.06828434020280838, -0.13925030827522278, 0.06881394982337952, 0.05711226165294647, -0.08709298819303513, 0.03142410144209862, -0.13245828449726105, 0.016123071312904358, 0.11329463124275208, 0.17776986956596375, -0.09201345592737198, -0.07699789851903915, -0.001140811131335795, 0.042414791882038116, 0.029342863708734512, -0.023857837542891502, -0.03200675547122955, 0.004160750191658735, 0.02133754827082157, 0.04960310831665993, 0.10309787094593048, 0.037482742220163345, -0.07306031137704849, -0.05965033546090126, 0.1536901444196701, -0.09709333628416061, 0.04607049375772476, 0.06064637377858162, -0.06452535092830658, 0.09261884540319443, 0.009446216747164726, 0.013021709397435188, -0.11682478338479996, 0.10244105011224747, -0.01804964430630207, 0.026035072281956673, -0.09374459087848663, -0.10291557013988495, 0.06362544000148773, -0.07117152959108353, -0.0680137500166893, -0.07671250402927399, -0.03177541121840477, -0.08752930164337158, 0.03150467574596405, -0.04515503719449043, 0.027131900191307068, 0.00939113087952137, -0.04374997690320015, -0.013730513863265514, 0.006038716994225979, 0.057163167744874954, -0.06367836147546768, 0.030855365097522736, -0.09690143913030624, 0.04158639535307884, 0.1169225201010704, 0.031309694051742554, -0.11146504431962967, 0.056350480765104294, -0.19749349355697632, 0.13042865693569183, -0.05726362019777298, 0.023664774373173714, -0.12751689553260803, 0.006411969196051359, -0.012827808037400246, -0.03920815512537956, -0.00840162206441164, 0.14417050778865814, -0.08724899590015411, 0.01115337386727333, 0.06296399235725403, -0.06768994778394699, -0.04939897730946541, 0.03410694748163223, -0.04867633804678917, -0.021980522200465202, 0.08237283676862717, 0.13003487884998322, -0.02968611754477024, -0.13219591975212097, -0.11575139313936234, -0.03030005283653736, -0.03933186084032059, 0.14950355887413025, 0.08646251261234283, -0.03970717638731003, 0.10030706971883774, -0.007885967381298542, -0.01575196534395218, -0.04255424812436104, 0.00946672074496746, -0.02931417152285576, 0.013175653293728828, -0.006126247346401215, -0.09397871792316437, 0.027183910831809044, -0.09807217866182327, -0.002834957093000412, -0.0796520859003067, -0.029388027265667915, 0.022565793246030807, -0.03394870460033417, 0.012137452140450478, -0.032265495508909225, 0.10288968682289124, -0.12387736141681671, 0.0016760342987254262, -0.15147890150547028, -0.10736718028783798, 0.05687782168388367, -0.05141641944646835, 0.04329969733953476, -0.07711601257324219, -0.00998733937740326, 0.024633022025227547, 0.03399484232068062, -0.0124437864869833, 0.04580429196357727, -0.027806073427200317, -0.03035753406584263, -0.128696009516716, -0.05310773476958275, -0.029126612469553947, 0.09240388125181198, -0.11547550559043884, -0.038451991975307465, 0.14043915271759033, 0.12273060530424118, 0.03564152494072914, -0.04034698009490967, 0.08545549213886261, -0.025025170296430588, -0.018114803358912468, -0.08694738894701004, -0.016035037115216255, -0.005482003558427095, 0.045560322701931, 0.09053857624530792, -0.15807637572288513, -0.12993724644184113, 0.09597702324390411, 0.037155233323574066, -0.07772466540336609, -0.059297870844602585, -0.04206402972340584, -0.009684509597718716, -0.09579959511756897, -0.01650828868150711, 0.02689572609961033, 0.05990186333656311, 0.0839652419090271, -0.08350970596075058, -0.034276217222213745, 0.02729392983019352, -0.01806851662695408, -0.08656042814254761, 0.08255454897880554, 0.061870962381362915, -0.11346925795078278, 0.09786884486675262, -0.03281836956739426, 0.04973859339952469, 0.10081799328327179, 0.029746904969215393, -0.12024783343076706, 0.021912964060902596, 0.07356605678796768, 0.023405015468597412, 0.08415374904870987, -0.015549535863101482, 0.01866951771080494, 0.08670124411582947, -0.0179047379642725, -0.018032357096672058, -0.08138550817966461, 0.06910541653633118, 0.0386040024459362, -0.046434931457042694, 0.016078613698482513, -0.01100259181112051, 0.08316044509410858, 0.10129204392433167, 0.05515572428703308, 0.1137504056096077, -0.04886704683303833, -0.05965280532836914, -0.09542946517467499, 0.13220293819904327, -0.02648274041712284, -0.25768786668777466, -0.07905977964401245, -0.06584835052490234, -0.050716329365968704, -0.01321997120976448, 0.035126205533742905, -0.004740262869745493, -0.09408631920814514, -0.11056026816368103, 0.06801504641771317, 0.05139397457242012, -0.11191339790821075, -0.12448050826787949, 0.033471014350652695, 0.00044759566662833095, -0.07464320957660675, 0.0013593066250905395, 0.028371766209602356, -0.02695242129266262, 0.012186791747808456, 0.038124945014715195, 0.1251046359539032, 0.05563247576355934, -0.02358534187078476, 0.009122040122747421, -0.007753284648060799, 0.1803363412618637, -0.1448514610528946, 0.08733490854501724, 0.16279372572898865, 0.02189411222934723, 0.07033482193946838, 0.19506052136421204, -0.019578764215111732, -0.017639189958572388, 0.02489972673356533, 0.0686202123761177, -0.06826061755418777, -0.19383397698402405, -0.06291995197534561, -0.045967698097229004, 0.01177163328975439, 0.1367078423500061, 0.034826453775167465, 0.0033397700171917677, 0.08979292958974838, -0.11428310722112656, 0.02093234658241272, 0.016661018133163452, 0.09772786498069763, 0.05313950404524803, 0.053348153829574585, 0.04294660687446594, -0.05120217427611351, -0.031518079340457916, 0.10332833975553513, 0.08699776977300644, 0.11676596105098724, -0.10277314484119415, 0.09210485965013504, 0.029698658734560013, 0.04071315377950668, -0.02311345562338829, 0.001472205389291048, -0.02697616070508957, 0.05226050317287445, -0.007698975037783384, -0.10690916329622269, 0.008553785271942616, 0.08166125416755676, 0.12775573134422302, -0.012452692724764347, -0.014849796891212463, -0.041840992867946625, 0.061236217617988586, 0.2350550889968872, -0.0006741950055584311, -0.21320046484470367, 0.015436130575835705, 0.03562427684664726, 0.019054874777793884, -0.11723154038190842, -0.03939049318432808, 0.0770469531416893, -0.1679171472787857, 0.06686869263648987, -0.027610860764980316, 0.1110590472817421, -0.13161411881446838, -0.03842813894152641, 0.04856967180967331, 0.04059958830475807, -0.02649652771651745, 0.08814530819654465, -0.11567410081624985, 0.07924527674913406, 0.03223467990756035, 0.030263084918260574, -0.08408763259649277, 0.03214915469288826, 0.0017731122206896544, -0.00225461577065289, 0.14559999108314514, -0.02116941288113594, -0.0006213720189407468, -0.12617811560630798, -0.10311604291200638, -0.016409296542406082, 0.046504996716976166, -0.05951628461480141, 0.1012544259428978, 0.021340733394026756, -0.03183751180768013, -0.0849907323718071, -0.04634992778301239, -0.058336760848760605, -0.19293636083602905, 0.031046247109770775, -0.022048654034733772, 0.024388305842876434, -0.00955138448625803, 0.02000696398317814, 0.022838009521365166, 0.10947368294000626, -0.019913850352168083, -0.09687069803476334, -0.1386890411376953, 0.059794407337903976, 0.10757751762866974, -0.023214293643832207, -0.02162061631679535, -0.09936060011386871, 0.17792129516601562, -0.029918285086750984, -0.0779927596449852, 0.011473286896944046, -0.069830022752285, -0.11129183322191238, -0.05258552357554436, 0.10099798440933228, 0.019000675529241562, -0.00164235127158463, 0.0003972467384301126, 0.05691485106945038, 0.00533703388646245, -0.04789822921156883, 0.013663901016116142, 0.09495676308870316, 0.15291744470596313, 0.1283378303050995, 0.030034001916646957, -0.13819043338298798, -0.1257530301809311, -0.009961137548089027, 0.016468871384859085, 0.11218080669641495, -0.07657662779092789, 0.11230313032865524, 0.031204259023070335, -0.0780336856842041, -0.2146996706724167, 0.07432513684034348, 0.06223494932055473, -0.002177484566345811, -0.009260746650397778, -0.12976790964603424, 0.12736868858337402, 0.026398086920380592, 0.002584404544904828, 0.06808069348335266, -0.28393444418907166, -0.07004216313362122, -0.015711849555373192, 0.025494903326034546, -0.234334796667099, -0.16881254315376282, -0.055685874074697495, -0.05587490275502205, -0.15235796570777893, 0.06238558888435364, -0.005273756105452776, 0.038487888872623444, 0.036571819335222244, 0.03883131593465805, 0.06696723401546478, -0.047716330736875534, 0.11114010214805603, 0.013356982730329037, 0.03865431249141693, -0.07810663431882858, -0.0795680359005928, 0.004754279274493456, -0.09140917658805847, 0.14918261766433716, 0.040691789239645004, 0.02251836657524109, -0.05554593726992607, -0.023387813940644264, -0.034033920615911484, 0.08510192483663559, -0.023071633651852608, -0.028005845844745636, -0.10946446657180786, 0.03362308442592621, 0.1273634284734726, 0.03569687157869339, 0.08694976568222046, -0.048071056604385376, -0.025592152029275894, 0.1709318608045578, 0.1050206795334816, -0.002123877638950944, -0.13787350058555603, -0.04507051780819893, 0.0008811443112790585, 0.046240001916885376, -0.12850873172283173, 0.029388830065727234, 0.08310743421316147, 0.0176946222782135, 0.10534065216779709, -0.020703386515378952, -0.10360979288816452, 0.012326483614742756, 0.0424063503742218, -0.10107716917991638, -0.10989368706941605, 0.027068404480814934, 0.10112722963094711, -0.09584292769432068, -0.13688507676124573, 0.11187456548213959, -0.008603350259363651, -0.01875934936106205, -0.004204283002763987, 0.06913590431213379, 0.05544670298695564, 0.059604477137327194, 0.02212340570986271, 0.0367618165910244, -0.07830800861120224, 0.10808738321065903, 0.14762593805789948, -0.1528845578432083, 0.004928463604301214, 0.1138124093413353, -0.054620757699012756, -0.025208093225955963, -0.01637565903365612, 0.04507274553179741, -0.034528519958257675, -0.03697621822357178, 0.035921987146139145, -0.04811346158385277, 0.04085913300514221, 0.08290550857782364, 0.004671013448387384, 0.042614877223968506, 0.03076661378145218, -0.02345043607056141, -0.1366669088602066, 0.12226719409227371, 0.03943353518843651, 0.046183135360479355, -0.08415010571479797, 0.003637065412476659, 0.036957625299692154, 0.00570641877129674, 0.012356149032711983, -0.053239453583955765, -0.07840009778738022, 0.006486924365162849, -0.03531065955758095, 0.12320226430892944, -0.0790606290102005, -0.003890407970175147, -0.021567685529589653, 0.000687510531861335, -0.016069358214735985, 0.032002318650484085, -0.05392744019627571, -0.07276210188865662, -0.04866109415888786, 0.13045594096183777, -0.14288437366485596, -0.0232569370418787, 0.051458690315485, -0.08304821699857712, 0.05341430380940437, 0.020312411710619926, -0.041586607694625854, -0.07761681824922562, -0.1780671775341034, -0.04145052284002304, 0.03647145256400108, 0.06365382671356201, 0.041187334805727005, -0.06665133684873581, 0.05865434929728508, 0.006413328927010298, -0.10248691588640213, -0.015990350395441055, -0.028398355469107628, -0.11658289283514023, 0.037002578377723694, -0.08237304538488388, -0.031088510528206825, -0.0375639870762825, 0.1512262374162674, 0.05813165009021759, -0.0010003155330196023, 0.08829157799482346, -0.05513118579983711, 0.09515760838985443, -0.1324876844882965, -0.043964680284261703, -0.010028308257460594, -0.02984227053821087, -0.09412827342748642, 0.0051223235204815865, 0.0741138830780983, -0.02893461473286152, 0.13584931194782257, 0.1399177461862564, 0.060151778161525726, 0.0380655862390995, -0.0041702608577907085, 0.08808473497629166, 0.06569143384695053, -0.00616109324619174, -0.010045898146927357, -0.010577581822872162, 0.07058882713317871, 0.0157132800668478, 0.015859436243772507, 0.08027185499668121, 0.04993881657719612, 0.2436179518699646, 0.1264440268278122, 0.01901335082948208, 0.036581579595804214, -0.0796302929520607, -0.02869562618434429, 0.1003032699227333, -0.04328801855444908, 0.07992236316204071, -0.09408204257488251, 0.05279988795518875, 0.10524868220090866, -0.1431599110364914, 0.06861881911754608, -0.0019311067881062627, -0.006392907816916704, -0.03408854454755783, -0.10849037021398544, -0.06429547071456909, -0.038786329329013824, 0.007350531406700611, -0.11628486961126328, 0.10135729610919952, 0.13747915625572205, 0.008161582052707672, 0.012496142648160458, 0.0852913185954094, -0.04591787979006767, -0.09025745838880539, 0.07237691432237625, 0.012439562007784843, 0.05245930701494217, 0.04236382246017456, 0.0460720993578434, 0.09641144424676895, -0.015029310248792171, 0.07510210573673248, 0.09819620102643967, 0.10651039332151413, 0.025872230529785156, -0.07323046028614044, -0.07097027450799942, 0.03274118900299072, -0.010858677327632904, -0.013312340714037418, 0.16874568164348602, 0.07762497663497925, 0.018273988738656044, -0.022753601893782616, 0.1633318066596985, -0.005613401066511869, -0.03509196639060974, -0.1333594173192978, 0.04661155119538307, -0.039009906351566315, 0.00254680123180151, -0.01366495992988348, -0.14217084646224976, 0.00014421343803405762, 0.14029797911643982, 0.07654052972793579, -0.037089135497808456, -0.014468926005065441, -0.015011983923614025, 0.005374167580157518, -0.02061803638935089, 0.04173082858324051, 0.015204183757305145, 0.19261187314987183, -0.061727751046419144, 0.022565830498933792, -0.055864669382572174, -0.023709332570433617, -0.06649045646190643, 0.0925842896103859, -0.017493460327386856, -0.009084587916731834, -0.07029935717582703, 0.11240149289369583, -0.013860906474292278, -0.18387824296951294, 0.057152822613716125, -0.08949195593595505, -0.0742257833480835, 0.004886794835329056, -0.03954072296619415, 0.02674509957432747, 0.02343272790312767, -0.002101267920807004, -0.0716400295495987, 0.07741569727659225, 0.026410307735204697, -0.08643580228090286, -0.030516695231199265, -0.013281364925205708, -0.10648628324270248, 0.2607376277446747, -0.027724944055080414, 0.052111316472291946, 0.07985417544841766, -0.02137281559407711, -0.13069595396518707, -0.027125436812639236, 0.0866379365324974, -0.03662527725100517, 0.02818993851542473, 0.11163796484470367, -0.0054872119799256325, 0.149756520986557, 0.0745503306388855, -0.07824777066707611, 0.053793199360370636, -0.030970770865678787, 0.027115676552057266, -0.10876072198152542, 0.005672489292919636, -0.09278318285942078, 0.10540179908275604, 0.14144377410411835, -0.0025462531484663486, -0.008861585520207882, -0.040344223380088806, 0.02338450774550438, 0.0007791555835865438, 0.08853372931480408, 0.009414815343916416, -0.04048263654112816, 0.007627165876328945, -0.1380990743637085, 0.08401374518871307, -0.1418508142232895, -0.042645636945962906, 0.03070201724767685, -0.012897433713078499, -0.0036321470979601145, 0.07747716456651688, 0.027379857376217842, 0.010927765630185604, -0.06519722938537598, -0.11444811522960663, 0.04132959619164467, 0.16255569458007812, -0.007221029605716467, -0.021426614373922348 ]
f5405402f50eda7be4ceacd2169b0047287cb182
# Dataset Card for cables-nl42k ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cables-nl42k - **Point of Contact:** [email protected] ### Dataset Summary cables-nl42k ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cables-nl42k ### Citation Information ``` @misc{ cables-nl42k, title = { cables nl42k Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cables-nl42k } }, url = { https://universe.roboflow.com/object-detection/cables-nl42k }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cables-nl42k
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:39:07+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cables-nl42k", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "cables", "1": "Antenne", "2": "BBS", "3": "BFU", "4": "Batterie", "5": "DDF", "6": "PCF", "7": "PCU AC", "8": "PCU DC", "9": "PDU", "10": "PSU", "11": "RBS"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:40:35+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cables-nl42k The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cables-nl42k ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cables-nl42k\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncables-nl42k", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cables-nl42k\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncables-nl42k", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cables-nl42k\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncables-nl42k### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01931869052350521, 0.1691821962594986, -0.0074808597564697266, 0.024522017687559128, 0.10082173347473145, 0.0055670347064733505, 0.0658932775259018, 0.0851479023694992, -0.0009345643338747323, 0.17143841087818146, -0.003657178021967411, 0.08372268825769424, 0.11640831083059311, 0.08490042388439178, -0.020371172577142715, -0.15642327070236206, 0.05931396037340164, -0.05715607479214668, 0.060431815683841705, 0.07675764709711075, 0.0748375728726387, -0.13354355096817017, 0.08286285400390625, -0.04462948068976402, -0.03003351204097271, 0.025061821565032005, -0.05274966359138489, -0.04281942918896675, 0.009522215463221073, 0.04291727393865585, 0.0276423878967762, 0.0247453972697258, 0.04028156399726868, -0.20210924744606018, 0.020068243145942688, 0.10881108790636063, 0.038028232753276825, 0.026996253058314323, 0.16005073487758636, -0.08201957494020462, 0.05494077503681183, -0.12997356057167053, 0.0399046465754509, 0.015504286624491215, -0.11584849655628204, -0.12262769043445587, -0.11781371384859085, 0.07011371105909348, 0.11465189605951309, 0.05195889249444008, -0.017557911574840546, 0.08020065724849701, -0.014433871023356915, 0.0627923235297203, 0.1115460991859436, -0.0731775239109993, -0.04046979919075966, 0.09002390503883362, 0.029931388795375824, 0.10728782415390015, -0.10936790704727173, -0.0169257540255785, 0.0027909157797694206, -0.02440946362912655, 0.005241089966148138, -0.05601077899336815, -0.040644142776727676, -0.0066695804707705975, -0.10768646746873856, -0.14080588519573212, 0.13610611855983734, 0.05246518552303314, -0.043619900941848755, -0.14596959948539734, -0.0030437756795436144, 0.05342999845743179, -0.03368331491947174, -0.004439319483935833, 0.04037502408027649, -0.009021100588142872, 0.06419926136732101, -0.06798485666513443, -0.10305605828762054, 0.048927903175354004, 0.04132470116019249, 0.043882038444280624, -0.01199077907949686, 0.038874175399541855, 0.016257358714938164, 0.07369523495435715, 0.014206642284989357, -0.10549212992191315, -0.02017413079738617, -0.03922675922513008, -0.0635032132267952, -0.042533066123723984, 0.07085468620061874, -0.14460356533527374, 0.05841604992747307, 0.05659021809697151, -0.05959394946694374, 0.03650057315826416, -0.12292496114969254, 0.023973263800144196, 0.10125134140253067, 0.17554700374603271, -0.08857966959476471, -0.08521584421396255, -0.0045831515453755856, 0.040893398225307465, 0.01988576352596283, -0.03363081067800522, -0.02388044074177742, 0.006864054128527641, 0.02508639171719551, 0.04111877828836441, 0.11721866577863693, 0.04927131161093712, -0.06947118043899536, -0.06734897941350937, 0.1198478564620018, -0.09871894866228104, 0.05442214757204056, 0.059849370270967484, -0.055392514914274216, 0.07825857400894165, 0.006971267051994801, 0.01502849068492651, -0.11642976850271225, 0.114403136074543, -0.025979643687605858, 0.015415235422551632, -0.08932066708803177, -0.10155795514583588, 0.05773913860321045, -0.08046171069145203, -0.08179052919149399, -0.08179952204227448, -0.04623584821820259, -0.0854443684220314, 0.04576604813337326, -0.03846774995326996, 0.028920035809278488, 0.016835318878293037, -0.045343320816755295, -0.012093218974769115, 0.0055901785381138325, 0.03465692326426506, -0.05799097567796707, 0.04052625969052315, -0.0961376503109932, 0.03234516829252243, 0.11365409195423126, 0.03534628078341484, -0.09536998718976974, 0.057014577090740204, -0.18745693564414978, 0.13045795261859894, -0.06080251187086105, 0.023804964497685432, -0.13623274862766266, 0.007955675944685936, -0.0072743529453873634, -0.03340419754385948, 0.0006414485978893936, 0.13996176421642303, -0.0844598263502121, 0.017714736983180046, 0.05943332239985466, -0.060408901423215866, -0.05939244478940964, 0.0370388962328434, -0.03927849605679512, -0.001434570993296802, 0.08030763268470764, 0.1302684098482132, -0.03970438987016678, -0.11451251059770584, -0.10570595413446426, -0.04015365242958069, -0.037774812430143356, 0.14946015179157257, 0.06881481409072876, -0.030070612207055092, 0.09675214439630508, -0.008974256925284863, -0.014542910270392895, -0.04316746070981026, 0.010173548012971878, -0.037500057369470596, 0.017547952011227608, -0.008645662106573582, -0.08778710663318634, 0.019371870905160904, -0.09853116422891617, 0.007013513706624508, -0.08491355180740356, -0.04060940071940422, 0.018937386572360992, -0.03160039335489273, 0.01996692270040512, -0.034584227949380875, 0.08723455667495728, -0.13360847532749176, -0.004618944134563208, -0.1540566235780716, -0.11513704806566238, 0.05892086401581764, -0.043497584760189056, 0.04306843504309654, -0.07048733532428741, -0.008175903931260109, 0.022324182093143463, 0.029654143378138542, -0.019221283495426178, 0.04580731317400932, -0.01813332736492157, -0.04317981377243996, -0.13739071786403656, -0.04815877974033356, -0.01898990571498871, 0.1000748798251152, -0.12899746000766754, -0.024220602586865425, 0.14536027610301971, 0.12594762444496155, 0.04065083712339401, -0.04859279468655586, 0.07674649357795715, -0.023030059412121773, -0.020204726606607437, -0.08365680277347565, -0.007884912192821503, -0.005448648240417242, 0.027302563190460205, 0.0816471055150032, -0.16434507071971893, -0.12836045026779175, 0.0864744558930397, 0.01459585316479206, -0.08447811752557755, -0.04239236190915108, -0.049682553857564926, -0.0236712247133255, -0.08916182816028595, -0.03205251321196556, 0.028082452714443207, 0.07194175571203232, 0.08081014454364777, -0.06687910854816437, -0.03521173447370529, 0.024542268365621567, -0.01812867447733879, -0.07769571244716644, 0.0747891366481781, 0.06070307269692421, -0.11772745847702026, 0.10550789535045624, -0.030614087358117104, 0.03425220772624016, 0.08091484755277634, 0.03647981584072113, -0.11602107435464859, 0.022225672379136086, 0.07612592726945877, 0.031042933464050293, 0.09630679339170456, -0.013374664820730686, 0.01690053753554821, 0.07908839732408524, -0.011012702248990536, -0.016053318977355957, -0.08613002300262451, 0.07326111942529678, 0.038234636187553406, -0.034083954989910126, 0.033503495156764984, -0.01815437339246273, 0.07778218388557434, 0.10321057587862015, 0.060003552585840225, 0.11228965222835541, -0.04123749956488609, -0.06204274296760559, -0.09027522057294846, 0.12425331771373749, -0.02390020340681076, -0.26597094535827637, -0.07591579854488373, -0.06647565960884094, -0.057186346501111984, -0.015657315030694008, 0.035082075744867325, -0.005455484613776207, -0.08489665389060974, -0.09815097600221634, 0.06365638971328735, 0.05376140773296356, -0.1023143082857132, -0.12297997623682022, 0.03492572903633118, 0.0048521761782467365, -0.08007100224494934, 0.004707361105829477, 0.024443110451102257, -0.04846584424376488, 0.011102140881121159, 0.04904602840542793, 0.13211582601070404, 0.06888377666473389, -0.01810588873922825, 0.007306805346161127, -0.0072363922372460365, 0.1721881479024887, -0.15529470145702362, 0.10669192671775818, 0.15602043271064758, 0.007307520601898432, 0.07532590627670288, 0.19561518728733063, -0.007857183925807476, -0.020662033930420876, 0.02399326115846634, 0.08261869847774506, -0.058428533375263214, -0.2033006250858307, -0.06235301494598389, -0.04834641143679619, 0.03147609159350395, 0.13700340688228607, 0.0387536883354187, 0.01762070506811142, 0.09077008813619614, -0.11126910895109177, 0.027779432013630867, 0.027329839766025543, 0.11029934138059616, 0.04631125554442406, 0.0444084033370018, 0.04349797964096069, -0.04361727833747864, -0.03448997810482979, 0.09900518506765366, 0.1141166090965271, 0.10999378561973572, -0.10351451486349106, 0.09701267629861832, 0.029680976644158363, 0.03324173390865326, -0.03771377354860306, -0.001124414149671793, -0.03439207747578621, 0.058852747082710266, 0.0009421560098417103, -0.10096345841884613, 0.0015223742229864001, 0.08723825216293335, 0.13025274872779846, -0.02139303646981716, 0.012273920699954033, -0.04212828353047371, 0.07785813510417938, 0.22717741131782532, 0.013273360207676888, -0.20203396677970886, 0.020293952897191048, 0.03811684250831604, 0.023325199261307716, -0.12497067451477051, -0.03643074631690979, 0.08515705913305283, -0.1654149889945984, 0.057842910289764404, -0.044808581471443176, 0.11490312963724136, -0.15948666632175446, -0.040569502860307693, 0.06355845928192139, 0.036063458770513535, -0.02286512963473797, 0.08458817005157471, -0.12896794080734253, 0.07738639414310455, 0.04003014788031578, 0.03539096564054489, -0.0866594910621643, 0.03307276591658592, 0.0012748453300446272, -0.01842350699007511, 0.15077263116836548, -0.018827110528945923, 0.001599423587322235, -0.14274190366268158, -0.12091321498155594, -0.015433290041983128, 0.05841862037777901, -0.07207082211971283, 0.09849599748849869, 0.018741367384791374, -0.031981296837329865, -0.07660618424415588, -0.05902322009205818, -0.07043631374835968, -0.19155582785606384, 0.04961512237787247, 0.001072496292181313, 0.012796498835086823, -0.011889348737895489, 0.024585120379924774, 0.019940374419093132, 0.14038091897964478, -0.05419326573610306, -0.09532751142978668, -0.15136857330799103, 0.05043622478842735, 0.0928754061460495, -0.019248424097895622, -0.021788902580738068, -0.08697298914194107, 0.17451037466526031, -0.02986994944512844, -0.07102204859256744, 0.027487441897392273, -0.06424286216497421, -0.11733835935592651, -0.062267106026411057, 0.10885319113731384, 0.029464542865753174, -0.006101046223193407, 0.0021723618265241385, 0.05467300862073898, 0.00852294359356165, -0.05168122053146362, 0.029134253039956093, 0.09876630455255508, 0.13430336117744446, 0.12842310965061188, 0.007557176984846592, -0.12239456176757812, -0.12911175191402435, -0.0033299413044005632, 0.030311714857816696, 0.11263066530227661, -0.07636328786611557, 0.10210461914539337, 0.0357799306511879, -0.08249815553426743, -0.22707544267177582, 0.08801833540201187, 0.06645829230546951, -0.014349918812513351, -0.012964880093932152, -0.14140665531158447, 0.13225814700126648, 0.03391386196017265, -0.006130723748356104, 0.08124004304409027, -0.273602694272995, -0.07245052605867386, -0.0200799573212862, 0.0421464778482914, -0.2317919135093689, -0.17104698717594147, -0.05140174925327301, -0.050086572766304016, -0.15883110463619232, 0.06846045702695847, -0.0035028313286602497, 0.043083690106868744, 0.042623814195394516, 0.04211476817727089, 0.06545230001211166, -0.05159561708569527, 0.10159368067979813, 0.01950736716389656, 0.036582883447408676, -0.07095827907323837, -0.07923165708780289, 0.027849707752466202, -0.0916404128074646, 0.14323478937149048, 0.04341215267777443, 0.01838540844619274, -0.060602907091379166, -0.01708925887942314, -0.035793572664260864, 0.0854153260588646, -0.030999036505818367, -0.04867495968937874, -0.0909828469157219, 0.04187909886240959, 0.13401202857494354, 0.025912292301654816, 0.0928020253777504, -0.04325811192393303, -0.008502863347530365, 0.15222148597240448, 0.09717944264411926, 0.01358265895396471, -0.1543441116809845, -0.04545311629772186, 0.0002276509185321629, 0.04375259205698967, -0.12374021857976913, 0.04263446107506752, 0.0919766053557396, 0.015315129421651363, 0.10466093569993973, -0.009203889407217503, -0.10339105129241943, -0.00025650524185039103, 0.04659220576286316, -0.10824429988861084, -0.11344773322343826, 0.02596067637205124, 0.10532736778259277, -0.09190014004707336, -0.11344210803508759, 0.11828341335058212, -0.010228612460196018, -0.015831848606467247, 0.004528946243226528, 0.07719231396913528, 0.05126214772462845, 0.06398922204971313, 0.023953450843691826, 0.04235583543777466, -0.0683116763830185, 0.11642079055309296, 0.14703154563903809, -0.15695402026176453, -0.0017061937833204865, 0.12718802690505981, -0.05234593152999878, -0.023027850314974785, -0.015582573600113392, 0.029059620574116707, -0.010608180426061153, -0.03536029905080795, 0.03545539453625679, -0.042932264506816864, 0.02678920328617096, 0.07932820916175842, -0.0018078205175697803, 0.05794306844472885, 0.026423458009958267, -0.015828534960746765, -0.14719247817993164, 0.13209041953086853, 0.026298385113477707, 0.05618498474359512, -0.1030769795179367, 0.014945016242563725, 0.02978743612766266, 0.0025553256273269653, 0.00846241693943739, -0.048811107873916626, -0.08003150671720505, 0.0035967102739959955, -0.02309151366353035, 0.10050681233406067, -0.07637201249599457, -0.007066613528877497, -0.017069241032004356, 0.004308694042265415, -0.010319255292415619, 0.03020906262099743, -0.04912301152944565, -0.07910656183958054, -0.043216098099946976, 0.11850915849208832, -0.1502671092748642, -0.02707105688750744, 0.049090176820755005, -0.09361543506383896, 0.059200648218393326, 0.00717051001265645, -0.044864676892757416, -0.08725777268409729, -0.17874681949615479, -0.029091352596879005, 0.027221443131566048, 0.06489841639995575, 0.04206426441669464, -0.07383707910776138, 0.04889989271759987, -0.005170128308236599, -0.09214980900287628, -0.01396650355309248, -0.0062256669625639915, -0.11492165178060532, 0.04339428246021271, -0.08921196311712265, -0.02603902295231819, -0.035374704748392105, 0.1341087371110916, 0.05600739270448685, 0.014176875352859497, 0.07831060141324997, -0.04737298563122749, 0.09916309267282486, -0.1275632530450821, -0.037301164120435715, -0.002014551544561982, -0.03636613488197327, -0.06304715573787689, 0.00623674038797617, 0.07891091704368591, -0.036434512585401535, 0.12567822635173798, 0.12363374978303909, 0.03618800640106201, 0.04453336074948311, -0.015989085659384727, 0.05838384851813316, 0.0589112713932991, -0.021467549726366997, -0.015903614461421967, -0.015942858532071114, 0.06999588012695312, 0.014376446604728699, 0.01628611609339714, 0.09464365243911743, 0.061006683856248856, 0.23073330521583557, 0.13798187673091888, 0.015552528202533722, 0.04800980165600777, -0.08438064903020859, -0.0653483122587204, 0.10039206594228745, -0.0584147684276104, 0.08614298701286316, -0.10559691488742828, 0.06048401817679405, 0.09583429992198944, -0.14881962537765503, 0.062010884284973145, -0.010847007855772972, -0.016594581305980682, -0.0331118144094944, -0.11270026117563248, -0.05856744199991226, -0.021960172802209854, 0.0031652257312089205, -0.1090279221534729, 0.08406331390142441, 0.12909267842769623, 0.00466542411595583, 0.01562040951102972, 0.10413976013660431, -0.04986545071005821, -0.07341931760311127, 0.08216803520917892, 0.021850265562534332, 0.04881652817130089, 0.04234573617577553, 0.0452018640935421, 0.07035259157419205, 0.0023760227486491203, 0.08894538134336472, 0.08898624777793884, 0.08433070033788681, 0.04082410782575607, -0.06812772899866104, -0.07719355076551437, 0.03135046362876892, -0.01243661344051361, -0.005262864753603935, 0.15392985939979553, 0.07318133860826492, 0.011463114060461521, -0.028163237497210503, 0.18390484154224396, -0.023872612044215202, -0.018508678302168846, -0.12887677550315857, 0.045212939381599426, -0.04427603632211685, -0.008067160844802856, -0.020049037411808968, -0.15536873042583466, 0.0063140797428786755, 0.1466829925775528, 0.07884661108255386, -0.04554140567779541, -0.014038772322237492, -0.009268322959542274, 0.007775454316288233, -0.02434193529188633, 0.04154770448803902, 0.011842982843518257, 0.20704087615013123, -0.05932564288377762, 0.012393421493470669, -0.04061831161379814, -0.03224826976656914, -0.05972982943058014, 0.09917260706424713, -0.015838058665394783, -0.00020576969836838543, -0.08017894625663757, 0.11414803564548492, -0.01730140671133995, -0.2052864134311676, 0.060604777187108994, -0.09497160464525223, -0.08283503353595734, 0.011409979313611984, -0.011481680907309055, 0.0008264615316875279, 0.028246600180864334, 0.0018012296641245484, -0.06714709103107452, 0.0676429271697998, 0.02494821511209011, -0.06671815365552902, -0.01345144584774971, -0.007523274514824152, -0.09244512766599655, 0.26621899008750916, -0.025610223412513733, 0.04406430572271347, 0.08496913313865662, -0.025152266025543213, -0.13651573657989502, -0.030578909441828728, 0.08588782697916031, -0.05970463156700134, 0.015754396095871925, 0.13137641549110413, -0.012988777831196785, 0.15318180620670319, 0.08482338488101959, -0.10059003531932831, 0.04892837628722191, -0.03318207710981369, 0.012102600187063217, -0.11599595099687576, -0.0011293685529381037, -0.08936582505702972, 0.11271308362483978, 0.14241023361682892, -0.008633787743747234, -0.008114204742014408, -0.0411917008459568, 0.003341060597449541, -0.0011873128823935986, 0.10135243088006973, 0.009559398517012596, -0.06358876079320908, 0.006922734901309013, -0.13858525454998016, 0.09287933260202408, -0.12795694172382355, -0.050573110580444336, 0.0376293882727623, -0.019114766269922256, -0.020533805713057518, 0.07746696472167969, 0.03970443457365036, 0.000201800576178357, -0.06419789046049118, -0.1283959597349167, 0.037275560200214386, 0.16378499567508698, -0.014706313610076904, -0.02702203392982483 ]
0b502f037865f4cf9ec1254a8c34fc3f19caaeef
# Dataset Card for axial-mri ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/axial-mri - **Point of Contact:** [email protected] ### Dataset Summary axial-mri ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/axial-mri ### Citation Information ``` @misc{ axial-mri, title = { axial mri Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/axial-mri } }, url = { https://universe.roboflow.com/object-detection/axial-mri }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/axial-mri
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:39:10+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "axial-mri", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "axial-MRI", "1": "negative", "2": "positive"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:39:28+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for axial-mri The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary axial-mri ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for axial-mri\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naxial-mri", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for axial-mri\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\naxial-mri", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for axial-mri\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\naxial-mri### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01843198388814926, 0.16588760912418365, -0.00771697424352169, 0.02158168889582157, 0.10195745527744293, 0.0009624182712286711, 0.059881485998630524, 0.08243460953235626, 0.003352175001055002, 0.1743859350681305, -0.0049476297572255135, 0.0792120024561882, 0.11539725214242935, 0.08845317363739014, -0.020565278828144073, -0.1551506370306015, 0.05914706364274025, -0.06342829763889313, 0.0653015598654747, 0.0720718652009964, 0.07535102218389511, -0.13732510805130005, 0.08588879555463791, -0.038662929087877274, -0.023485837504267693, 0.026903074234724045, -0.055508386343717575, -0.04310556873679161, 0.005324016325175762, 0.04362586885690689, 0.02088228613138199, 0.02507878467440605, 0.03576047718524933, -0.18960081040859222, 0.02054450660943985, 0.10562220960855484, 0.036125604063272476, 0.023749347776174545, 0.1586856096982956, -0.0859648808836937, 0.055359795689582825, -0.1261194795370102, 0.036281734704971313, 0.017832530662417412, -0.11841309070587158, -0.11172997951507568, -0.12238027155399323, 0.05761342868208885, 0.11180556565523148, 0.05089187249541283, -0.01658819057047367, 0.0777360126376152, -0.01637347787618637, 0.058351945132017136, 0.11150619387626648, -0.06481246650218964, -0.040208809077739716, 0.08340185135602951, 0.034517962485551834, 0.10562388598918915, -0.11210057139396667, -0.01757584512233734, -0.0019065458327531815, -0.02600782923400402, 0.005426505580544472, -0.057644426822662354, -0.042523838579654694, -0.006156529299914837, -0.10108525305986404, -0.14304323494434357, 0.14246375858783722, 0.050134629011154175, -0.0487525500357151, -0.145233154296875, -0.005856294184923172, 0.056007590144872665, -0.03471817076206207, -0.006870829500257969, 0.04588744416832924, -0.004443899728357792, 0.06240678206086159, -0.06990065425634384, -0.0987299382686615, 0.04940137267112732, 0.03919832408428192, 0.03581114858388901, -0.020764056593179703, 0.03658724203705788, 0.018374668434262276, 0.07170277833938599, 0.007236710283905268, -0.10513141006231308, -0.024181390181183815, -0.03871166706085205, -0.058688532561063766, -0.043847549706697464, 0.06382676959037781, -0.15072737634181976, 0.061392705887556076, 0.0541117824614048, -0.0649348571896553, 0.03468485549092293, -0.12737657129764557, 0.019574234262108803, 0.10656782239675522, 0.1816561222076416, -0.08356735110282898, -0.09158526360988617, -0.002166478894650936, 0.042201440781354904, 0.019663972780108452, -0.03200564160943031, -0.021199390292167664, 0.002295401180163026, 0.029185671359300613, 0.03711256384849548, 0.10980101674795151, 0.04715276509523392, -0.07198067009449005, -0.06581267714500427, 0.13254903256893158, -0.10012100636959076, 0.050691716372966766, 0.05888399854302406, -0.05733703821897507, 0.0716254860162735, 0.010280332528054714, 0.014792966656386852, -0.1163085401058197, 0.09895274043083191, -0.02764861285686493, 0.017153598368167877, -0.09440519660711288, -0.09558809548616409, 0.05383137986063957, -0.08385077863931656, -0.08350348472595215, -0.07771021127700806, -0.05292594060301781, -0.08699794113636017, 0.04350491613149643, -0.04128510504961014, 0.03131077066063881, 0.016980761662125587, -0.035921309143304825, -0.013150544837117195, 0.008194089867174625, 0.04083402454853058, -0.05493012070655823, 0.03827490657567978, -0.09572049230337143, 0.03596166893839836, 0.11548390984535217, 0.04068445786833763, -0.09719319641590118, 0.06241129711270332, -0.19969363510608673, 0.13782107830047607, -0.05263602361083031, 0.022242316976189613, -0.1339564025402069, 0.015590454451739788, -0.014916285872459412, -0.03668973594903946, 0.00044189696200191975, 0.14000634849071503, -0.0785888284444809, 0.01748618111014366, 0.05692308768630028, -0.05434783548116684, -0.059182606637477875, 0.034851543605327606, -0.04101689159870148, 0.0022046726662665606, 0.07880794256925583, 0.12525522708892822, -0.04825116693973541, -0.1138424426317215, -0.10703437030315399, -0.04198247566819191, -0.039987239986658096, 0.15193964540958405, 0.07112697511911392, -0.03946484625339508, 0.09906286746263504, -0.009524624794721603, -0.012414155527949333, -0.043151672929525375, 0.013222900219261646, -0.03604551777243614, 0.01931057870388031, -0.006321142427623272, -0.08719722926616669, 0.0180989857763052, -0.09777727723121643, 0.008238156326115131, -0.07947427779436111, -0.04217406362295151, 0.013374133966863155, -0.029331812635064125, 0.017805930227041245, -0.034183233976364136, 0.09047703444957733, -0.13591794669628143, -0.003351712366566062, -0.16251146793365479, -0.10695727169513702, 0.06082306057214737, -0.03901321068406105, 0.041300274431705475, -0.07657396793365479, -0.009728901088237762, 0.02222675271332264, 0.034055061638355255, -0.017761286348104477, 0.044514745473861694, -0.020666446536779404, -0.0423426479101181, -0.12792545557022095, -0.04684248939156532, -0.021845540031790733, 0.1058468222618103, -0.1237877756357193, -0.026070386171340942, 0.14253681898117065, 0.11757178604602814, 0.04262712970376015, -0.04841836169362068, 0.07776078581809998, -0.026146482676267624, -0.01922690123319626, -0.08213645219802856, -0.007642875425517559, -0.0025381033774465322, 0.03179239109158516, 0.0872950553894043, -0.1668749302625656, -0.13477396965026855, 0.08282114565372467, 0.01808219775557518, -0.08191095292568207, -0.052147623151540756, -0.05063307657837868, -0.021193377673625946, -0.09299934655427933, -0.029529565945267677, 0.03254112973809242, 0.07253632694482803, 0.08747289329767227, -0.06856173276901245, -0.032493337988853455, 0.024141786620020866, -0.01900669001042843, -0.08030759543180466, 0.06658928096294403, 0.05504750832915306, -0.12114996463060379, 0.10361355543136597, -0.021467577666044235, 0.03705775365233421, 0.0910908430814743, 0.03873834386467934, -0.11715727299451828, 0.019755778834223747, 0.07617267966270447, 0.02877121791243553, 0.08993323147296906, -0.025428975000977516, 0.01592831127345562, 0.07959829270839691, -0.015515538863837719, -0.016335682943463326, -0.08120574802160263, 0.07866133004426956, 0.03673573583364487, -0.03175903111696243, 0.037324026226997375, -0.01266498677432537, 0.07957524061203003, 0.1003447100520134, 0.06220997869968414, 0.11634545773267746, -0.045445747673511505, -0.06024373322725296, -0.08827365934848785, 0.12201771140098572, -0.021911704912781715, -0.25923293828964233, -0.07366291433572769, -0.0711539089679718, -0.058707691729068756, -0.010147280991077423, 0.030398380011320114, 0.0020901672542095184, -0.0834043025970459, -0.09886373579502106, 0.05680340528488159, 0.06277747452259064, -0.10755427181720734, -0.11950849741697311, 0.03534579277038574, 0.006496925838291645, -0.07597632706165314, -0.00008542457362636924, 0.025547586381435394, -0.05068144202232361, 0.010249773971736431, 0.043778497725725174, 0.12990416586399078, 0.059819549322128296, -0.01907331310212612, 0.006571466568857431, -0.006592645309865475, 0.1718721240758896, -0.15740221738815308, 0.10290630161762238, 0.15882204473018646, 0.012567524798214436, 0.07576537132263184, 0.19056327641010284, -0.014812487177550793, -0.01921786554157734, 0.025041228160262108, 0.0781429186463356, -0.05896100401878357, -0.1956089437007904, -0.06018856167793274, -0.04908964782953262, 0.02276690863072872, 0.13503876328468323, 0.0373607762157917, 0.022908590734004974, 0.09214739501476288, -0.11076324433088303, 0.031066272407770157, 0.025403307750821114, 0.10474490374326706, 0.039865851402282715, 0.04238726943731308, 0.042892470955848694, -0.04235057905316353, -0.03415007144212723, 0.09762907773256302, 0.11896054446697235, 0.11259528249502182, -0.10295511782169342, 0.09986060112714767, 0.029601391404867172, 0.02588999830186367, -0.04044453054666519, -0.0025905598886311054, -0.03583633527159691, 0.057697366923093796, -0.005639746319502592, -0.10176379978656769, -0.004600972402840853, 0.08634085953235626, 0.13607929646968842, -0.01809154450893402, 0.007270996458828449, -0.039248026907444, 0.08151982724666595, 0.24014092981815338, 0.007721760775893927, -0.20431265234947205, 0.01864859089255333, 0.03821909800171852, 0.02448389120399952, -0.1252017319202423, -0.040626294910907745, 0.08136416226625443, -0.166267991065979, 0.057930875569581985, -0.044333089143037796, 0.1107531487941742, -0.14717581868171692, -0.039502598345279694, 0.05838093161582947, 0.036812834441661835, -0.02325492911040783, 0.08144750446081161, -0.12009716778993607, 0.07458607107400894, 0.0415477454662323, 0.036487214267253876, -0.0895635336637497, 0.036564089357852936, 0.007402721326798201, -0.01645834557712078, 0.1515156626701355, -0.02091880701482296, 0.0037657408975064754, -0.13608062267303467, -0.1142706647515297, -0.017234887927770615, 0.05513084679841995, -0.07134784013032913, 0.09900891035795212, 0.01647031679749489, -0.03370485082268715, -0.08109933137893677, -0.04667748138308525, -0.06728216260671616, -0.1905497908592224, 0.04527417942881584, -0.006934368051588535, 0.014243843033909798, -0.011398962698876858, 0.030436351895332336, 0.030491705983877182, 0.13059917092323303, -0.041678186506032944, -0.09028808772563934, -0.14895179867744446, 0.055154863744974136, 0.08858709037303925, -0.01659063808619976, -0.023981833830475807, -0.0915241613984108, 0.17738646268844604, -0.0302905086427927, -0.06545770913362503, 0.028008924797177315, -0.06468623131513596, -0.11511168628931046, -0.061779774725437164, 0.10389889776706696, 0.027793321758508682, -0.006360642146319151, 0.0031610194128006697, 0.05929349362850189, 0.006817816291004419, -0.045932698994874954, 0.03100370243191719, 0.09995429962873459, 0.14074842631816864, 0.13245372474193573, 0.005147889256477356, -0.13272058963775635, -0.12361594289541245, -0.00253036106005311, 0.03207319602370262, 0.10181007534265518, -0.07196416705846786, 0.1067277118563652, 0.040557269006967545, -0.08435852080583572, -0.22690041363239288, 0.08740604668855667, 0.06805475801229477, -0.011085917241871357, -0.010388042777776718, -0.14320160448551178, 0.12793424725532532, 0.04079943150281906, -0.0032001871149986982, 0.07637646049261093, -0.2708345353603363, -0.07311339676380157, -0.02287696860730648, 0.03866935521364212, -0.2314373254776001, -0.16980242729187012, -0.048379771411418915, -0.053412631154060364, -0.14334458112716675, 0.054839443415403366, -0.001214867108501494, 0.0451367050409317, 0.04323307052254677, 0.034913402050733566, 0.06637272983789444, -0.0506257526576519, 0.10221034288406372, 0.01572161354124546, 0.03884976729750633, -0.06952931731939316, -0.0838325098156929, 0.036381982266902924, -0.09409688413143158, 0.14405576884746552, 0.0460294708609581, 0.018103521317243576, -0.05702751502394676, -0.019221283495426178, -0.03483777120709419, 0.08421117067337036, -0.027076533064246178, -0.04491272568702698, -0.0882389023900032, 0.04450161010026932, 0.132590189576149, 0.027934450656175613, 0.08775487542152405, -0.05007930099964142, -0.014362511225044727, 0.15902695059776306, 0.10126599669456482, 0.00665116123855114, -0.14818494021892548, -0.042849473655223846, 0.004368077497929335, 0.04189391806721687, -0.11984595656394958, 0.043827999383211136, 0.08437817543745041, 0.014720218256115913, 0.1088390052318573, -0.009805467911064625, -0.09904060512781143, 0.00902782753109932, 0.04534266144037247, -0.10180040448904037, -0.11570796370506287, 0.023412201553583145, 0.11118007451295853, -0.0966544896364212, -0.11917241662740707, 0.1146523579955101, -0.0028992509469389915, -0.016298657283186913, 0.002305444562807679, 0.07764972001314163, 0.05533864349126816, 0.06066318228840828, 0.016800155863165855, 0.03870641812682152, -0.06550168991088867, 0.11772768944501877, 0.15164265036582947, -0.1617356538772583, -0.0016223357524722815, 0.12148849666118622, -0.05088508129119873, -0.021664639934897423, -0.02686350606381893, 0.03621254116296768, -0.006977440789341927, -0.03189334273338318, 0.03322434425354004, -0.03911227732896805, 0.03062853403389454, 0.08155813813209534, -0.0013841186882928014, 0.05342432111501694, 0.024058133363723755, -0.01661100797355175, -0.14115604758262634, 0.13280227780342102, 0.022326461970806122, 0.05228747799992561, -0.09016577899456024, 0.007341715507209301, 0.029442477971315384, 0.00518864905461669, 0.009887433610856533, -0.058104678988456726, -0.07284838706254959, 0.0014341657515615225, -0.02223183773458004, 0.10216432064771652, -0.0829700455069542, -0.009963305667042732, -0.019284317269921303, 0.012663126923143864, -0.01142689399421215, 0.028285590931773186, -0.04778124392032623, -0.07889789342880249, -0.04609351605176926, 0.1258137822151184, -0.14409175515174866, -0.025834523141384125, 0.04983745142817497, -0.09364590048789978, 0.05998879671096802, 0.011419110000133514, -0.04218580946326256, -0.09712914377450943, -0.1769656091928482, -0.03694985806941986, 0.02714221552014351, 0.06458087265491486, 0.04257941618561745, -0.07868460565805435, 0.052633386105298996, -0.005025701131671667, -0.09397336095571518, -0.018050819635391235, -0.004877860192209482, -0.11333027482032776, 0.04935707151889801, -0.08385059237480164, -0.026518618687987328, -0.04047330468893051, 0.13779930770397186, 0.05501268059015274, 0.014871872030198574, 0.07377700507640839, -0.04939580336213112, 0.0976439043879509, -0.1286928653717041, -0.035992320626974106, -0.0035306953359395266, -0.03342549502849579, -0.07166966050863266, 0.0016374025726690888, 0.07755427062511444, -0.03376474604010582, 0.12878720462322235, 0.12813599407672882, 0.04371432587504387, 0.04448489472270012, -0.009114815853536129, 0.06338561326265335, 0.05800909921526909, -0.026122018694877625, -0.013446456752717495, -0.015838105231523514, 0.07765894383192062, 0.020054414868354797, 0.015081577934324741, 0.1026931032538414, 0.05897579342126846, 0.23558016121387482, 0.13829980790615082, 0.0185986515134573, 0.042969487607479095, -0.08486192673444748, -0.05693092197179794, 0.1048588901758194, -0.057397130876779556, 0.08534657210111618, -0.10604927688837051, 0.05156383290886879, 0.09679878503084183, -0.15254202485084534, 0.06425384432077408, -0.010755698196589947, -0.011706821620464325, -0.02788172848522663, -0.1063602939248085, -0.06057457625865936, -0.018354451283812523, 0.002727760002017021, -0.10897937417030334, 0.08688268810510635, 0.12687890231609344, 0.00027733101160265505, 0.014649790711700916, 0.10315316915512085, -0.06368597596883774, -0.07805480062961578, 0.08334995806217194, 0.01758577488362789, 0.05553906783461571, 0.03933209180831909, 0.041454676538705826, 0.07547799497842789, -0.002566326642408967, 0.09010177105665207, 0.08928456157445908, 0.09295161813497543, 0.036153025925159454, -0.07001782208681107, -0.07487816363573074, 0.032023534178733826, -0.013054200448095798, -0.01219148188829422, 0.1499326080083847, 0.072655089199543, 0.01435427088290453, -0.02681736834347248, 0.17449194192886353, -0.019571425393223763, -0.012013865634799004, -0.137105792760849, 0.03422456979751587, -0.03507110849022865, -0.010090679861605167, -0.01679866947233677, -0.1524650901556015, 0.006222858559340239, 0.13426142930984497, 0.07510314136743546, -0.05078617110848427, -0.01493857428431511, -0.01145894080400467, 0.00792521983385086, -0.02159355767071247, 0.03979386016726494, 0.010494532994925976, 0.20387761294841766, -0.0599864162504673, 0.01404744852334261, -0.04181376099586487, -0.03417656198143959, -0.05961407721042633, 0.10288577526807785, -0.016411002725362778, 0.002013553399592638, -0.0743379294872284, 0.11097156256437302, -0.0063138846307992935, -0.2000901699066162, 0.06154358386993408, -0.09585485607385635, -0.08324259519577026, 0.010397611185908318, -0.023553254082798958, 0.00501552177593112, 0.029823437333106995, 0.006095657125115395, -0.06679374724626541, 0.07224215567111969, 0.026089610531926155, -0.06722397357225418, -0.01039960328489542, -0.003793977666646242, -0.09113436937332153, 0.26566991209983826, -0.029768081381917, 0.034891124814748764, 0.08399501442909241, -0.022022239863872528, -0.13605394959449768, -0.02679651416838169, 0.08369825780391693, -0.05289192497730255, 0.01992040127515793, 0.1271919459104538, -0.009680155664682388, 0.14988990128040314, 0.08346900343894958, -0.09536930918693542, 0.05638071894645691, -0.03330215811729431, 0.01099524274468422, -0.11468453705310822, 0.004144768696278334, -0.09091655164957047, 0.11166226863861084, 0.14216387271881104, -0.0035487969871610403, -0.0062790499068796635, -0.039571363478899, 0.0054556080140173435, 0.0027937779668718576, 0.0973878800868988, -0.00029636392719112337, -0.05937986075878143, 0.008881398476660252, -0.1439766138792038, 0.08597049117088318, -0.13079556822776794, -0.050722185522317886, 0.04035124555230141, -0.017885755747556686, -0.013381303288042545, 0.07725454121828079, 0.031880564987659454, 0.0016546061960980296, -0.060956887900829315, -0.12435042858123779, 0.03743135929107666, 0.16393868625164032, -0.011800257489085197, -0.025082841515541077 ]
33dc733ce0bb0ca40c1b0f521b204036eb4311d0
# Dataset Card for 4-fold-defect ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/4-fold-defect - **Point of Contact:** [email protected] ### Dataset Summary 4-fold-defect ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/4-fold-defect ### Citation Information ``` @misc{ 4-fold-defect, title = { 4 fold defect Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/4-fold-defect } }, url = { https://universe.roboflow.com/object-detection/4-fold-defect }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/4-fold-defect
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:40:36+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "4-fold-defect", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "4-fold-defect", "1": "4-fold defect"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:41:00+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for 4-fold-defect The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary 4-fold-defect ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for 4-fold-defect\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\n4-fold-defect", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for 4-fold-defect\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\n4-fold-defect", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for 4-fold-defect\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\n4-fold-defect### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.01715552620589733, 0.15321137011051178, -0.00849942211061716, 0.029366834089159966, 0.10954401642084122, 0.008065284229815006, 0.04549406096339226, 0.07583587616682053, 0.0068529522977769375, 0.1604737937450409, -0.007909763604402542, 0.09056733548641205, 0.12114431709051132, 0.09224435687065125, -0.022374099120497704, -0.1625242531299591, 0.05601533129811287, -0.06350231915712357, 0.0832252949476242, 0.06177329272031784, 0.07586978375911713, -0.13016265630722046, 0.08732053637504578, -0.037976495921611786, -0.04578645899891853, 0.029162414371967316, -0.03226132690906525, -0.03818819671869278, 0.018944360315799713, 0.035876233130693436, 0.0328831672668457, 0.024558579549193382, 0.035052552819252014, -0.18425686657428741, 0.023039400577545166, 0.09872224181890488, 0.02836567722260952, 0.028156999498605728, 0.14221838116645813, -0.08295124024152756, 0.05373632162809372, -0.13540814816951752, 0.029059596359729767, 0.01780630834400654, -0.11654946208000183, -0.11956941336393356, -0.12866155803203583, 0.0594024732708931, 0.10623440891504288, 0.03514740988612175, -0.010964399203658104, 0.06650921702384949, -0.007432064041495323, 0.05736489221453667, 0.1131499633193016, -0.07802217453718185, -0.03851579129695892, 0.10151059180498123, 0.028108807280659676, 0.09556042402982712, -0.1083052009344101, -0.023484503850340843, -0.004441093187779188, -0.024767398834228516, 0.003591603133827448, -0.06930086761713028, -0.04509006813168526, -0.01219287421554327, -0.08805501461029053, -0.13390977680683136, 0.14056997001171112, 0.05463290214538574, -0.05349509418010712, -0.1397935301065445, -0.017413778230547905, 0.06783164292573929, -0.029388094320893288, -0.011559142731130123, 0.046765558421611786, 0.0023209976498037577, 0.06523151695728302, -0.07165367901325226, -0.10068900138139725, 0.04678803309798241, 0.011559396982192993, 0.023923764005303383, -0.025207214057445526, 0.03629826754331589, 0.010898524895310402, 0.07400929927825928, -0.017176419496536255, -0.1048002541065216, -0.022921565920114517, -0.04221506044268608, -0.06440602988004684, -0.04418502748012543, 0.07031764835119247, -0.14344164729118347, 0.06760808080434799, 0.0476573146879673, -0.0791819766163826, 0.041274894028902054, -0.1398892104625702, 0.01948927529156208, 0.10735668987035751, 0.1864779144525528, -0.08355394750833511, -0.07910272479057312, -0.0013105147518217564, 0.0341101735830307, 0.029113907366991043, -0.030243586748838425, -0.026812028139829636, -0.004799100570380688, 0.04661379009485245, 0.03394182398915291, 0.10600855946540833, 0.04029162973165512, -0.07527375966310501, -0.05446851998567581, 0.12888671457767487, -0.1033613309264183, 0.05288790538907051, 0.05371120944619179, -0.04591397941112518, 0.09007582813501358, 0.005490744486451149, 0.010905591771006584, -0.10673610121011734, 0.09460090100765228, -0.033435069024562836, 0.02348150871694088, -0.09187750518321991, -0.09535913169384003, 0.04852953180670738, -0.09446680545806885, -0.08284492790699005, -0.08581678569316864, -0.06771467626094818, -0.08499488979578018, 0.0387982539832592, -0.04354535788297653, 0.023945774883031845, 0.01915423944592476, -0.04531044885516167, -0.009146695025265217, 0.00292351096868515, 0.034409262239933014, -0.0479622446000576, 0.03810422122478485, -0.09918996691703796, 0.0354163758456707, 0.09020931273698807, 0.032354362308979034, -0.08471493422985077, 0.061168137937784195, -0.2127254158258438, 0.13835802674293518, -0.03962654620409012, 0.026436107233166695, -0.1322936862707138, 0.011989346705377102, -0.01965501345694065, -0.042469270527362823, -0.0007502185762859881, 0.14502359926700592, -0.10549138486385345, 0.016253087669610977, 0.07717976719141006, -0.05950052663683891, -0.04366674646735191, 0.042415864765644073, -0.04617250710725784, 0.008498793467879295, 0.08946467190980911, 0.12105236202478409, -0.035171471536159515, -0.11399674415588379, -0.12008190155029297, -0.04181404039263725, -0.05214628949761391, 0.151140496134758, 0.054862745106220245, -0.03871457651257515, 0.09087933599948883, -0.009036866948008537, -0.007055598311126232, -0.03039339743554592, 0.01650894805788994, -0.02693706564605236, 0.01201020460575819, -0.002804820192977786, -0.07141633331775665, 0.019451500847935677, -0.10134755820035934, 0.010718846693634987, -0.07405253499746323, -0.03789376839995384, 0.013661683537065983, -0.02577129565179348, 0.018113238736987114, -0.04035833850502968, 0.09325350075960159, -0.12232234328985214, -0.002712910296395421, -0.15953558683395386, -0.10476350784301758, 0.06483493745326996, -0.018817292526364326, 0.03818025439977646, -0.0664617121219635, -0.0042155892588198185, 0.007250847294926643, 0.027589913457632065, -0.021066758781671524, 0.04593418538570404, -0.022839214652776718, -0.027130600064992905, -0.12398885935544968, -0.0343770906329155, -0.027216272428631783, 0.11208336055278778, -0.1278490126132965, -0.025826627388596535, 0.15331122279167175, 0.11296592652797699, 0.04751640185713768, -0.045625269412994385, 0.07108548283576965, -0.026629311963915825, -0.02165500447154045, -0.07919691503047943, -0.013644385151565075, -0.003950462210923433, 0.017083851620554924, 0.08766993135213852, -0.16077476739883423, -0.11175382882356644, 0.07935097068548203, 0.0095751341432333, -0.08448266983032227, -0.046773508191108704, -0.046775784343481064, -0.014782814309000969, -0.09228544682264328, -0.04815775528550148, 0.03856305405497551, 0.07042203098535538, 0.0847117230296135, -0.05958325415849686, -0.024986211210489273, 0.02618660405278206, -0.020893177017569542, -0.08155181258916855, 0.05208061262965202, 0.0387224406003952, -0.11203277856111526, 0.09198171645402908, -0.012231274507939816, 0.03987814858555794, 0.1028708964586258, 0.038463044911623, -0.10075590014457703, 0.0038907183334231377, 0.07566849142313004, 0.030991224572062492, 0.09254114329814911, -0.016078095883131027, 0.013424808159470558, 0.07689186185598373, 0.0007270941277965903, -0.018142996355891228, -0.08280469477176666, 0.08343473076820374, 0.027343202382326126, -0.03662813454866409, 0.03719288483262062, -0.018175486475229263, 0.08416272699832916, 0.10668627172708511, 0.04625231400132179, 0.10739829391241074, -0.04246492311358452, -0.05650944635272026, -0.08665987849235535, 0.1193850040435791, -0.0250866636633873, -0.2519923746585846, -0.08266126364469528, -0.06674771755933762, -0.05779508128762245, -0.007213501259684563, 0.018912047147750854, 0.0006984677747823298, -0.07943478971719742, -0.09079734236001968, 0.05040530860424042, 0.06923997402191162, -0.10658327490091324, -0.11199698597192764, 0.018936999142169952, 0.009834962897002697, -0.07434762269258499, -0.0069016097113490105, 0.020420074462890625, -0.07498223334550858, 0.02095291018486023, 0.04208597168326378, 0.1328851282596588, 0.06456805765628815, -0.02378981187939644, 0.003746240632608533, -0.009570342488586903, 0.16372814774513245, -0.14631210267543793, 0.12679266929626465, 0.16353686153888702, 0.01568705402314663, 0.08237430453300476, 0.1958698332309723, -0.011894464492797852, -0.018573423847556114, 0.021067755296826363, 0.07386559993028641, -0.05723390728235245, -0.19622668623924255, -0.04838442802429199, -0.05050859600305557, 0.02653529681265354, 0.11719383299350739, 0.03877348080277443, 0.013509303331375122, 0.09013477712869644, -0.09312799572944641, 0.02761015295982361, 0.033053942024707794, 0.0979229062795639, 0.059009719640016556, 0.035034578293561935, 0.045058880001306534, -0.046180352568626404, -0.03306104615330696, 0.10318902134895325, 0.12578651309013367, 0.11479069292545319, -0.10525460541248322, 0.10153686255216599, 0.024792972952127457, 0.017949959263205528, -0.05071409046649933, 0.0065795001573860645, -0.033079564571380615, 0.05715283378958702, -0.010247481055557728, -0.08705058693885803, -0.011990124359726906, 0.0676627978682518, 0.138543039560318, -0.0020930259488523006, 0.012774831615388393, -0.02021673507988453, 0.09682515263557434, 0.20653457939624786, 0.016278253868222237, -0.182939812541008, 0.019179191440343857, 0.03904293477535248, 0.021056903526186943, -0.12874121963977814, -0.03821191564202309, 0.10057199746370316, -0.16599713265895844, 0.06892047822475433, -0.04625547677278519, 0.10591980814933777, -0.15617045760154724, -0.03197196498513222, 0.036000754684209824, 0.043711185455322266, -0.01799905113875866, 0.077581025660038, -0.13407810032367706, 0.07760000228881836, 0.044941723346710205, 0.041269294917583466, -0.08433286845684052, 0.037600670009851456, 0.011472697369754314, -0.01778174377977848, 0.14834269881248474, -0.015087040141224861, -0.010132445953786373, -0.12646275758743286, -0.1029367446899414, -0.011631377972662449, 0.05122179538011551, -0.05004014074802399, 0.10069753974676132, 0.011887005530297756, -0.02959529496729374, -0.07836582511663437, -0.053699884563684464, -0.07049567997455597, -0.1837930977344513, 0.042859505861997604, -0.004374370444566011, 0.004824760369956493, -0.015244664624333382, 0.032709334045648575, 0.01862248219549656, 0.11476009339094162, -0.06348355859518051, -0.08234046399593353, -0.1457275003194809, 0.055368367582559586, 0.07457821816205978, -0.027779461815953255, -0.0324891172349453, -0.08578530699014664, 0.1664883941411972, -0.038107600063085556, -0.05661804974079132, 0.029292922466993332, -0.06006081774830818, -0.10326574742794037, -0.059185631573200226, 0.10153093189001083, 0.02953263185918331, -0.010262302123010159, 0.01006940845400095, 0.052300825715065, 0.011962831020355225, -0.06023375317454338, 0.0481252521276474, 0.10125492513179779, 0.12578916549682617, 0.14433768391609192, 0.014773697592318058, -0.16155248880386353, -0.11620661616325378, 0.01261973287910223, 0.04807497560977936, 0.0959533080458641, -0.0813177078962326, 0.09082908928394318, 0.034759607166051865, -0.09244448691606522, -0.22512899339199066, 0.09204185009002686, 0.05847245827317238, -0.015240705572068691, -0.0036644155625253916, -0.1486874222755432, 0.12298736721277237, 0.04881799966096878, -0.0008317856118083, 0.06519243121147156, -0.25926193594932556, -0.07009056210517883, -0.02171131782233715, 0.04742548614740372, -0.18626458942890167, -0.16214297711849213, -0.04468127340078354, -0.054371174424886703, -0.1695777326822281, 0.056517552584409714, -0.01655403897166252, 0.037583716213703156, 0.04780331626534462, 0.05815930292010307, 0.06664732098579407, -0.053062353283166885, 0.103876493871212, 0.028473425656557083, 0.04943476989865303, -0.06857969611883163, -0.0891864001750946, 0.04853909835219383, -0.09486910700798035, 0.1406526118516922, 0.049977097660303116, 0.014094498008489609, -0.05760054290294647, -0.0153117086738348, -0.04077776521444321, 0.08694244921207428, -0.026947546750307083, -0.041812848299741745, -0.07540886849164963, 0.040422335267066956, 0.12615250051021576, 0.025792734697461128, 0.06736160069704056, -0.05159037187695503, -0.017607176676392555, 0.15319402515888214, 0.11278223991394043, -0.009498941712081432, -0.1294579654932022, -0.039050035178661346, 0.00441271485760808, 0.03043280728161335, -0.1078723594546318, 0.05439752712845802, 0.08406153321266174, 0.00904262624680996, 0.11545789986848831, -0.00826324988156557, -0.10103800147771835, 0.019922010600566864, 0.050430234521627426, -0.09761015325784683, -0.13382647931575775, 0.023113351315259933, 0.09578152000904083, -0.09934083372354507, -0.10161495208740234, 0.11806490272283554, 0.004200255032628775, -0.014854290522634983, 0.005350414197891951, 0.08132079243659973, 0.05566655844449997, 0.056665875017642975, 0.019792063161730766, 0.03605218231678009, -0.06361280381679535, 0.11583905667066574, 0.1475629359483719, -0.15544846653938293, -0.003224270651116967, 0.10769975930452347, -0.04405123367905617, -0.014921242371201515, -0.05209777504205704, 0.057331718504428864, -0.01332833431661129, -0.038941096514463425, 0.02758251503109932, -0.05009353905916214, 0.022986197844147682, 0.08752360194921494, -0.00440686009824276, 0.05934421345591545, 0.021704820916056633, -0.014645949937403202, -0.1401064544916153, 0.1301417201757431, 0.025625700131058693, 0.05609909072518349, -0.10304434597492218, 0.014445307664573193, 0.022790351882576942, 0.02016635052859783, 0.010541354306042194, -0.055167850106954575, -0.07347092777490616, -0.006876115687191486, -0.026574861258268356, 0.10761606693267822, -0.08326660841703415, -0.007103654555976391, -0.016738098114728928, 0.02284436672925949, -0.013451443053781986, 0.02591811865568161, -0.04627137631177902, -0.07212408632040024, -0.036550600081682205, 0.13172267377376556, -0.1471550017595291, -0.02307284250855446, 0.05506687983870506, -0.08807609230279922, 0.0766887441277504, 0.007194117642939091, -0.04222463443875313, -0.07783034443855286, -0.18179798126220703, -0.04180347919464111, 0.033201802521944046, 0.05529280751943588, 0.04807508736848831, -0.08918403089046478, 0.05686619132757187, -0.0032320546451956034, -0.08979998528957367, -0.019361691549420357, -0.008182169869542122, -0.10814417153596878, 0.06372275203466415, -0.0799705907702446, -0.0321035273373127, -0.0482967384159565, 0.13785380125045776, 0.054312195628881454, 0.013480172492563725, 0.07603184133768082, -0.053182728588581085, 0.08701829612255096, -0.1392912119626999, -0.03638773784041405, -0.007399837486445904, -0.03977476805448532, -0.05668920651078224, -0.005817867815494537, 0.07373151928186417, -0.028062772005796432, 0.12685658037662506, 0.12175866961479187, 0.035826001316308975, 0.038995448499917984, -0.014167128130793571, 0.03528136759996414, 0.04827798157930374, -0.0365401990711689, -0.02055370807647705, -0.022098612040281296, 0.07358074188232422, 0.016456156969070435, 0.012904633767902851, 0.1170835793018341, 0.0800195187330246, 0.22027231752872467, 0.12454571574926376, 0.017688656225800514, 0.044751860201358795, -0.07393799722194672, -0.05675055831670761, 0.10681334882974625, -0.06508474797010422, 0.07522141188383102, -0.10297588258981705, 0.03247161582112312, 0.1038404181599617, -0.15869073569774628, 0.06457952409982681, -0.008257412351667881, -0.013477679342031479, -0.0320439413189888, -0.1079762876033783, -0.062195785343647, -0.019719313830137253, -0.0009530447423458099, -0.10955915600061417, 0.07589803636074066, 0.1256687343120575, -0.011474533937871456, 0.010913105681538582, 0.09475037455558777, -0.07559578865766525, -0.07028714567422867, 0.08956656605005264, 0.013640310615301132, 0.051402900367975235, 0.04499828442931175, 0.03943219035863876, 0.06477736681699753, 0.009958014823496342, 0.09898240864276886, 0.08951149880886078, 0.10833356529474258, 0.03645281493663788, -0.08168921619653702, -0.06788639724254608, 0.03087245114147663, -0.005116102751344442, -0.01894802413880825, 0.1393396109342575, 0.07373016327619553, 0.009358453564345837, -0.02632482908666134, 0.17141631245613098, -0.017535634338855743, -0.020952926948666573, -0.14298643171787262, 0.03566282242536545, -0.03259488195180893, -0.009704924188554287, -0.015289515256881714, -0.15516307950019836, 0.014405687339603901, 0.11726491898298264, 0.07322128862142563, -0.05033539980649948, -0.013025237247347832, -0.022055530920624733, 0.010069415904581547, -0.005435432773083448, 0.050813090056180954, 0.020116258412599564, 0.2045680731534958, -0.04940139129757881, 0.016080744564533234, -0.044212330132722855, -0.02731403522193432, -0.05663386359810829, 0.0978841558098793, -0.02244713343679905, 0.008365612477064133, -0.0717797577381134, 0.11467071622610092, -0.004396701697260141, -0.19148775935173035, 0.0533212348818779, -0.09450602531433105, -0.07924629747867584, 0.012721219100058079, -0.00395499961450696, 0.004219376016408205, 0.031244656071066856, 0.002980639925226569, -0.05935939773917198, 0.08516761660575867, 0.020611049607396126, -0.06564576923847198, 0.003538459073752165, -0.004039322026073933, -0.09369942545890808, 0.26525694131851196, -0.027927091345191002, 0.029667289927601814, 0.09642603993415833, -0.02691131830215454, -0.13966004550457, -0.015550934709608555, 0.07202039659023285, -0.04334374889731407, 0.01098570041358471, 0.12906207144260406, -0.0032858760096132755, 0.13349340856075287, 0.0856696292757988, -0.10060663521289825, 0.050256576389074326, -0.029329201206564903, 0.007836849428713322, -0.11804518848657608, 0.014866139739751816, -0.09181558340787888, 0.10661547631025314, 0.1484113484621048, 0.002388864755630493, 0.0038630350027233362, -0.04775617644190788, -0.006921635940670967, 0.00848607998341322, 0.11050465703010559, -0.011485106311738491, -0.05103427916765213, 0.010185794904828072, -0.12109233438968658, 0.07668806612491608, -0.10958297550678253, -0.04934506490826607, 0.03335073962807655, -0.013032792136073112, -0.017958886921405792, 0.08496323972940445, 0.029940515756607056, 0.014572381041944027, -0.05663217604160309, -0.11120393872261047, 0.02630877122282982, 0.17387546598911285, -0.00927087664604187, -0.023650258779525757 ]
452f44c3b625f98ce35435d75fac3aede3d90040
# Dataset Card for tweeter-posts ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/tweeter-posts - **Point of Contact:** [email protected] ### Dataset Summary tweeter-posts ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/tweeter-posts ### Citation Information ``` @misc{ tweeter-posts, title = { tweeter posts Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/tweeter-posts } }, url = { https://universe.roboflow.com/object-detection/tweeter-posts }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/tweeter-posts
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:41:01+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "tweeter-posts", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "tweeter-posts", "1": "caption", "2": "tweet"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:41:19+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for tweeter-posts The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary tweeter-posts ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for tweeter-posts\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ntweeter-posts", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for tweeter-posts\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ntweeter-posts", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 23, 22, 11, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for tweeter-posts\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ntweeter-posts### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.006932562682777643, 0.147972971200943, -0.008419259451329708, 0.03214321658015251, 0.11067906022071838, 0.00817183032631874, 0.04417777061462402, 0.07801101356744766, -0.0025338693521916866, 0.1559598743915558, -0.009434342384338379, 0.09019199758768082, 0.11416617780923843, 0.10216212272644043, -0.011513843201100826, -0.17672424018383026, 0.04996531829237938, -0.06766446679830551, 0.07824011147022247, 0.07351004332304001, 0.08039744943380356, -0.12411046028137207, 0.09213583171367645, -0.037677668035030365, -0.03932823985815048, 0.03341153636574745, -0.029682835564017296, -0.04930896684527397, 0.022125396877527237, 0.03449173644185066, 0.026736389845609665, 0.029401663690805435, 0.03061123751103878, -0.17842088639736176, 0.0264018215239048, 0.11088193207979202, 0.018991952762007713, 0.02811710722744465, 0.14355961978435516, -0.09778191149234772, 0.06572847068309784, -0.13161620497703552, 0.037693314254283905, 0.023545095697045326, -0.12504436075687408, -0.1099458858370781, -0.1269776076078415, 0.062124934047460556, 0.11003749817609787, 0.039290811866521835, -0.013427804224193096, 0.08131346851587296, -0.008952382951974869, 0.060777198523283005, 0.12128899246454239, -0.08470144122838974, -0.04062245041131973, 0.08213040977716446, 0.0232609324157238, 0.10576695948839188, -0.10652094334363937, -0.02203739807009697, -0.0018756065983325243, -0.023172108456492424, 0.00726860947906971, -0.06697971373796463, -0.03741377219557762, -0.007698081433773041, -0.09009178727865219, -0.13539019227027893, 0.13998422026634216, 0.05805188789963722, -0.05178265646100044, -0.13508683443069458, -0.01906447485089302, 0.06381011754274368, -0.029647449031472206, -0.013938614167273045, 0.04189802706241608, 0.00556623050943017, 0.04806235060095787, -0.07023581862449646, -0.1022505909204483, 0.05294876918196678, 0.008211824111640453, 0.0117034325376153, -0.02458816021680832, 0.0321180522441864, -0.0017651194939389825, 0.0788298174738884, -0.005198447033762932, -0.10586795955896378, -0.015817558392882347, -0.04230831563472748, -0.07281950116157532, -0.04708107188344002, 0.07008175551891327, -0.13595429062843323, 0.06859921663999557, 0.05899828299880028, -0.06859283894300461, 0.038537655025720596, -0.1345587521791458, 0.012424975633621216, 0.11258373409509659, 0.17700475454330444, -0.08846671134233475, -0.08726474642753601, 0.003149321535602212, 0.024041881784796715, 0.013081061653792858, -0.032343555241823196, -0.015024963766336441, 0.0035444064997136593, 0.04551025107502937, 0.03445655480027199, 0.11644719541072845, 0.050807856023311615, -0.07557553797960281, -0.05655834823846817, 0.13090838491916656, -0.10532215237617493, 0.04658188670873642, 0.0482199601829052, -0.048162806779146194, 0.086581751704216, 0.00702175498008728, 0.009825062938034534, -0.10756348073482513, 0.08998562395572662, -0.042038917541503906, 0.015493773855268955, -0.08052168041467667, -0.09296126663684845, 0.04962011054158211, -0.09416403621435165, -0.09203735738992691, -0.093882255256176, -0.06138509139418602, -0.08788181841373444, 0.03696828708052635, -0.042726997286081314, 0.01856064982712269, 0.015493476763367653, -0.04494740441441536, -0.0023519168607890606, 0.007780071813613176, 0.022221053019165993, -0.0511195994913578, 0.047634173184633255, -0.11198437213897705, 0.03474682196974754, 0.09758841246366501, 0.0329364612698555, -0.09596816450357437, 0.05379543453454971, -0.21127194166183472, 0.14318618178367615, -0.03633050248026848, 0.04537821561098099, -0.1394953578710556, 0.008445820771157742, -0.024118157103657722, -0.044535137712955475, -0.007391465362161398, 0.14648817479610443, -0.1020955890417099, 0.007719450164586306, 0.08091230690479279, -0.0584840327501297, -0.04722140356898308, 0.048415642231702805, -0.04613307863473892, 0.01288454607129097, 0.09937705844640732, 0.11677231639623642, -0.022636260837316513, -0.11615251004695892, -0.1062747985124588, -0.051437363028526306, -0.0651821494102478, 0.16080933809280396, 0.05139589309692383, -0.038936249911785126, 0.08482500910758972, -0.014252271503210068, -0.00015893006639089435, -0.026967866346240044, 0.009342453442513943, -0.02167942188680172, 0.017651883885264397, -0.0016659508692100644, -0.07319657504558563, 0.015324254520237446, -0.10430964082479477, 0.003702078480273485, -0.08128555864095688, -0.03377622365951538, 0.009111994877457619, -0.02091103605926037, 0.020611397922039032, -0.04584614932537079, 0.08125937730073929, -0.10213930159807205, -0.003259428311139345, -0.15679335594177246, -0.10539321601390839, 0.06038502976298332, -0.007513322401791811, 0.05579366534948349, -0.0692785456776619, -0.004284949041903019, 0.0009715771884657443, 0.025994213297963142, -0.021615350618958473, 0.04213650897145271, -0.02049100399017334, -0.028885813429951668, -0.12928588688373566, -0.02683212049305439, -0.02353397198021412, 0.10654713213443756, -0.11343157291412354, -0.025069959461688995, 0.16415219008922577, 0.11919205635786057, 0.05166177079081535, -0.04266970977187157, 0.07151132076978683, -0.03132820874452591, -0.02060713805258274, -0.08242353051900864, -0.02228599786758423, -0.004989445209503174, 0.021826347336173058, 0.10226022452116013, -0.16276320815086365, -0.10575541853904724, 0.08446881175041199, 0.00798108708113432, -0.09086837619543076, -0.03149516507983208, -0.05477960407733917, -0.01260401587933302, -0.09455087780952454, -0.04864523559808731, 0.03698404133319855, 0.06680616736412048, 0.08445682376623154, -0.06468848884105682, -0.0372375026345253, 0.02712438814342022, -0.022779174149036407, -0.08144855499267578, 0.053463831543922424, 0.029308892786502838, -0.12963202595710754, 0.09378029406070709, -0.01288976427167654, 0.055441610515117645, 0.10890845954418182, 0.04147704318165779, -0.09954877197742462, 0.0078048608265817165, 0.06604920327663422, 0.03156914934515953, 0.082661934196949, -0.011843618005514145, 0.013136295601725578, 0.07536450773477554, 0.0008462585392408073, -0.01925552263855934, -0.07265348732471466, 0.07819938659667969, 0.030340062454342842, -0.03539189323782921, 0.03289054334163666, -0.01788741908967495, 0.09027381986379623, 0.11424985527992249, 0.042603302747011185, 0.11215715855360031, -0.04620669409632683, -0.04956328496336937, -0.09316270798444748, 0.11713606864213943, -0.035993341356515884, -0.2662280201911926, -0.07545933127403259, -0.05773041769862175, -0.042625054717063904, -0.009930594824254513, 0.02661588229238987, -0.010360396467149258, -0.07622473686933517, -0.09326229244470596, 0.05309752747416496, 0.0718299075961113, -0.094099260866642, -0.11628016084432602, 0.023783540353178978, 0.006833963096141815, -0.07621566951274872, -0.0042882394045591354, 0.02423221617937088, -0.08668015897274017, 0.028350424021482468, 0.030857356265187263, 0.12855346500873566, 0.07131453603506088, -0.028765030205249786, 0.00785770546644926, -0.01753159426152706, 0.1732683926820755, -0.15430034697055817, 0.14034318923950195, 0.15305887162685394, 0.030338497832417488, 0.08549463003873825, 0.1880684792995453, -0.019329888746142387, -0.022667592391371727, 0.03757476061582565, 0.0802922174334526, -0.05678516998887062, -0.19896870851516724, -0.04924758896231651, -0.04480075463652611, 0.026147309690713882, 0.12950219213962555, 0.04544041305780411, 0.026605717837810516, 0.0837576687335968, -0.10266734659671783, 0.025098450481891632, 0.04045283794403076, 0.09882141649723053, 0.03919187933206558, 0.042707547545433044, 0.04246415197849274, -0.049115922302007675, -0.0322742685675621, 0.11826057732105255, 0.1133318766951561, 0.10732913762331009, -0.10575056076049805, 0.09816067665815353, 0.029387259855866432, 0.028067635372281075, -0.04699848219752312, 0.0033571585081517696, -0.03368472680449486, 0.06421054899692535, -0.011076298542320728, -0.08665282279253006, -0.008878173306584358, 0.06312624365091324, 0.1411788910627365, -0.017268307507038116, 0.012163576669991016, -0.022900613024830818, 0.10718926042318344, 0.2125575691461563, 0.013558519072830677, -0.18821021914482117, 0.016092054545879364, 0.030009210109710693, 0.0062357899732887745, -0.12017593532800674, -0.03419756516814232, 0.10443845391273499, -0.16903874278068542, 0.07936795800924301, -0.040756531059741974, 0.10899115353822708, -0.14263969659805298, -0.0323634147644043, 0.052818551659584045, 0.03691856935620308, -0.02958354540169239, 0.07818832248449326, -0.1512247771024704, 0.0822107121348381, 0.03738465532660484, 0.036282673478126526, -0.08247976005077362, 0.0258380975574255, 0.007987183518707752, -0.019244994968175888, 0.1434541493654251, -0.008737487718462944, -0.0007447153329849243, -0.12026022374629974, -0.10723360627889633, -0.01553510595113039, 0.0534135103225708, -0.060938287526369095, 0.1044137254357338, 0.010774488560855389, -0.031897496432065964, -0.07896440476179123, -0.060353055596351624, -0.07726605981588364, -0.1827373206615448, 0.03832186758518219, -0.01583404652774334, 0.011099809780716896, -0.015100040473043919, 0.03294382989406586, 0.023300984874367714, 0.10390391200780869, -0.059447359293699265, -0.08382091671228409, -0.15327352285385132, 0.05516504496335983, 0.07471844553947449, -0.03161276504397392, -0.029874233528971672, -0.07880394905805588, 0.15506024658679962, -0.03637371584773064, -0.0669810101389885, 0.03379904478788376, -0.05795126035809517, -0.11369382590055466, -0.05603819712996483, 0.11078798025846481, 0.042305927723646164, -0.010743111371994019, 0.015063853934407234, 0.05051969736814499, 0.010495534166693687, -0.06486363708972931, 0.04479936137795448, 0.08283068239688873, 0.11848128587007523, 0.1349187195301056, 0.030890194699168205, -0.16422373056411743, -0.12936119735240936, 0.01586729660630226, 0.03982566297054291, 0.08925172686576843, -0.08087480068206787, 0.10688065737485886, 0.03229083493351936, -0.09226301312446594, -0.21744206547737122, 0.07917607575654984, 0.05524594336748123, -0.023089809343218803, 0.004308738280087709, -0.14664453268051147, 0.12006402015686035, 0.04883275553584099, 0.00344964861869812, 0.04493742063641548, -0.26497283577919006, -0.07664405554533005, -0.02355305291712284, 0.040298912674188614, -0.1918797492980957, -0.16353711485862732, -0.0427425242960453, -0.05379669740796089, -0.16939707100391388, 0.08031773567199707, -0.018021708354353905, 0.03123003989458084, 0.05193209648132324, 0.059418413788080215, 0.061421919614076614, -0.04596923291683197, 0.09186819195747375, 0.03472713381052017, 0.049497589468955994, -0.07708800584077835, -0.08577626198530197, 0.06353221088647842, -0.09067901968955994, 0.13437731564044952, 0.05801665037870407, 0.017138758674263954, -0.06705658882856369, -0.014022218994796276, -0.047532837837934494, 0.0901680663228035, -0.02794530801475048, -0.0438888780772686, -0.07937789708375931, 0.0429900661110878, 0.13504129648208618, 0.018210394307971, 0.058880217373371124, -0.049321673810482025, -0.007748068310320377, 0.13901755213737488, 0.11678700149059296, -0.010775500908493996, -0.12694911658763885, -0.04468932002782822, 0.006099442020058632, 0.027615385130047798, -0.11618585884571075, 0.05704069882631302, 0.0816042572259903, 0.011054080910980701, 0.11210636794567108, -0.013052680529654026, -0.10385754704475403, 0.022115282714366913, 0.05874716117978096, -0.10601873695850372, -0.12703289091587067, 0.018469354137778282, 0.08966255187988281, -0.08607205003499985, -0.10244293510913849, 0.12066460400819778, 0.0010420267935842276, -0.0201459601521492, 0.0061720553785562515, 0.0789816677570343, 0.0528588704764843, 0.06127499043941498, 0.01852261647582054, 0.03532613068819046, -0.06609103083610535, 0.11458778381347656, 0.1529170423746109, -0.15518037974834442, 0.002868908690288663, 0.12189485877752304, -0.05155154690146446, -0.012529502622783184, -0.041804250329732895, 0.031091516837477684, -0.0124503867700696, -0.0282570943236351, 0.033361371606588364, -0.03996141254901886, 0.028811324387788773, 0.10064112395048141, -0.013368422165513039, 0.07038474082946777, 0.02869602106511593, -0.012949598021805286, -0.12974311411380768, 0.122871033847332, 0.03478663042187691, 0.049044087529182434, -0.10472617298364639, 0.03306858614087105, 0.02601560764014721, 0.027342427521944046, 0.004939074628055096, -0.05985969305038452, -0.07288206368684769, -0.00715222954750061, -0.010402909480035305, 0.10580774396657944, -0.08738955855369568, -0.007139784283936024, -0.01912691630423069, 0.01186562143266201, -0.013249630108475685, 0.02318316511809826, -0.04780562222003937, -0.07183842360973358, -0.03318588435649872, 0.1316337287425995, -0.154000923037529, -0.018560724332928658, 0.0646464079618454, -0.0834420844912529, 0.0862891674041748, 0.01073083933442831, -0.05525016039609909, -0.0753181204199791, -0.18837003409862518, -0.04428961127996445, 0.02926604263484478, 0.05158847197890282, 0.05213518440723419, -0.07978580892086029, 0.060096558183431625, -0.005900287069380283, -0.0890156552195549, -0.015804322436451912, -0.006810364779084921, -0.11503267288208008, 0.06682763248682022, -0.07350893318653107, -0.035199522972106934, -0.05112803354859352, 0.12482115626335144, 0.048551615327596664, -0.0006230109720490873, 0.08017468452453613, -0.057015642523765564, 0.08364026993513107, -0.15457913279533386, -0.0435534343123436, -0.0035595193039625883, -0.03457273915410042, -0.05610538274049759, -0.0012242922093719244, 0.07759546488523483, -0.0243983194231987, 0.12246445566415787, 0.12466032803058624, 0.029816072434186935, 0.044974684715270996, -0.003999135922640562, 0.025952287018299103, 0.048055537045001984, -0.039277154952287674, -0.02403836138546467, -0.020815474912524223, 0.06647365540266037, 0.0018638722831383348, 0.009727377444505692, 0.09907558560371399, 0.08895521610975266, 0.21782073378562927, 0.1353319138288498, 0.00513323163613677, 0.04774988070130348, -0.06229761615395546, -0.05693038925528526, 0.09708917886018753, -0.06789853423833847, 0.0748540535569191, -0.09568540006875992, 0.015984714031219482, 0.11477353423833847, -0.1567746102809906, 0.06467577815055847, -0.003445646958425641, -0.009140650741755962, -0.03072514571249485, -0.12606747448444366, -0.0628596693277359, -0.03163052722811699, -0.0015148093225434422, -0.11259282380342484, 0.07825284451246262, 0.12340740859508514, 0.0003102615592069924, 0.010915663093328476, 0.08751370012760162, -0.07995101064443588, -0.08102236688137054, 0.09414339810609818, 0.016383489593863487, 0.05423323065042496, 0.050076402723789215, 0.04000549390912056, 0.0581212043762207, 0.02042284980416298, 0.09317274391651154, 0.0900413990020752, 0.10467453300952911, 0.04166227951645851, -0.09016205370426178, -0.07226387411355972, 0.0344945453107357, -0.008352085947990417, -0.030376454815268517, 0.12146607786417007, 0.0796491950750351, 0.00846133939921856, -0.02267981320619583, 0.18857727944850922, -0.01290195807814598, -0.033563803881406784, -0.15090002119541168, 0.0326649509370327, -0.03218140825629234, -0.012025215663015842, -0.010025828145444393, -0.1566750854253769, 0.01493709348142147, 0.1182858794927597, 0.08400528877973557, -0.04670710489153862, -0.008869443088769913, -0.03125505521893501, 0.012091996148228645, 0.008909051306545734, 0.058870892971754074, 0.02265218459069729, 0.2089216709136963, -0.047134581953287125, 0.014299960806965828, -0.04588162899017334, -0.02650618925690651, -0.055968768894672394, 0.09744230657815933, -0.02432195283472538, 0.006391911767423153, -0.06639242172241211, 0.13056473433971405, -0.012045333161950111, -0.2039158195257187, 0.041478171944618225, -0.09348438680171967, -0.07856747508049011, 0.011972669512033463, -0.007432259153574705, 0.010608329437673092, 0.032301463186740875, 0.015751689672470093, -0.05941206216812134, 0.08007699996232986, 0.0281034205108881, -0.07345893979072571, 0.0012546370271593332, 0.00488766934722662, -0.10725666582584381, 0.2567853331565857, -0.029838867485523224, 0.025233149528503418, 0.09451912343502045, -0.02930450439453125, -0.13735002279281616, -0.014310312457382679, 0.07316189259290695, -0.03233181685209274, 0.011350790970027447, 0.1250094473361969, 0.005424628499895334, 0.12382915616035461, 0.08933183550834656, -0.1023300364613533, 0.05005956441164017, -0.03524621203541756, 0.02130269631743431, -0.12274985015392303, 0.02566586248576641, -0.0876547321677208, 0.10591430962085724, 0.14557558298110962, -0.009272132068872452, 0.01383904181420803, -0.05172582343220711, -0.013149170204997063, 0.0029626840259879827, 0.09366630017757416, -0.010851670987904072, -0.055902108550071716, -0.00016142948879860342, -0.1290864199399948, 0.07568497955799103, -0.09712836146354675, -0.04182156175374985, 0.030594296753406525, -0.013820799067616463, -0.0236322283744812, 0.10255146771669388, 0.031792379915714264, 0.013923002406954765, -0.05408201366662979, -0.09547831118106842, 0.03264258801937103, 0.1820485144853592, -0.015820566564798355, -0.015168039128184319 ]
f3d6cf31861d2d669fd43c7a872b928c190ce865
# Dataset Card for abdomen-mri ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/abdomen-mri - **Point of Contact:** [email protected] ### Dataset Summary abdomen-mri ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/abdomen-mri ### Citation Information ``` @misc{ abdomen-mri, title = { abdomen mri Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/abdomen-mri } }, url = { https://universe.roboflow.com/object-detection/abdomen-mri }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/abdomen-mri
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T08:41:19+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "abdomen-mri", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "abdomen-MRI", "1": 0}}}}]}]}, "tags": ["rf100"]}
2023-03-30T08:41:54+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for abdomen-mri The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary abdomen-mri ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for abdomen-mri\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nabdomen-mri", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for abdomen-mri\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nabdomen-mri", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for abdomen-mri\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nabdomen-mri### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.017431844025850296, 0.16680772602558136, -0.007764593698084354, 0.02070276252925396, 0.10118206590414047, 0.0010458657052367926, 0.05923410505056381, 0.08118485659360886, 0.0024875872768461704, 0.17382016777992249, -0.0035201639402657747, 0.07588295638561249, 0.11565206199884415, 0.08760131150484085, -0.01935175433754921, -0.15617728233337402, 0.05867946147918701, -0.06342516094446182, 0.06474523991346359, 0.07167613506317139, 0.07589970529079437, -0.13867005705833435, 0.08532346040010452, -0.03943847864866257, -0.021963387727737427, 0.027345241978764534, -0.056603919714689255, -0.043602537363767624, 0.004536641761660576, 0.04196387156844139, 0.02154986932873726, 0.026183227077126503, 0.03592100366950035, -0.19149959087371826, 0.020283281803131104, 0.10459405928850174, 0.03590468689799309, 0.02340427227318287, 0.15764541923999786, -0.08425631374120712, 0.056510213762521744, -0.12598831951618195, 0.03726417198777199, 0.01668190397322178, -0.11862882226705551, -0.11182210594415665, -0.12083259224891663, 0.057947009801864624, 0.11176145076751709, 0.05176079273223877, -0.017489906400442123, 0.07453896105289459, -0.017025625333189964, 0.058310799300670624, 0.11085715889930725, -0.06538180261850357, -0.04046717286109924, 0.08181905001401901, 0.03577331453561783, 0.10483180731534958, -0.11104631423950195, -0.016605565324425697, -0.0024021356366574764, -0.02492695115506649, 0.006257160101085901, -0.05725187063217163, -0.03882426396012306, -0.0057820724323391914, -0.10092427581548691, -0.14362329244613647, 0.14678776264190674, 0.05026889219880104, -0.04981638118624687, -0.14331381022930145, -0.004288220312446356, 0.057175252586603165, -0.035287220031023026, -0.008552778512239456, 0.04644486680626869, -0.002841836540028453, 0.05965098738670349, -0.0709582045674324, -0.09949104487895966, 0.050170402973890305, 0.03903947025537491, 0.03417760506272316, -0.02048429287970066, 0.03540419042110443, 0.018421288579702377, 0.07108386605978012, 0.00021040542924311012, -0.10639200359582901, -0.02424996718764305, -0.03858094662427902, -0.055561039596796036, -0.044720251113176346, 0.06222247704863548, -0.15602754056453705, 0.06365877389907837, 0.05700734257698059, -0.06709408015012741, 0.03487236052751541, -0.12715545296669006, 0.01859351433813572, 0.10576982796192169, 0.18206296861171722, -0.08429912477731705, -0.09206906706094742, -0.0031674467027187347, 0.04058443754911423, 0.01999664306640625, -0.03225771710276604, -0.020515205338597298, 0.003440061118453741, 0.03031517006456852, 0.035642895847558975, 0.10993470996618271, 0.04657413065433502, -0.07094895094633102, -0.06620576977729797, 0.1303260624408722, -0.0994599387049675, 0.050552137196063995, 0.058812227100133896, -0.056912776082754135, 0.0690433457493782, 0.011360534466803074, 0.0168687105178833, -0.11511174589395523, 0.10097295790910721, -0.027265425771474838, 0.016265977174043655, -0.09288930147886276, -0.09436886757612228, 0.05370129644870758, -0.08375740051269531, -0.08270269632339478, -0.07952198386192322, -0.0514964833855629, -0.08739734441041946, 0.04487093165516853, -0.04098900780081749, 0.03130803629755974, 0.016980819404125214, -0.03666999936103821, -0.012134970165789127, 0.008120103739202023, 0.04108963534235954, -0.05459544435143471, 0.03807530552148819, -0.09435708075761795, 0.03608354181051254, 0.11329483240842819, 0.041473276913166046, -0.09808016568422318, 0.0625898465514183, -0.2026800513267517, 0.13662594556808472, -0.052544619888067245, 0.023782974109053612, -0.13460008800029755, 0.015160168521106243, -0.017618823796510696, -0.03759852796792984, 0.0013023335486650467, 0.13970743119716644, -0.07705080509185791, 0.016677623614668846, 0.05632710084319115, -0.05495470017194748, -0.05925150588154793, 0.034515008330345154, -0.04094992205500603, 0.0011609590146690607, 0.07817354053258896, 0.12659689784049988, -0.05063895136117935, -0.11462295055389404, -0.10931002348661423, -0.042700376361608505, -0.03983699530363083, 0.15405596792697906, 0.07196680456399918, -0.03991042822599411, 0.10044009983539581, -0.008941720239818096, -0.01297344546765089, -0.04307909682393074, 0.012714388780295849, -0.036559801548719406, 0.018916932865977287, -0.007893914356827736, -0.08536086231470108, 0.01947815716266632, -0.09722670167684555, 0.006890028715133667, -0.07970500737428665, -0.041183970868587494, 0.013592465780675411, -0.028471089899539948, 0.017572378739714622, -0.0343494787812233, 0.0920669287443161, -0.13491199910640717, -0.0033180962782353163, -0.16132746636867523, -0.10720151662826538, 0.06045110523700714, -0.03617464005947113, 0.04143961891531944, -0.07853291928768158, -0.009098553098738194, 0.022883309051394463, 0.032099027186632156, -0.01898728683590889, 0.043416667729616165, -0.019589116796851158, -0.042285170406103134, -0.12780408561229706, -0.0466499887406826, -0.022013969719409943, 0.10996263474225998, -0.1230112761259079, -0.025748055428266525, 0.1409093141555786, 0.11860865354537964, 0.04233634099364281, -0.048419732600450516, 0.07696396112442017, -0.025017857551574707, -0.019943982362747192, -0.08083377778530121, -0.00763284508138895, -0.002839231863617897, 0.031016908586025238, 0.08450044691562653, -0.16492390632629395, -0.13738729059696198, 0.08292001485824585, 0.013947365805506706, -0.08197971433401108, -0.05137832090258598, -0.04980434104800224, -0.020999718457460403, -0.09111989289522171, -0.030639411881566048, 0.033648423850536346, 0.07153195887804031, 0.0862872526049614, -0.06688903272151947, -0.031933195888996124, 0.024637222290039062, -0.0204616729170084, -0.08279035985469818, 0.0658704936504364, 0.056354038417339325, -0.12126286327838898, 0.10327436774969101, -0.01777590811252594, 0.03684764355421066, 0.09037131816148758, 0.038121819496154785, -0.11714629083871841, 0.01934734731912613, 0.07574814558029175, 0.029758410528302193, 0.08822474628686905, -0.028304988518357277, 0.016177471727132797, 0.07903015613555908, -0.01598786935210228, -0.016450226306915283, -0.07980989664793015, 0.07841678708791733, 0.037608858197927475, -0.030731497332453728, 0.037554625421762466, -0.014753920957446098, 0.07896383851766586, 0.09926972538232803, 0.06236542388796806, 0.11649192124605179, -0.04521374776959419, -0.059753064066171646, -0.08794607222080231, 0.12174438685178757, -0.023132722824811935, -0.2591665983200073, -0.07318425178527832, -0.07331452518701553, -0.058765020221471786, -0.009139261208474636, 0.0319410115480423, 0.0008463336271233857, -0.08274080604314804, -0.09867782890796661, 0.054393280297517776, 0.06315789371728897, -0.1075466051697731, -0.11935374140739441, 0.03513834998011589, 0.00788167305290699, -0.07454671710729599, -0.0012582233175635338, 0.025620898231863976, -0.051452334970235825, 0.011714034713804722, 0.04324290156364441, 0.13108456134796143, 0.06022939085960388, -0.020187655463814735, 0.0063021183013916016, -0.004731881897896528, 0.17359484732151031, -0.15695475041866302, 0.10223347693681717, 0.15868520736694336, 0.012326831929385662, 0.07585670799016953, 0.19136475026607513, -0.014817396178841591, -0.01892508566379547, 0.024908173829317093, 0.07780545204877853, -0.058748066425323486, -0.19467931985855103, -0.06059177964925766, -0.04865081608295441, 0.021034331992268562, 0.1346038281917572, 0.03749002888798714, 0.025370506569743156, 0.0922321081161499, -0.1093003898859024, 0.030141355469822884, 0.026790164411067963, 0.10522827506065369, 0.041567347943782806, 0.042614806443452835, 0.04366881400346756, -0.04140166565775871, -0.033938243985176086, 0.09742439538240433, 0.11459465324878693, 0.11146994680166245, -0.1024121418595314, 0.09867597371339798, 0.031367845833301544, 0.02598569355905056, -0.041740287095308304, -0.0033616896253079176, -0.03675129637122154, 0.05762304365634918, -0.005565478932112455, -0.10231231898069382, -0.0038092886097729206, 0.08656458556652069, 0.13527631759643555, -0.01827937178313732, 0.006454255431890488, -0.038429535925388336, 0.0811573937535286, 0.23995089530944824, 0.0095798559486866, -0.20384511351585388, 0.01804129034280777, 0.038188498467206955, 0.02381676249206066, -0.12505382299423218, -0.04191119223833084, 0.08183722198009491, -0.16479571163654327, 0.05921102687716484, -0.04303867742419243, 0.11100170761346817, -0.14446453750133514, -0.038029976189136505, 0.06011568009853363, 0.03566230461001396, -0.02261599712073803, 0.08073428273200989, -0.12211359292268753, 0.07405853271484375, 0.04212024807929993, 0.03614573925733566, -0.08868930488824844, 0.03733990713953972, 0.006933864206075668, -0.012420784682035446, 0.15094856917858124, -0.019712630659341812, 0.0020417128689587116, -0.1360359489917755, -0.1148444190621376, -0.0173724927008152, 0.05560116097331047, -0.07180510461330414, 0.09877288341522217, 0.017589261755347252, -0.033547233790159225, -0.08032786846160889, -0.042243435978889465, -0.0698031634092331, -0.18965665996074677, 0.04551995173096657, -0.007332043722271919, 0.01604718342423439, -0.011835680343210697, 0.030982883647084236, 0.03050142154097557, 0.12919850647449493, -0.0404498465359211, -0.0895562693476677, -0.14778241515159607, 0.05669596046209335, 0.08738785982131958, -0.017711125314235687, -0.024559935554862022, -0.09098289906978607, 0.1757446974515915, -0.02966778352856636, -0.0642872303724289, 0.028177352622151375, -0.06451927125453949, -0.11512566357851028, -0.06252917647361755, 0.10235217213630676, 0.027570011094212532, -0.006468137726187706, 0.003584594465792179, 0.06101002171635628, 0.0074157677590847015, -0.044236961752176285, 0.03218095004558563, 0.09917307645082474, 0.14207389950752258, 0.1304977387189865, 0.006027474999427795, -0.1326160579919815, -0.1242252066731453, -0.0022030931431800127, 0.03283341974020004, 0.1005849540233612, -0.07140900194644928, 0.1054692268371582, 0.0421871691942215, -0.08543722331523895, -0.2264542579650879, 0.0859329029917717, 0.06771165877580643, -0.011815881356596947, -0.009187492541968822, -0.14500917494297028, 0.1310969442129135, 0.04142017289996147, -0.002662697108462453, 0.07330787926912308, -0.2676113545894623, -0.07277089357376099, -0.023255834355950356, 0.03834431618452072, -0.23311592638492584, -0.1696424037218094, -0.050475310534238815, -0.05408557876944542, -0.14721724390983582, 0.05028901994228363, -0.00027690190472640097, 0.045077089220285416, 0.044232141226530075, 0.034358616918325424, 0.06632524728775024, -0.05093442648649216, 0.10330906510353088, 0.014726746827363968, 0.03820178657770157, -0.0714946761727333, -0.08301805704832077, 0.03517609462141991, -0.0936785489320755, 0.14371946454048157, 0.04517229273915291, 0.0171325895935297, -0.05598841607570648, -0.018974822014570236, -0.03513072058558464, 0.08576188236474991, -0.02773168496787548, -0.04550136253237724, -0.08691216260194778, 0.04465600848197937, 0.13268399238586426, 0.028676267713308334, 0.08778582513332367, -0.0509590208530426, -0.012156310491263866, 0.16162337362766266, 0.10185848921537399, 0.005701595917344093, -0.1455632448196411, -0.043256696313619614, 0.003765478264540434, 0.04097612574696541, -0.12020398676395416, 0.045069463551044464, 0.0843077078461647, 0.013995278626680374, 0.10957081615924835, -0.010085521265864372, -0.09945063292980194, 0.010121920146048069, 0.047054510563611984, -0.10106965899467468, -0.11424907296895981, 0.022244395688176155, 0.11032713949680328, -0.09601511806249619, -0.11816570162773132, 0.1151825338602066, -0.0033446657471358776, -0.016309663653373718, 0.0012271730229258537, 0.07800298929214478, 0.052518196403980255, 0.060687631368637085, 0.016675088554620743, 0.03794685751199722, -0.06427577137947083, 0.11680737137794495, 0.15345646440982819, -0.15931403636932373, -0.0014304352225735784, 0.12138625979423523, -0.05033599212765694, -0.022316623479127884, -0.027988644316792488, 0.036892157047986984, -0.006311231292784214, -0.03239283338189125, 0.03357790783047676, -0.0384269580245018, 0.030388321727514267, 0.07923343032598495, -0.002933226525783539, 0.05178755894303322, 0.02467745542526245, -0.015700489282608032, -0.14217858016490936, 0.1345057487487793, 0.02171945385634899, 0.05330469086766243, -0.08955641835927963, 0.007417487446218729, 0.028800787404179573, 0.004746684338897467, 0.009794043377041817, -0.057893089950084686, -0.07233020663261414, 0.0009778226958587766, -0.025504644960165024, 0.10045260936021805, -0.08347010612487793, -0.010968035086989403, -0.01948663778603077, 0.012683490291237831, -0.012200625613331795, 0.02874268777668476, -0.047297168523073196, -0.07876311242580414, -0.04564826563000679, 0.12675413489341736, -0.14467257261276245, -0.026290010660886765, 0.05029933899641037, -0.09185364097356796, 0.06093425303697586, 0.011817466467618942, -0.041585203260183334, -0.096390500664711, -0.17408081889152527, -0.036487653851509094, 0.02607862837612629, 0.06474681943655014, 0.04249044507741928, -0.07778333872556686, 0.051331136375665665, -0.005837101023644209, -0.09574943780899048, -0.01755470223724842, -0.002996741095557809, -0.11353927105665207, 0.04968860000371933, -0.08194875717163086, -0.02895788475871086, -0.04129214584827423, 0.13780741393566132, 0.05576987564563751, 0.012604651972651482, 0.07407570630311966, -0.05037817358970642, 0.097353495657444, -0.1288437694311142, -0.0356866680085659, -0.0033156864810734987, -0.033641282469034195, -0.07268641889095306, 0.0016667696181684732, 0.07696560025215149, -0.034958381205797195, 0.12654592096805573, 0.12851673364639282, 0.043494630604982376, 0.04500899463891983, -0.008751396089792252, 0.06491895765066147, 0.05922239273786545, -0.023622162640094757, -0.013092143461108208, -0.01751982793211937, 0.07563552260398865, 0.02218613214790821, 0.015579301863908768, 0.10412786155939102, 0.05743645504117012, 0.2373753935098648, 0.13972674310207367, 0.017160337418317795, 0.04328753054141998, -0.08192455023527145, -0.05946120619773865, 0.10797005146741867, -0.05596930533647537, 0.08682170510292053, -0.10567912459373474, 0.04852543771266937, 0.09766612946987152, -0.1537184864282608, 0.06407983601093292, -0.012631826102733612, -0.011602209880948067, -0.028097515925765038, -0.10918430984020233, -0.06127581000328064, -0.01922355778515339, 0.0022151938173919916, -0.10961949080228806, 0.08585488796234131, 0.12752223014831543, -0.0009006343316286802, 0.013575222343206406, 0.10296845436096191, -0.06323403865098953, -0.07572223246097565, 0.08328434079885483, 0.01635325327515602, 0.05483796447515488, 0.03877914324402809, 0.041280221194028854, 0.07623455673456192, -0.0004716666298918426, 0.08868566155433655, 0.08871157467365265, 0.09212351590394974, 0.03535456210374832, -0.06865721940994263, -0.07633528858423233, 0.032331258058547974, -0.013513131998479366, -0.01333312876522541, 0.1480618566274643, 0.07084552943706512, 0.01513703167438507, -0.026139646768569946, 0.17607057094573975, -0.020032742992043495, -0.012782132253050804, -0.13727039098739624, 0.034060586243867874, -0.03489857167005539, -0.00900778453797102, -0.016916528344154358, -0.15305674076080322, 0.006618641782552004, 0.13256074488162994, 0.07619734108448029, -0.05041011795401573, -0.014121931977570057, -0.011164810508489609, 0.007592422887682915, -0.022659527137875557, 0.038418225944042206, 0.012062004767358303, 0.20064973831176758, -0.06003277003765106, 0.016018981114029884, -0.04288604110479355, -0.03349500149488449, -0.06129160895943642, 0.10133136808872223, -0.015127601101994514, 0.0018916719127446413, -0.07426334172487259, 0.11215309798717499, -0.005508367903530598, -0.19730554521083832, 0.06128787621855736, -0.09639587998390198, -0.08287213742733002, 0.010173025541007519, -0.0219559483230114, 0.006471026688814163, 0.02982506901025772, 0.006497287657111883, -0.06633689254522324, 0.0725693553686142, 0.02622291073203087, -0.06585651636123657, -0.009730080142617226, -0.0026696529239416122, -0.08991813659667969, 0.26688021421432495, -0.02908063307404518, 0.033159878104925156, 0.08443623781204224, -0.021268757060170174, -0.1353815495967865, -0.02667068876326084, 0.08421846479177475, -0.052658356726169586, 0.01969912461936474, 0.12718309462070465, -0.010197049006819725, 0.15229642391204834, 0.08522560447454453, -0.09873031824827194, 0.05631709471344948, -0.0312790721654892, 0.010564295575022697, -0.11355219036340714, 0.005415079649537802, -0.0918613150715828, 0.11106137186288834, 0.1432686448097229, -0.002992001362144947, -0.007834607735276222, -0.04023456946015358, 0.0062612625770270824, 0.0034776951652020216, 0.09926405549049377, -0.001358754700049758, -0.05983024090528488, 0.009906964376568794, -0.14159542322158813, 0.08639396727085114, -0.13177388906478882, -0.05167105421423912, 0.040380194783210754, -0.016930703073740005, -0.012701832689344883, 0.07704299688339233, 0.03631681576371193, 0.00011118402471765876, -0.061748627573251724, -0.1234646737575531, 0.03672181814908981, 0.16513872146606445, -0.011719221249222755, -0.02381102368235588 ]
48663037c6ee409342cb8573eb736d3bdc453e85
# Dataset Card for cell-towers ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/cell-towers - **Point of Contact:** [email protected] ### Dataset Summary cell-towers ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/cell-towers ### Citation Information ``` @misc{ cell-towers, title = { cell towers Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/cell-towers } }, url = { https://universe.roboflow.com/object-detection/cell-towers }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/cell-towers
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T09:02:35+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "cell-towers", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "pieces", "1": "joint", "2": "side"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T09:02:54+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for cell-towers The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary cell-towers ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for cell-towers\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncell-towers", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for cell-towers\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncell-towers", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 22, 22, 10, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for cell-towers\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncell-towers### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.015864796936511993, 0.15500734746456146, -0.008810964412987232, 0.02119315229356289, 0.11097833514213562, 0.002328505041077733, 0.05320388823747635, 0.07767068594694138, 0.006003799848258495, 0.16231565177440643, -0.017191683873534203, 0.0822342112660408, 0.13044194877147675, 0.0987931564450264, -0.02344297431409359, -0.15134483575820923, 0.05573531985282898, -0.06341103464365005, 0.06895850598812103, 0.06623118370771408, 0.0675979033112526, -0.13078878819942474, 0.10188625752925873, -0.037670064717531204, -0.05074169486761093, 0.013743175193667412, -0.026579752564430237, -0.04295970872044563, 0.0227508544921875, 0.02512534148991108, 0.03441207855939865, 0.01589907705783844, 0.038149695843458176, -0.1918845772743225, 0.02512374334037304, 0.11191929131746292, 0.016486383974552155, 0.03933648020029068, 0.12766540050506592, -0.0859537348151207, 0.05758921429514885, -0.1291963756084442, 0.025818906724452972, 0.0184759721159935, -0.12164975702762604, -0.09608999639749527, -0.13070541620254517, 0.040017012506723404, 0.11592666804790497, 0.04512988030910492, -0.007039777468889952, 0.06476176530122757, 0.0016878960886970162, 0.061898019164800644, 0.12964028120040894, -0.0841754898428917, -0.0508028045296669, 0.10304981470108032, 0.030616117641329765, 0.10837633162736893, -0.10818503797054291, -0.010746266692876816, -0.006065920926630497, -0.028592132031917572, 0.017673855647444725, -0.07717949897050858, -0.0424063466489315, 0.0033155949786305428, -0.09255781769752502, -0.1261204332113266, 0.14298558235168457, 0.050732992589473724, -0.049441125243902206, -0.12129725515842438, -0.03464433550834656, 0.04043187201023102, -0.026530733332037926, -0.017138535156846046, 0.05058436840772629, -0.0019688867032527924, 0.07015795260667801, -0.060029592365026474, -0.10177995264530182, 0.04309028387069702, -0.0043246247805655, 0.02485233172774315, -0.03198353201150894, 0.04004227742552757, 0.0041874246671795845, 0.08075565844774246, -0.009761967696249485, -0.11834701150655746, -0.03250439465045929, -0.0395333394408226, -0.0682646855711937, -0.037788111716508865, 0.06712526828050613, -0.12948299944400787, 0.06178969144821167, 0.04486607015132904, -0.08002752810716629, 0.039187319576740265, -0.12313640117645264, 0.018872620537877083, 0.09862853586673737, 0.18350577354431152, -0.0724368691444397, -0.09970442950725555, -0.007912839762866497, 0.01964177004992962, 0.027370061725378036, -0.04129078611731529, -0.03669501096010208, -0.01093309000134468, 0.025619076564908028, 0.03500999137759209, 0.09971003979444504, 0.02774076722562313, -0.06737969070672989, -0.05378107726573944, 0.10899151861667633, -0.10407231748104095, 0.06106992065906525, 0.048013702034950256, -0.027310438454151154, 0.07535137236118317, 0.020548474043607712, 0.012111763469874859, -0.10468745231628418, 0.07685322314500809, -0.04507320746779442, 0.02291545830667019, -0.09753181040287018, -0.08661878108978271, 0.04434681683778763, -0.0984942689538002, -0.09143850952386856, -0.08774437010288239, -0.05561517924070358, -0.0858321264386177, 0.03943617269396782, -0.0449843555688858, 0.02941085956990719, 0.015268214978277683, -0.046539124101400375, -0.0017300290055572987, 0.009107567369937897, 0.03047272190451622, -0.048143420368433, 0.03995013236999512, -0.10165135562419891, 0.0376284085214138, 0.08858487010002136, 0.03572696074843407, -0.07528302073478699, 0.05966470018029213, -0.20406657457351685, 0.12159121036529541, -0.033250026404857635, 0.03345944359898567, -0.13706058263778687, 0.019494863227009773, -0.02836369350552559, -0.03929133340716362, -0.0028502342756837606, 0.1315160095691681, -0.09789209067821503, 0.01298853475600481, 0.08384914696216583, -0.05164040997624397, -0.04932640492916107, 0.03034386970102787, -0.041443172842264175, 0.01891009323298931, 0.08295708894729614, 0.11227256059646606, -0.019299592822790146, -0.12310294806957245, -0.11168886721134186, -0.04741933196783066, -0.05071225389838219, 0.12776723504066467, 0.05386241897940636, -0.039547715336084366, 0.08345331996679306, -0.012110290117561817, -0.02047688327729702, -0.02732674404978752, 0.016291417181491852, -0.03244379162788391, 0.0174394678324461, 0.008524867706000805, -0.07168332487344742, 0.0147085627540946, -0.10426028072834015, 0.014676341786980629, -0.07453816384077072, -0.04161975160241127, 0.009637626819312572, -0.021519532427191734, 0.022749800235033035, -0.03984331712126732, 0.09533137828111649, -0.10327290743589401, -0.004735032096505165, -0.14571702480316162, -0.09499849379062653, 0.06234580650925636, 0.010384425520896912, 0.04380117729306221, -0.07399464398622513, -0.0008821694646030664, 0.01641533523797989, 0.03432171791791916, -0.013344214297831059, 0.05055275931954384, -0.025713680312037468, -0.03289789333939552, -0.13288404047489166, -0.015186603181064129, -0.02348369173705578, 0.09636973589658737, -0.12802724540233612, -0.023871729150414467, 0.161443293094635, 0.11257876455783844, 0.053708482533693314, -0.05100524052977562, 0.06058640405535698, -0.016322365030646324, -0.035169508308172226, -0.07521242648363113, -0.016296999529004097, -0.010229186154901981, 0.033883120864629745, 0.09568768739700317, -0.2038116157054901, -0.12244588136672974, 0.07896753400564194, 0.004092777147889137, -0.08541855961084366, -0.05597924068570137, -0.03773106634616852, -0.011367837898433208, -0.0942179411649704, -0.049869880080223083, 0.04938159137964249, 0.05858992040157318, 0.08983352780342102, -0.061939358711242676, -0.039687130600214005, 0.027181440964341164, -0.014487186446785927, -0.07778935134410858, 0.04140283167362213, 0.05440482869744301, -0.10279282927513123, 0.09835904836654663, 0.014836219139397144, 0.04316215589642525, 0.12074331194162369, 0.03591933473944664, -0.09630683064460754, -0.0164759773761034, 0.07411914318799973, 0.02951565384864807, 0.1070210412144661, -0.03619345277547836, 0.00743548758327961, 0.0731317400932312, 0.0038409128319472075, -0.030857669189572334, -0.09037383645772934, 0.08059855550527573, 0.03279063105583191, -0.036653783172369, 0.055987074971199036, -0.026054641231894493, 0.0790480449795723, 0.10139923542737961, 0.038582004606723785, 0.08753856271505356, -0.0517890639603138, -0.060825884342193604, -0.09500053524971008, 0.12390695512294769, -0.04513322189450264, -0.24204358458518982, -0.08360665291547775, -0.08008351922035217, -0.04621356353163719, 0.0010578619549050927, 0.026950636878609657, 0.00487668439745903, -0.07634254544973373, -0.08566842973232269, 0.0451529324054718, 0.07468577474355698, -0.09759454429149628, -0.09533262252807617, 0.019202403724193573, -0.0038686529733240604, -0.08225542306900024, -0.007712012156844139, 0.02311522513628006, -0.07747025787830353, 0.0203811377286911, 0.03651595488190651, 0.13607105612754822, 0.08577340096235275, -0.023800726979970932, 0.010498802177608013, -0.01593460515141487, 0.16537898778915405, -0.15527956187725067, 0.1351313591003418, 0.16519710421562195, 0.024095013737678528, 0.09006311744451523, 0.2015766203403473, -0.01593584381043911, -0.002401038771495223, 0.014449338428676128, 0.06556724011898041, -0.062486860901117325, -0.19505198299884796, -0.045590590685606, -0.05647977441549301, 0.019565174356102943, 0.10240945965051651, 0.042643893510103226, 0.040902331471443176, 0.08711627125740051, -0.09050609916448593, 0.022642970085144043, 0.04496757313609123, 0.10038353502750397, 0.04197277873754501, 0.03185276687145233, 0.04914945363998413, -0.04245147109031677, -0.02920660935342312, 0.10272698849439621, 0.1405353844165802, 0.12897999584674835, -0.09288793057203293, 0.11013183742761612, 0.02603238634765148, 0.018671203404664993, -0.043823614716529846, 0.0021992314141243696, -0.03581889346241951, 0.057630859315395355, -0.013512291945517063, -0.09419494867324829, -0.00543349189683795, 0.07173605263233185, 0.12040974944829941, -0.00429735891520977, 0.017294708639383316, 0.0010423928033560514, 0.09454862028360367, 0.20340122282505035, 0.024550098925828934, -0.18378585577011108, 0.03388291597366333, 0.0336492545902729, 0.021947350353002548, -0.13117238879203796, -0.03214995190501213, 0.12695127725601196, -0.1617877185344696, 0.06531417369842529, -0.04953519627451897, 0.10716743767261505, -0.1319827437400818, -0.029894916340708733, 0.04248739406466484, 0.04279518127441406, -0.02720051445066929, 0.0704779177904129, -0.11551542580127716, 0.09534081071615219, 0.04023785889148712, 0.03493400663137436, -0.07882477343082428, 0.04402067884802818, 0.011653966270387173, -0.003648836398497224, 0.1377492994070053, -0.0040770941413939, -0.04058365523815155, -0.13400664925575256, -0.09570159763097763, -0.015927718952298164, 0.059342529624700546, -0.06003774702548981, 0.10474427789449692, 0.006163773592561483, -0.03774254396557808, -0.0655994862318039, -0.0557095929980278, -0.047569502145051956, -0.1740158498287201, 0.046155598014593124, -0.0055403257720172405, 0.014180255122482777, -0.017994623631238937, 0.03958297520875931, 0.013714661821722984, 0.08160119503736496, -0.08207321166992188, -0.07740189880132675, -0.14676091074943542, 0.013380934484302998, 0.049397677183151245, -0.03446172922849655, -0.02518640272319317, -0.08429837971925735, 0.16624732315540314, -0.03391507640480995, -0.06193295493721962, 0.041975755244493484, -0.046438608318567276, -0.09676943719387054, -0.07396983355283737, 0.10905608534812927, 0.02922431193292141, -0.008621313609182835, 0.008047402836382389, 0.05731890723109245, 0.002874738071113825, -0.059732042253017426, 0.04871851205825806, 0.1140822097659111, 0.12155251204967499, 0.15240302681922913, 0.017632093280553818, -0.1575036495923996, -0.1075802743434906, 0.015393114648759365, 0.04458338022232056, 0.08756779879331589, -0.08585362136363983, 0.10174060612916946, 0.026041386649012566, -0.10686106979846954, -0.2348509579896927, 0.08236512541770935, 0.0573439821600914, -0.008820934221148491, 0.0012321072863414884, -0.14847324788570404, 0.1282109022140503, 0.05362922325730324, -0.0001670344063313678, 0.07281284779310226, -0.24769480526447296, -0.06751449406147003, -0.03210035338997841, 0.048998646438121796, -0.16246186196804047, -0.15673205256462097, -0.04300841689109802, -0.0336821973323822, -0.17159485816955566, 0.058666832745075226, -0.028374044224619865, 0.042046938091516495, 0.04617561027407646, 0.06342293322086334, 0.06125669553875923, -0.045715562999248505, 0.11055982112884521, 0.022046610713005066, 0.052518002688884735, -0.075048066675663, -0.09770778566598892, 0.06952734291553497, -0.1038416177034378, 0.12041136622428894, 0.03225944563746452, 0.018576061353087425, -0.05804985389113426, -0.01145684439688921, -0.03383312374353409, 0.07907746732234955, -0.030998386442661285, -0.043404094874858856, -0.08388429880142212, 0.03449653089046478, 0.1253506988286972, 0.016366152092814445, 0.08816616237163544, -0.04443323612213135, -0.01161601860076189, 0.17251098155975342, 0.116512231528759, -0.015662211924791336, -0.13110901415348053, -0.0492992140352726, 0.009750456549227238, 0.033672064542770386, -0.11415579169988632, 0.052003588527441025, 0.08795330673456192, 0.01732519455254078, 0.10419867932796478, -0.008591941557824612, -0.0969659686088562, 0.015561800450086594, 0.05968676134943962, -0.09459945559501648, -0.1513713002204895, 0.004015041049569845, 0.08289235085248947, -0.1060885488986969, -0.09446341544389725, 0.12861786782741547, 0.010400772094726562, -0.00956285372376442, 0.013286661356687546, 0.08194651454687119, 0.05487038940191269, 0.051167141646146774, 0.009692742489278316, 0.035216376185417175, -0.06267734616994858, 0.10564965009689331, 0.14235860109329224, -0.11240141838788986, 0.0016626166179776192, 0.12315622717142105, -0.04767439886927605, -0.014007512480020523, -0.04637305438518524, 0.0699625089764595, -0.03124803490936756, -0.028277337551116943, 0.033283744007349014, -0.06927604228258133, 0.021293912082910538, 0.11947590112686157, -0.012128650210797787, 0.05707281827926636, 0.025973821058869362, -0.011123044416308403, -0.12431485205888748, 0.13952265679836273, -0.003314058296382427, 0.05817929655313492, -0.10865483433008194, 0.02919803373515606, 0.015016894787549973, 0.02361401729285717, 0.005795199424028397, -0.0733635425567627, -0.0693499818444252, -0.003229347290471196, -0.05210515856742859, 0.10258179903030396, -0.09036333113908768, -0.015365459024906158, -0.010889694094657898, 0.019981535151600838, -0.01769653894007206, 0.026836490258574486, -0.04251185804605484, -0.06116492301225662, -0.043793339282274246, 0.13028007745742798, -0.13711851835250854, -0.021755605936050415, 0.05410624295473099, -0.08364350348711014, 0.07059240341186523, -0.000336279917974025, -0.03871483728289604, -0.07202272862195969, -0.176311194896698, -0.0331716425716877, 0.03484095260500908, 0.06095222756266594, 0.04823245480656624, -0.08727960288524628, 0.05194305628538132, -0.015383335761725903, -0.09254047274589539, -0.019272787496447563, -0.007896038703620434, -0.11006063222885132, 0.060815759003162384, -0.08385009318590164, -0.03352396562695503, -0.04808277636766434, 0.14094752073287964, 0.042948197573423386, 0.003848823718726635, 0.06644077599048615, -0.04766190052032471, 0.08920172601938248, -0.15517447888851166, -0.03475521132349968, -0.0016427214723080397, -0.04163718596100807, -0.0749843418598175, -0.014062441885471344, 0.07371291518211365, -0.030438244342803955, 0.10221032798290253, 0.12922866642475128, 0.02512834221124649, 0.032362937927246094, -0.026538226753473282, 0.043456774204969406, 0.046996477991342545, -0.0226679015904665, -0.011525227688252926, -0.024140777066349983, 0.07127556204795837, 0.01470088679343462, 0.018265360966324806, 0.10151895135641098, 0.09408098459243774, 0.2206842601299286, 0.14621376991271973, 0.025360578671097755, 0.04971320554614067, -0.08343823999166489, -0.08318699151277542, 0.08847175538539886, -0.07337356358766556, 0.06664672493934631, -0.10057111829519272, 0.004771896172314882, 0.11678282171487808, -0.16989926993846893, 0.06354577839374542, -0.010369334369897842, -0.013605723157525063, -0.03578667715191841, -0.12642809748649597, -0.05620325729250908, -0.03767860308289528, -0.011389154009521008, -0.11784310638904572, 0.07543216645717621, 0.11424893885850906, -0.009239875711500645, 0.017073754221200943, 0.09004334360361099, -0.09373634308576584, -0.06677298992872238, 0.08786660432815552, 0.0246826633810997, 0.08207715302705765, 0.041899874806404114, 0.03625640273094177, 0.0665484368801117, 0.002253861166536808, 0.09727800637483597, 0.08651815354824066, 0.12150992453098297, 0.04163191467523575, -0.0778656154870987, -0.06973329186439514, 0.036339689046144485, -0.009829546324908733, -0.035150039941072464, 0.13465289771556854, 0.07242301851511002, 0.013663296587765217, -0.017075512558221817, 0.17693884670734406, -0.025476979091763496, -0.022121217101812363, -0.14508865773677826, 0.04447600245475769, -0.025039449334144592, 0.0017246309434995055, -0.018905065953731537, -0.15313461422920227, -0.0008560741553083062, 0.12056037783622742, 0.07582058757543564, -0.04542471095919609, -0.009519455023109913, -0.01714606210589409, 0.012442369945347309, 0.0023125868756324053, 0.047269538044929504, 0.020231079310178757, 0.23314622044563293, -0.045888252556324005, 0.004814098123461008, -0.02777058444917202, -0.017628202214837074, -0.07026028633117676, 0.07692202180624008, -0.01853603683412075, 0.00127537758089602, -0.06277080625295639, 0.10360303521156311, 0.010303856804966927, -0.1792440414428711, 0.0640680193901062, -0.10882357507944107, -0.08687835931777954, 0.010803166776895523, 0.009629402309656143, -0.001426361151970923, 0.01824844628572464, 0.014582903124392033, -0.06329045444726944, 0.11282862722873688, 0.02742219716310501, -0.0704992413520813, -0.005381800699979067, 0.0022039134055376053, -0.123186856508255, 0.26980897784233093, -0.030995596200227737, 0.004710095003247261, 0.10119431465864182, -0.017866071313619614, -0.13405415415763855, -0.016838759183883667, 0.0715286061167717, -0.052368149161338806, 0.000789715675637126, 0.11660841852426529, -0.005224914755672216, 0.1473269909620285, 0.09175636619329453, -0.07818075269460678, 0.04122702032327652, -0.024181855842471123, 0.011852100491523743, -0.10172168165445328, 0.0068601397797465324, -0.08226542919874191, 0.10122832655906677, 0.1510150283575058, 0.004577186889946461, 0.0014612500090152025, -0.03747077286243439, -0.019685672596096992, 0.010953416116535664, 0.10232829302549362, -0.00470011169090867, -0.045511648058891296, 0.008298815228044987, -0.10552646219730377, 0.08020108938217163, -0.09806134551763535, -0.06447817385196686, 0.03446159139275551, -0.009803347289562225, -0.026979781687259674, 0.09081908315420151, 0.057320211082696915, 0.01842852309346199, -0.055365901440382004, -0.10162577033042908, 0.020953094586730003, 0.1831548810005188, -0.01481377612799406, -0.024361977353692055 ]
364667ff14910673c4c23db5a63af284d0d8e803
# Dataset Card for corrosion-bi3q3 ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/corrosion-bi3q3 - **Point of Contact:** [email protected] ### Dataset Summary corrosion-bi3q3 ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/corrosion-bi3q3 ### Citation Information ``` @misc{ corrosion-bi3q3, title = { corrosion bi3q3 Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/corrosion-bi3q3 } }, url = { https://universe.roboflow.com/object-detection/corrosion-bi3q3 }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/corrosion-bi3q3
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T09:04:08+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "corrosion-bi3q3", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "corrosion-0", "1": "Slippage", "2": "corrosion", "3": "crack"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T09:04:26+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for corrosion-bi3q3 The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary corrosion-bi3q3 ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for corrosion-bi3q3\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncorrosion-bi3q3", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for corrosion-bi3q3\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ncorrosion-bi3q3", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 25, 22, 13, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for corrosion-bi3q3\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ncorrosion-bi3q3### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.013721627183258533, 0.16395242512226105, -0.007272279821336269, 0.023141292855143547, 0.08522263914346695, -0.0023509287275373936, 0.07273184508085251, 0.07888773083686829, -0.013005860149860382, 0.1762746423482895, 0.0039005691651254892, 0.04696337506175041, 0.11474206298589706, 0.09240775555372238, -0.02254263125360012, -0.15339213609695435, 0.06883159279823303, -0.07432704418897629, 0.08224359899759293, 0.07590089738368988, 0.07391295582056046, -0.13607358932495117, 0.08529241383075714, -0.044092509895563126, -0.015824882313609123, 0.029980182647705078, -0.06214307248592377, -0.036130569875240326, -0.0026672680396586657, 0.052830569446086884, 0.023177962750196457, 0.04046567156910896, 0.04366255924105644, -0.20500344038009644, 0.024828113615512848, 0.10252158343791962, 0.025545163080096245, 0.021446729078888893, 0.15354947745800018, -0.09444071352481842, 0.05389147251844406, -0.12176483869552612, 0.040186405181884766, 0.013490879908204079, -0.11872342973947525, -0.07767379283905029, -0.12230093032121658, 0.07140062749385834, 0.09823494404554367, 0.0576244555413723, -0.020084837451577187, 0.09392793476581573, -0.030640844255685806, 0.05854923650622368, 0.12774725258350372, -0.046303655952215195, -0.04868008568882942, 0.08999446034431458, 0.04963423311710358, 0.1086307093501091, -0.11823663860559464, -0.019539210945367813, 0.007902952842414379, -0.02290326915681362, -0.0038235338870435953, -0.05317322909832001, -0.058191150426864624, -0.008600248023867607, -0.1049436628818512, -0.14909136295318604, 0.12538950145244598, 0.05165480077266693, -0.05573825538158417, -0.13238736987113953, 0.00030070592765696347, 0.042203888297080994, -0.030584275722503662, 0.004249581601470709, 0.04117807745933533, -0.0061108688823878765, 0.04216387867927551, -0.056677740067243576, -0.10445460677146912, 0.050536300987005234, 0.033792465925216675, 0.02748183347284794, -0.024211207404732704, 0.039488546550273895, 0.028830133378505707, 0.08144727349281311, 0.003537648357450962, -0.11063291877508163, -0.03066469170153141, -0.04319433867931366, -0.052117593586444855, -0.04823445901274681, 0.05330706387758255, -0.1184668242931366, 0.07195328921079636, 0.0820917934179306, -0.07719230651855469, 0.0295332632958889, -0.11994883418083191, 0.017496220767498016, 0.10914958268404007, 0.1709183007478714, -0.08213964849710464, -0.08188813924789429, 0.002626674249768257, 0.04993954300880432, 0.028257861733436584, -0.030844366177916527, -0.02447667345404625, 0.0022069562692195177, 0.027220001444220543, 0.049163904041051865, 0.11340699344873428, 0.04017024487257004, -0.07198698073625565, -0.06183251366019249, 0.13792836666107178, -0.09131286293268204, 0.04873344302177429, 0.06316623091697693, -0.052484869956970215, 0.06806886196136475, 0.016873549669981003, 0.018742769956588745, -0.11395112425088882, 0.08903438597917557, -0.023164229467511177, 0.017857491970062256, -0.0908009335398674, -0.09149596840143204, 0.0644943043589592, -0.08186004310846329, -0.07556092739105225, -0.08598727732896805, -0.03385784849524498, -0.09365758299827576, 0.029698237776756287, -0.042412299662828445, 0.025895126163959503, 0.014867509715259075, -0.042900435626506805, -0.014513153582811356, 0.004533760715276003, 0.05234864354133606, -0.06099487841129303, 0.032956480979919434, -0.09952747821807861, 0.02777559496462345, 0.09555229544639587, 0.03495731204748154, -0.10662852972745895, 0.0655280277132988, -0.18861019611358643, 0.1328904926776886, -0.04897594079375267, 0.02187204733490944, -0.12967549264431, 0.006855558604001999, -0.009511102922260761, -0.04062856361269951, -0.0012984672794118524, 0.1359858512878418, -0.07673847675323486, 0.019898472353816032, 0.05050632357597351, -0.0628499761223793, -0.05472000688314438, 0.040022630244493484, -0.04600982740521431, -0.02382528968155384, 0.0764731839299202, 0.12058606743812561, -0.026422346010804176, -0.12421784549951553, -0.11735852807760239, -0.03628845885396004, -0.03311425819993019, 0.15870127081871033, 0.0816662535071373, -0.03395364433526993, 0.10423330962657928, -0.01296887919306755, -0.014588478021323681, -0.04817768931388855, 0.008601939305663109, -0.03762824088335037, 0.013758793473243713, -0.001628460711799562, -0.10497144609689713, 0.01807715743780136, -0.10390811413526535, 0.0019280693959444761, -0.08395587652921677, -0.05639105290174484, 0.019957996904850006, -0.03606542944908142, 0.019261982291936874, -0.03473224490880966, 0.1007176861166954, -0.1209254115819931, -0.005471871234476566, -0.1601097583770752, -0.12285306304693222, 0.05379738286137581, -0.04021967574954033, 0.0468764565885067, -0.08086609840393066, -0.015438162721693516, 0.026795560494065285, 0.034304793924093246, -0.013621632941067219, 0.04063403606414795, -0.025421233847737312, -0.04324805736541748, -0.13419955968856812, -0.05252312868833542, -0.031670570373535156, 0.11153559386730194, -0.11539915204048157, -0.03294936940073967, 0.13756638765335083, 0.12866485118865967, 0.031930435448884964, -0.04729004576802254, 0.07799484580755234, -0.01484555285423994, -0.022150253877043724, -0.08768639713525772, -0.005592911504209042, 0.0012258649803698063, 0.030250176787376404, 0.08358690142631531, -0.179289773106575, -0.14816996455192566, 0.08779561519622803, 0.03667502850294113, -0.08816961944103241, -0.07930251210927963, -0.048184096813201904, -0.013813353143632412, -0.09097608178853989, -0.021721135824918747, 0.04762369766831398, 0.06255470216274261, 0.08126930147409439, -0.07959730178117752, -0.03524596989154816, 0.015493382699787617, -0.015650933608412743, -0.07529827952384949, 0.07965719699859619, 0.06256324052810669, -0.12699700891971588, 0.10007303208112717, -0.02555083855986595, 0.034389108419418335, 0.07788826525211334, 0.030102446675300598, -0.12406869232654572, 0.021385079249739647, 0.07080719619989395, 0.027400610968470573, 0.08249213546514511, -0.0020510912872850895, 0.0296517014503479, 0.08010696619749069, -0.021733419969677925, -0.01776018552482128, -0.08419226109981537, 0.07583512365818024, 0.03042001649737358, -0.03657210245728493, 0.01522065419703722, -0.01885632984340191, 0.08512713760137558, 0.09602155536413193, 0.061885613948106766, 0.1007552295923233, -0.04682566970586777, -0.0638953298330307, -0.09526246786117554, 0.13686178624629974, -0.020675623789429665, -0.25536060333251953, -0.08384420722723007, -0.06862716376781464, -0.05052751302719116, -0.009848713874816895, 0.037769436836242676, 0.01016286015510559, -0.09069504588842392, -0.11289713531732559, 0.06488248705863953, 0.05831474810838699, -0.10449635237455368, -0.12540940940380096, 0.03999469801783562, 0.0055806515738368034, -0.07362799346446991, 0.002448506187647581, 0.029256222769618034, -0.042427852749824524, 0.013886218890547752, 0.03255303576588631, 0.1272670477628708, 0.05641978606581688, -0.015448087826371193, -0.00173957459628582, -0.006433572620153427, 0.17110058665275574, -0.14956393837928772, 0.08750756084918976, 0.15806370973587036, -0.0023394147865474224, 0.07196097820997238, 0.1978708952665329, -0.0220376905053854, -0.01810651272535324, 0.027812767773866653, 0.07330794632434845, -0.06385695189237595, -0.19381722807884216, -0.06180724501609802, -0.04620771110057831, 0.02014118805527687, 0.1436235010623932, 0.031228501349687576, 0.02522408589720726, 0.0910162478685379, -0.12246718257665634, 0.01399087905883789, 0.021204227581620216, 0.10614116489887238, 0.045847728848457336, 0.04556766897439957, 0.0495176799595356, -0.04629538580775261, -0.03162235766649246, 0.09643731266260147, 0.09773112833499908, 0.11439717561006546, -0.09914522618055344, 0.09280440211296082, 0.03429357334971428, 0.03212559223175049, -0.0244937501847744, -0.007424703799188137, -0.02465623803436756, 0.052376408129930496, -0.004868917632848024, -0.10644014179706573, 0.0061445701867341995, 0.08607801049947739, 0.14649757742881775, -0.0162854865193367, -0.010532207787036896, -0.04056325927376747, 0.060482852160930634, 0.2561376690864563, 0.0064820596016943455, -0.22300565242767334, 0.015807412564754486, 0.03481319546699524, 0.015730315819382668, -0.11587902903556824, -0.04482775554060936, 0.08365026861429214, -0.1706845611333847, 0.05709686130285263, -0.027801580727100372, 0.11528491228818893, -0.13741308450698853, -0.04046744480729103, 0.05056881532073021, 0.04019932448863983, -0.02753138355910778, 0.07605380564928055, -0.09771184623241425, 0.07528446614742279, 0.03591735288500786, 0.025430604815483093, -0.07653641700744629, 0.031755104660987854, 0.007085042539983988, -0.004476824309676886, 0.14449761807918549, -0.024603109806776047, 0.01236000657081604, -0.13567394018173218, -0.12754857540130615, -0.008147531189024448, 0.06065160036087036, -0.07505889981985092, 0.10662829875946045, 0.011701012030243874, -0.02972821146249771, -0.080699622631073, -0.04389999434351921, -0.06271011382341385, -0.19435513019561768, 0.03585076704621315, -0.012578999623656273, 0.028746573254466057, -0.017968805506825447, 0.01791192591190338, 0.026715613901615143, 0.13955827057361603, -0.036705583333969116, -0.08555386960506439, -0.1435810923576355, 0.06856901198625565, 0.1080436110496521, -0.015008216723799706, -0.02277432195842266, -0.100812166929245, 0.17825625836849213, -0.02898445539176464, -0.07148337364196777, 0.01638404093682766, -0.06856382638216019, -0.12720346450805664, -0.060468889772892, 0.11386546492576599, 0.027292901650071144, 0.0035221886355429888, 0.008114129304885864, 0.05546124652028084, 0.005166651681065559, -0.047954678535461426, 0.008436979725956917, 0.10270372778177261, 0.15748481452465057, 0.13159075379371643, 0.01590101234614849, -0.12869206070899963, -0.12779325246810913, -0.0034026936627924442, 0.025179680436849594, 0.10758506506681442, -0.06638447940349579, 0.11070074886083603, 0.034210894256830215, -0.07611093670129776, -0.22196732461452484, 0.07742694020271301, 0.0719643235206604, -0.004087722394615412, -0.02470964565873146, -0.12253449112176895, 0.13621897995471954, 0.037169843912124634, 0.005588979925960302, 0.06445658206939697, -0.2700117230415344, -0.07193347811698914, -0.020088497549295425, 0.0187071580439806, -0.23856739699840546, -0.16961005330085754, -0.05209740623831749, -0.0550820417702198, -0.14549072086811066, 0.059636738151311874, -0.01414630189538002, 0.05019579827785492, 0.03670917823910713, 0.024859033524990082, 0.06335695832967758, -0.04586171731352806, 0.11510565131902695, 0.006533424835652113, 0.03880772739648819, -0.07455510646104813, -0.08072714507579803, 0.010119798593223095, -0.09713578224182129, 0.12990963459014893, 0.040731485933065414, 0.028525182977318764, -0.04159757122397423, -0.02147534489631653, -0.029189668595790863, 0.0865699052810669, -0.02723180130124092, -0.03265168145298958, -0.10275855660438538, 0.03745788708329201, 0.12307585030794144, 0.03147580474615097, 0.0913529023528099, -0.057347461581230164, -0.010432060807943344, 0.15909482538700104, 0.11015591025352478, 0.008562909439206123, -0.14304055273532867, -0.04271740838885307, -0.003547587664797902, 0.043045103549957275, -0.11044560372829437, 0.0312290471047163, 0.08845288306474686, 0.015016086399555206, 0.10441499203443527, -0.012296941131353378, -0.09597960859537125, 0.010112304240465164, 0.04418047145009041, -0.10334089398384094, -0.09175160527229309, 0.03354072570800781, 0.11934561282396317, -0.11677150428295135, -0.12886139750480652, 0.12116635590791702, 0.0003278324438724667, -0.019588463008403778, 0.001362963579595089, 0.07068349421024323, 0.05331640690565109, 0.05866769701242447, 0.01607145555317402, 0.03728639706969261, -0.07543608546257019, 0.11095284670591354, 0.14611344039440155, -0.15338054299354553, -0.004721620585769415, 0.11654995381832123, -0.054033130407333374, -0.023423505946993828, -0.009777563624083996, 0.02956119365990162, -0.03174135461449623, -0.03408932313323021, 0.0341714583337307, -0.05081186443567276, 0.040320444852113724, 0.10853944718837738, 0.003952021710574627, 0.05535895377397537, 0.030307702720165253, -0.020007668063044548, -0.13932916522026062, 0.11981270462274551, 0.022221237421035767, 0.05249562859535217, -0.0770421177148819, 0.013093778863549232, 0.03621036931872368, 0.0001322322932537645, 0.010286209173500538, -0.05556171014904976, -0.08371372520923615, 0.0002610634546726942, -0.04117029532790184, 0.11549894511699677, -0.08302681148052216, -0.0031542787328362465, -0.01650615967810154, 0.0030740173533558846, -0.016621984541416168, 0.03259305655956268, -0.04283273220062256, -0.07930278033018112, -0.05568563938140869, 0.1278643161058426, -0.14565350115299225, -0.020598160102963448, 0.05524429678916931, -0.09025564044713974, 0.06159858778119087, 0.014899272471666336, -0.037180326879024506, -0.09832163900136948, -0.20044992864131927, -0.03797254338860512, 0.03189374506473541, 0.06786622107028961, 0.033301495015621185, -0.07846488058567047, 0.05328431725502014, -0.0012820940464735031, -0.09985104948282242, -0.010011471807956696, -0.010093160904943943, -0.11450633406639099, 0.04244867339730263, -0.08421085774898529, -0.0305318683385849, -0.04034179449081421, 0.13459253311157227, 0.05736084654927254, 0.012161451391875744, 0.07888257503509521, -0.05362895876169205, 0.10303240269422531, -0.12999564409255981, -0.035207461565732956, -0.008682141080498695, -0.02585071325302124, -0.08376384526491165, -0.0028976681642234325, 0.07932782173156738, -0.02703443169593811, 0.12539461255073547, 0.11948544532060623, 0.05934697017073631, 0.04111643135547638, -0.00009411708742845803, 0.09343473613262177, 0.06874042004346848, -0.01310125831514597, -0.0014342523645609617, -0.016968753188848495, 0.0749945342540741, 0.013229249976575375, 0.027476884424686432, 0.06938473880290985, 0.05949563905596733, 0.24175016582012177, 0.1402440071105957, 0.0235311146825552, 0.04835837334394455, -0.08552895486354828, -0.02390686236321926, 0.09921737760305405, -0.04243344068527222, 0.07092131674289703, -0.1010437086224556, 0.04977572336792946, 0.09196661412715912, -0.1457410454750061, 0.05671397224068642, -0.008172964677214622, -0.005076444707810879, -0.029660457745194435, -0.08714094012975693, -0.06478223949670792, -0.021772626787424088, 0.0029260895680636168, -0.11465288698673248, 0.08735369890928268, 0.1390029937028885, 0.0072893789038062096, 0.020248014479875565, 0.09179311990737915, -0.054030533879995346, -0.08654332906007767, 0.06817489862442017, 0.017816349864006042, 0.06649398803710938, 0.04324803128838539, 0.03783074766397476, 0.09731754660606384, -0.010322603397071362, 0.08630332350730896, 0.09503600746393204, 0.12026005238294601, 0.032442379742860794, -0.07787299156188965, -0.07775405049324036, 0.031242547556757927, -0.012660292908549309, -0.0050234105437994, 0.17546039819717407, 0.07538589090108871, 0.02183128520846367, -0.018848367035388947, 0.17341925203800201, -0.010258741676807404, -0.02494639717042446, -0.14265789091587067, 0.055110182613134384, -0.05073666200041771, -0.01274460181593895, -0.015333201736211777, -0.14574910700321198, 0.004940302576869726, 0.12991230189800262, 0.07547295093536377, -0.055300671607255936, -0.009136086329817772, -0.008436751551926136, 0.005815150216221809, -0.023683888837695122, 0.03324083238840103, 0.013202469795942307, 0.19361643493175507, -0.06655418127775192, 0.011383051984012127, -0.035598013550043106, -0.027952363714575768, -0.05676593631505966, 0.07871551811695099, -0.019089829176664352, -0.0022180720698088408, -0.07821740955114365, 0.11082626134157181, -0.016309335827827454, -0.18127122521400452, 0.06780996918678284, -0.09624084085226059, -0.0833021029829979, 0.012751824222505093, -0.039948079735040665, 0.013159852474927902, 0.029665298759937286, 0.000042803894757525995, -0.06973447650671005, 0.06406174600124359, 0.020541805773973465, -0.07608645409345627, -0.020658960565924644, 0.000045707773097092286, -0.08775610476732254, 0.26063859462738037, -0.03703458979725838, 0.05687868967652321, 0.08497971296310425, -0.01605367846786976, -0.1315409243106842, -0.03178809955716133, 0.08863753080368042, -0.06042616441845894, 0.03013516776263714, 0.11401296406984329, -0.008777279406785965, 0.1630573719739914, 0.08701545745134354, -0.07247207313776016, 0.057605501264333725, -0.03898124024271965, 0.023450808599591255, -0.11389441043138504, 0.0004253550141584128, -0.0964532196521759, 0.11635058373212814, 0.1379772573709488, -0.008144468069076538, -0.01506019663065672, -0.03289065137505531, 0.012465616688132286, 0.00619468605145812, 0.0843866840004921, 0.011246751062572002, -0.05663717910647392, 0.016851618885993958, -0.14205525815486908, 0.08846203982830048, -0.1544799953699112, -0.05257459729909897, 0.039235323667526245, -0.01056577730923891, -0.00735749676823616, 0.08002802729606628, 0.021457793191075325, 0.005859102122485638, -0.06201184540987015, -0.12338206171989441, 0.04137411341071129, 0.1530349999666214, -0.012143314816057682, -0.032466236501932144 ]
9f201dac508ef3ed85d57827c3c17dc8eda86bee
# Dataset Card for gauge-u2lwv ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/gauge-u2lwv - **Point of Contact:** [email protected] ### Dataset Summary gauge-u2lwv ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/gauge-u2lwv ### Citation Information ``` @misc{ gauge-u2lwv, title = { gauge u2lwv Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/gauge-u2lwv } }, url = { https://universe.roboflow.com/object-detection/gauge-u2lwv }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/gauge-u2lwv
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T09:04:51+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "gauge-u2lwv", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "gauge", "1": "gauges", "2": "numbers"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T09:05:04+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for gauge-u2lwv The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary gauge-u2lwv ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for gauge-u2lwv\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ngauge-u2lwv", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for gauge-u2lwv\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ngauge-u2lwv", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 26, 22, 14, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for gauge-u2lwv\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ngauge-u2lwv### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.011665149591863155, 0.17296573519706726, -0.007786245550960302, 0.02059033513069153, 0.09115760028362274, 0.0028736002277582884, 0.057642195373773575, 0.07865968346595764, 0.0016197890508919954, 0.17287003993988037, -0.005161809269338846, 0.057257894426584244, 0.13070744276046753, 0.0758574977517128, -0.015181277878582478, -0.14574165642261505, 0.06364241987466812, -0.07292237877845764, 0.08903006464242935, 0.07112693041563034, 0.07267352938652039, -0.13876678049564362, 0.08424413204193115, -0.017833353951573372, -0.0226181298494339, 0.026629310101270676, -0.06291526556015015, -0.02650829590857029, 0.004539624787867069, 0.03532400354743004, 0.028884463012218475, 0.03074231557548046, 0.06399767100811005, -0.1872835010290146, 0.01772366650402546, 0.09694501757621765, 0.0333525612950325, 0.019912447780370712, 0.16251592338085175, -0.08334218710660934, 0.017154598608613014, -0.12761572003364563, 0.023757655173540115, 0.019815217703580856, -0.1102806031703949, -0.07535119354724884, -0.1345706582069397, 0.05943810194730759, 0.08513117581605911, 0.05440251901745796, -0.023930149152874947, 0.07920880615711212, -0.0296713225543499, 0.04706530272960663, 0.14752653241157532, -0.07323857396841049, -0.03836963698267937, 0.09978146851062775, 0.055664289742708206, 0.07449646294116974, -0.11528203636407852, -0.01621493697166443, 0.01374479103833437, -0.017480159178376198, -0.007979793474078178, -0.038525745272636414, -0.03274114057421684, -0.005046886391937733, -0.10860909521579742, -0.14133889973163605, 0.1346563994884491, 0.06478822976350784, -0.06171473115682602, -0.1323860138654709, -0.005852211732417345, 0.056617025285959244, -0.03413047268986702, -0.006090890150517225, 0.04776211455464363, -0.0030011492781341076, 0.06087248772382736, -0.056241314858198166, -0.10749013721942902, 0.04825861379504204, 0.017201021313667297, 0.030069783329963684, -0.016376415267586708, 0.04122993350028992, 0.02339119464159012, 0.08095555007457733, -0.0012001058785244823, -0.10728126019239426, -0.02086194045841694, -0.04278326407074928, -0.05419245362281799, -0.04784192517399788, 0.05331151559948921, -0.12402956932783127, 0.0706629827618599, 0.0651625245809555, -0.06614251434803009, 0.01704019121825695, -0.10856449604034424, 0.010376759804785252, 0.13142484426498413, 0.18759918212890625, -0.09931012988090515, -0.08503812551498413, -0.006247903220355511, 0.046401601284742355, 0.007763814181089401, -0.018286937847733498, -0.02749820612370968, -0.016391687095165253, 0.0350799597799778, 0.03524231165647507, 0.10973542183637619, 0.03783459588885307, -0.07894584536552429, -0.0639750063419342, 0.1485559195280075, -0.09674208611249924, 0.04839204251766205, 0.05787380039691925, -0.06873881816864014, 0.0880851149559021, 0.012738440185785294, 0.024935247376561165, -0.11951153725385666, 0.061690885573625565, -0.0260723065584898, 0.01053969468921423, -0.09287364035844803, -0.10242723673582077, 0.053903281688690186, -0.0831243097782135, -0.07842226326465607, -0.07517846673727036, -0.05423308536410332, -0.09353095293045044, 0.03505605086684227, -0.04436912760138512, 0.014508750289678574, 0.017047278583049774, -0.040345046669244766, -0.016170822083950043, 0.011347880586981773, 0.03669532388448715, -0.057486388832330704, 0.033339403569698334, -0.10123059898614883, 0.03533674031496048, 0.11226282268762589, 0.04215652495622635, -0.09195005893707275, 0.0632045567035675, -0.18397177755832672, 0.12896503508090973, -0.03481860086321831, 0.03068116120994091, -0.13167621195316315, 0.0037694727070629597, -0.012458107434213161, -0.03689409792423248, 0.0017860860098153353, 0.14348730444908142, -0.09482409060001373, 0.023668792098760605, 0.04914294555783272, -0.03987560793757439, -0.05597930774092674, 0.04396491125226021, -0.042602524161338806, -0.006255802698433399, 0.08264266699552536, 0.11768975108861923, -0.028156252577900887, -0.13278411328792572, -0.11773299425840378, -0.041728425770998, -0.04785654693841934, 0.15550567209720612, 0.07121670991182327, -0.036542437970638275, 0.09808529913425446, -0.00988397840410471, -0.001389696029946208, -0.05318767949938774, 0.0009764769347384572, -0.03998282924294472, 0.00826912373304367, -0.007135900668799877, -0.07859169691801071, 0.008476451970636845, -0.10109270364046097, 0.01175031065940857, -0.07747213542461395, -0.037778548896312714, 0.019385926425457, -0.017174003645777702, 0.010936395265161991, -0.035623811185359955, 0.07673317193984985, -0.11417723447084427, -0.0008732625283300877, -0.1500706821680069, -0.11258324980735779, 0.05763880908489227, -0.04900787025690079, 0.042370084673166275, -0.06393278390169144, -0.01262236200273037, 0.007543149404227734, 0.04171549528837204, -0.012927121482789516, 0.03850976750254631, -0.028956133872270584, -0.04175199568271637, -0.11858810484409332, -0.05573468282818794, -0.01762319914996624, 0.07995863258838654, -0.12309381365776062, -0.030234552919864655, 0.11169589310884476, 0.1212608739733696, 0.02060343511402607, -0.04467330127954483, 0.07039879262447357, -0.04170960187911987, -0.01686736010015011, -0.0705527663230896, -0.01812184974551201, -0.0029907773714512587, 0.04947110638022423, 0.07063952088356018, -0.14467643201351166, -0.1454724371433258, 0.08304087072610855, 0.02814405970275402, -0.08204788714647293, -0.050893742591142654, -0.05059050768613815, -0.01670490950345993, -0.09885948151350021, -0.03778368607163429, 0.01754983887076378, 0.06594029068946838, 0.07273164391517639, -0.07830239832401276, -0.044237446039915085, 0.019878746941685677, -0.019480830058455467, -0.08392132818698883, 0.07150447368621826, 0.05629932880401611, -0.11624806374311447, 0.08941755443811417, -0.029576309025287628, 0.05264296010136604, 0.07876699417829514, 0.036342065781354904, -0.11827238649129868, 0.012355242855846882, 0.07280294597148895, 0.012766842730343342, 0.08403779566287994, -0.009862055070698261, 0.01940862089395523, 0.08133459091186523, -0.0075210342183709145, -0.017341503873467445, -0.08732254803180695, 0.07322856038808823, 0.028239527717232704, -0.04144986346364021, 0.012216415256261826, -0.021477075293660164, 0.09310723841190338, 0.0986439436674118, 0.0756748840212822, 0.11440251767635345, -0.05346722900867462, -0.06617707014083862, -0.09430694580078125, 0.12543651461601257, -0.023008152842521667, -0.24373066425323486, -0.07526817172765732, -0.06600543856620789, -0.05834729224443436, -0.004856417886912823, 0.02362055517733097, -0.005959996487945318, -0.0909137949347496, -0.09491795301437378, 0.07507734000682831, 0.04732706397771835, -0.10311521589756012, -0.1008494645357132, 0.039116282016038895, 0.007687442936003208, -0.0824146717786789, 0.0032645619940012693, 0.023115528747439384, -0.04587468504905701, 0.003480422543361783, 0.03817172721028328, 0.12947608530521393, 0.0584416501224041, -0.024143701419234276, -0.0009335237555205822, 0.0046334583312273026, 0.1991303712129593, -0.14258728921413422, 0.10205653309822083, 0.16186808049678802, 0.023407112807035446, 0.07912815362215042, 0.19681602716445923, -0.01756221242249012, -0.015913434326648712, 0.029642732813954353, 0.08245677500963211, -0.048324160277843475, -0.20008909702301025, -0.05941082164645195, -0.04060424864292145, 0.004561541602015495, 0.13820767402648926, 0.031809572130441666, 0.008188602514564991, 0.08765008300542831, -0.11461900919675827, 0.02002789080142975, 0.017419422045350075, 0.0923386737704277, 0.04367339238524437, 0.041612446308135986, 0.043641965836286545, -0.045196227729320526, -0.04269828647375107, 0.09049735218286514, 0.12425315380096436, 0.1151905432343483, -0.09549082070589066, 0.09359905123710632, 0.038026321679353714, 0.045687075704336166, -0.042140450328588486, -0.0067732688039541245, -0.02240072935819626, 0.043983764946460724, -0.004024473950266838, -0.0919148325920105, 0.014790637418627739, 0.08537180721759796, 0.14319247007369995, -0.012467846274375916, -0.010334138758480549, -0.04558761790394783, 0.07000987976789474, 0.26268917322158813, 0.022259365767240524, -0.2007114589214325, 0.016024861484766006, 0.033535368740558624, 0.007150845602154732, -0.1242111548781395, -0.039371490478515625, 0.07059171050786972, -0.16311877965927124, 0.055829405784606934, -0.02178129367530346, 0.11627815663814545, -0.1258501261472702, -0.03749449551105499, 0.05241204798221588, 0.046880658715963364, -0.02624196745455265, 0.07269062846899033, -0.08201974630355835, 0.07440026849508286, 0.03375101834535599, 0.032993171364068985, -0.0779854878783226, 0.036543168127536774, 0.00629426771774888, -0.026275619864463806, 0.14136700332164764, -0.015948927029967308, 0.035569995641708374, -0.12848857045173645, -0.10869306325912476, -0.016030242666602135, 0.05970633774995804, -0.0673128142952919, 0.11576928943395615, 0.009828893467783928, -0.0255062747746706, -0.06996936351060867, -0.03244428709149361, -0.07842114567756653, -0.16413167119026184, 0.036158327013254166, -0.02495703659951687, 0.013321398757398129, -0.011424247175455093, 0.01949993148446083, -0.02145746350288391, 0.1305009126663208, -0.03040400892496109, -0.09042484313249588, -0.13254313170909882, 0.05094122141599655, 0.10432539135217667, -0.014078842476010323, -0.010447450913488865, -0.09323812276124954, 0.18217410147190094, -0.02783305197954178, -0.0748009979724884, 0.016677390784025192, -0.06566363573074341, -0.11441899091005325, -0.05567719414830208, 0.10316237062215805, 0.0484028086066246, -0.0035043961834162474, 0.0024585004430264235, 0.04866410419344902, -0.014112183824181557, -0.04360002651810646, 0.02753104269504547, 0.09624940901994705, 0.1434834748506546, 0.13805128633975983, 0.011924268677830696, -0.15772657096385956, -0.11685775965452194, -0.003170435316860676, 0.022822372615337372, 0.10133899003267288, -0.07085614651441574, 0.09907208383083344, 0.041324812918901443, -0.07103663682937622, -0.2282441109418869, 0.08431526273488998, 0.07142802327871323, -0.0017702023033052683, -0.00753966486081481, -0.12857253849506378, 0.1441299021244049, 0.038834523409605026, -0.0018523571779951453, 0.0740152895450592, -0.2773565649986267, -0.07108516991138458, -0.022768262773752213, 0.019345005974173546, -0.21475256979465485, -0.15945035219192505, -0.04854980483651161, -0.053000543266534805, -0.17890986800193787, 0.049683135002851486, 0.009905415587127209, 0.04628054052591324, 0.037350039929151535, 0.06919872760772705, 0.06363287568092346, -0.041720740497112274, 0.10848812013864517, 0.019957128912210464, 0.03684552386403084, -0.07456227391958237, -0.0846647322177887, 0.016388554126024246, -0.09920930117368698, 0.15403540432453156, 0.06518815457820892, 0.033866144716739655, -0.045713894069194794, -0.021070268005132675, -0.04808713123202324, 0.07983578741550446, -0.0261643435806036, -0.036585576832294464, -0.10192360728979111, 0.038613397628068924, 0.12768319249153137, 0.02760443650186062, 0.07478906959295273, -0.040795352309942245, -0.02877887710928917, 0.13000336289405823, 0.10413649678230286, 0.0019418547162786126, -0.13455061614513397, -0.03659207373857498, -0.0003201235376764089, 0.03985992819070816, -0.10254517197608948, 0.04060400277376175, 0.09454705566167831, 0.02530112862586975, 0.09764054417610168, -0.010526733472943306, -0.09883388131856918, -0.000949098146520555, 0.038112521171569824, -0.08675681799650192, -0.12134306877851486, 0.03314775601029396, 0.10138390958309174, -0.12942224740982056, -0.10258058458566666, 0.10836994647979736, 0.009370596148073673, -0.025619694963097572, -0.0008502639248035848, 0.0773065909743309, 0.04698188230395317, 0.05467914044857025, 0.027448639273643494, 0.03408058360219002, -0.07414116710424423, 0.1190653145313263, 0.14556404948234558, -0.11885187029838562, -0.001813947455957532, 0.10378692299127579, -0.045046135783195496, -0.018229324370622635, -0.016953062266111374, 0.020023318007588387, -0.03516270965337753, -0.022718453779816628, 0.03872239589691162, -0.06066787615418434, 0.045173969119787216, 0.07058727741241455, 0.0014674501726403832, 0.057381320744752884, 0.03749367967247963, -0.009422620758414268, -0.1342439502477646, 0.1239880695939064, 0.04119107872247696, 0.04862833395600319, -0.09876617044210434, -0.004341276362538338, 0.018757414072752, 0.020723024383187294, 0.010901087895035744, -0.04996741563081741, -0.08069594949483871, 0.00895834993571043, -0.06934914737939835, 0.10226328670978546, -0.10003876686096191, 0.00016060288180597126, -0.025069966912269592, 0.0021947480272501707, -0.016582902520895004, 0.032084833830595016, -0.04620352014899254, -0.08568783104419708, -0.04880078509449959, 0.13198958337306976, -0.13775746524333954, -0.017375003546476364, 0.05436320975422859, -0.08222754299640656, 0.055985089391469955, 0.013508286327123642, -0.03230256587266922, -0.0961913913488388, -0.17586344480514526, -0.05875564366579056, 0.0287531316280365, 0.0709112212061882, 0.04684881865978241, -0.08356800675392151, 0.04932403564453125, -0.0012804473517462611, -0.09833385795354843, -0.02010166645050049, -0.019417589530348778, -0.11667248606681824, 0.04312513396143913, -0.0896693542599678, -0.02572985365986824, -0.04339597374200821, 0.130636528134346, 0.05660313740372658, 0.009146477095782757, 0.0734955444931984, -0.04033922031521797, 0.09245956689119339, -0.14442820847034454, -0.036987774074077606, -0.015401503071188927, -0.018179763108491898, -0.06689098477363586, 0.004025871865451336, 0.07215239852666855, -0.025492863729596138, 0.129468634724617, 0.12371683120727539, 0.04306282103061676, 0.03875219449400902, 0.0076219309121370316, 0.06158173829317093, 0.06078249216079712, -0.013889016583561897, -0.015397368930280209, -0.018673332408070564, 0.07043882459402084, 0.019009940326213837, 0.01624833419919014, 0.07159382849931717, 0.06123614311218262, 0.23495076596736908, 0.13805703818798065, 0.021434348076581955, 0.05429304018616676, -0.09292997419834137, -0.062066350132226944, 0.10858789831399918, -0.059372469782829285, 0.07034745067358017, -0.10142028331756592, 0.026851380243897438, 0.09658008068799973, -0.1434662938117981, 0.06867147982120514, -0.02063521184027195, -0.00038084006519056857, -0.022461093962192535, -0.10385029017925262, -0.0612405464053154, -0.019083870574831963, 0.005002665799111128, -0.11407960206270218, 0.09120366722345352, 0.12183716148138046, -0.0011156300315633416, 0.014612238854169846, 0.08611395955085754, -0.05802031233906746, -0.09275005757808685, 0.06915464997291565, 0.01402005460113287, 0.06234830245375633, 0.0539032407104969, 0.04067986458539963, 0.10768409818410873, 0.01666836254298687, 0.08717907965183258, 0.0907718688249588, 0.09398479014635086, 0.027604486793279648, -0.07095830887556076, -0.07483503222465515, 0.02340535633265972, -0.00837796926498413, -0.008034770376980305, 0.1455872505903244, 0.07369975000619888, 0.02076505683362484, -0.024632787331938744, 0.1631212830543518, -0.01671929471194744, -0.03473349288105965, -0.1437433809041977, 0.027853241190314293, -0.040982406586408615, -0.011680763214826584, -0.014248711057007313, -0.1563757061958313, 0.0015324585838243365, 0.14286784827709198, 0.07981376349925995, -0.05593694746494293, -0.01775139756500721, -0.009433748200535774, 0.003527445252984762, -0.022530434653162956, 0.03205278888344765, 0.025532523170113564, 0.21142640709877014, -0.061122965067625046, 0.012066670693457127, -0.043619148433208466, -0.023551786318421364, -0.05158461630344391, 0.08238815516233444, -0.011883914470672607, 0.009435608983039856, -0.08346379548311234, 0.11585726588964462, -0.0034785738680511713, -0.18298503756523132, 0.0482940711081028, -0.07634221017360687, -0.08668230473995209, 0.012625649571418762, -0.03674175217747688, 0.007392450235784054, 0.034693360328674316, -0.0006624211091548204, -0.052973367273807526, 0.08765963464975357, 0.013466687873005867, -0.060391753911972046, -0.01320695597678423, 0.007451252546161413, -0.06461847573518753, 0.2732940912246704, -0.02705533616244793, 0.035198312252759933, 0.0764172300696373, -0.01803937740623951, -0.1410575807094574, -0.03398725017905235, 0.07905153185129166, -0.049516044557094574, 0.02324945479631424, 0.11176970601081848, -0.004088162444531918, 0.13348466157913208, 0.08808089047670364, -0.08227816969156265, 0.04607129096984863, -0.008917669765651226, 0.032174043357372284, -0.12814612686634064, 0.014828857034444809, -0.09382306039333344, 0.11167428642511368, 0.13699312508106232, -0.003798325313255191, -0.002257107524201274, -0.03722627833485603, 0.012388691306114197, 0.008794771507382393, 0.10384105145931244, 0.005524341948330402, -0.06781203299760818, 0.0190406646579504, -0.1443166583776474, 0.07931634038686752, -0.12361375987529755, -0.057704128324985504, 0.04240117967128754, -0.014254813082516193, -0.0023273522965610027, 0.08238016068935394, 0.02758481353521347, 0.014817573130130768, -0.054426662623882294, -0.11085778474807739, 0.030476966872811317, 0.1640162616968155, -0.013456323184072971, -0.03519171103835106 ]
d6d339c4268aac972d9527869e66f6b4ec3d424b
# Dataset Card for halo-infinite-angel-videogame ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/halo-infinite-angel-videogame - **Point of Contact:** [email protected] ### Dataset Summary halo-infinite-angel-videogame ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/halo-infinite-angel-videogame ### Citation Information ``` @misc{ halo-infinite-angel-videogame, title = { halo infinite angel videogame Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/halo-infinite-angel-videogame } }, url = { https://universe.roboflow.com/object-detection/halo-infinite-angel-videogame }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/halo-infinite-angel-videogame
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T09:07:44+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "halo-infinite-angel-videogame", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "halo-infinite-angel-videogame", "1": "enemy", "2": "enemy-head", "3": "friendly", "4": "friendly-head"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T09:07:59+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for halo-infinite-angel-videogame The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary halo-infinite-angel-videogame ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for halo-infinite-angel-videogame\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nhalo-infinite-angel-videogame", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for halo-infinite-angel-videogame\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nhalo-infinite-angel-videogame", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 29, 22, 17, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for halo-infinite-angel-videogame\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nhalo-infinite-angel-videogame### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 0.0025675382930785418, 0.1308637112379074, -0.00811594445258379, 0.05864473804831505, 0.09835581481456757, 0.006908001843839884, 0.026430845260620117, 0.08851355314254761, -0.05211371183395386, 0.16392986476421356, -0.02157830074429512, 0.0430915430188179, 0.13245703279972076, 0.08177641034126282, 0.004339572973549366, -0.1433306783437729, 0.04698019102215767, -0.048271968960762024, 0.08777030557394028, 0.05311395227909088, 0.07449472695589066, -0.12604838609695435, 0.0806504637002945, -0.02929788827896118, -0.010102108120918274, 0.031082412227988243, -0.04747411236166954, -0.0317046195268631, 0.011333595961332321, 0.033517032861709595, 0.013459325768053532, -0.019622359424829483, 0.02941773273050785, -0.19565173983573914, 0.020496321842074394, 0.09379580616950989, 0.03112076036632061, 0.007598730269819498, 0.13905608654022217, -0.04427894204854965, 0.026631537824869156, -0.14582999050617218, 0.03751196339726448, 0.03218099847435951, -0.09928878396749496, -0.13409781455993652, -0.12020942568778992, 0.02763487957417965, 0.11900866031646729, 0.03643439710140228, -0.021956278011202812, 0.05093812569975853, -0.023371702060103416, 0.04045376181602478, 0.11746839433908463, -0.0773693174123764, -0.05011560022830963, 0.09464980661869049, 0.025790171697735786, 0.10603749006986618, -0.12311360239982605, -0.01082650013267994, 0.027689216658473015, -0.004563755355775356, 0.000805752060841769, -0.03933549299836159, 0.0011383910896256566, 0.0010024551302194595, -0.06771591305732727, -0.13474518060684204, 0.12389678508043289, 0.04915136471390724, -0.03980613872408867, -0.13648080825805664, 0.004948953166604042, 0.013839292339980602, -0.039926666766405106, -0.009949125349521637, 0.05667548626661301, -0.014698842540383339, 0.059736236929893494, -0.04331524670124054, -0.09860212355852127, 0.053795140236616135, 0.004225516226142645, 0.03667377680540085, -0.02425317093729973, 0.019989272579550743, -0.006389394868165255, 0.09919317811727524, 0.01495303027331829, -0.12016895413398743, -0.05328325182199478, -0.015446707606315613, -0.06714203953742981, -0.03909310698509216, 0.04136725142598152, -0.07805150002241135, 0.05656653270125389, 0.12270273268222809, -0.06061458960175514, 0.03846502676606178, -0.10682404041290283, -0.0021423182915896177, 0.08806931227445602, 0.14409810304641724, -0.07808925211429596, -0.1253845989704132, 0.010190825909376144, 0.044529661536216736, 0.04926393926143646, -0.03668471798300743, -0.04422075301408768, 0.020096147432923317, 0.03995201736688614, 0.038900457322597504, 0.10557056963443756, 0.021013829857110977, -0.09700988978147507, -0.026654323562979698, 0.15790393948554993, -0.10799465328454971, 0.07085501402616501, 0.06141243129968643, -0.051774103194475174, 0.0757659375667572, -0.022573567926883698, 0.012445666827261448, -0.08175918459892273, 0.07209222763776779, -0.03042289987206459, 0.00857145618647337, -0.08867809921503067, -0.07993336766958237, 0.07578280568122864, -0.0681946650147438, -0.07025127857923508, -0.08244874328374863, 0.010394327342510223, -0.08295431733131409, 0.03440166637301445, -0.056108273565769196, 0.03244461491703987, -0.0018389411270618439, -0.06416598707437515, 0.0009581742342561483, 0.024455303326249123, 0.029486551880836487, -0.06000441312789917, 0.033954888582229614, -0.07702306658029556, 0.053674135357141495, 0.077089823782444, 0.035917017608881, -0.09270218014717102, 0.05064985901117325, -0.20227693021297455, 0.13878919184207916, -0.044650085270404816, 0.00883907824754715, -0.11103691905736923, 0.012046142481267452, 0.0004359582962933928, -0.03897569328546524, -0.0009201001957990229, 0.13332168757915497, -0.11253006756305695, 0.003481796011328697, 0.055769313126802444, -0.042894721031188965, -0.0716545432806015, 0.046212807297706604, -0.04719717800617218, -0.04715640842914581, 0.09306684136390686, 0.0981082022190094, -0.022774143144488335, -0.12070717662572861, -0.11140601336956024, -0.01184806227684021, -0.039552461355924606, 0.17067044973373413, 0.08790875226259232, -0.007576088421046734, 0.1257624328136444, -0.0032201323192566633, -0.05475831404328346, -0.02618575654923916, 0.01711677573621273, -0.039001889526844025, 0.02730093151330948, 0.0028093152213841677, -0.09477546811103821, 0.008914193138480186, -0.08312221616506577, -0.013924370519816875, -0.07850180566310883, -0.0018795818323269486, 0.024925926700234413, -0.007686208467930555, 0.03989224135875702, -0.046293821185827255, 0.08183122426271439, -0.12266276031732559, 0.010278171859681606, -0.1463068723678589, -0.11405672132968903, 0.05320856720209122, -0.033241186290979385, 0.04930604249238968, -0.07147923856973648, 0.006628047209233046, 0.025043856352567673, 0.02215362899005413, -0.029383230954408646, 0.030813615769147873, -0.009796589612960815, -0.013035299256443977, -0.1363019049167633, -0.05542302504181862, -0.037511661648750305, 0.10949134826660156, -0.10514921694993973, -0.037190984934568405, 0.18203581869602203, 0.14178243279457092, 0.03381334990262985, -0.04644990712404251, 0.03771187365055084, -0.035380031913518906, -0.03964351862668991, -0.08001673221588135, -0.023452062159776688, -0.0194749403744936, -0.000006368004960677354, 0.06982071697711945, -0.12750661373138428, -0.09748908132314682, 0.10467797517776489, 0.044915806502103806, -0.0658392459154129, -0.01600986160337925, -0.02606034092605114, -0.027106059715151787, -0.07318443804979324, -0.06658482551574707, 0.06810181587934494, 0.0696256160736084, 0.08360831439495087, -0.06838811933994293, -0.03266986459493637, 0.025702709332108498, -0.010123006999492645, -0.08498076349496841, 0.055387627333402634, 0.0019182679243385792, -0.10884025692939758, 0.09823303669691086, -0.011353665962815285, 0.06271732598543167, 0.10767992585897446, 0.01939268596470356, -0.10901374369859695, 0.005803904961794615, 0.06703753769397736, 0.03357553109526634, 0.06482861191034317, -0.005420967936515808, 0.008616305887699127, 0.07208028435707092, -0.017771946266293526, -0.03814701735973358, -0.08831106871366501, 0.05847080424427986, 0.044410448521375656, -0.020113084465265274, 0.05871707201004028, -0.030512068420648575, 0.06822942197322845, 0.09781477600336075, 0.07397355139255524, 0.09532465040683746, -0.01922430656850338, -0.05902394279837608, -0.07496853172779083, 0.10975158959627151, -0.06474582105875015, -0.25499334931373596, -0.10185011476278305, -0.0600980743765831, -0.06756919622421265, -0.004508407320827246, 0.03639901056885719, -0.04771877080202103, -0.08133739233016968, -0.09532472491264343, 0.028523942455649376, 0.03930402174592018, -0.1172313317656517, -0.08248986303806305, 0.0267277080565691, -0.009807140566408634, -0.09665338695049286, -0.00399648817256093, 0.04654789716005325, -0.07066000252962112, 0.0024797271471470594, 0.057621389627456665, 0.15473538637161255, 0.06216185539960861, -0.01830807700753212, 0.003252893453463912, -0.012236777693033218, 0.1588553488254547, -0.15734447538852692, 0.1363079696893692, 0.13083548843860626, 0.005663012154400349, 0.08829377591609955, 0.19245044887065887, 0.006764697842299938, -0.002129141939803958, 0.012226899154484272, 0.06512364745140076, -0.05026518926024437, -0.18363137543201447, -0.04536683112382889, -0.05303362011909485, 0.008452121168375015, 0.13107959926128387, 0.04124189540743828, 0.003444526344537735, 0.06023379787802696, -0.10019240528345108, 0.04113508015871048, 0.04589718580245972, 0.09878147393465042, 0.059545911848545074, 0.0290704183280468, 0.02370026893913746, -0.04567413032054901, -0.04190511256456375, 0.12629684805870056, 0.11880400776863098, 0.0958045944571495, -0.10730773955583572, 0.1059182807803154, 0.032431215047836304, -0.00494770985096693, -0.06381205469369888, 0.0030910710338503122, -0.024270782247185707, 0.04763570800423622, -0.0197632797062397, -0.09498419612646103, 0.028313009068369865, 0.09684852510690689, 0.11244256049394608, 0.01401121448725462, 0.003798949997872114, -0.009908084757626057, 0.08567008376121521, 0.19158193469047546, 0.019631950184702873, -0.19629226624965668, 0.014317682012915611, 0.05860717594623566, 0.02466908097267151, -0.1248892992734909, -0.013169323094189167, 0.10374060273170471, -0.14908258616924286, 0.08880986273288727, -0.016075996682047844, 0.09382973611354828, -0.11957024037837982, -0.03491189330816269, 0.08130209892988205, 0.05453391373157501, -0.015158182941377163, 0.07893509417772293, -0.14632272720336914, 0.02611484006047249, 0.02788356877863407, 0.0448480099439621, -0.07281365245580673, 0.03304218873381615, 0.022346992045640945, -0.00607936829328537, 0.12756389379501343, -0.005849163513630629, 0.039654068648815155, -0.14835019409656525, -0.0727248266339302, -0.011537950485944748, 0.06261201947927475, -0.06983865052461624, 0.09976658225059509, 0.014587207697331905, -0.030753422528505325, -0.07096641510725021, -0.09387405216693878, -0.052245184779167175, -0.19231469929218292, 0.03328000009059906, 0.0030206500086933374, 0.03542602062225342, -0.0280173160135746, 0.008583377115428448, -0.016062719747424126, 0.12620295584201813, -0.0361890010535717, -0.08795367181301117, -0.128651961684227, 0.051341503858566284, 0.07862589508295059, -0.03258504718542099, 0.006502190139144659, -0.10039994865655899, 0.17442303895950317, -0.05142360180616379, -0.054287537932395935, 0.02692805603146553, -0.052248045802116394, -0.11106076836585999, -0.05193956196308136, 0.09583868831396103, 0.031876008957624435, 0.005995201878249645, 0.0042864298447966576, 0.048302993178367615, 0.023693880066275597, -0.05498092621564865, 0.022600965574383736, 0.11178399622440338, 0.08998657017946243, 0.09253093600273132, 0.04736923426389694, -0.1731898933649063, -0.10513662546873093, 0.00894517544656992, 0.03265873342752457, 0.12440882623195648, -0.08559796214103699, 0.10509169846773148, 0.03470229730010033, -0.08057569712400436, -0.21985097229480743, 0.05060133710503578, 0.03575070947408676, -0.03471286594867706, 0.020965231582522392, -0.13747458159923553, 0.17219755053520203, 0.014513544738292694, -0.0031807159539312124, 0.12128293514251709, -0.23528705537319183, -0.06511950492858887, -0.048287373036146164, 0.04786653444170952, -0.19590994715690613, -0.15198038518428802, -0.04557143524289131, -0.04823974892497063, -0.20461593568325043, 0.01117301918566227, 0.014257993549108505, 0.04282929748296738, 0.033485155552625656, 0.047467656433582306, 0.053405679762363434, -0.038962822407484055, 0.1307823807001114, 0.026707163080573082, 0.06407959759235382, -0.073886439204216, -0.08682678639888763, 0.08226962387561798, -0.10279011726379395, 0.13092580437660217, 0.016006579622626305, -0.0005685393698513508, -0.054508309811353683, 0.003158550476655364, -0.0271716620773077, 0.07232510298490524, -0.027403809130191803, -0.030588708817958832, -0.11909905076026917, 0.05449594929814339, 0.12125243246555328, 0.02854025922715664, 0.11191394180059433, -0.001425442867912352, -0.04002433270215988, 0.10927597433328629, 0.09825537353754044, -0.028870565816760063, -0.13706055283546448, -0.05395274981856346, -0.0005834486219100654, 0.04727305471897125, -0.11517580598592758, 0.04702332243323326, 0.09662710875272751, 0.02753528393805027, 0.09320317953824997, -0.005147289950400591, -0.11730942875146866, 0.03233393281698227, 0.06521083414554596, -0.056541040539741516, -0.12641125917434692, 0.018364407122135162, 0.05338156968355179, -0.06568153202533722, -0.10299879312515259, 0.09740518033504486, 0.0027978515718132257, -0.01914035901427269, 0.007793801371008158, 0.08430103212594986, 0.02906108647584915, 0.0415886752307415, 0.011728734709322453, 0.0370209701359272, -0.08833730220794678, 0.1309315413236618, 0.11716095358133316, -0.16165466606616974, 0.017655715346336365, 0.09392018616199493, -0.047430504113435745, -0.01700693741440773, -0.016686279326677322, 0.01932465098798275, 0.015047372318804264, -0.03884055092930794, 0.03933420404791832, -0.07591293752193451, 0.050288766622543335, 0.019115861505270004, 0.004947228357195854, 0.054963015019893646, 0.010568962432444096, 0.012625018134713173, -0.12494011968374252, 0.15003478527069092, 0.02228272520005703, 0.05231967195868492, -0.1051347479224205, 0.007279769517481327, 0.04592651128768921, -0.0009813362266868353, 0.011041021905839443, -0.06029769778251648, -0.06171390041708946, 0.005979082081466913, -0.059317171573638916, 0.08121837675571442, -0.09522964060306549, 0.006968322210013866, -0.03167485073208809, 0.025257429108023643, -0.008484425954520702, 0.048243746161460876, -0.03900950402021408, -0.08469051122665405, -0.035742875188589096, 0.13776369392871857, -0.15429988503456116, -0.028561430051922798, 0.04584180563688278, -0.09489776194095612, 0.0557088740170002, -0.02155095711350441, -0.03560604155063629, -0.08742509037256241, -0.20736263692378998, -0.04550288990139961, 0.04666309058666229, 0.05599135160446167, 0.05000816285610199, -0.059226132929325104, 0.04611950367689133, -0.0005457499646581709, -0.09934769570827484, -0.020620740950107574, -0.007932785898447037, -0.108945831656456, 0.04169176146388054, -0.09493119269609451, -0.04343920946121216, -0.04691893979907036, 0.1310604065656662, 0.08124176412820816, -0.02755504660308361, 0.08322063833475113, -0.029622741043567657, 0.08744201809167862, -0.15346013009548187, -0.05416545644402504, -0.014202959835529327, -0.03687874600291252, -0.11193057149648666, -0.013870038092136383, 0.056751009076833725, -0.033766359090805054, 0.12211568653583527, 0.09953315556049347, 0.02149135246872902, 0.03709113970398903, 0.003701426088809967, 0.02776971086859703, 0.05808958038687706, 0.0036238660104572773, -0.011579512618482113, -0.026386365294456482, 0.04158230125904083, 0.01397247426211834, 0.03391050174832344, 0.08458270877599716, 0.026194028556346893, 0.21373286843299866, 0.11048505455255508, 0.037971094250679016, 0.03664534538984299, -0.060609202831983566, -0.10604701936244965, 0.10287106037139893, -0.049887578934431076, 0.059949107468128204, -0.08580800145864487, 0.03153056651353836, 0.10847245156764984, -0.15547005832195282, 0.051599618047475815, -0.017297348007559776, 0.008491698652505875, -0.007671748753637075, -0.10592910647392273, -0.056768711656332016, -0.036314696073532104, 0.008687442168593407, -0.11978960782289505, 0.09867184609174728, 0.10606717318296432, 0.019431326538324356, 0.006454093847423792, 0.13482066988945007, -0.07272101938724518, -0.07337187230587006, 0.10085752606391907, 0.011034844443202019, 0.04305397719144821, 0.09387871623039246, 0.03325425088405609, 0.08216465264558792, -0.016713667660951614, 0.08006175607442856, 0.10090216994285583, 0.10056528449058533, 0.03476974368095398, -0.05332203581929207, -0.07581788301467896, 0.0403117761015892, -0.0158988106995821, -0.014517057687044144, 0.16516675055027008, 0.07788988202810287, 0.013458194211125374, -0.01870613358914852, 0.12497906386852264, -0.013013063929975033, -0.04278745874762535, -0.11153244972229004, 0.05594810098409653, -0.029391003772616386, -0.010015980340540409, -0.019713226705789566, -0.16697850823402405, -0.012866550125181675, 0.12097246944904327, 0.06042294204235077, -0.03873177617788315, -0.029958022758364677, -0.02725413255393505, 0.0062440866604447365, -0.020793089643120766, 0.07085242867469788, 0.0016602963441982865, 0.18648535013198853, -0.05402336269617081, -0.0011723758652806282, -0.06120997294783592, -0.047402653843164444, -0.042204950004816055, 0.0633837953209877, -0.004260782152414322, 0.02266146056354046, -0.07777460664510727, 0.09324488788843155, -0.0050150067545473576, -0.21187563240528107, 0.09790197014808655, -0.07084053754806519, -0.06120442971587181, 0.030485255643725395, 0.030538473278284073, 0.01868586055934429, 0.037730954587459564, 0.03580876439809799, -0.05119885131716728, 0.1337776780128479, 0.01634075492620468, -0.07329793274402618, 0.013593398034572601, 0.005983666516840458, -0.13991187512874603, 0.26484692096710205, -0.030929094180464745, 0.047460805624723434, 0.09302400052547455, 0.0020780416671186686, -0.13627316057682037, -0.013217800296843052, 0.07635228335857391, -0.02105354517698288, 0.016271986067295074, 0.11792902648448944, 0.016452867537736893, 0.1325913518667221, 0.09616609662771225, -0.06777908653020859, 0.04707048833370209, 0.01980915665626526, -0.0008944134460762143, -0.14155904948711395, 0.00010879616456804797, -0.08466169983148575, 0.10739892721176147, 0.13383091986179352, -0.006306464783847332, -0.0028838017024099827, -0.0480523444712162, -0.0032017449848353863, 0.011294359341263771, 0.11085443943738937, 0.014154467731714249, -0.05265459790825844, 0.023574061691761017, -0.10744675993919373, 0.09626954793930054, -0.12653259932994843, -0.059777602553367615, 0.0178987979888916, -0.022538186982274055, -0.002497798530384898, 0.07591496407985687, 0.04356475919485092, 0.009596318006515503, -0.05073117837309837, -0.14700506627559662, 0.033692482858896255, 0.15655873715877533, -0.01865767128765583, -0.000880862062331289 ]
cf9603951e2a38c55a1737d60587d53e72e15fce
# Dataset Card for insects-mytwu ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/insects-mytwu - **Point of Contact:** [email protected] ### Dataset Summary insects-mytwu ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/insects-mytwu ### Citation Information ``` @misc{ insects-mytwu, title = { insects mytwu Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/insects-mytwu } }, url = { https://universe.roboflow.com/object-detection/insects-mytwu }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/insects-mytwu
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T09:08:00+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "insects-mytwu", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "insects", "1": "army worm", "2": "legume blister beetle", "3": "red spider", "4": "rice gall midge", "5": "rice leaf roller", "6": "rice leafhopper", "7": "rice water weevil", "8": "wheat phloeothrips", "9": "white backed plant hopper", "10": "yellow rice borer"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T09:08:26+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for insects-mytwu The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary insects-mytwu ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for insects-mytwu\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ninsects-mytwu", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for insects-mytwu\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\ninsects-mytwu", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 24, 22, 12, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for insects-mytwu\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\ninsects-mytwu### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.009748348966240883, 0.1558614820241928, -0.0073501975275576115, 0.024554062634706497, 0.08258669078350067, -0.02268736995756626, 0.03494226559996605, 0.0788998082280159, -0.012896107509732246, 0.17346219718456268, -0.01579262688755989, 0.09788256883621216, 0.1193118542432785, 0.06625831127166748, -0.025807982310652733, -0.15126006305217743, 0.06984464079141617, -0.05567576736211777, 0.04507804661989212, 0.06601618975400925, 0.07211671024560928, -0.12667416036128998, 0.08775726705789566, -0.024250775575637817, -0.00998473446816206, 0.013553922064602375, -0.061875805258750916, -0.03480846434831619, 0.022595759481191635, 0.030026154592633247, 0.023965617641806602, 0.015961963683366776, 0.037876881659030914, -0.1858866661787033, 0.01529826782643795, 0.10299509763717651, 0.03901037573814392, 0.027229536324739456, 0.14839330315589905, -0.05673960968852043, 0.046163201332092285, -0.14456990361213684, 0.03831714764237404, 0.022004809230566025, -0.11772994697093964, -0.10815420746803284, -0.129166379570961, 0.06425981968641281, 0.11634712666273117, 0.048442989587783813, -0.008544296957552433, 0.0823979452252388, 0.015507509000599384, 0.06457377225160599, 0.10691434890031815, -0.06475570797920227, -0.036630284041166306, 0.06185075640678406, 0.06204327195882797, 0.10622625797986984, -0.1286250352859497, -0.02308853343129158, 0.014213867485523224, -0.014149731025099754, 0.019394677132368088, -0.06832011044025421, -0.041497427970170975, -0.02812015824019909, -0.09739946573972702, -0.16196641325950623, 0.13359037041664124, 0.04458366334438324, -0.06961902976036072, -0.14472687244415283, -0.022144170477986336, 0.07761906832456589, -0.03941555693745613, -0.009011823683977127, 0.06072381138801575, 0.009272512048482895, 0.08597666025161743, -0.08124720305204391, -0.08989987522363663, 0.07433032244443893, 0.043595604598522186, 0.05724882334470749, -0.02501084841787815, 0.026679232716560364, 0.01040808018296957, 0.05112770199775696, 0.045839373022317886, -0.11571942269802094, -0.026665734127163887, -0.024313265457749367, -0.053271885961294174, -0.04919867962598801, 0.07467027753591537, -0.15668047964572906, 0.07527371495962143, 0.0718533992767334, -0.09305423498153687, 0.029327869415283203, -0.15964722633361816, 0.01344853825867176, 0.11426535248756409, 0.17282988131046295, -0.09220880270004272, -0.07653775066137314, 0.02763531170785427, 0.02865683287382126, 0.03406522050499916, -0.03411616012454033, -0.002460154937580228, 0.01908441074192524, 0.044040996581315994, 0.029956337064504623, 0.1423707902431488, 0.035343971103429794, -0.07746744900941849, -0.06529675424098969, 0.13888271152973175, -0.08843233436346054, 0.04798959940671921, 0.06089217588305473, -0.03049544245004654, 0.06590399146080017, 0.00510272104293108, 0.0207234937697649, -0.11006264388561249, 0.07792417705059052, -0.04247131571173668, 0.009875772520899773, -0.06637544929981232, -0.11013825237751007, 0.048084426671266556, -0.05660279840230942, -0.08465797454118729, -0.07759501039981842, -0.024022122845053673, -0.08803465217351913, 0.03490721806883812, -0.034465935081243515, 0.004717609845101833, 0.02926528826355934, -0.05389479547739029, -0.0012164758518338203, 0.02004832774400711, 0.025357116013765335, -0.05171709507703781, 0.0371997244656086, -0.10422325134277344, 0.03459460288286209, 0.08952568471431732, 0.04233923926949501, -0.1086672842502594, 0.07367497682571411, -0.18026204407215118, 0.1201225221157074, -0.06761004775762558, 0.03832363709807396, -0.13619792461395264, 0.009762209840118885, 0.007864795625209808, -0.04635639116168022, 0.005077657755464315, 0.15566490590572357, -0.05608724057674408, 0.026788709685206413, 0.053813956677913666, -0.04630779102444649, -0.06910529732704163, 0.04216020181775093, -0.031553979963064194, -0.0073422701098024845, 0.07363169640302658, 0.1272500604391098, -0.05111631006002426, -0.10541458427906036, -0.09647785872220993, -0.026805134490132332, -0.026001479476690292, 0.16489574313163757, 0.06804433465003967, -0.046974845230579376, 0.062198054045438766, -0.016597043722867966, -0.03555034473538399, -0.03963078558444977, 0.03178451210260391, -0.035558439791202545, 0.011094140820205212, -0.004317298531532288, -0.05460139364004135, 0.00907441321760416, -0.09641776978969574, 0.005222436040639877, -0.06005493551492691, -0.03764941170811653, 0.011514986865222454, -0.04233638942241669, 0.02811341919004917, -0.00047246593749150634, 0.09240121394395828, -0.1366783231496811, -0.006819256115704775, -0.17711442708969116, -0.10321464389562607, 0.0695829913020134, -0.06044526398181915, 0.05602429062128067, -0.0676840990781784, -0.01919449307024479, 0.02573850192129612, 0.04569460451602936, -0.02590234763920307, 0.03498430550098419, -0.01738000474870205, -0.04928426072001457, -0.1280694156885147, -0.043076734989881516, -0.023997897282242775, 0.09878671169281006, -0.12640908360481262, -0.02380731701850891, 0.13395150005817413, 0.11757351458072662, 0.040335383266210556, -0.05260978639125824, 0.09597305208444595, -0.018153712153434753, -0.027900455519557, -0.08125701546669006, -0.007687150035053492, 0.016791610047221184, 0.028675198554992676, 0.07937867194414139, -0.14340975880622864, -0.12786418199539185, 0.07427619397640228, 0.019197598099708557, -0.06994069367647171, -0.006310206837952137, -0.048887938261032104, -0.02247033827006817, -0.1116843968629837, -0.047325145453214645, 0.05782216414809227, 0.07096679508686066, 0.09380094707012177, -0.07419204711914062, -0.035184960812330246, 0.017329514026641846, -0.03402493894100189, -0.06669637560844421, 0.0652676597237587, 0.03210410848259926, -0.10332205891609192, 0.11920123547315598, -0.04110508784651756, 0.04822101444005966, 0.07473523169755936, 0.034894660115242004, -0.09547972679138184, 0.0328090563416481, 0.09158989787101746, 0.03348730877041817, 0.08301085233688354, -0.02695951983332634, 0.015090880915522575, 0.08285895735025406, -0.020667297765612602, -0.01979430578649044, -0.09051962196826935, 0.08249820023775101, 0.03912912309169769, -0.034474797546863556, 0.03154963627457619, -0.031310178339481354, 0.07754065841436386, 0.09629277139902115, 0.05625074356794357, 0.11066307127475739, -0.05233994126319885, -0.050356488674879074, -0.10215181112289429, 0.13646045327186584, -0.018225615844130516, -0.2958672344684601, -0.0903497114777565, -0.06489669531583786, -0.09487395733594894, -0.006680948659777641, 0.03588756546378136, 0.002634376985952258, -0.07610969245433807, -0.0984354242682457, 0.0633859857916832, 0.06724697351455688, -0.09432466328144073, -0.11118900775909424, 0.041611045598983765, 0.021954070776700974, -0.10004972666501999, 0.0018766269786283374, 0.03693574294447899, -0.02270384691655636, 0.007331925444304943, 0.06050684675574303, 0.14144621789455414, 0.0584418885409832, -0.014407416805624962, -0.022303396835923195, -0.0013211386976763606, 0.1961645632982254, -0.1443609595298767, 0.11055006831884384, 0.16228097677230835, 0.00017073960043489933, 0.09491006284952164, 0.2007286548614502, -0.00705746840685606, -0.026569394394755363, 0.024215595796704292, 0.058052387088537216, -0.05448371544480324, -0.19940945506095886, -0.07161377370357513, -0.06034834682941437, 0.02274383418262005, 0.15181565284729004, 0.038474712520837784, 0.03958062455058098, 0.0842076987028122, -0.10880488157272339, 0.0633244514465332, 0.020354995504021645, 0.10992994904518127, 0.02017877995967865, 0.05174832418560982, 0.04039065167307854, -0.03954974189400673, -0.04984813556075096, 0.0917690321803093, 0.1209731251001358, 0.09013555943965912, -0.07764571905136108, 0.10439755022525787, 0.025577224791049957, 0.013964696787297726, -0.05068221688270569, 0.024391843006014824, -0.05115834251046181, 0.056251801550388336, -0.010437261313199997, -0.0932650938630104, -0.011051518842577934, 0.0733877420425415, 0.14641238749027252, -0.007040726020932198, 0.010827101767063141, -0.0753612071275711, 0.07264511287212372, 0.24883906543254852, 0.02469872497022152, -0.18535467982292175, 0.013949752785265446, 0.04374115541577339, 0.00503295985981822, -0.12647446990013123, -0.05649406835436821, 0.0740533322095871, -0.17797638475894928, 0.05795168876647949, -0.04360684007406235, 0.11675911396741867, -0.15538303554058075, -0.031605299562215805, 0.020872220396995544, 0.024743646383285522, -0.028544992208480835, 0.0712980404496193, -0.10397312045097351, 0.08143607527017593, 0.025441205129027367, 0.02677685208618641, -0.08980267494916916, 0.04320888593792915, 0.018478278070688248, -0.0296441949903965, 0.15303875505924225, -0.007504310924559832, 0.006940790452063084, -0.13592441380023956, -0.12352054566144943, -0.015026319772005081, 0.036021240055561066, -0.07613174617290497, 0.10905308276414871, 0.01490315143018961, -0.023558374494314194, -0.08779709041118622, -0.04299575462937355, -0.0660075768828392, -0.16482459008693695, 0.05534345656633377, -0.040720123797655106, 0.026764778420329094, -0.00635398318991065, 0.0322980098426342, 0.03204894810914993, 0.14356070756912231, -0.06278713792562485, -0.10646354407072067, -0.15389572083950043, 0.04217161610722542, 0.07980920374393463, -0.02748396061360836, -0.01019471138715744, -0.09462400525808334, 0.1805318295955658, -0.05128074437379837, -0.062333885580301285, 0.02043856307864189, -0.06621278077363968, -0.11928945779800415, -0.05682162567973137, 0.09503457695245743, 0.02483101189136505, 0.013093290850520134, 0.019927240908145905, 0.06627373397350311, 0.0026731397956609726, -0.06319122016429901, 0.017711501568555832, 0.06951480358839035, 0.11441359668970108, 0.12640433013439178, 0.0024979612790048122, -0.15402381122112274, -0.13734416663646698, 0.0011356223840266466, 0.05154585838317871, 0.10467614978551865, -0.05210534855723381, 0.11359117180109024, 0.05800849571824074, -0.09711916744709015, -0.24189311265945435, 0.0680314302444458, 0.06307478994131088, -0.013145852833986282, -0.01670524664223194, -0.14633426070213318, 0.15769992768764496, 0.038684774190187454, -0.009026158601045609, 0.0608755499124527, -0.2596170902252197, -0.07309269905090332, -0.019672326743602753, 0.045721061527729034, -0.23889733850955963, -0.1779429018497467, -0.061070725321769714, -0.06250447779893875, -0.14243261516094208, 0.052487727254629135, -0.00316758849658072, 0.04021982476115227, 0.04585285857319832, 0.02381191775202751, 0.0622023306787014, -0.04587751254439354, 0.11912424862384796, 0.022377878427505493, 0.041293274611234665, -0.04916743189096451, -0.07057339698076248, 0.041916050016880035, -0.08809101581573486, 0.15772823989391327, 0.04286910220980644, 0.008145565167069435, -0.08627688139677048, 0.007190593518316746, -0.050099410116672516, 0.10204970836639404, -0.029457515105605125, -0.04396869242191315, -0.09636100381612778, 0.030122658237814903, 0.153045192360878, 0.03983369469642639, 0.11959899216890335, -0.024020183831453323, -0.014038658700883389, 0.14163275063037872, 0.10583896189928055, 0.007825366221368313, -0.16784124076366425, -0.043392788618803024, -0.0005755345337092876, 0.025565773248672485, -0.12498865276575089, 0.03989081084728241, 0.074345663189888, 0.041617054492235184, 0.10031425207853317, 0.0003724530979525298, -0.0804366022348404, 0.027621811255812645, 0.03364625573158264, -0.09758077561855316, -0.10929867625236511, 0.025134054943919182, 0.093842513859272, -0.11170218139886856, -0.12693826854228973, 0.13353997468948364, -0.0000538352360308636, -0.021216051653027534, -0.003625393845140934, 0.0865224301815033, 0.050723847001791, 0.06138230115175247, 0.038636282086372375, 0.042932819575071335, -0.06668157130479813, 0.1047699823975563, 0.16151940822601318, -0.145268514752388, 0.0005779588827863336, 0.11763366311788559, -0.03837335482239723, -0.01556138414889574, -0.003790293587371707, 0.016685478389263153, -0.00822555273771286, -0.006481113377958536, 0.021055234596133232, -0.045515384525060654, 0.02106572687625885, 0.08040950447320938, 0.002365120453760028, 0.048061303794384, 0.009474954567849636, -0.029927657917141914, -0.13535195589065552, 0.12739765644073486, 0.03018387407064438, 0.0766482725739479, -0.07851843535900116, 0.017426101490855217, 0.031322069466114044, 0.0009894545655697584, 0.007333293557167053, -0.05356696993112564, -0.10351831465959549, -0.008218783885240555, -0.022675585001707077, 0.11064840108156204, -0.10038584470748901, -0.013226285576820374, -0.030593689531087875, 0.0052022989839315414, -0.006944733671844006, 0.04110683500766754, -0.03956911712884903, -0.09266965836286545, -0.0405656173825264, 0.12919381260871887, -0.14895322918891907, -0.0353248231112957, 0.07947657257318497, -0.11536502093076706, 0.04498825967311859, -0.014809513464570045, -0.04481556639075279, -0.09498469531536102, -0.183005690574646, -0.05555391684174538, 0.03662986308336258, 0.06319178640842438, 0.04199681431055069, -0.11713685095310211, 0.04042280092835426, -0.009805853478610516, -0.08674315363168716, -0.014675118029117584, 0.010814839042723179, -0.10313282907009125, 0.03994083032011986, -0.08656813949346542, -0.0398748442530632, -0.021618200466036797, 0.11949554085731506, 0.07539361715316772, -0.004661403596401215, 0.0904608741402626, -0.036008208990097046, 0.1052088588476181, -0.13446125388145447, -0.03632976859807968, -0.016421586275100708, -0.051171183586120605, -0.06441241502761841, -0.010623783804476261, 0.07110551744699478, -0.019527975469827652, 0.10829495638608932, 0.12278421223163605, 0.06524337828159332, 0.044308025389909744, 0.03348763287067413, 0.05956530198454857, 0.0675600916147232, -0.002302241511642933, -0.018128881230950356, -0.02353900484740734, 0.07876492291688919, 0.014985112473368645, 0.027123644948005676, 0.1253092736005783, 0.06963371485471725, 0.23417416214942932, 0.13377295434474945, 0.02026280201971531, 0.04176243394613266, -0.06117928400635719, -0.10481780022382736, 0.07227546721696854, -0.009745193645358086, 0.08727835863828659, -0.07837841659784317, 0.048393987119197845, 0.07481895387172699, -0.16949202120304108, 0.07789333909749985, 0.0076037123799324036, -0.013866202905774117, -0.011289364658296108, -0.0839068591594696, -0.052875667810440063, -0.012418091297149658, -0.00735129788517952, -0.12185277044773102, 0.06653757393360138, 0.1318872570991516, -0.02199813351035118, 0.025757616385817528, 0.09288957715034485, -0.05878801643848419, -0.09668613970279694, 0.07345665246248245, 0.012639004737138748, 0.043893519788980484, 0.03781770542263985, 0.04562624916434288, 0.06408384442329407, 0.021425746381282806, 0.10075514763593674, 0.09495717287063599, 0.08595605939626694, 0.03519118204712868, -0.07958831638097763, -0.08978952467441559, 0.038208503276109695, -0.03191060200333595, -0.02415650151669979, 0.17231939733028412, 0.0921127051115036, -0.0033182792831212282, -0.015485748648643494, 0.15714982151985168, -0.019395899027585983, -0.026597920805215836, -0.1574808657169342, 0.06313656270503998, -0.042940735816955566, -0.014824548736214638, -0.0005060593830421567, -0.1486065834760666, 0.007254828233271837, 0.14684709906578064, 0.03904377296566963, -0.04056753218173981, -0.006314768921583891, -0.03025718219578266, 0.002265826566144824, -0.014726083725690842, 0.04459304362535477, 0.024783683940768242, 0.2193029522895813, -0.07362020015716553, 0.0011140172136947513, -0.05533434450626373, -0.05912131071090698, -0.08694200217723846, 0.10665923357009888, -0.02039756253361702, -0.006798288784921169, -0.07569552958011627, 0.12500706315040588, -0.026041243225336075, -0.1935228854417801, 0.03298160433769226, -0.08817972242832184, -0.08325821906328201, 0.014739285223186016, -0.05584877356886864, 0.008236980997025967, 0.03083844669163227, 0.027509016916155815, -0.06642492860555649, 0.08937455713748932, 0.02219603769481182, -0.056458089500665665, -0.0024395121727138758, -0.00034718617098405957, -0.11964038014411926, 0.2752950191497803, -0.020959284156560898, 0.024786237627267838, 0.08665762096643448, -0.026904279366135597, -0.14059856534004211, -0.04263501986861229, 0.07962013781070709, -0.024779517203569412, 0.0360463485121727, 0.13816247880458832, -0.000023346718080574647, 0.13515061140060425, 0.08443354070186615, -0.09126463532447815, 0.05049536004662514, 0.025375157594680786, 0.032920051366090775, -0.10695181041955948, -0.010471063666045666, -0.10541242361068726, 0.10756358504295349, 0.13579542934894562, -0.01520623080432415, 0.0015212835278362036, -0.03392469137907028, -0.006935428362339735, -0.004321800544857979, 0.09729396551847458, -0.010460981167852879, -0.09366055577993393, -0.0024369098246097565, -0.15471291542053223, 0.09054829180240631, -0.13899922370910645, -0.06696823239326477, 0.0390959307551384, -0.014799798838794231, -0.008758867159485817, 0.0639675185084343, 0.019781770184636116, -0.03112897090613842, -0.054192375391721725, -0.09048639982938766, 0.020549438893795013, 0.16406962275505066, 0.008502946235239506, -0.025036035105586052 ]
931d13bd489d6c7508450c5b24c8906b2539169c
# Dataset Card for street-work ** The original COCO dataset is stored at `dataset.tar.gz`** ## Dataset Description - **Homepage:** https://universe.roboflow.com/object-detection/street-work - **Point of Contact:** [email protected] ### Dataset Summary street-work ### Supported Tasks and Leaderboards - `object-detection`: The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ``` { 'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640 at 0x2373B065C18>, 'width': 964043, 'height': 640, 'objects': { 'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [ [302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0] ], 'category': [4, 4, 0, 0] } } ``` ### Data Fields - `image`: the image id - `image`: `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `width`: the image width - `height`: the image height - `objects`: a dictionary containing bounding box metadata for the objects present on the image - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [coco](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) format) - `category`: the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage https://universe.roboflow.com/object-detection/street-work ### Citation Information ``` @misc{ street-work, title = { street work Dataset }, type = { Open Source Dataset }, author = { Roboflow 100 }, howpublished = { \url{ https://universe.roboflow.com/object-detection/street-work } }, url = { https://universe.roboflow.com/object-detection/street-work }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { nov }, note = { visited on 2023-03-29 }, }" ``` ### Contributions Thanks to [@mariosasko](https://github.com/mariosasko) for adding this dataset.
Francesco/street-work
[ "task_categories:object-detection", "annotations_creators:crowdsourced", "language_creators:found", "multilinguality:monolingual", "size_categories:1K<n<10K", "source_datasets:original", "language:en", "license:cc", "rf100", "region:us" ]
2023-03-30T09:12:20+00:00
{"annotations_creators": ["crowdsourced"], "language_creators": ["found"], "language": ["en"], "license": ["cc"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["object-detection"], "task_ids": [], "pretty_name": "street-work", "dataset_info": {"features": [{"name": "image_id", "dtype": "int64"}, {"name": "image", "dtype": "image"}, {"name": "width", "dtype": "int32"}, {"name": "height", "dtype": "int32"}, {"name": "objects", "sequence": [{"name": "id", "dtype": "int64"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "category", "dtype": {"class_label": {"names": {"0": "street-work-items", "1": "Cone", "2": "Face_Shield", "3": "Gloves", "4": "Goggles", "5": "Head", "6": "Helmet", "7": "No glasses", "8": "No gloves"}}}}]}]}, "tags": ["rf100"]}
2023-03-30T09:12:43+00:00
[]
[ "en" ]
TAGS #task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us
# Dataset Card for street-work The original COCO dataset is stored at 'URL' ## Dataset Description - Homepage: URL - Point of Contact: francesco.zuppichini@URL ### Dataset Summary street-work ### Supported Tasks and Leaderboards - 'object-detection': The dataset can be used to train a model for Object Detection. ### Languages English ## Dataset Structure ### Data Instances A data point comprises an image and its object annotations. ### Data Fields - 'image': the image id - 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0]["image"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '"image"' column, *i.e.* 'dataset[0]["image"]' should always be preferred over 'dataset["image"][0]' - 'width': the image width - 'height': the image height - 'objects': a dictionary containing bounding box metadata for the objects present on the image - 'id': the annotation id - 'area': the area of the bounding box - 'bbox': the object's bounding box (in the coco format) - 'category': the object's category. #### Who are the annotators? Annotators are Roboflow users ## Additional Information ### Licensing Information See original homepage URL ### Contributions Thanks to @mariosasko for adding this dataset.
[ "# Dataset Card for street-work\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nstreet-work", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ "TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n", "# Dataset Card for street-work\n\n The original COCO dataset is stored at 'URL'", "## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL", "### Dataset Summary\n\nstreet-work", "### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.", "### Languages\n\nEnglish", "## Dataset Structure", "### Data Instances\n\nA data point comprises an image and its object annotations.", "### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.", "#### Who are the annotators?\n\nAnnotators are Roboflow users", "## Additional Information", "### Licensing Information\n\nSee original homepage URL", "### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ 78, 21, 22, 9, 33, 5, 6, 20, 233, 16, 5, 11, 17 ]
[ "passage: TAGS\n#task_categories-object-detection #annotations_creators-crowdsourced #language_creators-found #multilinguality-monolingual #size_categories-1K<n<10K #source_datasets-original #language-English #license-cc #rf100 #region-us \n# Dataset Card for street-work\n\n The original COCO dataset is stored at 'URL'## Dataset Description\n\n- Homepage: URL\n- Point of Contact: francesco.zuppichini@URL### Dataset Summary\n\nstreet-work### Supported Tasks and Leaderboards\n\n- 'object-detection': The dataset can be used to train a model for Object Detection.### Languages\n\nEnglish## Dataset Structure### Data Instances\n\nA data point comprises an image and its object annotations.### Data Fields\n\n- 'image': the image id\n- 'image': 'PIL.Image.Image' object containing the image. Note that when accessing the image column: 'dataset[0][\"image\"]' the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the '\"image\"' column, *i.e.* 'dataset[0][\"image\"]' should always be preferred over 'dataset[\"image\"][0]'\n- 'width': the image width\n- 'height': the image height\n- 'objects': a dictionary containing bounding box metadata for the objects present on the image\n - 'id': the annotation id\n - 'area': the area of the bounding box\n - 'bbox': the object's bounding box (in the coco format)\n - 'category': the object's category.#### Who are the annotators?\n\nAnnotators are Roboflow users## Additional Information### Licensing Information\n\nSee original homepage URL### Contributions\n\nThanks to @mariosasko for adding this dataset." ]
[ -0.015376760624349117, 0.16749128699302673, -0.008751999586820602, 0.026850352063775063, 0.12043985724449158, -0.01121411845088005, 0.07525214552879333, 0.06811700016260147, 0.020721061155200005, 0.15947642922401428, -0.021172072738409042, 0.06849787384271622, 0.13399282097816467, 0.1098933070898056, -0.019600944593548775, -0.15427640080451965, 0.05502016842365265, -0.07240455597639084, 0.0660812109708786, 0.0657375156879425, 0.07084988802671432, -0.13371093571186066, 0.09565754234790802, -0.03367717191576958, -0.045041296631097794, 0.01586875692009926, -0.02024676278233528, -0.04800556227564812, 0.013458852656185627, 0.023108677938580513, 0.04811965674161911, 0.013495641760528088, 0.05147223174571991, -0.1993928849697113, 0.027502452954649925, 0.11070859432220459, 0.009914969094097614, 0.038558848202228546, 0.12550759315490723, -0.10141709446907043, 0.029067620635032654, -0.14675863087177277, 0.02820025011897087, 0.009263616055250168, -0.12888428568840027, -0.0628679096698761, -0.1272280514240265, 0.02621489390730858, 0.11276306211948395, 0.057990387082099915, -0.008011446334421635, 0.04655276983976364, 0.0009205303504131734, 0.06047104671597481, 0.11055788397789001, -0.08065396547317505, -0.06494870036840439, 0.08760594576597214, 0.010059962049126625, 0.12144598364830017, -0.13060881197452545, -0.006396359298378229, -0.006220631301403046, -0.03054770641028881, 0.012682417407631874, -0.06647473573684692, -0.04494112730026245, 0.004466450307518244, -0.09314615279436111, -0.12838579714298248, 0.15043842792510986, 0.04629623889923096, -0.0462481752038002, -0.08306795358657837, -0.03031463362276554, 0.02656608447432518, -0.024624155834317207, -0.012108532711863518, 0.04361830651760101, 0.017770497128367424, 0.057929184287786484, -0.0587264709174633, -0.11319660395383835, 0.06195701286196709, -0.009875660762190819, 0.05480688437819481, -0.042815838009119034, 0.04684802144765854, 0.017304817214608192, 0.07610224932432175, 0.010228541679680347, -0.12498890608549118, -0.029593659564852715, -0.03827359527349472, -0.07720249891281128, -0.03972099348902702, 0.06268224120140076, -0.11159893870353699, 0.05888376384973526, 0.0651516243815422, -0.07613293826580048, 0.03390997648239136, -0.10461225360631943, 0.025329530239105225, 0.09253070503473282, 0.18784189224243164, -0.06958816200494766, -0.0900086984038353, 0.00604938855394721, 0.019185608252882957, 0.032217495143413544, -0.05266248807311058, -0.03834471106529236, -0.009527611546218395, 0.003965260926634073, 0.02918078564107418, 0.10367768257856369, 0.017778528854250908, -0.06892317533493042, -0.05091050639748573, 0.08168040961027145, -0.10919782519340515, 0.06106847524642944, 0.04110867902636528, -0.007062856107950211, 0.08039354532957077, 0.01347524207085371, 0.029311660677194595, -0.08992315083742142, 0.06948582828044891, -0.04133276641368866, 0.0350162647664547, -0.087824746966362, -0.06385936588048935, 0.045620910823345184, -0.08493997901678085, -0.08241046220064163, -0.09035847336053848, -0.04150952398777008, -0.09190556406974792, 0.041951753199100494, -0.0414714477956295, 0.03365984559059143, 0.007341587450355291, -0.039032720029354095, -0.009720842353999615, 0.01817942038178444, 0.019595863297581673, -0.056698087602853775, 0.029667982831597328, -0.10397292673587799, 0.026179609820246696, 0.06138200685381889, 0.02504386380314827, -0.0756673589348793, 0.05669489502906799, -0.15979842841625214, 0.12541057169437408, -0.030410967767238617, 0.043203480541706085, -0.1237848699092865, 0.03190307691693306, -0.033438052982091904, -0.048807282000780106, 0.009161094203591347, 0.1190759539604187, -0.10146820545196533, 0.028375066816806793, 0.0635930597782135, -0.05220351368188858, -0.039432913064956665, 0.03849608078598976, -0.04760640487074852, 0.016378343105316162, 0.07773496210575104, 0.09598344564437866, -0.007398525252938271, -0.12563826143741608, -0.12379777431488037, -0.04389246925711632, -0.053076744079589844, 0.14308837056159973, 0.060336530208587646, -0.03238598257303238, 0.0624668262898922, -0.00505913607776165, -0.03290386497974396, -0.02767428755760193, 0.016919080168008804, -0.04197883605957031, 0.01315243262797594, 0.016806770116090775, -0.06732018291950226, 0.013921243138611317, -0.10969147831201553, 0.017032045871019363, -0.07845722883939743, -0.0597684271633625, 0.004628137219697237, -0.02381938137114048, 0.027821099385619164, -0.042252518236637115, 0.08291513472795486, -0.10666989535093307, -0.014700356870889664, -0.135414257645607, -0.10216999799013138, 0.06225809454917908, 0.0500243678689003, 0.04032325744628906, -0.07197990268468857, 0.0013555986806750298, 0.013855925761163235, 0.03858797997236252, -0.009135953150689602, 0.04199012741446495, -0.020579660311341286, -0.03401465341448784, -0.13514301180839539, -0.015564206056296825, -0.026035740971565247, 0.10939085483551025, -0.12018155306577682, -0.029836049303412437, 0.16373245418071747, 0.11857109516859055, 0.03575299680233002, -0.04205267131328583, 0.0425025075674057, -0.0169284138828516, -0.04346409812569618, -0.07156633585691452, -0.016274109482765198, 0.006843589711934328, 0.043476734310388565, 0.07049050182104111, -0.19682000577449799, -0.1473529040813446, 0.07324935495853424, 0.00017225943156518042, -0.07182259112596512, -0.07595284283161163, -0.04603013023734093, -0.004487467464059591, -0.10830581188201904, -0.04184374213218689, 0.0674068033695221, 0.04713863134384155, 0.0708882212638855, -0.058132413774728775, -0.03027152270078659, 0.027159811928868294, -0.025158489122986794, -0.07844724506139755, 0.025237232446670532, 0.043061431497335434, -0.09195749461650848, 0.09791986644268036, 0.013382146134972572, 0.030200205743312836, 0.12746144831180573, 0.033459704369306564, -0.09403794258832932, -0.020653529092669487, 0.08389459550380707, 0.027768682688474655, 0.11086633056402206, -0.0413472056388855, 0.014957201667129993, 0.06569579988718033, -0.0022954181768000126, -0.04170630872249603, -0.09092439711093903, 0.07241451740264893, 0.0181439146399498, -0.036816831678152084, 0.07413875311613083, -0.04022521153092384, 0.07378121465444565, 0.09606979042291641, 0.04587778449058533, 0.08259989321231842, -0.05532975122332573, -0.06287936866283417, -0.08501914143562317, 0.11392156034708023, -0.054741110652685165, -0.2307393103837967, -0.08646825700998306, -0.09104890376329422, -0.05206862837076187, 0.012786872684955597, 0.025088177993893623, -0.007984751835465431, -0.07764685899019241, -0.08150352537631989, 0.03466768190264702, 0.08069014549255371, -0.09520197659730911, -0.0847051590681076, 0.02620668150484562, -0.00981814507395029, -0.06838224828243256, -0.011197340674698353, 0.023978976532816887, -0.0705634355545044, 0.012897057458758354, 0.047046203166246414, 0.1312958300113678, 0.08662829548120499, -0.024699924513697624, 0.011129225604236126, -0.008631954900920391, 0.1711982935667038, -0.15619701147079468, 0.13288632035255432, 0.14420954883098602, 0.0008455735514871776, 0.08835314214229584, 0.2262958586215973, -0.011020559817552567, 0.002716443734243512, 0.014110574498772621, 0.05582353472709656, -0.07272016257047653, -0.19765770435333252, -0.044291719794273376, -0.0734720304608345, 0.009034141898155212, 0.10836690664291382, 0.03835300728678703, 0.016953766345977783, 0.09607236832380295, -0.09803640097379684, 0.02573392726480961, 0.04307825118303299, 0.09193844348192215, 0.03363713249564171, 0.03585098311305046, 0.04754074662923813, -0.040523383766412735, -0.04542997479438782, 0.09773954004049301, 0.13451898097991943, 0.12754952907562256, -0.09615875780582428, 0.11260925233364105, 0.03301512822508812, 0.02737618237733841, -0.036553073674440384, 0.0025281424168497324, -0.012532619759440422, 0.05648588761687279, -0.0010029233526438475, -0.10066051781177521, -0.011442477814853191, 0.07734811305999756, 0.11866527795791626, 0.0033823391422629356, 0.019913533702492714, 0.00511918356642127, 0.09219851344823837, 0.2045268565416336, 0.027210190892219543, -0.17789331078529358, 0.027132665738463402, 0.03618538752198219, 0.04084799438714981, -0.13158731162548065, -0.03545118868350983, 0.12028663605451584, -0.16171064972877502, 0.06404057145118713, -0.042252372950315475, 0.1040460541844368, -0.11729985475540161, -0.034029681235551834, 0.052293192595243454, 0.061959680169820786, -0.030349086970090866, 0.07287298142910004, -0.10343354195356369, 0.10274721682071686, 0.04126707836985588, 0.04454663395881653, -0.07955025136470795, 0.04660191759467125, 0.015368320047855377, -0.00456928089261055, 0.13741956651210785, 0.006924298591911793, -0.05476584658026695, -0.14213599264621735, -0.1109432727098465, -0.007309303618967533, 0.06345899403095245, -0.07307399064302444, 0.1079166978597641, 0.00018144956266041845, -0.04048873856663704, -0.06103779375553131, -0.05649612843990326, -0.05170620232820511, -0.1938512772321701, 0.04646848514676094, -0.009436452761292458, 0.026725059375166893, -0.01519747544080019, 0.030613446608185768, 0.017358172684907913, 0.0943290963768959, -0.054407764226198196, -0.06977981328964233, -0.1438152939081192, 0.03041878156363964, 0.036929868161678314, -0.03452451527118683, -0.025938885286450386, -0.09374887496232986, 0.17677687108516693, -0.02883315272629261, -0.05609941482543945, 0.020177144557237625, -0.03966151550412178, -0.09287846833467484, -0.08103746175765991, 0.12482176721096039, 0.030712265521287918, -0.018021222203969955, 0.021495891734957695, 0.0701768770813942, 0.0045343562960624695, -0.06321487575769424, 0.042212482541799545, 0.11553732305765152, 0.11401349306106567, 0.15372973680496216, 0.011369953863322735, -0.14259515702724457, -0.11243405938148499, 0.008231266401708126, 0.04994897171854973, 0.09350670874118805, -0.08655539155006409, 0.0929078683257103, 0.017209220677614212, -0.117157943546772, -0.22099557518959045, 0.06707502156496048, 0.06449458003044128, -0.005735679063946009, -0.007358728442341089, -0.1259549856185913, 0.14289410412311554, 0.048828110098838806, 0.00557268550619483, 0.051333796232938766, -0.22061891853809357, -0.05571410059928894, -0.03212728723883629, 0.04336493834853172, -0.13631241023540497, -0.14575378596782684, -0.04130677506327629, -0.037500519305467606, -0.16391406953334808, 0.06501715630292892, -0.036668285727500916, 0.04713987559080124, 0.04711613804101944, 0.024309838190674782, 0.061597976833581924, -0.03843321278691292, 0.1214987188577652, 0.022181831300258636, 0.03927565738558769, -0.0816911980509758, -0.08596194535493851, 0.08670920878648758, -0.11047015339136124, 0.10004964470863342, 0.04916209354996681, 0.01193747203797102, -0.04025748372077942, -0.0201437808573246, -0.03076036088168621, 0.08171132951974869, -0.033902641385793686, -0.05044395104050636, -0.08549360185861588, 0.029402416199445724, 0.12881164252758026, 0.022113407030701637, 0.0983237773180008, -0.029962053522467613, 0.0009896830888465047, 0.17932744324207306, 0.11544441431760788, -0.007840669713914394, -0.12394536286592484, -0.04413733631372452, 0.006238389294594526, 0.02259257435798645, -0.09588623046875, 0.05757452920079231, 0.09348420798778534, 0.01784038543701172, 0.09382111579179764, -0.002853929530829191, -0.09668972343206406, 0.007015587296336889, 0.06513798236846924, -0.09233777970075607, -0.15037666261196136, -0.01267328578978777, 0.09017893671989441, -0.10967063158750534, -0.10986656695604324, 0.1383136510848999, 0.0072847213596105576, -0.006838251370936632, 0.0117649482563138, 0.07506941258907318, 0.04228469356894493, 0.040614351630210876, 0.01316862367093563, 0.030672794207930565, -0.05776762589812279, 0.09702450037002563, 0.1532784402370453, -0.09291353821754456, -0.007948278449475765, 0.11659561842679977, -0.05146997049450874, -0.015888947993516922, -0.029143402352929115, 0.06769945472478867, -0.02292812056839466, -0.017150770872831345, 0.024876438081264496, -0.0753476619720459, 0.009413604624569416, 0.09176786243915558, -0.012029936537146568, 0.059822939336299896, 0.02868013270199299, -0.009242645464837551, -0.12451253831386566, 0.13874703645706177, -0.004644062370061874, 0.050100475549697876, -0.09904362261295319, 0.03543473780155182, 0.016381917521357536, 0.03392214700579643, 0.007263769395649433, -0.086075060069561, -0.07882587611675262, -0.0017429235158488154, -0.05527639389038086, 0.10399893671274185, -0.0942537933588028, -0.016514325514435768, -0.015285820700228214, 0.012744013220071793, -0.03339448943734169, 0.03257429599761963, -0.038674283772706985, -0.0522104948759079, -0.04802880063652992, 0.12276613712310791, -0.12413451075553894, -0.01941773109138012, 0.05922098457813263, -0.0865243673324585, 0.06539208441972733, 0.0049161845818161964, -0.03196049854159355, -0.06952771544456482, -0.19295060634613037, -0.015684375539422035, 0.03530174121260643, 0.05794300511479378, 0.04162805899977684, -0.07954714447259903, 0.05751095339655876, -0.008616317063570023, -0.08576046675443649, -0.018213113769888878, 0.008982137776911259, -0.10482735931873322, 0.0550324022769928, -0.0700719952583313, -0.02973831444978714, -0.04762021079659462, 0.14077122509479523, 0.029152721166610718, 0.011159440502524376, 0.06660041213035583, -0.055268850177526474, 0.0982172042131424, -0.15659020841121674, -0.03969600796699524, -0.006780251860618591, -0.03299248218536377, -0.07314276695251465, -0.03620757535099983, 0.07538354396820068, -0.024646582081913948, 0.10359537601470947, 0.13366778194904327, 0.03745869919657707, 0.029580937698483467, -0.038180287927389145, 0.052873045206069946, 0.05691658332943916, -0.0059099337086081505, -0.010157213546335697, -0.027729414403438568, 0.07645837962627411, 0.0039031205233186483, 0.03134314715862274, 0.10057516396045685, 0.08681757003068924, 0.21855002641677856, 0.16464084386825562, 0.02364318072795868, 0.05987025424838066, -0.08726415038108826, -0.06474814563989639, 0.07662270218133926, -0.08340771496295929, 0.04429670795798302, -0.10039626061916351, -0.040305979549884796, 0.11182373017072678, -0.17023885250091553, 0.056811317801475525, -0.018006889149546623, -0.021410373970866203, -0.03999083489179611, -0.12704123556613922, -0.05516780540347099, -0.04198987036943436, -0.011966757476329803, -0.121385358273983, 0.06768428534269333, 0.12275221943855286, -0.014202605001628399, 0.009797175414860249, 0.07732711732387543, -0.07642970979213715, -0.06812946498394012, 0.08418702334165573, 0.024253038689494133, 0.09993256628513336, 0.03840867429971695, 0.032395292073488235, 0.06307663023471832, -0.005848423112183809, 0.08904588222503662, 0.08791480958461761, 0.1428641676902771, 0.039692461490631104, -0.07313980162143707, -0.07256943732500076, 0.04774713143706322, -0.021425575017929077, -0.022953588515520096, 0.1372290551662445, 0.07733692973852158, 0.02370327338576317, 0.0006457521230913699, 0.18644042313098907, -0.01361448597162962, -0.031101888045668602, -0.1543385535478592, 0.030981555581092834, -0.029373053461313248, 0.0009102699696086347, -0.025210358202457428, -0.15042735636234283, 0.006727010477334261, 0.11552648991346359, 0.05216990411281586, -0.04037630185484886, 0.0015333594055846334, -0.01943480409681797, 0.0120060620829463, 0.010077989660203457, 0.05264909565448761, 0.011968282051384449, 0.2053845375776291, -0.05480002611875534, -0.01383492723107338, -0.026066239923238754, -0.015574837103486061, -0.07511840760707855, 0.0771901085972786, -0.029323505237698555, 0.0019700333941727877, -0.06783517450094223, 0.10856614261865616, -0.0032100460957735777, -0.15722553431987762, 0.06006103754043579, -0.1208730936050415, -0.09466227144002914, 0.01128409244120121, 0.007821516133844852, 0.0005228923400864005, 0.01861189678311348, 0.011348768137395382, -0.06589847803115845, 0.12597030401229858, 0.031168082728981972, -0.06121128425002098, 0.0017030780436471105, 0.005909560713917017, -0.12582702934741974, 0.27049383521080017, -0.025760062038898468, 0.01029228139668703, 0.10125894099473953, -0.0025398500729352236, -0.1391463428735733, -0.018142983317375183, 0.07050629705190659, -0.04824964702129364, 0.004302146378904581, 0.10232944786548615, -0.008415691554546356, 0.12156053632497787, 0.10115724802017212, -0.05479755625128746, 0.049757763743400574, -0.0023472809698432684, 0.035739537328481674, -0.10110178589820862, 0.004703299142420292, -0.09606888890266418, 0.10154595226049423, 0.13397614657878876, -0.003083601128309965, -0.006189956795424223, -0.032467521727085114, -0.011711403727531433, 0.007410334888845682, 0.1050371453166008, -0.008202792145311832, -0.05848592519760132, 0.0025976162869483232, -0.0952349454164505, 0.07996506243944168, -0.09761408716440201, -0.07122039794921875, 0.03257076069712639, -0.012715891934931278, -0.020571736618876457, 0.09647534042596817, 0.04553351551294327, 0.0219375342130661, -0.054925791919231415, -0.10521821677684784, 0.017802249640226364, 0.1732756644487381, -0.014917074702680111, -0.025332244113087654 ]
c84d392ce4c75a6081a14f677f5459f17e0ae61b
### Suomi-24-toxicity-annotated This dataset includes comments from Suomi24 sampled using predictions from a toxicity classifier. The comments were taken in intervals for each label. The process of sampling emphasized difficult borderline cases. 500 comments were sampled for each label. The annotation process used the labels from Perspective, used e.g. for `TurkuNLP/wikipedia-toxicity-data-fi`. Instead of multi-label, we annotated each comment only for one label, although a couple comments appear in two labels. Process of annotation included initial annotation of 100-200 comments followed by a discussion and final annotations. Raw data can be found from [here](https://github.com/TurkuNLP/toxicity-classifier/tree/main/annotations/raw_annotations). Examples that made it to the dataset are ones that had unanimous agreement or were resolved through discussion. ### Citing To cite this dataset use the following bibtex. ``` @inproceedings{eskelinen-etal-2023-toxicity, title = "Toxicity Detection in {F}innish Using Machine Translation", author = "Eskelinen, Anni and Silvala, Laura and Ginter, Filip and Pyysalo, Sampo and Laippala, Veronika", booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", month = may, year = "2023", address = "T{\'o}rshavn, Faroe Islands", publisher = "University of Tartu Library", url = "https://aclanthology.org/2023.nodalida-1.68", pages = "685--697", abstract = "Due to the popularity of social media platforms and the sheer amount of user-generated content online, the automatic detection of toxic language has become crucial in the creation of a friendly and safe digital space. Previous work has been mostly focusing on English leaving many lower-resource languages behind. In this paper, we present novel resources for toxicity detection in Finnish by introducing two new datasets, a machine translated toxicity dataset for Finnish based on the widely used English Jigsaw dataset and a smaller test set of Suomi24 discussion forum comments originally written in Finnish and manually annotated following the definitions of the labels that were used to annotate the Jigsaw dataset. We show that machine translating the training data to Finnish provides better toxicity detection results than using the original English training data and zero-shot cross-lingual transfer with XLM-R, even with our newly annotated dataset from Suomi24.", } ``` ## Label definitions taken from Perspective API THREAT: Describes an intention to inflict pain, injury, or violence against an individual or group. THREATENING: Language that is threatening or encouraging violence or harm, including self-harm. PROFANITY: Swear words, curse words, or other obscene or profane language. INSULT: Insulting, inflammatory, or negative comment towards a person or a group of people. Such comments are not necessarily identity specific. IDENTITY ATTACK: Negative or hateful comments targeting someone because of their identity. TOXICITY: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion. SEVERE TOXICITY: A very hateful, aggressive, disrespectful comment or otherwise very likely to make a user leave a discussion or give up on sharing their perspective. This attribute is much less sensitive to more mild forms of toxicity, such as comments that include positive uses of curse words. ## Guidelines used for annotation: ### Obscene swearwords, including mild expletives and misspelled, masked, or other variations sexually explicit words/terminology that are not topically or contextually appropriate ### Threat suicidal or self-harm comments, incitement to violence or self-harm, hypothetical situations and wishing harm to somebody comments that are very unlikely to happen if not marked clearly as sarcasm only threats towards people are annotated as threat threats made by somebody else other than the writer NOT included counterfactuals statements NOT included <!--- as in "if I was there I would have..." ---> ### Insult terms that are insulting towards groups of people (also in identity attack) insults against political groups, e.g. "vitun demari/suvakki/persu" -> "fucking liberal/conservative etc." <!--- I made this decision here.. ---> negative insulting comments towards oneself, things other than people and hypothetical situations NOT included <!--- PROBLEM: use of racist or rapist if true, target not clear ---> ### Identity attack comments that have no negative language but are still clearly negative negative statements towards political groups or groups that nobody self-identifies with are NOT included (unless an insult) ### Toxicity unreasonably expressed negative comments regardless of the target present and whether the target is known or not mild or humoristic swearwords are NOT included positive or neutral sexually explicit comments are NOT included ### Severe toxicity comments that include only sexually explicit content only one severely toxic element is needed to have this label and a comment is severely toxic even if the comment contains substantive content target does not need to be present nor does the target matter ## Inter-annotator agreement: | Label | Initial (unanimous) | After discussion (unanimous) | Initial (at least 2/3) | After discussion (at least 2/3) | |------ | ------------------- | ---------------------------- | ---------------------- | ------------------------------- | | identity attack | 54,5 % | 66,6 % | 92 % | 93,6 % | | insult | 47,5 % | 49,6 % | 94,5 % | 95,6 % | | severe toxicity | 63 % | 66 % | 92 % | 96,6 % | | threat | 82 % | 80,3 % | 98 % | 97,3 % | | toxicity | 58 % | 54 % | 93 % | 89,6 % | | obscene | 69 % | 62 % | 97 % | 96 % | ## Evaluation results Evaluation results from using `TurkuNLP/bert-large-finnish-cased-toxicity`. | Label | Precision | Recall | F1 | |------ | ------------------- | ---------------------------- | ---------------------- | | identity attack | 73,2 | 32 | 44,6 | | insult | 59,4 | 646,8 | 52,4 | | severe toxicity | 12 | 28,6 | 16,9 | | threat | 32,4 | 28,6 | 30,4 | | toxicity | 60,4 | 79,2 | 68,5 | | obscene | 64,5 | 82,4 | 72,3 | | OVERALL | 57,4 | 58,9 | 51,1 | | OVERALL weighted by original sample counts | 55,5 | 65,5 | 60,1 | ## Licensing Information Contents of this repository are distributed under the [Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
TurkuNLP/Suomi24-toxicity-annotated
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:fi", "license:cc-by-sa-4.0", "toxicity", "region:us" ]
2023-03-30T10:25:13+00:00
{"language": ["fi"], "license": "cc-by-sa-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["text-classification"], "tags": ["toxicity"]}
2023-06-02T12:04:21+00:00
[]
[ "fi" ]
TAGS #task_categories-text-classification #size_categories-1K<n<10K #language-Finnish #license-cc-by-sa-4.0 #toxicity #region-us
### Suomi-24-toxicity-annotated This dataset includes comments from Suomi24 sampled using predictions from a toxicity classifier. The comments were taken in intervals for each label. The process of sampling emphasized difficult borderline cases. 500 comments were sampled for each label. The annotation process used the labels from Perspective, used e.g. for 'TurkuNLP/wikipedia-toxicity-data-fi'. Instead of multi-label, we annotated each comment only for one label, although a couple comments appear in two labels. Process of annotation included initial annotation of 100-200 comments followed by a discussion and final annotations. Raw data can be found from here. Examples that made it to the dataset are ones that had unanimous agreement or were resolved through discussion. ### Citing To cite this dataset use the following bibtex. Label definitions taken from Perspective API -------------------------------------------- THREAT: Describes an intention to inflict pain, injury, or violence against an individual or group. THREATENING: Language that is threatening or encouraging violence or harm, including self-harm. PROFANITY: Swear words, curse words, or other obscene or profane language. INSULT: Insulting, inflammatory, or negative comment towards a person or a group of people. Such comments are not necessarily identity specific. IDENTITY ATTACK: Negative or hateful comments targeting someone because of their identity. TOXICITY: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion. SEVERE TOXICITY: A very hateful, aggressive, disrespectful comment or otherwise very likely to make a user leave a discussion or give up on sharing their perspective. This attribute is much less sensitive to more mild forms of toxicity, such as comments that include positive uses of curse words. Guidelines used for annotation: ------------------------------- ### Obscene swearwords, including mild expletives and misspelled, masked, or other variations sexually explicit words/terminology that are not topically or contextually appropriate ### Threat suicidal or self-harm comments, incitement to violence or self-harm, hypothetical situations and wishing harm to somebody comments that are very unlikely to happen if not marked clearly as sarcasm only threats towards people are annotated as threat threats made by somebody else other than the writer NOT included counterfactuals statements NOT included ### Insult terms that are insulting towards groups of people (also in identity attack) insults against political groups, e.g. "vitun demari/suvakki/persu" -> "fucking liberal/conservative etc." negative insulting comments towards oneself, things other than people and hypothetical situations NOT included ### Identity attack comments that have no negative language but are still clearly negative negative statements towards political groups or groups that nobody self-identifies with are NOT included (unless an insult) ### Toxicity unreasonably expressed negative comments regardless of the target present and whether the target is known or not mild or humoristic swearwords are NOT included positive or neutral sexually explicit comments are NOT included ### Severe toxicity comments that include only sexually explicit content only one severely toxic element is needed to have this label and a comment is severely toxic even if the comment contains substantive content target does not need to be present nor does the target matter Inter-annotator agreement: -------------------------- Evaluation results ------------------ Evaluation results from using 'TurkuNLP/bert-large-finnish-cased-toxicity'. Licensing Information --------------------- Contents of this repository are distributed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0). Copyright of the dataset contents belongs to the original copyright holders.
[ "### Suomi-24-toxicity-annotated\n\n\nThis dataset includes comments from Suomi24 sampled using predictions from a toxicity classifier. The comments were taken in intervals for each label. The process of sampling emphasized difficult borderline cases. 500 comments were sampled for each label. \n\nThe annotation process used the labels from Perspective, used e.g. for 'TurkuNLP/wikipedia-toxicity-data-fi'. \n\nInstead of multi-label, we annotated each comment only for one label, although a couple comments appear in two labels. \n\nProcess of annotation included initial annotation of 100-200 comments followed by a discussion and final annotations. Raw data can be found from here.\n\n\nExamples that made it to the dataset are ones that had unanimous agreement or were resolved through discussion.", "### Citing\n\n\nTo cite this dataset use the following bibtex.\n\n\nLabel definitions taken from Perspective API\n--------------------------------------------\n\n\nTHREAT: Describes an intention to inflict pain, injury, or violence against an individual or group.\nTHREATENING: Language that is threatening or encouraging violence or harm, including self-harm.\n\n\nPROFANITY: Swear words, curse words, or other obscene or profane language.\n\n\nINSULT: Insulting, inflammatory, or negative comment towards a person or a group of people. Such comments are not necessarily identity specific.\n\n\nIDENTITY ATTACK: Negative or hateful comments targeting someone because of their identity.\n\n\nTOXICITY: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.\n\n\nSEVERE TOXICITY: A very hateful, aggressive, disrespectful comment or otherwise very likely to make a user leave a discussion or give up on sharing their perspective. This attribute is much less sensitive to more mild forms of toxicity, such as comments that include positive uses of curse words.\n\n\nGuidelines used for annotation:\n-------------------------------", "### Obscene\n\n\nswearwords, including mild expletives and misspelled, masked, or other variations \n\nsexually explicit words/terminology that are not topically or contextually appropriate", "### Threat\n\n\nsuicidal or self-harm comments, incitement to violence or self-harm, hypothetical situations and wishing harm to somebody \n\ncomments that are very unlikely to happen if not marked clearly as sarcasm \n\nonly threats towards people are annotated as threat\n\n\nthreats made by somebody else other than the writer NOT included \n\ncounterfactuals statements NOT included", "### Insult\n\n\nterms that are insulting towards groups of people (also in identity attack) \n\ninsults against political groups, e.g. \"vitun demari/suvakki/persu\" -> \"fucking liberal/conservative etc.\"\n\n\nnegative insulting comments towards oneself, things other than people and hypothetical situations NOT included", "### Identity attack\n\n\ncomments that have no negative language but are still clearly negative\n\n\nnegative statements towards political groups or groups that nobody self-identifies with are NOT included (unless an insult)", "### Toxicity\n\n\nunreasonably expressed negative comments regardless of the target present and whether the target is known or not \n\nmild or humoristic swearwords are NOT included \n\npositive or neutral sexually explicit comments are NOT included", "### Severe toxicity\n\n\ncomments that include only sexually explicit content \n\nonly one severely toxic element is needed to have this label and a comment is severely toxic even if the comment contains substantive content \n\ntarget does not need to be present nor does the target matter\n\n\nInter-annotator agreement:\n--------------------------\n\n\n\nEvaluation results\n------------------\n\n\nEvaluation results from using 'TurkuNLP/bert-large-finnish-cased-toxicity'.\n\n\n\nLicensing Information\n---------------------\n\n\nContents of this repository are distributed under the\nCreative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).\nCopyright of the dataset contents belongs to the original copyright holders." ]
[ "TAGS\n#task_categories-text-classification #size_categories-1K<n<10K #language-Finnish #license-cc-by-sa-4.0 #toxicity #region-us \n", "### Suomi-24-toxicity-annotated\n\n\nThis dataset includes comments from Suomi24 sampled using predictions from a toxicity classifier. The comments were taken in intervals for each label. The process of sampling emphasized difficult borderline cases. 500 comments were sampled for each label. \n\nThe annotation process used the labels from Perspective, used e.g. for 'TurkuNLP/wikipedia-toxicity-data-fi'. \n\nInstead of multi-label, we annotated each comment only for one label, although a couple comments appear in two labels. \n\nProcess of annotation included initial annotation of 100-200 comments followed by a discussion and final annotations. Raw data can be found from here.\n\n\nExamples that made it to the dataset are ones that had unanimous agreement or were resolved through discussion.", "### Citing\n\n\nTo cite this dataset use the following bibtex.\n\n\nLabel definitions taken from Perspective API\n--------------------------------------------\n\n\nTHREAT: Describes an intention to inflict pain, injury, or violence against an individual or group.\nTHREATENING: Language that is threatening or encouraging violence or harm, including self-harm.\n\n\nPROFANITY: Swear words, curse words, or other obscene or profane language.\n\n\nINSULT: Insulting, inflammatory, or negative comment towards a person or a group of people. Such comments are not necessarily identity specific.\n\n\nIDENTITY ATTACK: Negative or hateful comments targeting someone because of their identity.\n\n\nTOXICITY: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.\n\n\nSEVERE TOXICITY: A very hateful, aggressive, disrespectful comment or otherwise very likely to make a user leave a discussion or give up on sharing their perspective. This attribute is much less sensitive to more mild forms of toxicity, such as comments that include positive uses of curse words.\n\n\nGuidelines used for annotation:\n-------------------------------", "### Obscene\n\n\nswearwords, including mild expletives and misspelled, masked, or other variations \n\nsexually explicit words/terminology that are not topically or contextually appropriate", "### Threat\n\n\nsuicidal or self-harm comments, incitement to violence or self-harm, hypothetical situations and wishing harm to somebody \n\ncomments that are very unlikely to happen if not marked clearly as sarcasm \n\nonly threats towards people are annotated as threat\n\n\nthreats made by somebody else other than the writer NOT included \n\ncounterfactuals statements NOT included", "### Insult\n\n\nterms that are insulting towards groups of people (also in identity attack) \n\ninsults against political groups, e.g. \"vitun demari/suvakki/persu\" -> \"fucking liberal/conservative etc.\"\n\n\nnegative insulting comments towards oneself, things other than people and hypothetical situations NOT included", "### Identity attack\n\n\ncomments that have no negative language but are still clearly negative\n\n\nnegative statements towards political groups or groups that nobody self-identifies with are NOT included (unless an insult)", "### Toxicity\n\n\nunreasonably expressed negative comments regardless of the target present and whether the target is known or not \n\nmild or humoristic swearwords are NOT included \n\npositive or neutral sexually explicit comments are NOT included", "### Severe toxicity\n\n\ncomments that include only sexually explicit content \n\nonly one severely toxic element is needed to have this label and a comment is severely toxic even if the comment contains substantive content \n\ntarget does not need to be present nor does the target matter\n\n\nInter-annotator agreement:\n--------------------------\n\n\n\nEvaluation results\n------------------\n\n\nEvaluation results from using 'TurkuNLP/bert-large-finnish-cased-toxicity'.\n\n\n\nLicensing Information\n---------------------\n\n\nContents of this repository are distributed under the\nCreative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).\nCopyright of the dataset contents belongs to the original copyright holders." ]
[ 49, 182, 261, 44, 84, 73, 41, 47, 150 ]
[ "passage: TAGS\n#task_categories-text-classification #size_categories-1K<n<10K #language-Finnish #license-cc-by-sa-4.0 #toxicity #region-us \n### Suomi-24-toxicity-annotated\n\n\nThis dataset includes comments from Suomi24 sampled using predictions from a toxicity classifier. The comments were taken in intervals for each label. The process of sampling emphasized difficult borderline cases. 500 comments were sampled for each label. \n\nThe annotation process used the labels from Perspective, used e.g. for 'TurkuNLP/wikipedia-toxicity-data-fi'. \n\nInstead of multi-label, we annotated each comment only for one label, although a couple comments appear in two labels. \n\nProcess of annotation included initial annotation of 100-200 comments followed by a discussion and final annotations. Raw data can be found from here.\n\n\nExamples that made it to the dataset are ones that had unanimous agreement or were resolved through discussion.### Citing\n\n\nTo cite this dataset use the following bibtex.\n\n\nLabel definitions taken from Perspective API\n--------------------------------------------\n\n\nTHREAT: Describes an intention to inflict pain, injury, or violence against an individual or group.\nTHREATENING: Language that is threatening or encouraging violence or harm, including self-harm.\n\n\nPROFANITY: Swear words, curse words, or other obscene or profane language.\n\n\nINSULT: Insulting, inflammatory, or negative comment towards a person or a group of people. Such comments are not necessarily identity specific.\n\n\nIDENTITY ATTACK: Negative or hateful comments targeting someone because of their identity.\n\n\nTOXICITY: A rude, disrespectful, or unreasonable comment that is likely to make people leave a discussion.\n\n\nSEVERE TOXICITY: A very hateful, aggressive, disrespectful comment or otherwise very likely to make a user leave a discussion or give up on sharing their perspective. This attribute is much less sensitive to more mild forms of toxicity, such as comments that include positive uses of curse words.\n\n\nGuidelines used for annotation:\n-------------------------------" ]
[ -0.04503793641924858, 0.047447651624679565, -0.007665638811886311, 0.03843799978494644, 0.023353518918156624, -0.040403299033641815, 0.0516897477209568, 0.0336017869412899, 0.08092418313026428, 0.11401018500328064, -0.010758504271507263, 0.1104508489370346, 0.004955240059643984, 0.016053078696131706, 0.004570217337459326, -0.1422550082206726, 0.04224851354956627, -0.039772748947143555, 0.09236614406108856, 0.07317491620779037, 0.09659996628761292, -0.031654924154281616, 0.0485210157930851, -0.00626341812312603, -0.09509459137916565, -0.019350582733750343, 0.0637887716293335, -0.02097560092806816, 0.11627277731895447, 0.05803903937339783, 0.09396936744451523, -0.03072889894247055, -0.07125091552734375, -0.1519709974527359, 0.022035133093595505, 0.07898115366697311, 0.028283430263400078, -0.0018325841519981623, 0.04260897636413574, -0.010568631812930107, 0.15448197722434998, -0.10377321392297745, 0.056310173124074936, 0.061039261519908905, -0.11906523257493973, -0.17152142524719238, -0.0739007219672203, 0.024329425767064095, 0.08207540959119797, 0.013191107660531998, -0.05727749690413475, 0.08444296568632126, 0.029006827622652054, 0.025290630757808685, 0.04851081967353821, -0.15048353374004364, -0.049087926745414734, -0.06874792277812958, -0.01427127979695797, 0.04285070300102234, -0.057009678333997726, -0.012264682911336422, -0.017415044829249382, 0.03601168096065521, 0.07364767789840698, -0.059505000710487366, -0.026815341785550117, -0.04782772809267044, -0.09291666746139526, -0.0224623866379261, 0.15439653396606445, 0.0520523339509964, -0.11482220143079758, -0.0914406031370163, -0.025658024474978447, 0.11189545691013336, 0.05846938490867615, -0.06334932148456573, -0.015157034620642662, -0.018882939592003822, 0.05003214627504349, 0.05058550462126732, -0.09980641305446625, 0.01214554999023676, -0.07839188724756241, 0.17567934095859528, 0.00829471554607153, 0.06749799102544785, -0.019365154206752777, -0.06439930945634842, -0.17053663730621338, -0.03342408314347267, -0.04847901314496994, -0.040288325399160385, -0.14373674988746643, -0.02392151765525341, -0.04770180955529213, -0.18027767539024353, 0.026895472779870033, 0.056046273559331894, -0.13670970499515533, -0.029017819091677666, -0.10221085697412491, 0.06843162328004837, 0.0959598571062088, -0.061391450464725494, 0.04620516300201416, -0.046509843319654465, 0.03807339072227478, 0.05137789249420166, 0.1400650590658188, -0.006130808033049107, -0.03568394109606743, 0.011049151420593262, -0.0033443321008235216, 0.04963107034564018, 0.04491810128092766, 0.036576852202415466, -0.10223245620727539, -0.019665313884615898, 0.09175656735897064, -0.07833674550056458, 0.010296151041984558, 0.026246599853038788, -0.007925334386527538, -0.0062039499171078205, -0.009684555232524872, -0.021183520555496216, -0.02620805986225605, 0.05932573974132538, -0.044878095388412476, 0.0326954610645771, -0.1118309274315834, -0.13218331336975098, 0.09788429737091064, 0.1323116570711136, -0.08718579262495041, -0.14713837206363678, -0.1274057924747467, -0.02703612484037876, -0.028966553509235382, 0.003150233533233404, -0.03122810274362564, -0.005150716286152601, 0.08070272952318192, -0.04047534987330437, -0.0011350477579981089, -0.19347360730171204, -0.012438078410923481, 0.0466594360768795, -0.06318546831607819, 0.11152549088001251, -0.0012858941918238997, -0.007886561565101147, -0.08613352477550507, -0.00031977627077139914, -0.13194894790649414, 0.052337244153022766, -0.03007664531469345, 0.041467491537332535, -0.04152282327413559, 0.015896953642368317, -0.09662704914808273, 0.03676919266581535, 0.03319045901298523, 0.14192843437194824, -0.22737199068069458, -0.05601435527205467, 0.1266324520111084, -0.19149820506572723, -0.006369476672261953, 0.17486539483070374, -0.02035713568329811, 0.01470675878226757, 0.16180089116096497, 0.17350202798843384, -0.20696625113487244, 0.0005260294419713318, -0.08729133754968643, -0.08033744990825653, -0.12128271907567978, 0.14868232607841492, 0.015421457588672638, -0.061068955808877945, -0.014070083387196064, -0.0167110413312912, 0.23930343985557556, -0.027669111266732216, 0.016884787008166313, -0.007953323423862457, -0.00944916158914566, 0.0044867973774671555, 0.012725196778774261, -0.027357764542102814, -0.10326149314641953, -0.050720278173685074, -0.07362951338291168, -0.011255010031163692, 0.08161480724811554, 0.010810879990458488, 0.052046969532966614, -0.0841391533613205, 0.05140189826488495, -0.040506087243556976, -0.003551670117303729, -0.15949423611164093, -0.13875411450862885, 0.021014221012592316, -0.061960432678461075, 0.07054805755615234, -0.03591853380203247, 0.013898652978241444, -0.017908083274960518, -0.00551356328651309, 0.058211732655763626, 0.02717217430472374, -0.04069702327251434, -0.06135648116469383, -0.15709188580513, 0.00752608384937048, -0.07493840903043747, 0.06218177452683449, -0.12857964634895325, 0.026944167912006378, 0.1211911290884018, -0.026024017482995987, 0.05365106090903282, -0.08287624269723892, 0.09575150161981583, 0.0853511393070221, -0.04378778487443924, 0.0007834311691112816, 0.04782552272081375, 0.012468905188143253, -0.1024729534983635, 0.05761391296982765, -0.13865140080451965, -0.048476703464984894, 0.026086460798978806, -0.04621994122862816, -0.08052440732717514, -0.10101150721311569, -0.012928925454616547, 0.006413350347429514, -0.07729752361774445, -0.03677026182413101, -0.06675464659929276, 0.03302716463804245, 0.013531466946005821, -0.05753108486533165, 0.014603467658162117, -0.005493747070431709, -0.07097409665584564, -0.03915858641266823, 0.02321961522102356, 0.0037392640952020884, -0.20276500284671783, 0.09549392759799957, 0.11836852878332138, -0.08230965584516525, 0.1228722482919693, 0.11357701569795609, -0.03570093587040901, -0.05812679976224899, 0.010071826167404652, 0.045693837106227875, 0.09752580523490906, -0.043291326612234116, 0.057031936943531036, 0.0276785995811224, 0.011163630522787571, -0.024606095626950264, -0.07195155322551727, 0.0233503095805645, 0.00826353207230568, 0.017608942463994026, -0.11138350516557693, 0.03464677557349205, -0.01022778544574976, 0.12537504732608795, -0.038807906210422516, 0.046791840344667435, 0.019111230969429016, -0.03575412184000015, -0.11052190512418747, 0.14555899798870087, -0.14556065201759338, -0.3261793255805969, -0.00888858549296856, 0.06820368766784668, -0.04023746773600578, 0.03382256627082825, 0.018436402082443237, -0.13293687999248505, -0.029790669679641724, -0.0572437159717083, 0.052878547459840775, 0.025135163217782974, -0.045216187834739685, -0.07271938025951385, 0.06307227164506912, -0.006446365267038345, -0.052441321313381195, -0.007133449427783489, -0.058917466551065445, -0.07648351043462753, 0.07412444800138474, -0.022477854043245316, 0.08430410176515579, 0.13936923444271088, 0.07541786134243011, -0.08456633239984512, -0.051658593118190765, 0.07304173707962036, -0.03179621323943138, 0.11345125734806061, 0.09620113670825958, -0.1299130916595459, 0.081076480448246, 0.1104273796081543, 0.03144895285367966, -0.05031781271100044, 0.03472118452191353, 0.060898277908563614, -0.04867018014192581, -0.1499246507883072, -0.040421511977910995, -0.05323803797364235, 0.048223502933979034, 0.00024454586673527956, 0.0030074643436819315, 0.03572694584727287, 0.0318593867123127, -0.00898424256592989, -0.10832887887954712, 0.07634856551885605, 0.09927593171596527, 0.16504378616809845, -0.05559336394071579, 0.09574288129806519, -0.030499419197440147, 0.0360906645655632, 0.11888393759727478, -0.008959668688476086, 0.2195151299238205, 0.025324875488877296, 0.10696842521429062, 0.12097106128931046, 0.0005910353502258658, 0.07603073120117188, -0.05789286643266678, 0.0002497942768968642, 0.015376035124063492, -0.08160848915576935, -0.07163799554109573, -0.10555010288953781, 0.07374744117259979, -0.035275693982839584, -0.0006904351757839322, 0.005166374612599611, -0.0630715861916542, 0.18517974019050598, 0.04369309917092323, 0.0287268478423357, -0.11390485614538193, -0.08919206261634827, 0.09125561267137527, -0.03294592723250389, -0.011085591278970242, 0.034479234367609024, 0.11527077853679657, -0.058528561145067215, 0.10799076408147812, -0.03720420226454735, 0.051055848598480225, -0.0273259487003088, 0.02071288973093033, -0.03964610397815704, 0.07376223057508469, -0.06577996164560318, 0.009112196043133736, -0.22709091007709503, 0.08583729714155197, 0.022091813385486603, 0.0012560841860249639, -0.03760847449302673, -0.03964262083172798, 0.048541050404310226, 0.11341175436973572, 0.1281185746192932, 0.03319202736020088, -0.21610227227210999, -0.005446367431432009, 0.026208149269223213, 0.07349631935358047, -0.01081379596143961, 0.06864747405052185, 0.045656315982341766, 0.041049741208553314, 0.01007610373198986, -0.0436466746032238, 0.005558313336223364, -0.13444365561008453, -0.1516144722700119, 0.017131512984633446, 0.0817185789346695, 0.013652597554028034, -0.06913205236196518, 0.014303047209978104, 0.1361018717288971, 0.15553267300128937, -0.04754408076405525, -0.08494444936513901, -0.08791176974773407, 0.03046477399766445, 0.04702670872211456, -0.03323790058493614, 0.02115572616457939, 0.012505125254392624, 0.12289593368768692, -0.13793034851551056, -0.0009121697512455285, 0.024204209446907043, -0.09446060657501221, -0.043875113129615784, -0.09552491456270218, 0.08239901065826416, 0.1162489503622055, 0.04364180192351341, 0.023309748619794846, 0.052494462579488754, 0.0017253125552088022, -0.06046590209007263, 0.003973204642534256, 0.13553649187088013, -0.015953313559293747, 0.04683752357959747, -0.12166198343038559, -0.14304107427597046, -0.09996300935745239, -0.10313976556062698, 0.13195966184139252, 0.12963435053825378, -0.038228388875722885, 0.08539357036352158, 0.20199894905090332, -0.10841868817806244, -0.14607460796833038, 0.03497370705008507, 0.04792225360870361, -0.013726778328418732, 0.07997607439756393, -0.16024647653102875, -0.0488392598927021, 0.1535070240497589, 0.0011907287407666445, 0.11324787884950638, -0.11376801878213882, -0.06522317975759506, 0.01867828518152237, 0.037542492151260376, 0.1154237911105156, -0.12058480083942413, -0.02118908241391182, -0.07195860892534256, 0.05351574718952179, 0.17230671644210815, -0.030418774113059044, 0.0003535730647854507, 0.021521879360079765, 0.1361556500196457, 0.06020398065447807, -0.03214375302195549, 0.12568052113056183, 0.05969836190342903, 0.09387508779764175, -0.06185360625386238, -0.09836719930171967, -0.03950653225183487, -0.030761083588004112, -0.004327092785388231, 0.01911269687116146, -0.0837467685341835, -0.034767329692840576, -0.07399245351552963, -0.10509821027517319, 0.07516314834356308, -0.04813694208860397, -0.031195227056741714, -0.05925172567367554, 0.0804976373910904, -0.017500683665275574, -0.014034598134458065, 0.031436629593372345, -0.17046527564525604, 0.11835608631372452, 0.02233855612576008, 0.14244912564754486, 0.01697635091841221, -0.15013627707958221, 0.08314120769500732, -0.03574701026082039, 0.1063714548945427, -0.12263078987598419, -0.000636543903965503, 0.02716909535229206, -0.030244730412960052, 0.135142982006073, 0.030389565974473953, -0.09992114454507828, 0.09334457665681839, 0.08866002410650253, -0.056170884519815445, -0.06068447232246399, 0.06267929822206497, 0.08262135088443756, -0.07189049571752548, -0.05789346992969513, 0.1149209663271904, -0.03095892257988453, 0.0064292000606656075, -0.02044580690562725, 0.12278593331575394, -0.0014924347633495927, 0.03011157363653183, 0.06497298926115036, 0.002626512898132205, 0.0016155169578269124, 0.07004489749670029, 0.02540191076695919, -0.24305251240730286, 0.044689178466796875, 0.08031999319791794, -0.06474626064300537, -0.05722321197390556, -0.21192990243434906, -0.021940436214208603, -0.0538986437022686, -0.10100346058607101, 0.004522300325334072, -0.07622756063938141, 0.01934220641851425, 0.1573868691921234, -0.0034676468931138515, 0.05874471366405487, -0.0026822437066584826, -0.003786067944020033, -0.024767769500613213, 0.07332929223775864, 0.0024839858524501324, -0.00045514118392020464, 0.036813993006944656, 0.0994541198015213, -0.014305047690868378, -0.03679513558745384, 0.016384175047278404, -0.055635225027799606, -0.10828536003828049, -0.022160038352012634, -0.02694532833993435, -0.009615792892873287, -0.17754577100276947, -0.011149602942168713, 0.02164355106651783, 0.02759348601102829, 0.020398912951350212, -0.0018766061402857304, -0.013114199042320251, 0.053292155265808105, 0.011036297306418419, 0.05530495569109917, -0.09909513592720032, -0.03969334438443184, 0.061263322830200195, -0.04858541861176491, 0.09992491453886032, -0.010384420864284039, -0.07677356153726578, -0.010740022175014019, -0.1360681802034378, 0.06324809789657593, 0.011935771442949772, -0.009723174385726452, -0.026945631951093674, -0.138780415058136, 0.025915084406733513, -0.01755022257566452, -0.025814935564994812, 0.022565599530935287, 0.08002428710460663, -0.036227088421583176, 0.08386918902397156, 0.1429661214351654, -0.07992134243249893, -0.05914786085486412, -0.029957052320241928, -0.030147170647978783, 0.0363360233604908, 0.08111868798732758, 0.008426353335380554, 0.03493024781346321, -0.1294824779033661, 0.009558039717376232, 0.030883563682436943, 0.005119661334902048, -0.06862754374742508, 0.0031260130926966667, 0.04891018196940422, 0.005215151235461235, 0.03295692801475525, 0.01181290578097105, -0.11985190957784653, 0.05680689215660095, -0.03237657621502876, -0.08189889788627625, -0.02026071585714817, -0.14297744631767273, -0.016959188506007195, -0.03247977793216705, -0.07368185371160507, -0.09673349559307098, -0.018531784415245056, -0.03959714621305466, 0.12417063117027283, 0.0662282332777977, 0.1993846297264099, 0.021638553589582443, 0.004865202121436596, -0.01576372981071472, 0.003310693195089698, -0.0023131314665079117, 0.023645570501685143, 0.022269612178206444, -0.011331330984830856, 0.04626758396625519, 0.1820410192012787, -0.04532788693904877, 0.11619299650192261, 0.007102918811142445, -0.05571955442428589, -0.09383601695299149, -0.2419683039188385, -0.02895253337919712, 0.014725924469530582, -0.013598168268799782, -0.10161963850259781, 0.10170918703079224, 0.041524749249219894, 0.0056336261332035065, 0.014265996403992176, 0.04039328172802925, -0.02091650478541851, -0.07178329676389694, 0.06790570914745331, -0.012355541810393333, -0.0054888478480279446, 0.09092924743890762, 0.054416872560977936, -0.004728767089545727, -0.0342748761177063, 0.0596010759472847, 0.09887690097093582, 0.08181817829608917, 0.04878093674778938, -0.08814264088869095, -0.029999488964676857, 0.0011676056310534477, 0.009396214038133621, 0.07706765830516815, 0.17758160829544067, 0.06496594101190567, -0.03229742497205734, 0.04584469273686409, 0.09911297261714935, -0.013330847956240177, -0.08504333347082138, -0.13664227724075317, 0.22582708299160004, -0.05864753946661949, -0.04547394439578056, -0.040099382400512695, -0.04022643715143204, 0.1537880301475525, 0.07997830957174301, 0.06032314896583557, 0.007992087863385677, -0.008684635162353516, -0.10010949522256851, 0.013642027974128723, 0.005998372100293636, 0.0598052442073822, -0.00556138064712286, 0.38243368268013, -0.07140041887760162, 0.11734133958816528, -0.04977026581764221, 0.04934263601899147, -0.025818487629294395, 0.020486826077103615, -0.025263922289013863, 0.024384591728448868, -0.050027504563331604, 0.12234954535961151, 0.011951502412557602, -0.07236319780349731, 0.03165901079773903, -0.009770219214260578, -0.04432032257318497, 0.03957071155309677, 0.06785788387060165, -0.02603154256939888, 0.06930824369192123, 0.0036856993101537228, -0.08404810726642609, 0.1731768399477005, -0.03057647868990898, -0.07170180231332779, -0.1164010539650917, 0.13090355694293976, 0.1443617343902588, 0.030216779559850693, -0.00043860950972884893, 0.1979178935289383, 0.08112286776304245, -0.033097654581069946, -0.06414933502674103, 0.09979875385761261, -0.016265325248241425, 0.02061999961733818, -0.046125609427690506, 0.07224125415086746, 0.018906189128756523, 0.2061406672000885, 0.07670646160840988, 0.026739314198493958, 0.06381499022245407, 0.01335071586072445, -0.062248121947050095, -0.05504068732261658, 0.12356535345315933, -0.08688148111104965, 0.11790204793214798, 0.11210703104734421, 0.012862692587077618, -0.024472659453749657, -0.025357382372021675, 0.0025287638418376446, 0.01662278175354004, 0.09895335137844086, 0.006769729312509298, -0.08174499124288559, 0.050704315304756165, -0.029798582196235657, 0.020261069759726524, -0.13604862987995148, -0.07157368957996368, 0.060494210571050644, -0.0230056494474411, -0.0026950822211802006, 0.024114109575748444, 0.010566706769168377, -0.027032585814595222, -0.029686449095606804, -0.01852366514503956, 0.06127476692199707, 0.0893733948469162, -0.0018842666177079082, -0.03530658781528473 ]
9fc30b578cedaec69e47302df72cf00feed7c8c4
# StarCoder Training Dataset ## Dataset description This is the dataset used for training [StarCoder](https://huggingface.co/bigcode/starcoder) and [StarCoderBase](https://huggingface.co/bigcode/starcoderbase). It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs, and 32GB of GitHub commits, which is approximately 250 Billion tokens. ## Dataset creation The creation and filtering of The Stack is explained in the [original dataset](https://huggingface.co/datasets/bigcode/the-stack-dedup), we additionally decontaminate and clean all 86 programming languages in the dataset, in addition to GitHub issues, Jupyter Notebooks and GitHub commits. We also apply near-deduplication and remove PII, all details are mentionned in our [Paper: 💫 StarCoder, May The Source Be With You](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) ## How to use the dataset ```python from datasets import load_dataset # to load python for example ds = load_dataset("bigcode/starcoderdata", data_dir="python", split="train") ``` GitHub issues, GitHub commits and Jupyter notebooks subsets have different columns from the rest so loading the entire dataset at once may fail, we suggest loading programming languages separatly from these categories. ```` jupyter-scripts-dedup-filtered jupyter-structured-clean-dedup github-issues-filtered-structured git-commits-cleaned ````
bigcode/starcoderdata
[ "task_categories:text-generation", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "size_categories:unknown", "language:code", "license:other", "region:us" ]
2023-03-30T11:02:21+00:00
{"annotations_creators": [], "language_creators": ["crowdsourced", "expert-generated"], "language": ["code"], "license": ["other"], "multilinguality": ["multilingual"], "size_categories": ["unknown"], "source_datasets": [], "task_categories": ["text-generation"], "pretty_name": "The-Stack", "extra_gated_prompt": "## Terms of Use for The Stack\n\nThe Stack dataset is a collection of source code in over 300 programming languages. We ask that you read and acknowledge the following points before using the dataset:\n1. The Stack is a collection of source code from repositories with various licenses. Any use of all or part of the code gathered in The Stack must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point.\n2. The Stack is regularly updated to enact validated data removal requests. By clicking on \"Access repository\", you agree to update your own version of The Stack to the most recent usable version specified by the maintainers in [the following thread](https://huggingface.co/datasets/bigcode/the-stack/discussions/7). If you have questions about dataset versions and allowed uses, please also ask them in the dataset\u2019s [community discussions](https://huggingface.co/datasets/bigcode/the-stack/discussions/new). We will also notify users via email when the latest usable version changes.\n3. To host, share, or otherwise provide access to The Stack dataset, you must include [these Terms of Use](https://huggingface.co/datasets/bigcode/the-stack#terms-of-use-for-the-stack) and require users to agree to it.\n\nBy clicking on \"Access repository\" below, you accept that your contact information (email address and username) can be shared with the dataset maintainers as well.\n ", "extra_gated_fields": {"Email": "text", "I have read the License and agree with its terms": "checkbox"}}
2023-05-16T09:05:48+00:00
[]
[ "code" ]
TAGS #task_categories-text-generation #language_creators-crowdsourced #language_creators-expert-generated #multilinguality-multilingual #size_categories-unknown #language-code #license-other #region-us
# StarCoder Training Dataset ## Dataset description This is the dataset used for training StarCoder and StarCoderBase. It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs, and 32GB of GitHub commits, which is approximately 250 Billion tokens. ## Dataset creation The creation and filtering of The Stack is explained in the original dataset, we additionally decontaminate and clean all 86 programming languages in the dataset, in addition to GitHub issues, Jupyter Notebooks and GitHub commits. We also apply near-deduplication and remove PII, all details are mentionned in our Paper: StarCoder, May The Source Be With You ## How to use the dataset GitHub issues, GitHub commits and Jupyter notebooks subsets have different columns from the rest so loading the entire dataset at once may fail, we suggest loading programming languages separatly from these categories. '
[ "# StarCoder Training Dataset", "## Dataset description\nThis is the dataset used for training StarCoder and StarCoderBase. It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs,\nand 32GB of GitHub commits, which is approximately 250 Billion tokens.", "## Dataset creation\nThe creation and filtering of The Stack is explained in the original dataset, we additionally decontaminate and clean all 86 programming\nlanguages in the dataset, in addition to GitHub issues, Jupyter Notebooks and GitHub commits. We also apply near-deduplication and remove PII, all details are mentionned in our Paper: StarCoder, May The Source Be With You", "## How to use the dataset\n\n\nGitHub issues, GitHub commits and Jupyter notebooks subsets have different columns from the rest so loading the entire dataset at once may fail, we suggest loading programming languages separatly from these categories. \n'" ]
[ "TAGS\n#task_categories-text-generation #language_creators-crowdsourced #language_creators-expert-generated #multilinguality-multilingual #size_categories-unknown #language-code #license-other #region-us \n", "# StarCoder Training Dataset", "## Dataset description\nThis is the dataset used for training StarCoder and StarCoderBase. It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs,\nand 32GB of GitHub commits, which is approximately 250 Billion tokens.", "## Dataset creation\nThe creation and filtering of The Stack is explained in the original dataset, we additionally decontaminate and clean all 86 programming\nlanguages in the dataset, in addition to GitHub issues, Jupyter Notebooks and GitHub commits. We also apply near-deduplication and remove PII, all details are mentionned in our Paper: StarCoder, May The Source Be With You", "## How to use the dataset\n\n\nGitHub issues, GitHub commits and Jupyter notebooks subsets have different columns from the rest so loading the entire dataset at once may fail, we suggest loading programming languages separatly from these categories. \n'" ]
[ 65, 7, 84, 94, 63 ]
[ "passage: TAGS\n#task_categories-text-generation #language_creators-crowdsourced #language_creators-expert-generated #multilinguality-multilingual #size_categories-unknown #language-code #license-other #region-us \n# StarCoder Training Dataset## Dataset description\nThis is the dataset used for training StarCoder and StarCoderBase. It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs,\nand 32GB of GitHub commits, which is approximately 250 Billion tokens.## Dataset creation\nThe creation and filtering of The Stack is explained in the original dataset, we additionally decontaminate and clean all 86 programming\nlanguages in the dataset, in addition to GitHub issues, Jupyter Notebooks and GitHub commits. We also apply near-deduplication and remove PII, all details are mentionned in our Paper: StarCoder, May The Source Be With You## How to use the dataset\n\n\nGitHub issues, GitHub commits and Jupyter notebooks subsets have different columns from the rest so loading the entire dataset at once may fail, we suggest loading programming languages separatly from these categories. \n'" ]
[ -0.009785264730453491, 0.14933358132839203, 0.00010518035560380667, 0.05296332761645317, 0.17191198468208313, 0.06191401556134224, 0.04764050617814064, 0.15039272606372833, -0.04726240038871765, 0.09627550095319748, -0.07469002157449722, 0.05013232305645943, 0.12133383750915527, 0.13536380231380463, 0.04122176021337509, -0.18319009244441986, 0.023267677053809166, -0.032993610948324203, 0.01594722643494606, 0.048898231238126755, 0.12109725177288055, -0.038488972932100296, 0.03261198103427887, -0.043948397040367126, -0.07427965849637985, -0.03479183837771416, -0.05854951590299606, -0.026243295520544052, 0.0985676571726799, 0.00725724408403039, 0.07138081640005112, -0.0006595360464416444, 0.023962896317243576, -0.1173698902130127, 0.00987943448126316, 0.16834799945354462, 0.044867705553770065, 0.014374312944710255, 0.03532855957746506, 0.00007047205872368068, 0.043264422565698624, -0.1265002340078354, 0.02348002791404724, 0.07123138010501862, -0.09423558413982391, -0.12508419156074524, -0.1309822052717209, -0.06762503832578659, 0.11209972947835922, 0.03823823854327202, -0.018299126997590065, 0.07990516722202301, 0.06900681555271149, 0.05007538944482803, 0.1347803771495819, -0.12729327380657196, 0.002701709046959877, 0.13087716698646545, 0.018774038180708885, 0.029020484536886215, -0.040514834225177765, -0.012609628960490227, 0.046681590378284454, 0.06401251256465912, -0.008324267342686653, -0.032436370849609375, -0.0348752923309803, -0.07942459732294083, -0.1118888258934021, -0.037829261273145676, 0.14227035641670227, -0.12505507469177246, -0.049701791256666183, -0.20970244705677032, -0.10690011829137802, -0.03823564574122429, -0.024559829384088516, 0.06197631359100342, 0.00204750569537282, 0.05566559359431267, 0.12166676670312881, -0.10313045978546143, -0.1156177967786789, -0.024033064022660255, 0.03707895800471306, -0.007637497968971729, 0.059986382722854614, 0.045307792723178864, -0.0473310723900795, 0.13635210692882538, -0.06106666848063469, -0.08419759571552277, 0.019583869725465775, -0.08573861420154572, -0.1063312292098999, -0.017228690907359123, -0.052644722163677216, -0.15188539028167725, 0.05756564810872078, 0.13640759885311127, 0.09135246276855469, 0.046467334032058716, -0.10220558941364288, 0.028560936450958252, 0.15694811940193176, 0.0737975463271141, -0.0008896479266695678, -0.13893070816993713, 0.12000641971826553, 0.033750977367162704, 0.060198843479156494, -0.027516687288880348, -0.003005889244377613, -0.03350042924284935, -0.00014914796338416636, 0.10691539943218231, 0.07542024552822113, 0.04112992435693741, -0.026353444904088974, -0.0356510765850544, 0.14790675044059753, -0.12501351535320282, -0.027478715404868126, -0.04581379517912865, 0.00786951556801796, 0.07724933326244354, -0.00005036103539168835, -0.019248927012085915, -0.06278747320175171, 0.004986745771020651, -0.0750332847237587, -0.002176060574129224, -0.12830033898353577, -0.14084891974925995, 0.03200693055987358, -0.1370714008808136, -0.04866689071059227, -0.044294022023677826, -0.17047007381916046, -0.05619505047798157, -0.036564670503139496, -0.045138753950595856, -0.009125685319304466, 0.007858740165829659, 0.020820075646042824, 0.005354239139705896, 0.033392101526260376, -0.07753211259841919, -0.034644655883312225, 0.036163799464702606, -0.02183694951236248, 0.055092036724090576, -0.0596444234251976, 0.025004465132951736, -0.10303211212158203, 0.057605158537626266, -0.2360968142747879, 0.03696330264210701, -0.10837109386920929, 0.020637109875679016, -0.11063255369663239, -0.037314049899578094, 0.08707752078771591, 0.010634643957018852, 0.0037650647573173046, 0.062373530119657516, -0.24400535225868225, 0.009766412898898125, 0.13062314689159393, -0.19147291779518127, 0.036454539746046066, 0.11647288501262665, -0.006266837008297443, 0.06569795310497284, 0.0498664565384388, 0.05742950364947319, 0.1800081580877304, -0.01573731005191803, -0.0864846259355545, 0.0070344493724405766, 0.022217296063899994, 0.04841870069503784, 0.03975316882133484, -0.01995481178164482, 0.044416286051273346, 0.05376629903912544, 0.0950685665011406, 0.012527041137218475, 0.02152252569794655, -0.03284645080566406, -0.03119571879506111, -0.033294904977083206, -0.10762889683246613, 0.005031838081777096, -0.019203107804059982, -0.03173176199197769, -0.008326120674610138, -0.0013271209318190813, 0.17998071014881134, -0.10809669643640518, 0.03307738155126572, 0.005166287533938885, 0.03160836547613144, -0.06963902711868286, 0.020794251933693886, -0.11996793746948242, -0.1236857995390892, 0.1226007342338562, -0.11754210293292999, -0.006385089363902807, 0.14919337630271912, -0.015830615535378456, 0.056301940232515335, -0.014757847413420677, 0.06253887712955475, 0.025952491909265518, -0.028583962470293045, -0.048801373690366745, -0.07440991699695587, -0.040390949696302414, -0.08581662178039551, 0.12727294862270355, 0.019165318459272385, 0.052420079708099365, 0.056936539709568024, 0.10526660829782486, -0.0030861885752528906, -0.09890209138393402, 0.08112633973360062, 0.008045680820941925, -0.040212102234363556, -0.11007244884967804, -0.010287629440426826, 0.01679045334458351, 0.0480617955327034, -0.017392972484230995, -0.16718408465385437, -0.2841423451900482, 0.08471833914518356, 0.16136091947555542, -0.04579325392842293, 0.006423524580895901, -0.023965055122971535, -0.04325006157159805, -0.02010975405573845, -0.06731309741735458, -0.005261244717985392, 0.03779035061597824, 0.11410393565893173, -0.04903256893157959, -0.034438230097293854, -0.013038953766226768, 0.05407054349780083, -0.02752729132771492, 0.018549276515841484, 0.04323526471853256, -0.14801903069019318, 0.1302020251750946, 0.01553469616919756, 0.008013530634343624, 0.047723330557346344, 0.017985163256525993, -0.07190464437007904, 0.01804431527853012, 0.013726877048611641, 0.0010359082370996475, 0.013531306758522987, -0.021258169785141945, 0.01625429093837738, 0.0655149295926094, 0.014455537311732769, 0.06318604946136475, -0.03350835293531418, 0.044859081506729126, -0.03228060156106949, -0.0009950698586180806, 0.013060254044830799, 0.030461004003882408, -0.0035102677065879107, 0.016113845631480217, -0.004160392098128796, 0.1207403689622879, -0.005610644817352295, -0.026558954268693924, -0.012114216573536396, 0.14006967842578888, -0.1394771784543991, -0.30360686779022217, -0.15596742928028107, 0.07172520458698273, -0.07460114359855652, 0.04527825862169266, 0.03738747909665108, -0.01800885796546936, -0.08748966455459595, -0.052283354103565216, 0.08739428222179413, -0.08408009260892868, -0.04581650719046593, -0.011309657245874405, 0.05809440463781357, -0.04238399118185043, -0.15953798592090607, 0.004927939735352993, 0.06320501863956451, -0.11227233707904816, 0.03241797536611557, -0.0010308357886970043, -0.0042248978279531, 0.06055669113993645, 0.03733857348561287, -0.010503730736672878, -0.03684239462018013, 0.2199728935956955, -0.05263325572013855, 0.08017978072166443, 0.2418595552444458, 0.00025054215802811086, 0.06361736357212067, 0.051289308816194534, 0.006883321795612574, -0.07099930197000504, 0.040313415229320526, 0.058387815952301025, -0.054891206324100494, -0.14448487758636475, -0.08667773753404617, -0.07571572810411453, 0.05333138257265091, 0.04212429001927376, 0.01928693614900112, -0.10713429749011993, 0.04766269773244858, -0.14302651584148407, 0.09642402827739716, 0.020974168553948402, 0.09353268146514893, 0.021716581657528877, -0.05001622438430786, 0.07633790373802185, -0.07281351834535599, -0.008735079318284988, 0.12098755687475204, 0.11728473007678986, 0.1227928027510643, -0.0667039006948471, 0.17250101268291473, 0.007045709993690252, 0.05643317848443985, -0.005629853345453739, 0.12953002750873566, -0.1165996789932251, 0.0712471678853035, -0.04168277978897095, -0.06028599664568901, -0.05318046733736992, 0.045142095535993576, 0.014807075262069702, -0.09908372163772583, -0.006457359995692968, -0.014056039974093437, 0.052813850343227386, 0.15890616178512573, 0.06676588952541351, -0.10902057588100433, 0.021295931190252304, 0.08674470335245132, 0.006929483264684677, -0.11635497957468033, 0.017342139035463333, 0.14336547255516052, -0.05867324024438858, 0.0745863988995552, -0.051919884979724884, 0.0625285655260086, -0.2346835434436798, -0.018851473927497864, -0.005491531919687986, 0.047065749764442444, -0.009829715825617313, 0.12065565586090088, -0.11331170797348022, -0.05910550802946091, 0.050483036786317825, 0.0045847357250750065, -0.10917957872152328, 0.06790392845869064, -0.021318962797522545, -0.027956385165452957, 0.09310954809188843, -0.01628594473004341, -0.21450908482074738, -0.13636279106140137, -0.07066964358091354, 0.03576520457863808, 0.10411707311868668, -0.06202654913067818, 0.08820460736751556, -0.04998544976115227, 0.026601027697324753, -0.013081884011626244, -0.02982235513627529, -0.04748234897851944, -0.23609928786754608, 0.10804127156734467, 0.010424411855638027, -0.11763487011194229, -0.058509111404418945, -0.004943489097058773, 0.023587476462125778, 0.21001514792442322, -0.12947361171245575, -0.11923931539058685, -0.10850396007299423, 0.014827599748969078, 0.21773850917816162, -0.037797488272190094, 0.07580599933862686, -0.04499935358762741, 0.09965884685516357, -0.08930069953203201, -0.10497621446847916, 0.011397091671824455, -0.10109885782003403, -0.14847537875175476, -0.029445534572005272, 0.1526695042848587, -0.03753161430358887, -0.010869912803173065, 0.010655555874109268, 0.021068328991532326, -0.01585891842842102, -0.06229085475206375, -0.06296154111623764, 0.14246000349521637, 0.1545039713382721, 0.116196408867836, -0.09386793524026871, -0.06565044820308685, -0.018192049115896225, -0.0010964066023007035, 0.0876297727227211, 0.2604287266731262, -0.019036363810300827, 0.10410226881504059, 0.08816281706094742, -0.06515771895647049, -0.17352907359600067, 0.018490083515644073, -0.025642529129981995, -0.012477969750761986, -0.006732492242008448, -0.20530319213867188, 0.027282368391752243, 0.06962880492210388, -0.02700101211667061, 0.060219306498765945, -0.22148308157920837, -0.07661140710115433, -0.026666734367609024, -0.0689314752817154, 0.08774691820144653, -0.09323518723249435, 0.0032919615041464567, -0.1338907927274704, -0.14017778635025024, 0.1494653970003128, -0.06535313278436661, 0.14904356002807617, -0.03543097898364067, -0.04995275288820267, 0.057147808372974396, -0.11792676150798798, 0.103612020611763, -0.018881134688854218, 0.09570006281137466, -0.05415807291865349, -0.0006760429823771119, 0.08890841901302338, -0.03569261357188225, 0.10372157394886017, -0.03810395300388336, 0.10871048271656036, -0.03828224539756775, -0.05630629137158394, -0.06564687192440033, 0.07907626032829285, -0.03554864972829819, -0.06110202148556709, -0.12788695096969604, 0.057718582451343536, 0.033645469695329666, -0.015409545972943306, 0.08197174966335297, 0.060244299471378326, 0.02415889874100685, 0.11273764073848724, -0.03303104266524315, 0.06340126693248749, -0.010270200669765472, -0.009763451293110847, -0.003368034493178129, 0.028045397251844406, -0.09379559755325317, 0.047581691294908524, 0.037119440734386444, 0.021104708313941956, 0.08652092516422272, 0.02634887956082821, -0.14671723544597626, 0.01583314873278141, 0.07383393496274948, -0.13061009347438812, -0.15624646842479706, -0.00400388753041625, 0.02070971205830574, -0.07639746367931366, 0.020433221012353897, 0.15039458870887756, 0.05005941540002823, -0.052521802484989166, 0.002133211586624384, 0.08798255771398544, 0.015629440546035767, 0.14896681904792786, -0.03841672092676163, 0.007156458683311939, -0.11572273075580597, 0.10811828076839447, 0.12727554142475128, -0.05829184129834175, -0.013604854233562946, 0.1000734344124794, -0.10479415953159332, -0.05234565585851669, 0.02749091386795044, -0.016102435067296028, 0.05072014406323433, 0.03176189586520195, -0.03229450434446335, 0.05870921537280083, -0.09086792171001434, -0.008344228379428387, 0.04919024556875229, 0.0980767160654068, 0.011513195931911469, 0.004091993905603886, -0.118292436003685, 0.0396234430372715, -0.007609078194946051, 0.08325321227312088, -0.04513923451304436, 0.10670636594295502, -0.022718627005815506, 0.008707833476364613, -0.021275585517287254, 0.030263487249612808, -0.06821335107088089, -0.03346530348062515, 0.025232959538698196, -0.02176821231842041, -0.10497063398361206, -0.020952418446540833, 0.034864019602537155, 0.01855183020234108, 0.026977550238370895, 0.005071764346212149, -0.03980281949043274, -0.058284223079681396, -0.10724081099033356, 0.07852775603532791, -0.1277269423007965, 0.01110698189586401, 0.0699678435921669, -0.08941175043582916, 0.14640995860099792, -0.022358126938343048, 0.016965724527835846, 0.04516240954399109, 0.02924373745918274, -0.039553310722112656, 0.05125940963625908, 0.06420116126537323, -0.0325346402823925, -0.008482465520501137, 0.03518752381205559, -0.035030245780944824, -0.036145180463790894, -0.014008566737174988, 0.11946551501750946, -0.1663757860660553, -0.01325306762009859, 0.012241648510098457, -0.05452354624867439, -0.014120154082775116, -0.007929687388241291, 0.10922924429178238, 0.05231180042028427, 0.0907798483967781, -0.007821666076779366, 0.05009441450238228, -0.06960351020097733, -0.03919701650738716, -0.019638286903500557, -0.10317639261484146, 0.06481505185365677, 0.006112286821007729, 0.06586970388889313, 0.01936768926680088, 0.15855303406715393, -0.02028750255703926, 0.029491538181900978, -0.009437277913093567, 0.09440240263938904, 0.02682676538825035, 0.043958354741334915, 0.09655270725488663, 0.005427213851362467, -0.036440491676330566, -0.07276664674282074, -0.010189883410930634, 0.027159785851836205, -0.015308122150599957, 0.006263026036322117, 0.054166339337825775, 0.0492919459939003, 0.004978063516318798, 0.012540370225906372, -0.08830864727497101, -0.0717669278383255, 0.06553687155246735, 0.031108099967241287, 0.06555266678333282, -0.07251578569412231, 0.019832752645015717, 0.03431006893515587, -0.07375509291887283, 0.12249293178319931, -0.03563154488801956, -0.05753457546234131, -0.06416578590869904, -0.09999652951955795, -0.022273734211921692, 0.019255736842751503, -0.004238392226397991, -0.108453169465065, 0.04905032366514206, 0.1234993115067482, 0.01908182166516781, -0.05886583402752876, 0.14271731674671173, -0.008589575998485088, -0.07038573175668716, -0.018740063533186913, 0.07305201143026352, -0.014948664233088493, 0.05498220771551132, -0.07254352420568466, 0.017021026462316513, 0.059720348566770554, 0.08033276349306107, 0.01708817481994629, 0.07189317047595978, 0.03468335419893265, -0.04456894099712372, -0.05445447564125061, -0.031038682907819748, -0.008368393406271935, 0.009251398965716362, 0.13076910376548767, -0.01049858145415783, -0.029583755880594254, -0.012846218422055244, 0.16509053111076355, -0.016032293438911438, -0.08252725750207901, -0.08894609659910202, 0.13997836410999298, 0.009496435523033142, -0.03013009950518608, 0.016108982264995575, -0.14815403521060944, -0.03996855020523071, 0.11632861196994781, 0.17430895566940308, 0.02040863409638405, -0.015130448155105114, 0.049974385648965836, -0.01264420710504055, 0.0050763776525855064, 0.06883958727121353, 0.006201792974025011, 0.1337510645389557, -0.02433244325220585, 0.0925125703215599, 0.040979743003845215, -0.016102585941553116, -0.11449114978313446, 0.11855876445770264, -0.06463699042797089, 0.006858455948531628, -0.012612667866051197, 0.028982970863580704, 0.05512973666191101, -0.2095949351787567, -0.03989019989967346, -0.10418669879436493, -0.1265699416399002, 0.018952811136841774, 0.045495014637708664, -0.051739126443862915, 0.05058176442980766, -0.012076758779585361, 0.020242640748620033, 0.11269606649875641, -0.04969075322151184, -0.04694484546780586, -0.11029881238937378, 0.06585852056741714, -0.051252443343400955, 0.08933904767036438, 0.012480131350457668, 0.017509419471025467, 0.07676044851541519, -0.021972935646772385, -0.10604610294103622, -0.028070658445358276, 0.0220005065202713, -0.005639108829200268, 0.01205398328602314, 0.18833735585212708, -0.0678166076540947, 0.03672759607434273, 0.04261739179491997, -0.04986003786325455, 0.03890513256192207, -0.023064011707901955, 0.02187602035701275, -0.11564846336841583, 0.04157812520861626, -0.10682345926761627, 0.1444070041179657, 0.10193140804767609, -0.0034944401122629642, 0.004497891757637262, -0.058960624039173126, 0.011735497042536736, 0.020096268504858017, 0.14360271394252777, -0.06588850170373917, -0.1665371209383011, 0.009767155162990093, -0.01695595681667328, 0.0658084973692894, -0.13867494463920593, -0.023255448788404465, 0.04764469712972641, -0.02416401542723179, -0.09947609901428223, 0.08138058334589005, -0.048098303377628326, -0.027943262830376625, -0.016077494248747826, -0.17730334401130676, -0.006701464299112558, -0.009145690128207207, -0.1280817687511444, -0.08839923143386841 ]
e738267573fcd516b79c02de81622b1b415a30b5
# Dataset Card for "massive_social-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_social-de-DE
[ "region:us" ]
2023-03-30T11:37:11+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 129790, "num_examples": 391}, {"name": "validation", "num_bytes": 22472, "num_examples": 68}, {"name": "test", "num_bytes": 34107, "num_examples": 106}], "download_size": 70328, "dataset_size": 186369}}
2023-03-30T11:48:11+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_social-de-DE" More Information needed
[ "# Dataset Card for \"massive_social-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_social-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_social-de-DE\"\n\nMore Information needed" ]
[ -0.11638294160366058, 0.10691691190004349, -0.005048417951911688, -0.03277945891022682, 0.0759347602725029, 0.11040250211954117, 0.034992996603250504, -0.002615717938169837, 0.1743626743555069, -0.03126395866274834, 0.13450486958026886, 0.08759614080190659, 0.0062300520949065685, 0.2861066162586212, -0.08283363282680511, -0.013412301428616047, 0.055467672646045685, 0.04717571288347244, -0.24594154953956604, -0.014019359834492207, 0.05440697818994522, -0.05512944981455803, 0.08000978082418442, -0.16125382483005524, -0.030694084241986275, 0.1254335194826126, -0.03233253210783005, -0.027349455282092094, 0.1078260987997055, -0.048550065606832504, 0.12116881459951401, 0.056670043617486954, 0.01058114506304264, -0.0782962366938591, 0.005260621663182974, -0.008715024217963219, -0.04975607618689537, 0.03421876206994057, -0.016559526324272156, -0.04095546156167984, -0.10804808884859085, -0.09996417909860611, 0.015320639126002789, -0.013455270789563656, -0.10527665168046951, -0.34935262799263, -0.025718946009874344, -0.14342856407165527, 0.006046108435839415, -0.10237177461385727, 0.0610174722969532, 0.030468838289380074, -0.19651174545288086, -0.03451857343316078, -0.07552642375230789, 0.12818469107151031, 0.07343601435422897, 0.19324970245361328, -0.06064889207482338, 0.13769875466823578, 0.04099845141172409, 0.07558666169643402, 0.11603772640228271, -0.017201771959662437, 0.011986157856881618, -0.026812007650732994, 0.05195742845535278, 0.11428400129079819, -0.022881507873535156, -0.007976432330906391, 0.332014262676239, -0.004049853887408972, 0.042984575033187866, 0.039272598922252655, -0.04134145751595497, 0.0762765035033226, 0.03971830755472183, -0.09903912991285324, 0.06120557337999344, 0.044274814426898956, 0.05848658084869385, 0.04204472526907921, -0.0705903172492981, -0.0929984301328659, -0.1875898391008377, -0.004949768539518118, -0.08465573936700821, 0.10683102905750275, -0.27887842059135437, -0.04783020541071892, -0.10823067277669907, 0.012536455877125263, 0.05887120962142944, -0.13660432398319244, 0.02000102773308754, -0.03144083172082901, 0.01839437708258629, 0.04890968278050423, 0.1561823934316635, 0.06626194715499878, 0.0506683811545372, -0.021145613864064217, -0.051043007522821426, 0.05359450727701187, 0.22851912677288055, -0.1201917752623558, -0.09264477342367172, -0.17553912103176117, -0.010267863050103188, -0.13066968321800232, -0.015235348604619503, -0.051184218376874924, -0.05948015674948692, 0.02171318046748638, -0.15968210995197296, 0.1353623867034912, -0.0238387119024992, -0.1051107719540596, -0.09671246260404587, 0.012359132058918476, 0.22130773961544037, -0.019527990370988846, 0.0037662643007934093, 0.028370168060064316, -0.03623703494668007, 0.07198729366064072, -0.17116621136665344, -0.014526309445500374, 0.10785631090402603, 0.10595399141311646, -0.05275817587971687, -0.12797106802463531, -0.04854533076286316, -0.006876219063997269, 0.08391248434782028, -0.19265730679035187, 0.10624391585588455, -0.07613587379455566, -0.2935774028301239, 0.05553716793656349, -0.027147233486175537, -0.04979495331645012, 0.08852271735668182, -0.009761624969542027, 0.0986442044377327, -0.049878787249326706, -0.11580582708120346, 0.08493717014789581, -0.12291671335697174, 0.03206291422247887, -0.011863849125802517, 0.039433326572179794, -0.25858619809150696, 0.04825812205672264, -0.06193435192108154, -0.004788998980075121, -0.014104603789746761, 0.09822545945644379, -0.06606230139732361, 0.024793492630124092, -0.009185871109366417, -0.0010843127965927124, -0.11338097602128983, 0.07447799295186996, -0.012595025822520256, 0.11372555792331696, -0.29005545377731323, -0.06490704417228699, 0.08138435333967209, -0.12786853313446045, -0.10416233539581299, 0.07215531170368195, -0.0658288449048996, 0.04884469881653786, 0.12491994351148605, 0.2900782525539398, -0.06695343554019928, 0.10320676863193512, 0.009286687709391117, 0.1613372415304184, -0.19726692140102386, -0.2454836517572403, 0.07457812875509262, -0.0546501949429512, -0.0742371529340744, -0.0012568413512781262, 0.07348249107599258, 0.00999694224447012, -0.06651484221220016, -0.04049525037407875, 0.06105756014585495, -0.1462000161409378, 0.12088090181350708, 0.01334244105964899, 0.01058910135179758, -0.06394854933023453, 0.17424502968788147, 0.09941770136356354, 0.054658420383930206, 0.06413169205188751, -0.08460463583469391, -0.03571883589029312, 0.05086226016283035, -0.07654273509979248, 0.019863834604620934, -0.14323675632476807, -0.04568102955818176, 0.015000059269368649, -0.018486319109797478, 0.016950467601418495, 0.25818949937820435, 0.054821278899908066, -0.08972005546092987, -0.030898159369826317, 0.09744871407747269, 0.14138229191303253, 0.05488574504852295, 0.03622102364897728, 0.0037418624851852655, 0.05995409935712814, -0.06976401060819626, -0.03593858703970909, -0.08353511244058609, -0.05402453988790512, 0.1276475042104721, 0.03550393879413605, -0.011347418650984764, 0.04683854803442955, -0.0006858743727207184, 0.03984244540333748, 0.00035736762220039964, -0.021155187860131264, -0.010914300568401814, -0.07971392571926117, -0.12959448993206024, -0.025157054886221886, 0.02059442177414894, 0.3768238425254822, 0.08435402810573578, -0.04474082961678505, 0.05400534346699715, 0.1405775099992752, 0.08848188817501068, 0.01811879314482212, -0.04180629923939705, -0.04180348664522171, 0.05677470937371254, -0.061509907245635986, 0.021272631362080574, -0.022317279130220413, 0.07312501966953278, 0.001011967658996582, 0.04978453367948532, -0.06421089917421341, -0.009900950826704502, 0.07035931199789047, -0.24390527606010437, 0.15027596056461334, 0.18735477328300476, 0.1438240259885788, 0.08838361501693726, -0.03870782256126404, -0.07055593281984329, -0.010907694697380066, -0.13642099499702454, -0.09281810373067856, 0.1870948225259781, -0.06485168635845184, 0.03842698782682419, 0.06280224025249481, 0.038202933967113495, 0.07723420113325119, -0.03355947881937027, -0.09241440147161484, -0.013692245818674564, -0.02046237699687481, -0.19620773196220398, 0.05086619034409523, 0.02641671523451805, 0.12224043905735016, 0.03032018430531025, -0.04736081510782242, 0.16333796083927155, -0.017781322821974754, -0.00035253007081337273, 0.10525105893611908, -0.11865542083978653, -0.2940506935119629, 0.09563636034727097, 0.018130077049136162, 0.04287824034690857, 0.05528870224952698, -0.02252020314335823, -0.17185938358306885, -0.05439235642552376, 0.10196498781442642, 0.041354674845933914, -0.15924538671970367, -0.02136911451816559, 0.00827891193330288, 0.006745572201907635, -0.04975201562047005, -0.09808070212602615, -0.008370102383196354, -0.020993798971176147, 0.136870875954628, 0.08993443101644516, -0.11410252004861832, 0.09881030023097992, 0.07332996279001236, -0.022137317806482315, 0.02430814318358898, -0.04078179597854614, -0.06880702078342438, -0.0842994973063469, -0.07176748663187027, 0.1434362679719925, 0.022697698324918747, -0.02864568866789341, 0.047021444886922836, 0.06776195019483566, -0.15186645090579987, -0.05478353425860405, -0.013043959625065327, -0.1787298619747162, -0.22147683799266815, -0.17350880801677704, -0.004360604099929333, 0.14185844361782074, -0.017526967450976372, 0.04644258692860603, -0.04678285866975784, 0.03150783106684685, 0.1386703997850418, -0.05087782070040703, -0.1177072525024414, -0.08450383692979813, 0.021134158596396446, -0.037105850875377655, 0.008465801365673542, -0.156235009431839, -0.05663806572556496, 0.2202846109867096, 0.09443636983633041, 0.0969872996211052, 0.07993017137050629, 0.06378026306629181, -0.034631408751010895, 0.050276465713977814, 0.02335209958255291, 0.10572503507137299, 0.13119277358055115, 0.021807825192809105, -0.06320208311080933, 0.04440132901072502, -0.053347110748291016, 0.0024379808455705643, 0.16769878566265106, -0.20064102113246918, 0.01868322305381298, -0.16319116950035095, 0.05989398807287216, -0.11214108020067215, 0.06430067867040634, -0.21796464920043945, 0.06040795519948006, 0.09778863191604614, 0.19423961639404297, -0.05114099010825157, 0.09243669360876083, 0.05108129233121872, -0.027488764375448227, 0.18203222751617432, 0.0791773647069931, 0.0525546632707119, -0.08153726905584335, 0.06928354501724243, -0.05517953261733055, -0.048851992934942245, 0.04001307487487793, 0.06714054197072983, -0.1741170436143875, 0.15940921008586884, 0.02970275841653347, -0.09440907090902328, -0.17186757922172546, -0.07731712609529495, 0.0036585715133696795, 0.06508944183588028, 0.12147833406925201, 0.019743910059332848, -0.04357459768652916, -0.04736906662583351, 0.023245099931955338, 0.05476504936814308, 0.026302581652998924, -0.08944421261548996, -0.19802509248256683, 0.08089440315961838, 0.03532492369413376, -0.0000622953666606918, -0.18829907476902008, -0.010169603861868382, -0.026335012167692184, -0.042790625244379044, 0.07849747687578201, -0.1122812032699585, 0.041916344314813614, 0.002682386664673686, -0.04776926711201668, 0.1345897614955902, 0.0756043791770935, -0.03920423611998558, -0.08669786155223846, 0.02731318213045597, 0.10849610716104507, 0.044841915369033813, -0.08349107950925827, 0.05369262769818306, -0.013883030973374844, -0.04506189376115799, -0.19692610204219818, 0.1491444855928421, -0.09127839654684067, 0.089419886469841, -0.05981529504060745, 0.03567962720990181, 0.03802302107214928, 0.014695757068693638, -0.0355837456882, -0.018708329647779465, 0.02411634661257267, -0.09194963425397873, 0.1359589844942093, -0.03220648691058159, 0.11281299591064453, 0.25178465247154236, 0.10928153246641159, -0.11872225254774094, 0.16118182241916656, -0.046877387911081314, 0.10027655214071274, 0.17182914912700653, -0.06966270506381989, 0.13949450850486755, 0.23441137373447418, -0.05238158628344536, -0.31859490275382996, 0.08441970497369766, -0.23798619210720062, -0.04439200833439827, 0.10885351151227951, -0.22947965562343597, 0.05828623101115227, 0.2116079330444336, -0.04429439827799797, 0.16591660678386688, -0.1483062207698822, -0.03579171374440193, 0.18430101871490479, -0.11148744821548462, 0.5359229445457458, -0.10423628240823746, -0.039558615535497665, -0.1623706966638565, 0.08594023436307907, 0.17600679397583008, -0.1775757223367691, -0.018709268420934677, 0.026464814320206642, 0.0764269158244133, -0.029379073530435562, -0.02660500630736351, 0.22017785906791687, 0.027503564953804016, 0.14993225038051605, -0.03678432106971741, -0.0913834199309349, 0.20957715809345245, -0.039520833641290665, 0.056848712265491486, 0.025359246879816055, 0.012116014957427979, -0.11755851656198502, -0.03587368130683899, 0.015079175122082233, 0.029091332107782364, 0.0790267363190651, -0.08292543888092041, -0.13261958956718445, -0.005463976878672838, -0.06658241897821426, -0.06085146591067314, 0.08639318495988846, -0.003980818670243025, -0.030775440856814384, -0.134342223405838, 0.16444216668605804, -0.12773658335208893, 0.02282152883708477, -0.025279026478528976, -0.09212559461593628, 0.04579385742545128, -0.2174437791109085, 0.061485130339860916, 0.153291255235672, -0.013377787545323372, 0.0078066554851830006, 0.06281612813472748, 0.018369823694229126, 0.035757772624492645, 0.12538941204547882, -0.03121267445385456, -0.08455304056406021, 0.10725152492523193, -0.06589893251657486, 0.0678405612707138, 0.18718838691711426, 0.036320287734270096, 0.08821077644824982, -0.020098494365811348, -0.03960474580526352, 0.056260909885168076, -0.09970172494649887, 0.033753734081983566, 0.009851262904703617, 0.02233070321381092, -0.1846604347229004, 0.24750208854675293, 0.005850251764059067, -0.12381704896688461, -0.026612231507897377, -0.05710276588797569, -0.08404845744371414, -0.05169355496764183, -0.017159897834062576, 0.2500602900981903, -0.10457903891801834, -0.1742548942565918, 0.007725097239017487, -0.16031135618686676, 0.011819292791187763, 0.0851905345916748, 0.07547345012426376, 0.10456626117229462, 0.03180953860282898, -0.02449788711965084, -0.008112926967442036, -0.10101183503866196, -0.10478721559047699, -0.018562640994787216, -0.02061428688466549, -0.18999825417995453, -0.02905387617647648, 0.1105351448059082, -0.09892111271619797, -0.0073037827387452126, -0.05251142755150795, 0.06178916245698929, -0.25190383195877075, -0.06873654574155807, 0.02700832486152649, 0.0036828520242124796, -0.010347920469939709, 0.010850092396140099, -0.003482018131762743, -0.04395303130149841, -0.05934160202741623, 0.17102815210819244, 0.07110200077295303, 0.05574990063905716, -0.08253840357065201, -0.0795515775680542, -0.012568546459078789, 0.053489115089178085, 0.1519947499036789, 0.09472446888685226, 0.012305655516684055, 0.018624285236001015, -0.015578433871269226, -0.06822680681943893, 0.12333718687295914, 0.0938650444149971, 0.08471815288066864, 0.06485690921545029, -0.036541424691677094, 0.09282667189836502, -0.06107180193066597, 0.03579900041222572, -0.09066661447286606, -0.03759206086397171, 0.16120187938213348, -0.1284855157136917, -0.061738695949316025, 0.030741898342967033, -0.10283831506967545, 0.17317883670330048, 0.08376462012529373, -0.05089056119322777, 0.05943897366523743, -0.006735661067068577, -0.010212138295173645, -0.05951502546668053, -0.0224179457873106, -0.10058335214853287, -0.07241028547286987, 0.10806293785572052, 0.05876971408724785, -0.07332723587751389, 0.5577622652053833, -0.07541922479867935, -0.12594234943389893, -0.006916728336364031, 0.07708285748958588, 0.02169344201683998, 0.03173626586794853, 0.15977749228477478, -0.00417324248701334, -0.050284016877412796, -0.10455141961574554, 0.11917316913604736, 0.012166093103587627, 0.12653274834156036, 0.12376566976308823, 0.07651170343160629, 0.07208801060914993, -0.01722847856581211, -0.03102044202387333, -0.11752869933843613, -0.0018931084778159857, 0.022353723645210266, -0.0022907268721610308, -0.051362283527851105, 0.06112416461110115, -0.07207926362752914, -0.014381605200469494, 0.0024456295650452375, 0.023690028116106987, -0.087921142578125, 0.01945282705128193, -0.06640707701444626, 0.00031618986395187676, -0.03254018351435661, -0.02383432723581791, 0.0052270847372710705, -0.060405902564525604, -0.052579253911972046, 0.2326059639453888, 0.0790930986404419, -0.04888201132416725, 0.0055073765106499195, -0.09074801951646805, 0.08131854981184006, 0.02581014111638069, -0.0027750858571380377, -0.053093962371349335, 0.0015351828187704086, -0.096466563642025, -0.03024553880095482, 0.02790945954620838, -0.06314629316329956, -0.034821558743715286, -0.04123713821172714, -0.011177408508956432, -0.08238641172647476, 0.019308820366859436, -0.050186317414045334, 0.08366693556308746, -0.13541631400585175, 0.08383575826883316, 0.0015005916357040405, -0.05551141873002052, 0.08758699893951416, -0.05280379205942154, 0.041429124772548676, 0.1027219370007515, 0.006122319959104061, 0.044598229229450226, -0.039509836584329605, 0.11977093666791916, 0.04835473746061325, -0.04492262378334999, -0.08688068389892578, 0.0016660402761772275, 0.38572412729263306, -0.08138085156679153, -0.019454985857009888, -0.053230736404657364, 0.04510636255145073, 0.014812548644840717, 0.11103447526693344, 0.031364548951387405, 0.1323070228099823, -0.022412145510315895, -0.08512508124113083, 0.04080215469002724, 0.05351050943136215, 0.022060489282011986, 0.09160883724689484, 0.02934056892991066, 0.0026045399717986584, -0.06186287850141525, 0.14076924324035645, -0.13332615792751312, 0.0263640396296978, 0.06409358233213425, -0.1747499406337738, -0.08250955492258072, 0.011508858762681484, -0.0923299714922905, -0.040078964084386826, 0.02540506049990654, -0.07369814813137054, -0.05574444308876991, -0.07741779088973999, -0.008807827718555927, -0.2998267710208893, -0.11423267424106598, -0.01493068877607584, 0.2139403074979782, 0.012614162638783455, -0.027434518560767174, 0.11508922278881073, 0.014719751663506031, 0.012926260009407997, -0.03735771030187607, 0.04445469379425049, 0.00958240032196045, 0.11914759129285812, -0.06846686452627182, -0.14793477952480316, -0.09648895263671875, -0.008628874085843563, 0.0955251082777977, -0.07784786075353622, -0.04014264792203903, 0.18804670870304108, -0.1091722920536995, -0.049351777881383896, -0.012137281708419323, -0.09018569439649582, 0.03808725252747536, -0.07880502194166183, 0.02802344225347042, -0.0029786911327391863, 0.00046687759459018707, 0.09394299983978271, 0.03411463648080826, -0.051767367869615555, -0.09215352684259415, -0.030202006921172142, -0.015432600863277912, 0.11997371166944504, 0.04335048794746399, -0.0007470782147720456, 0.09726696461439133, -0.10542498528957367, 0.08303326368331909, 0.038912296295166016, 0.004761327523738146, -0.05758841708302498, 0.04733071103692055, -0.030005190521478653, -0.09149445593357086, 0.020892953500151634, 0.02080962434411049, -0.044559963047504425, -0.08784903585910797 ]
ae57f56ab7175695886469c18d8fdf4a832435bf
# Dataset Card for "massive_transport-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_transport-de-DE
[ "region:us" ]
2023-03-30T11:37:28+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 191209, "num_examples": 571}, {"name": "validation", "num_bytes": 36883, "num_examples": 110}, {"name": "test", "num_bytes": 41087, "num_examples": 124}], "download_size": 80546, "dataset_size": 269179}}
2023-03-30T11:48:36+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_transport-de-DE" More Information needed
[ "# Dataset Card for \"massive_transport-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_transport-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_transport-de-DE\"\n\nMore Information needed" ]
[ -0.05980267748236656, 0.1153133437037468, -0.0035265402402728796, 0.025292187929153442, 0.07530858367681503, 0.07971193641424179, 0.02402036264538765, 0.0037753412034362555, 0.01801144704222679, -0.029576290398836136, 0.16156281530857086, 0.055014703422784805, -0.005848523695021868, 0.2519879937171936, 0.004628361202776432, -0.09944529086351395, 0.050167713314294815, 0.028387289494276047, -0.2811959683895111, -0.006899968255311251, 0.11444822698831558, -0.04999760910868645, 0.05496392026543617, -0.13329234719276428, -0.09872203320264816, 0.13896600902080536, -0.08498721569776535, -0.05393987149000168, 0.037976354360580444, -0.06001955270767212, 0.1490943431854248, 0.013826941139996052, 0.07295812666416168, -0.06574320793151855, -0.000799909234046936, 0.0659804567694664, -0.04496243596076965, 0.024060899391770363, 0.012461172416806221, -0.05734456330537796, -0.11703627556562424, -0.08233288675546646, 0.036899592727422714, -0.048375003039836884, -0.020395329222083092, -0.35671505331993103, -0.038682904094457626, -0.0673118382692337, 0.03234251216053963, -0.009710758924484253, 0.13210292160511017, 0.056620921939611435, -0.14339284598827362, 0.01039808988571167, -0.03730718418955803, -0.01419791579246521, 0.06707746535539627, 0.1913406103849411, -0.012265577912330627, 0.20989735424518585, 0.007147220429033041, -0.003405254799872637, 0.11677227914333344, -0.0546552799642086, 0.04049528390169144, -0.019849658012390137, -0.023319145664572716, 0.16589152812957764, -0.05620003864169121, -0.0023814646992832422, 0.3019086420536041, -0.06280779838562012, 0.042664263397455215, 0.09538816660642624, -0.10184091329574585, -0.10590492188930511, 0.025200890377163887, -0.1345522552728653, 0.11447159945964813, 0.05156053975224495, 0.0032771569676697254, 0.010118951089680195, -0.07820197194814682, -0.0769084021449089, -0.20841661095619202, 0.03790346160531044, -0.02878485806286335, 0.12172039598226547, -0.1560024470090866, 0.07427294552326202, -0.13296809792518616, -0.06327599287033081, 0.04188724607229233, -0.13681426644325256, -0.062119994312524796, -0.06050264090299606, 0.031936611980199814, -0.04370881989598274, 0.051514796912670135, 0.026749389246106148, 0.19304656982421875, -0.020636528730392456, -0.08388014137744904, 0.05414873734116554, 0.12406814098358154, -0.0014327594544738531, -0.15639297664165497, -0.1922118365764618, -0.03517976030707359, -0.10021817684173584, -0.006987616419792175, -0.053822584450244904, -0.20480012893676758, -0.03436082974076271, -0.14154605567455292, 0.12879709899425507, -0.09379566460847855, -0.12031752616167068, -0.05899592861533165, -0.005747250746935606, 0.2130178064107895, -0.014602743089199066, 0.04450635239481926, -0.013704736717045307, -0.10071366280317307, 0.15422503650188446, -0.11815687268972397, -0.024739457294344902, 0.128731831908226, 0.18923436105251312, -0.15147976577281952, -0.07704079896211624, -0.10352715104818344, -0.07819288223981857, 0.0715489387512207, -0.15171214938163757, 0.04650114104151726, -0.12606947124004364, -0.27748236060142517, 0.09343966096639633, 0.016461169347167015, -0.12489227950572968, 0.13728396594524384, 0.014896081760525703, 0.0069640749134123325, -0.008805462159216404, -0.08127892762422562, 0.12011633813381195, -0.10205873101949692, 0.023099828511476517, -0.07657980173826218, 0.07047455757856369, -0.20189465582370758, 0.0458468534052372, -0.08775252103805542, -0.015025334432721138, -0.08472660928964615, 0.014445166103541851, -0.16059298813343048, 0.08370484411716461, -0.0820092111825943, -0.022522905841469765, -0.09784726053476334, 0.024256395176053047, 0.028601421043276787, 0.03607909008860588, -0.331014484167099, -0.03087863139808178, 0.043354254215955734, -0.08845114707946777, -0.04046747833490372, 0.06909313052892685, -0.06558467447757721, 0.06890816986560822, 0.05564111843705177, 0.19139857590198517, 0.029148021712899208, -0.030833080410957336, 0.10338722169399261, 0.2321508228778839, -0.2032051384449005, -0.30012354254722595, 0.06838520616292953, -0.02695271745324135, -0.11875969916582108, -0.01434608455747366, 0.17971253395080566, 0.054935287684202194, -0.009627454914152622, -0.015697237104177475, 0.0688784122467041, -0.13891451060771942, 0.0550713874399662, -0.04573854058980942, 0.030408550053834915, -0.04242687299847603, 0.11226395517587662, 0.137473464012146, 0.07531989365816116, 0.039364997297525406, -0.06640373170375824, 0.056471407413482666, -0.017888430505990982, -0.1739647090435028, -0.013911356218159199, -0.057899873703718185, -0.08769076317548752, 0.04804026335477829, -0.02175948955118656, -0.012695809826254845, 0.24722684919834137, 0.09209834039211273, -0.03162014111876488, -0.040312785655260086, 0.10477264970541, 0.15641355514526367, 0.08984081447124481, -0.06627442687749863, -0.01597677916288376, 0.09691770374774933, -0.053268320858478546, -0.15014530718326569, -0.0441901870071888, -0.04462609812617302, 0.13579215109348297, 0.04009108617901802, 0.061002373695373535, 0.09712029993534088, -0.020161496475338936, 0.004272359423339367, -0.03975812718272209, -0.08638876676559448, -0.061928313225507736, -0.08677712827920914, -0.04500940814614296, 0.11874382942914963, -0.03530013933777809, 0.4549753963947296, 0.0913754254579544, 0.07197386771440506, -0.03625737503170967, 0.0429561473429203, 0.061231281608343124, -0.06120571121573448, -0.010403686203062534, -0.08333688229322433, -0.1635739505290985, -0.10409380495548248, 0.12786109745502472, -0.04130200669169426, 0.02344866283237934, 0.03529803082346916, 0.0606972761452198, -0.04899556562304497, 0.029923276975750923, 0.07084237039089203, -0.21774275600910187, 0.2187378704547882, 0.24749977886676788, -0.015871869400143623, 0.1025904044508934, 0.03356260433793068, -0.0894302949309349, -0.05895039811730385, -0.14789237082004547, -0.11669612675905228, 0.20099447667598724, -0.00362546369433403, 0.0407334566116333, 0.049280326813459396, 0.09818188101053238, 0.10661536455154419, -0.043288178741931915, -0.05667200684547424, 0.015469057485461235, 0.02021699957549572, -0.11506839096546173, 0.04735076427459717, -0.03813471272587776, 0.09153040498495102, 0.014226404018700123, -0.12761768698692322, 0.12392999231815338, -0.007463787216693163, 0.06257875263690948, 0.11455883085727692, -0.1826796531677246, -0.23238232731819153, -0.04907635971903801, -0.09991323947906494, 0.044313762336969376, 0.025644451379776, -0.03951193019747734, -0.17022445797920227, -0.1086905375123024, 0.03982309624552727, -0.043987516313791275, -0.2409181296825409, -0.0010039220796898007, -0.13735948503017426, 0.023152891546487808, -0.0887795016169548, -0.13789747655391693, 0.058318305760622025, -0.02624957077205181, 0.13109181821346283, 0.01780601404607296, -0.07863189280033112, 0.09535149484872818, 0.09892278164625168, -0.047506701201200485, 0.05023365095257759, -0.0330020897090435, -0.08900421112775803, -0.019626634195446968, -0.009440106339752674, 0.09819400310516357, 0.04017314687371254, 0.02742605283856392, 0.06770553439855576, 0.043244361877441406, -0.08424967527389526, -0.006920898798853159, -0.03805600851774216, -0.17236435413360596, -0.2637512981891632, -0.11442547291517258, -0.034792155027389526, 0.11522744596004486, -0.007907501421868801, 0.0883219838142395, 0.05873716250061989, 0.022815626114606857, 0.14660851657390594, 0.07169109582901001, -0.1692618578672409, -0.04380667954683304, -0.024331552907824516, -0.02457571029663086, 0.04145297035574913, -0.18064069747924805, -0.11408992856740952, 0.2101765125989914, 0.17418304085731506, 0.13752451539039612, 0.05195820331573486, 0.10005147755146027, -0.07154129445552826, 0.012076343409717083, 0.05368468910455704, 0.15937545895576477, 0.06793531030416489, -0.008530187420547009, -0.0832911878824234, 0.04076075553894043, 0.07571462541818619, 0.05488653853535652, 0.2043623924255371, -0.15320460498332977, 0.0899718627333641, -0.11759436130523682, 0.08102791756391525, -0.17380139231681824, 0.035520683974027634, -0.2583317160606384, 0.16902542114257812, 0.058711979538202286, 0.16465899348258972, -0.05720030143857002, 0.10812975466251373, 0.09313440322875977, -0.003583101788535714, 0.03981878608465195, 0.07861071079969406, 0.040769387036561966, -0.08722756057977676, 0.01065171416848898, 0.07592027634382248, 0.0476471446454525, -0.010574073530733585, 0.11378265917301178, -0.21634642779827118, 0.12142357975244522, 0.024460719898343086, -0.0999329537153244, -0.10208068788051605, -0.07155930995941162, 0.004630230367183685, 0.05526240915060043, 0.08854027837514877, 0.008076140657067299, -0.009475595317780972, -0.07797817140817642, -0.1286158263683319, -0.026413291692733765, 0.07598339766263962, 0.011558236554265022, -0.15386329591274261, 0.04098859801888466, -0.04763046279549599, 0.0490928590297699, -0.10988922417163849, -0.010676614940166473, -0.10377119481563568, -0.013605905696749687, 0.07268434017896652, -0.10352533310651779, 0.07130002975463867, -0.0008478561067022383, -0.05315496399998665, 0.1308669149875641, -0.01435148250311613, -0.028011886402964592, -0.09345491975545883, -0.049932025372982025, 0.18180228769779205, 0.05031630024313927, -0.013337664306163788, 0.07784157246351242, -0.010392680764198303, 0.011374940164387226, -0.12770865857601166, 0.1663621962070465, -0.07313579320907593, 0.13275505602359772, -0.08997480571269989, -0.010300642810761929, -0.018359271809458733, -0.0003019273281097412, -0.09500858932733536, -0.07276294380426407, -0.07228492200374603, -0.09718268364667892, 0.10067950934171677, -0.010560340248048306, 0.121098093688488, 0.20726728439331055, 0.09478200972080231, 0.04418585076928139, 0.17533700168132782, -0.020259371027350426, 0.12396077066659927, 0.058942802250385284, -0.08112991601228714, 0.18809774518013, 0.188681498169899, -0.03324371948838234, -0.3188188374042511, 0.10178066045045853, -0.1727200448513031, -0.019723089411854744, -0.020888594910502434, -0.1612737476825714, 0.053037919104099274, 0.2431507259607315, -0.044393472373485565, 0.2822400629520416, -0.17535798251628876, -0.07262192666530609, 0.16151010990142822, -0.1301029473543167, 0.4455961585044861, -0.08545459806919098, -0.008877294138073921, -0.22415460646152496, 0.03843175619840622, 0.13204817473888397, -0.1774561107158661, 0.008248680271208286, 0.006048091687262058, 0.009027684107422829, -0.03398945555090904, -0.07558716833591461, 0.20168577134609222, 0.055909037590026855, 0.19839146733283997, -0.03728931397199631, -0.038645289838314056, 0.24191975593566895, -0.0465681292116642, 0.11866377294063568, 0.02990313433110714, 0.0072783189825713634, -0.002283064415678382, -0.05138203129172325, 0.08947885781526566, -0.015800941735506058, 0.058840904384851456, -0.11159273236989975, -0.10252244025468826, 0.02018021047115326, -0.08757025748491287, -0.13291577994823456, 0.042268794029951096, 0.10983800143003464, -0.11820463836193085, 0.02058662474155426, 0.05116964131593704, -0.02750900760293007, -0.03441843017935753, -0.03687000274658203, -0.07842069864273071, 0.12246743589639664, -0.2908749580383301, 0.06322067975997925, 0.13156329095363617, -0.039503950625658035, 0.012497873976826668, 0.07760856300592422, -0.013182593509554863, -0.005524002015590668, 0.08991340547800064, -0.025971829891204834, -0.0064412993378937244, 0.08741677552461624, -0.09568455070257187, 0.10660397261381149, 0.18735381960868835, 0.015880363062024117, 0.016587115824222565, 0.033432748168706894, 0.05055785924196243, 0.05168095976114273, -0.06809589266777039, 0.1639249473810196, 0.05267646536231041, 0.024030888453125954, -0.1541096717119217, 0.2424919456243515, 0.05440697446465492, -0.12932530045509338, -0.017329731956124306, -0.06407888978719711, -0.07612776756286621, -0.05120958015322685, 0.020408716052770615, 0.18473006784915924, -0.08207631856203079, -0.11039753258228302, 0.03298867121338844, -0.0709734782576561, 0.03602607920765877, 0.11731351912021637, 0.08835160732269287, 0.1041811928153038, -0.01211404800415039, -0.02881978079676628, -0.040803153067827225, -0.006906492169946432, -0.09012820571660995, 0.09101086109876633, -0.1263001710176468, -0.1511748880147934, -0.03625073656439781, 0.121653713285923, -0.08666335046291351, 0.031237157061696053, -0.08935872465372086, 0.039714258164167404, -0.3228525221347809, -0.07315248996019363, 0.06330781430006027, -0.0132325803861022, -0.015517971478402615, 0.030173787847161293, -0.03060148097574711, 0.020510045811533928, -0.07595763355493546, 0.12613816559314728, 0.059367746114730835, 0.009305083192884922, -0.026816101744771004, -0.06337429583072662, -0.024450087919831276, 0.04772595688700676, 0.10950712114572525, 0.1240597814321518, 0.014504929073154926, 0.00026985578006133437, 0.07483530789613724, -0.06207869574427605, 0.04571031779050827, 0.07488783448934555, 0.14529423415660858, 0.1186157688498497, 0.01634128764271736, 0.048188235610723495, -0.07387564331293106, -0.005229383707046509, -0.05624350160360336, -0.07431260496377945, 0.11890517175197601, -0.09889982640743256, -0.09230946004390717, -0.00278190104290843, -0.12560012936592102, 0.1478901207447052, 0.09896375983953476, 0.005076136440038681, 0.0823642835021019, 0.014890979044139385, 0.06975358724594116, -0.06575231999158859, -0.002400724682956934, -0.11095387488603592, -0.0013219501124694943, 0.08454924821853638, 0.022488310933113098, -0.08435462415218353, 0.5806595087051392, 0.03944459185004234, -0.144007608294487, -0.04651397094130516, 0.014373370446264744, 0.0716521143913269, 0.05401843041181564, 0.17012633383274078, 0.06363854557275772, -0.03265085443854332, -0.18986991047859192, 0.12542884051799774, 0.12304141372442245, 0.14644266664981842, 0.02143094874918461, 0.0823030099272728, 0.08364555984735489, 0.01938026025891304, -0.0003426415496505797, -0.14478206634521484, -0.06683497875928879, -0.007071550935506821, -0.006214889232069254, -0.058265797793865204, 0.040360983461141586, -0.12153717130422592, 0.0366574265062809, 0.04762148857116699, -0.04696228355169296, -0.04171008616685867, -0.0035490759182721376, -0.11086492240428925, 0.009914125315845013, -0.036196332424879074, -0.13111458718776703, -0.02615579590201378, -0.0023619644343852997, -0.05297528952360153, 0.2244405895471573, 0.11885849386453629, 0.018735703080892563, 0.06981662660837173, -0.09343845397233963, 0.017700741067528725, 0.021787170320749283, 0.011336864903569221, -0.05359682813286781, -0.002164723351597786, -0.05435045436024666, -0.022632088512182236, -0.09361134469509125, -0.0598076768219471, -0.00213181646540761, 0.03523976355791092, 0.010690122842788696, -0.07051896303892136, 0.024156630039215088, -0.08583153784275055, 0.08743556588888168, -0.15203647315502167, 0.05547849461436272, 0.006561818066984415, -0.05816035717725754, 0.038785774260759354, -0.04361347109079361, -0.028039544820785522, 0.031094353646039963, 0.012500607408583164, 0.10576286166906357, 0.03500306233763695, 0.18778614699840546, -0.0008712942944839597, -0.05125079303979874, -0.11007238924503326, 0.024437496438622475, 0.36919349431991577, -0.14568021893501282, -0.015357415191829205, 0.10165778547525406, 0.02124541625380516, -0.014102169312536716, 0.11860201507806778, 0.07344403117895126, 0.21267135441303253, -0.01234979648143053, -0.10086189955472946, 0.019367486238479614, -0.03205001354217529, 0.014132805168628693, 0.1361391693353653, 0.015381807461380959, -0.0536651648581028, -0.12006072700023651, 0.06695535033941269, -0.1187661737203598, 0.07523103058338165, 0.08220525085926056, -0.07791048288345337, -0.1003069281578064, 0.06596029549837112, 0.10194262117147446, -0.04540561884641647, -0.03629428520798683, -0.10738364607095718, -0.0640021488070488, -0.04451030120253563, -0.02730410359799862, -0.2934068739414215, -0.12886634469032288, -0.0020732092671096325, 0.20526620745658875, 0.05209159106016159, -0.022626584395766258, 0.10931428521871567, 0.04793786630034447, 0.03319663926959038, -0.07110297679901123, 0.047291550785303116, -0.021105516701936722, -0.052074968814849854, -0.052480004727840424, -0.13306833803653717, -0.1086629256606102, -0.0018018900882452726, 0.008486072532832623, -0.023689014837145805, -0.04709085822105408, 0.15181875228881836, -0.10391255468130112, -0.051395315676927567, -0.05099978297948837, -0.048159025609493256, 0.06517773866653442, -0.005639892537146807, -0.00826132483780384, 0.023825814947485924, -0.02164909616112709, 0.04193098470568657, 0.07998958975076675, -0.05301252752542496, -0.022485284134745598, -0.0009877849370241165, -0.039364371448755264, 0.14039944112300873, 0.07610645145177841, -0.02638271450996399, 0.0954446792602539, -0.06331097334623337, 0.0363299734890461, 0.007454719394445419, -0.02736893855035305, 0.02765456959605217, 0.09752190113067627, -0.0322970412671566, 0.0016141895903274417, -0.005642004776746035, -0.01913752779364586, -0.11191515624523163, -0.13739384710788727 ]
9fea3243b565faf223fb23923cec0e2cd28d46bd
# Dataset Card for "massive_calendar-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_calendar-de-DE
[ "region:us" ]
2023-03-30T11:37:45+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 553408, "num_examples": 1688}, {"name": "validation", "num_bytes": 91646, "num_examples": 280}, {"name": "test", "num_bytes": 132217, "num_examples": 402}], "download_size": 196802, "dataset_size": 777271}}
2023-03-30T11:49:02+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_calendar-de-DE" More Information needed
[ "# Dataset Card for \"massive_calendar-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_calendar-de-DE\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_calendar-de-DE\"\n\nMore Information needed" ]
[ -0.10430488735437393, 0.05850931257009506, -0.004060447681695223, 0.004231818486005068, 0.0836920514702797, 0.13480429351329803, -0.003139639273285866, 0.05212614685297012, 0.12858133018016815, -0.0210264865309, 0.13907642662525177, 0.07419952750205994, -0.0020070415921509266, 0.243257075548172, -0.05927983671426773, -0.09053794294595718, 0.033645354211330414, 0.06505560129880905, -0.23558267951011658, -0.02992304041981697, 0.09258995205163956, -0.05962273105978966, 0.07543177157640457, -0.1779879927635193, -0.13621875643730164, 0.11826291680335999, -0.03556117042899132, -0.049310944974422455, 0.08140502870082855, -0.07406718283891678, 0.0796303078532219, -0.011331701651215553, 0.01086555514484644, -0.074671670794487, -0.008045902475714684, 0.027740882709622383, -0.03172096237540245, 0.036604709923267365, 0.0098704369738698, -0.01366866659373045, -0.11460047215223312, -0.14368674159049988, -0.006344195920974016, -0.0219135619699955, -0.06404929608106613, -0.35875439643859863, -0.04500759765505791, -0.12942317128181458, 0.006747279316186905, -0.0445806123316288, 0.07693187147378922, 0.043568938970565796, -0.15666751563549042, -0.03023598901927471, -0.06986156105995178, 0.0012330495519563556, 0.06784527748823166, 0.22382085025310516, -0.04818994924426079, 0.1689382791519165, 0.04478348046541214, 0.033879153430461884, 0.15222206711769104, -0.016660764813423157, -0.0017143877921625972, -0.02396082505583763, 0.011179995723068714, 0.0967249870300293, -0.0015761092072352767, -0.033183399587869644, 0.29823067784309387, -0.018162544816732407, 0.03937666490674019, 0.01501847617328167, -0.06193564087152481, -0.03119388036429882, 0.014723491854965687, -0.05051913857460022, 0.09893662482500076, 0.03783131018280983, 0.04005693271756172, 0.023748116567730904, -0.06515946239233017, -0.11846037209033966, -0.2164933830499649, 0.011721818707883358, -0.05903591215610504, 0.11344417929649353, -0.21853289008140564, 0.0012182408245280385, -0.23771819472312927, -0.020677533000707626, -0.005598560906946659, -0.10715868324041367, -0.0575735829770565, -0.01894918456673622, -0.02643776684999466, 0.055606693029403687, 0.15668770670890808, 0.06641752272844315, 0.04578614607453346, -0.012052285484969616, -0.05842455103993416, 0.03783843293786049, 0.19423073530197144, -0.02191934734582901, -0.12714418768882751, -0.2067943811416626, 0.015202591195702553, -0.1267169713973999, 0.020254679024219513, -0.05923295393586159, -0.092361219227314, -0.06916052103042603, -0.09703738987445831, 0.09655056893825531, -0.0551031194627285, -0.12343043088912964, -0.046580128371715546, -0.0132440235465765, 0.2341233789920807, -0.04869183152914047, 0.02365831658244133, -0.0018871452193707228, -0.06417939066886902, 0.12320461124181747, -0.19393490254878998, -0.0320945642888546, 0.09964542090892792, 0.0662655159831047, -0.09039583057165146, -0.09446510672569275, -0.09344905614852905, -0.033146969974040985, 0.097819022834301, -0.19652189314365387, 0.11685024201869965, -0.07633514702320099, -0.254386842250824, 0.07012417912483215, -0.00849861092865467, -0.08887086063623428, 0.08630157262086868, 0.03960568457841873, 0.046208612620830536, -0.03169054538011551, -0.07466714829206467, 0.15370365977287292, -0.1005820780992508, 0.02640056237578392, 0.03391878306865692, 0.08515986055135727, -0.2857944965362549, 0.056742604821920395, -0.08602558076381683, -0.009273101575672626, -0.09799662977457047, 0.08542292565107346, -0.0826549306511879, 0.07081986218690872, -0.06350729614496231, -0.01594766043126583, -0.10067157447338104, 0.03982424736022949, -0.0031948063988238573, 0.0347491055727005, -0.34697315096855164, -0.02879105694591999, 0.1062568947672844, -0.08823590725660324, -0.12586148083209991, 0.08007365465164185, -0.06423856317996979, 0.03458218649029732, 0.08611463755369186, 0.2459101378917694, -0.05185187608003616, 0.07527507841587067, 0.04554150998592377, 0.15798351168632507, -0.11455687135457993, -0.29114392399787903, 0.0984027311205864, -0.06695938110351562, -0.07782870531082153, 0.013584884814918041, 0.10935407876968384, -0.01849955879151821, -0.040787473320961, -0.024415791034698486, 0.008779586292803288, -0.14422346651554108, 0.0076164621859788895, -0.02613467164337635, 0.024562280625104904, -0.048354439437389374, 0.1598401963710785, 0.11917377263307571, 0.09919580817222595, 0.034490916877985, -0.04645078256726265, 0.03377576544880867, 0.034478116780519485, -0.1847141534090042, 0.02228124439716339, -0.15023820102214813, -0.030709829181432724, 0.044023554772138596, -0.06120186671614647, 0.005747816991060972, 0.15095104277133942, 0.05341843143105507, -0.08563914895057678, -0.003829149529337883, 0.13483791053295135, 0.09471254050731659, 0.047350820153951645, 0.02077559009194374, 0.01875169947743416, 0.05618869140744209, -0.09775979071855545, -0.08303570002317429, -0.042730532586574554, -0.06689297407865524, 0.0984366163611412, -0.012367555871605873, 0.037128835916519165, 0.04527914151549339, -0.009642524644732475, 0.041669294238090515, -0.02476366050541401, -0.058338798582553864, -0.04122762009501457, -0.07880505174398422, -0.07607222348451614, -0.030069641768932343, -0.007551555056124926, 0.3430543541908264, 0.12487960606813431, 0.0018895555986091495, 0.046543534845113754, 0.03785768151283264, 0.08920823782682419, -0.014845887199044228, -0.01747562550008297, -0.04498809203505516, -0.06876792013645172, -0.07187184691429138, 0.040034327656030655, -0.042929328978061676, 0.04557010158896446, 0.03039434738457203, 0.062389835715293884, -0.07508627325296402, 0.017440732568502426, 0.1487305909395218, -0.20309633016586304, 0.1629500687122345, 0.23758450150489807, 0.01840939186513424, 0.09374530613422394, -0.05018360912799835, -0.12706983089447021, 0.00407154206186533, -0.14836035668849945, -0.08288255333900452, 0.18561406433582306, -0.1037292629480362, 0.0432128831744194, 0.07499618828296661, 0.057057835161685944, 0.12725131213665009, -0.028240319341421127, -0.05177988111972809, -0.01109161414206028, -0.010352951474487782, -0.18453864753246307, 0.03518244996666908, 0.021987522020936012, 0.08955218642950058, 0.03844819217920303, -0.053937993943691254, 0.16052082180976868, -0.009859349578619003, 0.0459679514169693, 0.14014320075511932, -0.14327315986156464, -0.19656771421432495, 0.034800585359334946, -0.005782135762274265, 0.019727572798728943, 0.02652524784207344, -0.014712866395711899, -0.13334086537361145, -0.05827544629573822, 0.05291072279214859, -0.0012494728434830904, -0.1655184030532837, 0.004660207778215408, 0.012259813956916332, 0.005110199563205242, -0.0565839521586895, -0.11573035269975662, 0.013352597132325172, -0.021782295778393745, 0.06964944303035736, 0.07112304866313934, -0.06725587695837021, 0.11271218955516815, 0.09280069917440414, -0.025950806215405464, 0.048096295446157455, -0.01599501445889473, -0.018150420859456062, -0.08296927809715271, -0.04628251865506172, 0.14587652683258057, 0.06664234399795532, -0.048396751284599304, 0.05900028720498085, 0.06330451369285583, -0.15579833090305328, -0.028727298602461815, -0.00671674869954586, -0.17743459343910217, -0.2364552915096283, -0.1277104765176773, -0.0448383092880249, 0.06883420795202255, -0.007459715474396944, 0.05807213857769966, -0.02737806737422943, 0.02546062506735325, 0.1305774450302124, 0.027478419244289398, -0.13692757487297058, -0.09455223381519318, 0.01979568786919117, -0.009850027039647102, -0.008615686558187008, -0.16229577362537384, -0.04647216945886612, 0.20890448987483978, 0.21906457841396332, 0.14304666221141815, 0.08148366957902908, 0.14868545532226562, -0.050493109971284866, -0.01115488912910223, 0.020649215206503868, 0.14692549407482147, 0.09036736190319061, -0.006199799012392759, -0.03465690836310387, 0.029432263225317, -0.0030018151737749577, 0.016704697161912918, 0.14550718665122986, -0.16906195878982544, 0.02089094929397106, -0.10392562299966812, 0.07873612642288208, -0.14409732818603516, 0.08603517711162567, -0.2758241891860962, 0.08790908753871918, 0.07633524388074875, 0.18998481333255768, -0.0839337706565857, 0.10318117588758469, 0.0409567765891552, 0.03207852318882942, 0.09716945886611938, 0.07481712847948074, 0.04444118216633797, -0.10055939853191376, 0.036554817110300064, -0.004025627858936787, 0.03675830364227295, 0.022406356409192085, 0.07422804087400436, -0.22280548512935638, 0.12115519493818283, 0.013086020946502686, -0.04458625614643097, -0.13955003023147583, -0.06012735143303871, -0.014412217773497105, 0.02635508030653, 0.09247777611017227, -0.009474728256464005, -0.0557633601129055, -0.051598187536001205, -0.0793117806315422, 0.029724104329943657, 0.02646610699594021, -0.018317807465791702, -0.14979048073291779, 0.06058989465236664, 0.02013884298503399, 0.011790504679083824, -0.09325573593378067, -0.037148959934711456, -0.08810099214315414, -0.05164271220564842, 0.07360461354255676, -0.11071905493736267, 0.027911679819226265, 0.01129358634352684, -0.04271380603313446, 0.09726685285568237, 0.04685363173484802, -0.04532856121659279, -0.08382269740104675, -0.030297724530100822, 0.2064191848039627, 0.02570301853120327, -0.029491696506738663, 0.0486411489546299, 0.020980460569262505, -0.017324047163128853, -0.19214509427547455, 0.1537889987230301, -0.08383714407682419, 0.14620235562324524, -0.039347972720861435, 0.016258975490927696, -0.007821360602974892, 0.022370317950844765, -0.014823189936578274, -0.04167225584387779, -0.019942717626690865, -0.06854806840419769, 0.11207404732704163, 0.003972005099058151, 0.1051860973238945, 0.20788253843784332, 0.09721586853265762, -0.02434522472321987, 0.17035135626792908, -0.006587012205272913, 0.13485108315944672, 0.10410317033529282, -0.05469012260437012, 0.11939676851034164, 0.17595691978931427, 0.004917974583804607, -0.2844724953174591, 0.10505639761686325, -0.183143749833107, -0.013690798543393612, -0.017901862040162086, -0.2228313684463501, 0.11662255972623825, 0.22827906906604767, -0.02958320826292038, 0.2889304757118225, -0.21114152669906616, -0.02525501884520054, 0.18996815383434296, -0.08329010009765625, 0.46587470173835754, -0.10895568877458572, -0.013861785642802715, -0.19611118733882904, 0.010794080793857574, 0.195693701505661, -0.1600469946861267, 0.02390580251812935, -0.009623391553759575, 0.08808230608701706, -0.03547024354338646, -0.04931262508034706, 0.2031341791152954, 0.06677159667015076, 0.17128829658031464, 0.0027948005590587854, -0.03082466870546341, 0.14966334402561188, -0.03448688983917236, 0.08482768386602402, 0.019883833825588226, -0.009168228134512901, -0.07189472019672394, -0.05065952613949776, 0.040812574326992035, 0.018202578648924828, 0.056412212550640106, -0.09777753055095673, -0.07532994449138641, 0.003115803934633732, -0.12049024552106857, -0.07260052859783173, 0.10107064992189407, 0.05949164181947708, -0.09625758975744247, -0.08410510420799255, 0.0845709890127182, -0.12707209587097168, 0.025559771806001663, -0.014243077486753464, -0.08424030244350433, 0.11277478188276291, -0.2461676001548767, 0.07459257543087006, 0.11422449350357056, -0.02024533972144127, -0.007765589281916618, 0.07950422167778015, -0.028517436236143112, 0.0404033288359642, 0.13108360767364502, -0.007901324890553951, -0.06440800428390503, 0.10026063770055771, -0.16251422464847565, 0.08813025802373886, 0.157022163271904, 0.03611322492361069, 0.07452774792909622, -0.006153702735900879, -0.030043037608265877, 0.04937473684549332, -0.07998042553663254, 0.11530985683202744, 0.03721499443054199, -0.001105104573071003, -0.19217602908611298, 0.25620102882385254, -0.00022760496358387172, -0.1652517467737198, -0.01011103205382824, -0.058121636509895325, -0.049783870577812195, -0.07117515057325363, -0.025553718209266663, 0.15628373622894287, -0.11425203830003738, -0.14235231280326843, 0.030900832265615463, -0.10109300911426544, 0.042643047869205475, 0.05298910290002823, 0.09246153384447098, 0.08305097371339798, 0.010324268601834774, -0.034536585211753845, -0.05073199421167374, -0.06990306079387665, -0.10239609330892563, 0.05915698781609535, -0.055147819221019745, -0.16632090508937836, -0.06363893300294876, 0.0948423221707344, -0.07104586064815521, 0.021159306168556213, -0.03645607456564903, 0.018727071583271027, -0.3178806006908417, -0.040682923048734665, 0.05228980630636215, 0.019606389105319977, 0.0008803632808849216, 0.06787298619747162, -0.015187995508313179, -0.02582104131579399, -0.06613793224096298, 0.0757044330239296, 0.05121500417590141, 0.03133907914161682, -0.06746360659599304, -0.031097836792469025, -0.018144825473427773, 0.03085477650165558, 0.15220250189304352, 0.1197928860783577, 0.04369909316301346, 0.01808224245905876, 0.014200408011674881, -0.10746107995510101, 0.09977224469184875, 0.07793006300926208, 0.12374250590801239, 0.051796481013298035, 0.01703035831451416, 0.10919208824634552, -0.06534986943006516, 0.006750672124326229, -0.11994674801826477, -0.06098306551575661, 0.08275683969259262, -0.16142648458480835, -0.04864341393113136, 0.0426962673664093, -0.11548947542905807, 0.20962941646575928, 0.10234793275594711, -0.07667171210050583, 0.07885293662548065, -0.013276425190269947, 0.00833178125321865, -0.06298328191041946, -0.04916903004050255, -0.09050840884447098, -0.07763934880495071, 0.1291978508234024, 0.07686978578567505, -0.05328253284096718, 0.5763046145439148, -0.03805499151349068, -0.12247133255004883, -0.04768427461385727, 0.006311838980764151, 0.027445821091532707, 0.04754379019141197, 0.30714404582977295, 0.09031297266483307, -0.040111836045980453, -0.10153039544820786, 0.11895743757486343, 0.08139146864414215, 0.24454817175865173, 0.11681795120239258, 0.1459583044052124, 0.049785081297159195, 0.011848259717226028, 0.008194542489945889, -0.13708621263504028, 0.01690065860748291, 0.05846992880105972, 0.04246370866894722, -0.038540057837963104, 0.0960705429315567, -0.12160676717758179, 0.02820485644042492, -0.012224452570080757, -0.04092719778418541, -0.06155424937605858, -0.01759193278849125, -0.0824178010225296, 0.015088862739503384, -0.0643942803144455, -0.061503518372774124, -0.0042378539219498634, -0.08163081854581833, -0.06613162159919739, 0.24829049408435822, 0.07594026625156403, -0.04499122127890587, 0.06916951388120651, -0.07985178381204605, 0.057744041085243225, 0.05705433711409569, 0.02146955393254757, -0.06967338919639587, 0.08209533989429474, -0.10162147879600525, -0.028445931151509285, -0.03890472277998924, -0.029469531029462814, -0.013732288032770157, -0.004482767079025507, 0.03073166124522686, -0.08664359897375107, 0.03280054032802582, -0.08047090470790863, 0.07233228534460068, -0.12933461368083954, 0.11050724238157272, 0.02745955064892769, -0.07566927373409271, 0.07734538614749908, -0.004546253941953182, 0.008934855461120605, 0.02340366318821907, -0.007568164262920618, 0.07473348826169968, 0.029253626242280006, 0.14021076261997223, 0.021837633103132248, -0.07045330107212067, -0.10492850840091705, -0.008384781889617443, 0.34857177734375, -0.1108294203877449, -0.03570008650422096, 0.044120486825704575, 0.04110213369131088, -0.02238832414150238, 0.15641097724437714, 0.049474865198135376, 0.17819319665431976, 0.007043024525046349, -0.08933819830417633, 0.01652095839381218, 0.027675893157720566, -0.0320458747446537, 0.10845378041267395, 0.050055935978889465, -0.06630857288837433, -0.05560321360826492, 0.12021055072546005, -0.11311984062194824, 0.05156512185931206, 0.08182836323976517, -0.11431904137134552, -0.11238458752632141, 0.014437205158174038, -0.016428425908088684, -0.05636025220155716, -0.002348922425881028, -0.10298501700162888, -0.020794488489627838, -0.04347073659300804, -0.033940523862838745, -0.29276636242866516, -0.09099309146404266, -0.032443273812532425, 0.22048866748809814, 0.05192930996417999, -0.00373315648175776, 0.1337946355342865, 0.03071667067706585, 0.03481311723589897, -0.07810860127210617, 0.08318361639976501, -0.00557338772341609, 0.09248015284538269, -0.02222902700304985, -0.09943242371082306, -0.1100369468331337, -0.08911127597093582, 0.08603883534669876, -0.008375921286642551, -0.07886974513530731, 0.12861600518226624, -0.09239500761032104, -0.07175685465335846, -0.05850825086236, -0.09359870851039886, 0.07504777610301971, -0.026872694492340088, -0.0029883242677897215, 0.024993155151605606, -0.008335267193615437, 0.11807231605052948, 0.08832712471485138, -0.04037804901599884, -0.11503516137599945, 0.012930121272802353, -0.022063277661800385, 0.09690102934837341, 0.0047429269179701805, -0.07292010635137558, 0.09556189179420471, -0.0793159082531929, 0.05352339893579483, 0.01335207186639309, 0.000046556109737139195, 0.03267914429306984, 0.05905180796980858, -0.042163487523794174, 0.009994619525969028, -0.018481802195310593, -0.0007396751316264272, -0.06163782998919487, -0.12640473246574402 ]
6a4451a0b5e140bd04dc596d6aa542f0896b51e2
# Dataset Card for "massive_play-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_play-de-DE
[ "region:us" ]
2023-03-30T11:38:04+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 398096, "num_examples": 1377}, {"name": "validation", "num_bytes": 73925, "num_examples": 260}, {"name": "test", "num_bytes": 111797, "num_examples": 387}], "download_size": 152587, "dataset_size": 583818}}
2023-03-30T11:49:27+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_play-de-DE" More Information needed
[ "# Dataset Card for \"massive_play-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_play-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_play-de-DE\"\n\nMore Information needed" ]
[ -0.08614394813776016, 0.05643083527684212, -0.0037100811023265123, 0.06939136236906052, 0.06907304376363754, 0.06132282689213753, 0.02744358405470848, 0.06827976554632187, 0.09345772117376328, -0.003210097784176469, 0.13787968456745148, 0.08963993936777115, 0.015017228201031685, 0.34102296829223633, 0.005890404339879751, -0.05616040155291557, 0.025762656703591347, 0.09101246297359467, -0.153190016746521, -0.016590191051363945, 0.035074591636657715, -0.05666089802980423, 0.05724545940756798, -0.12859033048152924, -0.060763973742723465, 0.0842590406537056, -0.057267989963293076, -0.03926900401711464, 0.07081352174282074, -0.08757063001394272, 0.0861881822347641, -0.02976955659687519, -0.014107081107795238, -0.10528293997049332, 0.026268402114510536, 0.04424405097961426, -0.029773207381367683, -0.024765968322753906, 0.00020717935694847256, 0.02769189141690731, -0.102447509765625, -0.031382966786623, 0.016032865270972252, 0.01028641127049923, -0.07135497033596039, -0.37140846252441406, -0.014092587865889072, -0.1593088060617447, 0.005771117750555277, -0.050414808094501495, 0.055890124291181564, 0.09893538057804108, -0.12909948825836182, -0.04457142576575279, -0.0009420854621566832, 0.02844710275530815, 0.05463523417711258, 0.22040346264839172, 0.036443352699279785, 0.133595272898674, 0.05059819668531418, 0.020767616108059883, 0.12040833383798599, -0.01882578246295452, -0.059926267713308334, 0.004290470387786627, 0.08014050871133804, 0.11290209740400314, 0.024942470714449883, -0.022684935480356216, 0.24669218063354492, -0.05157556012272835, 0.03729763999581337, -0.02165192738175392, 0.0042339409701526165, -0.07587534189224243, -0.021961037069559097, -0.05089768022298813, 0.11814286559820175, 0.027320096269249916, 0.007354602683335543, 0.042149629443883896, -0.051714010536670685, -0.124330535531044, -0.15408730506896973, -0.0588219128549099, -0.057190947234630585, 0.09616260975599289, -0.25197625160217285, 0.017610009759664536, -0.1823253333568573, 0.003466904629021883, -0.05991918593645096, -0.10553860664367676, -0.12248974293470383, -0.04427170753479004, -0.051080673933029175, 0.08983651548624039, 0.14767949283123016, 0.08682326227426529, 0.1298491209745407, 0.04283054918050766, -0.04708074778318405, 0.04312026873230934, 0.19169671833515167, -0.1239897832274437, -0.072265625, -0.16398747265338898, 0.021545711904764175, -0.04754205420613289, 0.026870790868997574, -0.09189779311418533, -0.15023069083690643, 0.009816805832087994, -0.12736567854881287, 0.0905112624168396, 0.00011921035184059292, -0.13557080924510956, -0.06906935572624207, -0.005757397972047329, 0.27501335740089417, -0.031217562034726143, 0.020541561767458916, 0.03410583361983299, -0.07105999439954758, 0.09546160697937012, -0.19276882708072662, 0.003581421682611108, 0.12999509274959564, 0.02754647471010685, -0.08379580080509186, -0.11030834168195724, -0.10353757441043854, -0.01781584694981575, 0.1762665957212448, -0.20576731860637665, 0.0898909717798233, -0.04278072342276573, -0.25356176495552063, 0.06261369585990906, -0.004548533819615841, -0.0721440315246582, 0.05683285370469093, -0.028781864792108536, 0.031589068472385406, -0.050296176224946976, -0.06842945516109467, 0.1166231781244278, -0.10695134848356247, 0.03855028748512268, 0.018054204061627388, 0.12560118734836578, -0.23636069893836975, 0.050183456391096115, -0.08248673379421234, -0.005919213872402906, -0.12496495991945267, 0.08295987546443939, -0.08929615467786789, 0.0009672812302596867, -0.04208536073565483, -0.0031454924028366804, -0.09397310763597488, 0.060780446976423264, -0.017141597345471382, 0.017209645360708237, -0.37376710772514343, -0.07757031172513962, 0.1104523092508316, -0.08029425144195557, -0.19182121753692627, 0.05754319578409195, -0.0915791466832161, -0.017987940460443497, 0.07234234362840652, 0.22738686203956604, -0.015519978478550911, -0.020755533128976822, 0.0706976056098938, 0.15124425292015076, -0.18370434641838074, -0.2777794897556305, 0.14923076331615448, -0.05814641714096069, 0.007848748937249184, -0.025009021162986755, 0.03965982049703598, 0.01694883219897747, -0.02718040719628334, -0.02392258122563362, 0.055403292179107666, -0.19287905097007751, 0.038105327636003494, 0.033082302659749985, 0.01196976751089096, -0.06172001361846924, 0.14973245561122894, 0.1880599707365036, 0.0865517184138298, 0.08111540228128433, -0.02580827660858631, -0.03326037898659706, 0.06798530369997025, -0.11085505038499832, 0.04824664443731308, -0.1720350831747055, -0.08966349065303802, 0.015718428418040276, -0.09672243893146515, 0.028193321079015732, 0.15668661892414093, 0.09772758185863495, -0.018596304580569267, 0.03746461123228073, 0.10932165384292603, 0.03938264399766922, 0.05167904496192932, 0.08500422537326813, -0.038059283047914505, -0.0002740681520663202, -0.11028235405683517, -0.062051065266132355, -0.029795346781611443, -0.09909681230783463, 0.059138327836990356, -0.019709382206201553, 0.0010612983023747802, -0.03506030887365341, -0.05067943409085274, 0.0035318892914801836, -0.013186280615627766, -0.03951811045408249, -0.020369350910186768, -0.06465522199869156, -0.08319805562496185, -0.02259690687060356, -0.05125455930829048, 0.36647599935531616, 0.1575271636247635, 0.032467491924762726, 0.04434001445770264, 0.01629522629082203, 0.06395275890827179, -0.05373740941286087, -0.00030255105230025947, -0.03669806942343712, 0.0051949662156403065, 0.009575100615620613, 0.06019589677453041, -0.10088692605495453, 0.049234893172979355, 0.032563891261816025, 0.07457084953784943, -0.04706856608390808, -0.04788342863321304, 0.16935224831104279, -0.20231936872005463, 0.16271570324897766, 0.1805315464735031, 0.0739656537771225, 0.21960727870464325, -0.04981101304292679, -0.10815095156431198, -0.0019716599490493536, -0.08294705301523209, -0.08474916964769363, 0.14910633862018585, -0.08355959504842758, 0.04931756481528282, 0.047740716487169266, 0.021418331190943718, 0.09395246207714081, -0.042303718626499176, -0.11103754490613937, 0.04155990481376648, 0.0028674709610641003, -0.23448756337165833, 0.05846577137708664, 0.025619978085160255, 0.05748441442847252, 0.07684820145368576, -0.06354179233312607, 0.1879078447818756, -0.04178941994905472, 0.017098378390073776, 0.08868708461523056, -0.18765248358249664, -0.19041280448436737, 0.03475886210799217, -0.05674793943762779, 0.042755451053380966, 0.06940295547246933, -0.03924494981765747, -0.18127410113811493, -0.02823999524116516, 0.0675804391503334, -0.04870866984128952, -0.18594595789909363, -0.07176084816455841, 0.023813525214791298, 0.023771272972226143, -0.07617134600877762, -0.10283666104078293, 0.04092169553041458, 0.00579410046339035, 0.024583321064710617, 0.01083548553287983, -0.08692306280136108, 0.12640058994293213, 0.15054760873317719, 0.005618792027235031, 0.0651661679148674, -0.04319155216217041, -0.10104765743017197, -0.05638686195015907, -0.043229203671216965, 0.18364323675632477, 0.003035006346181035, -0.0346389003098011, -0.052250850945711136, 0.0682336762547493, -0.08962897956371307, -0.0069778794422745705, 0.00365836382843554, -0.19817449152469635, -0.20280204713344574, -0.10825165361166, -0.03594284504652023, 0.16211095452308655, 0.04293771833181381, 0.021829096600413322, -0.007283598650246859, -0.012113453820347786, 0.13587279617786407, -0.007784195244312286, -0.04894956946372986, -0.10223085433244705, -0.06811466068029404, -0.026617953553795815, -0.017373021692037582, -0.17527566850185394, -0.034333351999521255, 0.22244133055210114, 0.15635021030902863, 0.13430394232273102, 0.10909922420978546, 0.1598108857870102, -0.026134183630347252, -0.08105511963367462, -0.0042261118069291115, 0.18028470873832703, 0.13073955476284027, -0.029469072818756104, -0.05283519998192787, 0.0222370233386755, -0.019659031182527542, 0.05398174375295639, 0.1970088630914688, -0.19160877168178558, 0.0011335068847984076, -0.03270193189382553, 0.03206033632159233, -0.21552208065986633, 0.05132704973220825, -0.24832606315612793, 0.14491960406303406, 0.09019957482814789, 0.18822097778320312, -0.1103142648935318, 0.1485615074634552, -0.005135092418640852, -0.029031595215201378, 0.12190207093954086, 0.06596896052360535, 0.04405785724520683, -0.0905534029006958, 0.02753419056534767, 0.04699623957276344, 0.025409596040844917, 0.011685678735375404, 0.07445802539587021, -0.15757346153259277, 0.05079057440161705, -0.018385399132966995, -0.02741987816989422, -0.1388842612504959, -0.10514651238918304, 0.03585659712553024, -0.07799489051103592, 0.08184953778982162, -0.010230115614831448, -0.025749951601028442, -0.09076372534036636, -0.02323058620095253, 0.005804975982755423, 0.02241658791899681, 0.04388120025396347, -0.1417078971862793, 0.04234274849295616, 0.030791226774454117, 0.03122815303504467, -0.042074285447597504, -0.0049053155817091465, -0.05810994654893875, -0.07389598339796066, 0.08719148486852646, -0.06138468533754349, 0.004600296262651682, -0.0028824082110077143, -0.07021119445562363, 0.06815905123949051, 0.08098078519105911, -0.014372669160366058, -0.03488415107131004, -0.01023737620562315, 0.1404411494731903, 0.06362515687942505, 0.032402850687503815, -0.02787226438522339, 0.08616284281015396, -0.11116424947977066, -0.1446041315793991, 0.13203957676887512, -0.0618538074195385, 0.10515236109495163, -0.05200550705194473, -0.009301367215812206, 0.043870337307453156, 0.020502030849456787, -0.016627037897706032, -0.041680146008729935, 0.012600560672581196, -0.05316797271370888, 0.18636807799339294, -0.08272331207990646, 0.012588880024850368, 0.14217181503772736, 0.20974071323871613, 0.09481756389141083, 0.20397421717643738, 0.0016564343823119998, 0.10613738000392914, 0.16816796362400055, -0.0579155758023262, 0.18354259431362152, 0.09065233170986176, -0.00226263958029449, -0.3332848846912384, 0.04350671544671059, -0.1685182750225067, -0.12043019384145737, 0.039148252457380295, -0.2768213152885437, 0.06791100651025772, 0.1269211322069168, -0.03628651425242424, 0.313998281955719, -0.0924551859498024, -0.005095877218991518, 0.14977481961250305, -0.06035024672746658, 0.4834005832672119, -0.1199953481554985, -0.026622597128152847, -0.17274817824363708, -0.07536902278661728, 0.162454754114151, -0.2455703169107437, 0.017662441357970238, 0.006037112791091204, 0.059638507664203644, -0.03953223675489426, -0.0659489631652832, 0.1658490002155304, 0.05834921821951866, 0.16792525351047516, 0.01002233475446701, -0.00006085634231567383, 0.1794523149728775, -0.03237209841609001, 0.055434226989746094, 0.013599301688373089, -0.052110929042100906, -0.0731213167309761, -0.01623309962451458, 0.04237833246588707, -0.019150134176015854, 0.04605143517255783, -0.050434619188308716, -0.07477565854787827, 0.03797274827957153, -0.15668949484825134, -0.004591546952724457, 0.15212787687778473, 0.047564394772052765, -0.12640902400016785, -0.035509828478097916, 0.11227893829345703, -0.04366014525294304, -0.08883150666952133, -0.011836796998977661, -0.10220231115818024, 0.07721562683582306, -0.2087385505437851, 0.04173058271408081, 0.0853678360581398, 0.01211108174175024, -0.05755043774843216, 0.13876737654209137, -0.09189418703317642, 0.1141873225569725, 0.11164060980081558, 0.039391737431287766, -0.005845408421009779, 0.10757042467594147, -0.10213397443294525, 0.14141139388084412, 0.08256205171346664, -0.03729411959648132, 0.059150464832782745, 0.025340234860777855, -0.014625064097344875, 0.02687898650765419, -0.09656345099210739, 0.03101474978029728, 0.007333603221923113, 0.012046150863170624, -0.20081746578216553, 0.31406286358833313, -0.030822381377220154, -0.09119317680597305, 0.040934860706329346, -0.08218158781528473, -0.05512272194027901, -0.06784473359584808, -0.008687249384820461, 0.19168515503406525, -0.05065451189875603, -0.2093108892440796, 0.01611514762043953, -0.12755417823791504, 0.10406678915023804, 0.027920696884393692, 0.07760938256978989, 0.08853992074728012, 0.007898958399891853, 0.005202221218496561, -0.060288481414318085, -0.0357532724738121, -0.08176183700561523, -0.000783358293119818, 0.005370131693780422, -0.17211158573627472, -0.009612583555281162, 0.08961505442857742, -0.07881981879472733, 0.00184696598444134, -0.053121168166399, 0.0788496732711792, -0.340461790561676, -0.07346481829881668, 0.05519217252731323, -0.017177805304527283, -0.01910628192126751, 0.0996791198849678, 0.00723055237904191, -0.016062283888459206, -0.05090716481208801, 0.09782718122005463, 0.0829450935125351, 0.04770268127322197, -0.13421455025672913, -0.024998337030410767, -0.00023751227126922458, 0.012805208563804626, 0.09217256307601929, 0.10579677671194077, 0.03818485885858536, 0.026591135188937187, 0.027011586353182793, -0.1256120800971985, 0.0479092076420784, 0.08980671316385269, 0.08756525814533234, 0.04171684756875038, -0.00930890254676342, 0.07654505968093872, -0.11505348235368729, -0.012705777771770954, -0.09107887744903564, -0.021860096603631973, 0.09648773819208145, -0.09472483396530151, -0.06320381164550781, 0.039094481617212296, -0.11878257244825363, 0.19257965683937073, 0.08410823345184326, -0.044267863035202026, 0.12801244854927063, 0.018767621368169785, -0.024090591818094254, -0.06376855820417404, -0.03399202972650528, -0.06900854408740997, -0.07955721765756607, 0.12130742520093918, 0.042678866535425186, -0.0625045895576477, 0.5394478440284729, -0.06978003680706024, -0.15665936470031738, -0.03455919027328491, 0.033706508576869965, 0.08044028282165527, 0.07545658200979233, 0.2920929491519928, 0.07038488984107971, -0.04420095309615135, -0.1066572442650795, 0.15329742431640625, 0.08557557314634323, 0.11560666561126709, 0.11127261072397232, 0.056144800037145615, -0.011354225687682629, 0.011407406069338322, 0.031163988634943962, -0.14030182361602783, -0.010727149434387684, 0.10218449681997299, 0.1111953929066658, -0.04038548842072487, 0.07270140945911407, -0.09514404833316803, 0.06106571480631828, 0.002437558490782976, -0.018568677827715874, -0.0993572473526001, 0.006974005606025457, -0.08546894043684006, 0.06039649248123169, -0.0414947085082531, -0.11381038278341293, 0.03376020863652229, -0.06907695531845093, -0.009368558414280415, 0.1511642187833786, 0.07280895859003067, -0.007324690464884043, 0.08756518363952637, -0.02741457149386406, 0.08840420097112656, 0.05638465657830238, -0.03218051418662071, -0.09078250825405121, 0.13101355731487274, -0.1115683987736702, 0.012816102243959904, -0.12542559206485748, -0.010319588705897331, -0.012921386398375034, -0.06615991145372391, 0.0765153020620346, -0.026165757328271866, -0.02182653918862343, -0.05212481692433357, 0.04336199164390564, -0.13677681982517242, 0.1269613802433014, 0.010895111598074436, -0.054320964962244034, 0.05946458503603935, -0.11996240168809891, 0.05426839366555214, 0.001129585667513311, 0.034342579543590546, 0.10919635742902756, -0.007698823232203722, 0.10861653834581375, 0.023270297795534134, -0.041238702833652496, -0.1263919174671173, 0.053411323577165604, 0.28434106707572937, -0.1070813313126564, -0.029713409021496773, -0.0006920344312675297, 0.0435415580868721, -0.014483907260000706, 0.21861229836940765, -0.0013560642255470157, 0.13394026458263397, -0.06590885668992996, -0.11052409559488297, -0.035320304334163666, 0.007354536093771458, 0.03655233234167099, 0.08320433646440506, 0.13539348542690277, -0.01986883580684662, -0.041269056499004364, 0.08293411880731583, -0.23553334176540375, 0.07045092433691025, 0.08050192892551422, -0.033607665449380875, -0.04218588396906853, -0.006668515969067812, 0.022053351625800133, -0.03563849255442619, 0.04992062225937843, -0.06513606756925583, 0.0007532877498306334, -0.05341968685388565, -0.02332448959350586, -0.3241789638996124, -0.06976978480815887, -0.030230730772018433, 0.1524347960948944, 0.03145233169198036, -0.04797104373574257, 0.14851121604442596, 0.02760547399520874, 0.07649195939302444, -0.04323962703347206, 0.07633703202009201, 0.004560732748359442, 0.09108491986989975, -0.1085093691945076, -0.12405949085950851, -0.07333201915025711, -0.012817218899726868, 0.061168331652879715, -0.026402870193123817, -0.06379259377717972, 0.18583247065544128, -0.16715386509895325, -0.11282264441251755, -0.017783939838409424, -0.06103786453604698, 0.061636753380298615, -0.06760328263044357, -0.01795518770813942, 0.006628815550357103, 0.0010659295367076993, 0.12011243402957916, 0.07767922431230545, -0.01433472242206335, -0.11336871236562729, 0.04978940635919571, -0.021368639543652534, 0.1227225735783577, 0.021655676886439323, -0.15637853741645813, 0.10474167764186859, -0.12885406613349915, 0.021369606256484985, 0.03856419771909714, 0.0037371069192886353, -0.018267303705215454, 0.06805133074522018, -0.063411183655262, 0.06176934763789177, 0.01345121581107378, 0.02822858653962612, -0.042957603931427, -0.14326706528663635 ]
df751e2f8e95d950506292dfae8306b284ea9a53
# Dataset Card for "massive_news-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_news-de-DE
[ "region:us" ]
2023-03-30T11:38:20+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 147499, "num_examples": 503}, {"name": "validation", "num_bytes": 25026, "num_examples": 82}, {"name": "test", "num_bytes": 36859, "num_examples": 124}], "download_size": 69773, "dataset_size": 209384}}
2023-03-30T11:49:52+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_news-de-DE" More Information needed
[ "# Dataset Card for \"massive_news-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_news-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_news-de-DE\"\n\nMore Information needed" ]
[ -0.06747592240571976, 0.06821046769618988, -0.004431623499840498, -0.051451463252305984, 0.033150266855955124, 0.12987087666988373, 0.0656614899635315, 0.03293406963348389, 0.04974852874875069, -0.05885932594537735, 0.16625969111919403, 0.06738542020320892, -0.03388119861483574, 0.2266213595867157, -0.038690757006406784, -0.04076400771737099, 0.10112082958221436, 0.025183409452438354, -0.13381841778755188, -0.010907681658864021, 0.07131819427013397, -0.04172993451356888, 0.02933713234961033, -0.18132853507995605, -0.11095143854618073, 0.13177388906478882, -0.04259181022644043, -0.06147802248597145, 0.09386671334505081, -0.07249767333269119, 0.030668552964925766, 0.000597610545810312, -0.007927153259515762, -0.07933742552995682, 0.019163619726896286, 0.02962229959666729, -0.06055564433336258, 0.033831287175416946, -0.01179670449346304, -0.04683510586619377, -0.12113916128873825, -0.25861331820487976, -0.035673659294843674, -0.03495519608259201, -0.09843801707029343, -0.3584296703338623, -0.022632649168372154, -0.10147438943386078, 0.059576962143182755, 0.04753320664167404, 0.04947062209248543, 0.08477278798818588, -0.1329929083585739, -0.022726008668541908, -0.025464538484811783, 0.028716590255498886, 0.06880796700716019, 0.1419118195772171, -0.05464811995625496, 0.12967009842395782, 0.06641725450754166, 0.09917771816253662, 0.1413736194372177, -0.031168784946203232, -0.12791407108306885, 0.0017044817795976996, 0.039570875465869904, 0.05382445082068443, 0.0065637677907943726, -0.04559091851115227, 0.22359982132911682, -0.0008041565888561308, 0.03865150734782219, 0.0033159765880554914, -0.004628314170986414, 0.032255619764328, 0.004448715131729841, -0.0008566491305828094, 0.020147183910012245, 0.04522920772433281, 0.04310212656855583, 0.005367439705878496, -0.09379468858242035, -0.0780496597290039, -0.2269357144832611, 0.09521124511957169, -0.05672801285982132, 0.13825982809066772, -0.21916891634464264, 0.024486243724822998, -0.08813901990652084, -0.04089841619133949, 0.03046560287475586, -0.13686776161193848, 0.01354470569640398, -0.0016790317604318261, -0.025098582729697227, 0.04608384892344475, 0.1024952158331871, -0.04464269429445267, -0.05195033177733421, -0.035677094012498856, -0.0848178043961525, 0.10887520760297775, 0.22990263998508453, -0.18062137067317963, -0.15247449278831482, -0.13377618789672852, 0.022166665643453598, -0.1206333115696907, 0.028552992269396782, -0.04287689924240112, -0.042072705924510956, 0.042793337255716324, -0.15319643914699554, 0.09836151450872421, 0.017363786697387695, -0.08913464099168777, -0.054938431829214096, 0.015544152818620205, 0.16969428956508636, -0.06164836511015892, -0.026594098657369614, -0.008302533999085426, -0.05668756365776062, 0.1995653212070465, -0.17557911574840546, 0.023335546255111694, 0.10627523809671402, 0.1432996541261673, -0.09750393778085709, -0.1211821660399437, -0.056271012872457504, 0.01195784192532301, 0.0892580971121788, -0.15344664454460144, 0.08065049350261688, -0.05863902345299721, -0.30908721685409546, 0.038173653185367584, -0.03511391207575798, -0.06683998554944992, 0.08460191637277603, 0.008456672541797161, 0.049806635826826096, -0.003314191708341241, -0.07369553297758102, 0.14544907212257385, -0.14665351808071136, 0.06282581388950348, -0.005446321796625853, 0.05874914675951004, -0.2574147582054138, 0.030351925641298294, -0.09683389216661453, -0.021315785124897957, 0.03971073403954506, 0.15944351255893707, -0.09980646520853043, 0.11620748043060303, -0.049999482929706573, -0.002600061008706689, -0.12623456120491028, 0.06431620568037033, -0.009283331222832203, 0.10837987810373306, -0.3091873526573181, -0.06642743200063705, 0.07355260848999023, -0.07316673547029495, -0.015165736898779869, 0.01771990954875946, -0.0814473032951355, 0.08902537077665329, 0.1629118174314499, 0.15825839340686798, -0.09383877366781235, 0.095786452293396, 0.006259632296860218, 0.12312132865190506, -0.141447514295578, -0.17676781117916107, 0.054519619792699814, -0.008021035231649876, -0.15865270793437958, 0.0037314407527446747, 0.09095262736082077, 0.007514340337365866, -0.06357252597808838, -0.026471104472875595, 0.062998928129673, -0.08716490119695663, 0.04417639970779419, -0.02525974251329899, 0.017507333308458328, -0.05414322018623352, 0.08317073434591293, 0.12251380831003189, 0.07915733754634857, 0.0743144229054451, -0.0316450297832489, -0.00038001942448318005, 0.002732538850978017, -0.13435491919517517, 0.0692744255065918, -0.1026136502623558, -0.013325664214789867, -0.005444497801363468, -0.007673627231270075, 0.015186101198196411, 0.15749366581439972, 0.036919742822647095, -0.10719066858291626, -0.010891261510550976, 0.10831765085458755, 0.07429308444261551, 0.06576360762119293, 0.06499989330768585, -0.03684059903025627, 0.12110140174627304, -0.1090574786067009, -0.03288360312581062, -0.06665980070829391, -0.08401485532522202, 0.08197370916604996, -0.008317915722727776, 0.030942261219024658, 0.027434170246124268, 0.0011072957422584295, 0.025689003989100456, 0.0057129147462546825, -0.013020382262766361, -0.022630151361227036, -0.05589485540986061, -0.07469890266656876, 0.020443284884095192, -0.006527572870254517, 0.3240838050842285, 0.0848008394241333, -0.07322104275226593, 0.041062526404857635, 0.09732870757579803, 0.06815992295742035, 0.001148439827375114, -0.05144563689827919, -0.07673010975122452, -0.05568992346525192, -0.08766429871320724, 0.018567556515336037, -0.028698040172457695, 0.018924152478575706, 0.009497829712927341, 0.11855728179216385, -0.10251495987176895, 0.018949022516608238, 0.0810353234410286, -0.2168266475200653, 0.12191582471132278, 0.2254256010055542, 0.07219414412975311, 0.1356392353773117, -0.06573283672332764, -0.1119484230875969, 0.018844207748770714, -0.19750908017158508, -0.10794197022914886, 0.14720892906188965, -0.03589717671275139, 0.08752618730068207, 0.06909145414829254, 0.03812382370233536, 0.1178969144821167, 0.015998056158423424, -0.1431339681148529, -0.023096496239304543, 0.0046238950453698635, -0.23535192012786865, 0.020932240411639214, 0.006223786622285843, 0.08716286718845367, 0.061322953552007675, -0.021414773538708687, 0.15778009593486786, -0.060678690671920776, 0.025868212804198265, 0.08146282285451889, -0.11854195594787598, -0.29840683937072754, 0.023339778184890747, 0.005024460610002279, 0.04724820330739021, 0.013018460012972355, -0.06095093488693237, -0.17188937962055206, -0.037191782146692276, 0.009893527254462242, -0.0456937775015831, -0.08040706068277359, 0.01113817747682333, 0.12316273152828217, 0.035187605768442154, -0.031960371881723404, -0.10643021017313004, 0.04179731383919716, -0.07397858053445816, 0.05238300561904907, 0.007490524090826511, -0.08885060250759125, 0.11348353326320648, 0.0379638597369194, 0.02211873047053814, 0.09271495789289474, -0.03132467344403267, -0.012025333009660244, -0.11442171782255173, -0.06666674464941025, 0.13555274903774261, 0.003400454530492425, -0.02575884573161602, 0.09559150040149689, 0.10688013583421707, -0.12122219800949097, -0.004523237701505423, 0.026778806000947952, -0.10502864420413971, -0.2544253170490265, -0.11036031693220139, 0.005110393278300762, 0.08938418328762054, -0.06377772241830826, 0.05547202751040459, -0.007538290228694677, -0.024822944775223732, 0.05885937437415123, -0.022079715505242348, -0.0732453390955925, -0.06680132448673248, 0.04159527271986008, -0.018068742007017136, -0.018634168431162834, -0.1657377928495407, -0.06729980558156967, 0.21255230903625488, 0.12271328270435333, 0.04037852957844734, 0.0738065168261528, 0.13219551742076874, -0.055645328015089035, -0.11348646134138107, 0.04781573265790939, 0.12642870843410492, 0.10039786994457245, -0.04812798649072647, -0.025282040238380432, 0.03982051834464073, 0.04495454207062721, -0.009073159657418728, 0.07163278758525848, -0.13468317687511444, 0.08151739090681076, -0.14478562772274017, 0.04890895634889603, -0.06254659593105316, 0.12344063818454742, -0.2300412654876709, 0.11267809569835663, 0.07686363160610199, 0.1576566994190216, -0.08644350618124008, 0.0824127271771431, 0.0297674722969532, 0.0467308945953846, 0.15794658660888672, 0.09797915071249008, 0.06792642921209335, -0.15783831477165222, 0.03979220613837242, 0.003911431413143873, -0.12342318147420883, -0.018899206072092056, 0.1293288916349411, -0.21056652069091797, 0.1543680876493454, 0.01852518506348133, -0.05246733874082565, -0.10349898785352707, -0.11700276285409927, -0.024290263652801514, 0.04277000203728676, 0.08233115822076797, -0.024209098890423775, 0.01131784450262785, -0.03853422403335571, -0.190800741314888, 0.04640744999051094, -0.0034219634253531694, -0.06936820596456528, -0.14155106246471405, 0.07129359990358353, 0.013729781843721867, 0.036392826586961746, -0.15751944482326508, -0.10419566929340363, -0.08773893862962723, -0.006421796511858702, 0.06304939091205597, -0.043500956147909164, -0.007106169126927853, -0.05315353721380234, -0.04333452507853508, 0.0833951085805893, -0.01676245406270027, -0.04983328655362129, -0.09763366729021072, 0.06078066676855087, 0.0784950777888298, 0.05071032792329788, -0.11127252131700516, 0.09357237815856934, 0.06283854693174362, -0.00807687547057867, -0.2226121425628662, 0.12202280014753342, -0.09036796540021896, 0.07008488476276398, -0.046758752316236496, 0.018335716798901558, 0.0692286491394043, 0.003345844801515341, -0.025634536519646645, -0.02623152732849121, 0.015624974854290485, -0.05747170001268387, 0.15944136679172516, -0.0010330273071303964, 0.07363361865282059, 0.227165088057518, 0.13408209383487701, -0.11979217082262039, 0.12543638050556183, -0.021713154390454292, 0.13718612492084503, 0.18053661286830902, -0.08141881227493286, 0.13113214075565338, 0.22359974682331085, -0.023062314838171005, -0.33307281136512756, 0.0836174488067627, -0.14947424829006195, -0.05997452884912491, 0.015227303840219975, -0.22404678165912628, 0.08605168014764786, 0.23511768877506256, -0.04972997307777405, 0.29734912514686584, -0.2583741247653961, 0.003421105444431305, 0.13551977276802063, -0.22529615461826324, 0.6326591372489929, -0.0937139168381691, -0.05859142914414406, -0.1912241131067276, 0.07221709936857224, 0.25446993112564087, -0.21143819391727448, -0.022021442651748657, 0.006956278346478939, 0.035960111767053604, -0.03612247481942177, -0.029487550258636475, 0.1980716437101364, 0.037123553454875946, 0.14098870754241943, -0.06598342955112457, -0.02345915697515011, 0.18509776890277863, -0.01711254194378853, 0.04532713443040848, -0.012727399356663227, -0.011561503633856773, -0.10404635965824127, -0.052632205188274384, 0.015872593969106674, 0.026226285845041275, 0.06688179820775986, -0.03050999529659748, -0.05234173312783241, -0.02232736349105835, -0.13833141326904297, -0.04208354279398918, 0.19066788256168365, 0.010753348469734192, -0.037091054022312164, -0.17550227046012878, 0.0856611356139183, -0.08379222452640533, 0.035758767277002335, -0.04043057933449745, -0.08149933815002441, 0.11236071586608887, -0.2331828773021698, 0.008144110441207886, 0.08459828794002533, -0.018890654668211937, -0.020368685945868492, 0.0911312848329544, -0.05611557513475418, 0.05289473757147789, 0.09745853394269943, -0.11191187798976898, -0.01803070306777954, 0.06741238385438919, -0.064871646463871, 0.11361135542392731, 0.13701561093330383, 0.09580748528242111, 0.08148137480020523, 0.000022200867533683777, 0.06044811010360718, 0.08248935639858246, -0.04848375916481018, 0.06837905198335648, 0.03799109905958176, 0.00409113010391593, -0.19461464881896973, 0.29931095242500305, 0.07399767637252808, -0.1446075737476349, 0.008746114559471607, -0.0010664250003173947, -0.05720159411430359, -0.05499660596251488, -0.05599549785256386, 0.1927320957183838, -0.07455919682979584, -0.14553222060203552, 0.001998470863327384, -0.0822238102555275, 0.0886583998799324, 0.13561011850833893, 0.05243593081831932, 0.10395365208387375, 0.016674544662237167, -0.03353562206029892, 0.01358161773532629, -0.007728099822998047, -0.1013132855296135, 0.01798981800675392, -0.016390293836593628, -0.2523617446422577, -0.0391586534678936, 0.1823967844247818, -0.11583973467350006, -0.004826963879168034, -0.011535382829606533, 0.07826851308345795, -0.3225118815898895, -0.031260471791028976, 0.08588627725839615, -0.019223470240831375, -0.06277578324079514, 0.02615022286772728, -0.012710349634289742, -0.048749200999736786, -0.031236562877893448, 0.09717810153961182, 0.07255806028842926, 0.030523331835865974, -0.1004660353064537, -0.03146602585911751, -0.03713921085000038, 0.045553822070360184, 0.16259242594242096, 0.09115171432495117, 0.02728031575679779, 0.01998227834701538, -0.024392306804656982, -0.11183091253042221, 0.0927274078130722, 0.009695391170680523, 0.03798364847898483, 0.1491338461637497, -0.0019241097616031766, 0.060962479561567307, -0.10009153932332993, 0.04790797829627991, -0.15354983508586884, -0.08616829663515091, 0.15193644165992737, -0.11248160898685455, -0.07941482216119766, 0.04295680671930313, -0.15548965334892273, 0.17320694029331207, 0.07545629888772964, 0.022262806072831154, 0.05532479286193848, 0.012478983961045742, 0.039444394409656525, -0.05726786330342293, -0.039218585938215256, -0.12168727815151215, -0.08070360124111176, 0.13863970339298248, 0.049851398915052414, -0.08728409558534622, 0.5616294145584106, -0.07951678335666656, -0.19780771434307098, -0.029048657044768333, 0.0244006160646677, -0.006386981345713139, 0.04449206963181496, 0.25206616520881653, 0.11867345869541168, -0.017648320645093918, -0.19449055194854736, 0.06266241520643234, 0.04413599148392677, 0.14570443332195282, 0.10947730392217636, 0.12105625122785568, 0.18070213496685028, 0.0395667627453804, 0.07130087167024612, -0.10430043190717697, 0.07988929748535156, 0.0033819430973380804, -0.020912854000926018, -0.04213879629969597, 0.08609187602996826, -0.1178947240114212, 0.07207999378442764, 0.07152005285024643, -0.06260517239570618, -0.04842967540025711, 0.041994910687208176, -0.04289906471967697, 0.009615195915102959, -0.012947551906108856, -0.06386816501617432, -0.0014759275363758206, -0.04542424902319908, -0.03231644630432129, 0.2850061058998108, 0.10056475549936295, -0.07156465202569962, 0.048479173332452774, 0.03521377965807915, 0.03217232599854469, 0.17284508049488068, -0.009274236857891083, -0.05275261402130127, -0.005672337953001261, -0.0789276733994484, 0.03238145262002945, 0.05653282254934311, -0.05315219238400459, 0.026530614122748375, 0.01624118722975254, 0.03266314044594765, -0.13780304789543152, -0.045069534331560135, -0.03373926877975464, 0.13856665790081024, -0.12108796089887619, 0.05912540480494499, 0.03723559528589249, -0.03730512410402298, 0.07051263004541397, -0.026166100054979324, 0.04303860664367676, 0.03270360827445984, 0.028117582201957703, -0.03145211935043335, -0.021677112206816673, 0.1831497848033905, -0.009621145203709602, -0.09994296729564667, -0.10614871978759766, -0.009262780658900738, 0.37092453241348267, -0.10421542078256607, -0.003781381295993924, 0.024711498990654945, 0.059441354125738144, 0.028443830087780952, 0.12108838558197021, 0.030843546614050865, 0.23635408282279968, -0.024506056681275368, -0.1241992712020874, 0.06881386041641235, 0.026731526479125023, -0.0344177708029747, 0.024327190592885017, 0.044336456805467606, -0.018461573868989944, -0.0566864088177681, 0.17484474182128906, -0.1553734689950943, 0.08188240230083466, -0.020746344700455666, -0.08887303620576859, -0.11333421617746353, 0.00886470265686512, 0.015177209861576557, -0.03458968922495842, -0.0177534818649292, -0.06568389385938644, -0.03328566253185272, -0.04795950651168823, -0.05576247721910477, -0.201828733086586, -0.18192003667354584, -0.035327259451150894, 0.19955012202262878, 0.023943917825818062, -0.027666181325912476, 0.13156256079673767, -0.014573564752936363, -0.013468042947351933, -0.059088047593832016, 0.05203162878751755, 0.02105090580880642, 0.0924905464053154, -0.023874333128333092, -0.09651053696870804, -0.054242219775915146, -0.06487100571393967, 0.16474400460720062, -0.016410423442721367, -0.049694716930389404, 0.02104668691754341, -0.14019690454006195, -0.06333530694246292, -0.0029007846023887396, -0.03165365010499954, 0.05861981585621834, 0.01805695705115795, -0.02965729869902134, 0.018333712592720985, -0.0006138687604106963, 0.09157979488372803, 0.1217193678021431, -0.08046013861894608, -0.06547722220420837, -0.010350553318858147, -0.021360361948609352, 0.05705353617668152, 0.08543233573436737, -0.09727675467729568, 0.13027836382389069, -0.08889990299940109, 0.04413321986794472, 0.05817104130983353, -0.019796589389443398, 0.06115786358714104, 0.052126847207546234, -0.04785479977726936, -0.06806384027004242, 0.03466493636369705, -0.040563054382801056, -0.0946609154343605, -0.12464120239019394 ]
97e4a1233698c58bd7de2467631a21aaac53b569
# Dataset Card for "massive_datetime-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_datetime-de-DE
[ "region:us" ]
2023-03-30T11:38:37+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 114125, "num_examples": 402}, {"name": "validation", "num_bytes": 20737, "num_examples": 73}, {"name": "test", "num_bytes": 29494, "num_examples": 103}], "download_size": 57424, "dataset_size": 164356}}
2023-03-30T11:50:17+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_datetime-de-DE" More Information needed
[ "# Dataset Card for \"massive_datetime-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_datetime-de-DE\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_datetime-de-DE\"\n\nMore Information needed" ]
[ -0.07194900512695312, 0.07599033415317535, -0.0028091396670788527, -0.038350991904735565, 0.02303040772676468, 0.12361259758472443, 0.032200366258621216, 0.02142574079334736, 0.08515025675296783, -0.00428741006180644, 0.1676269769668579, 0.023428622633218765, 0.017181146889925003, 0.2555594742298126, -0.10548575222492218, -0.0728612095117569, 0.07264867424964905, 0.07573006302118301, -0.14506231248378754, -0.00004650498158298433, 0.08097997307777405, -0.04383769631385803, 0.06469307094812393, -0.19350019097328186, -0.12638452649116516, 0.09013616293668747, -0.09822629392147064, -0.07775068283081055, 0.07287158817052841, -0.07743731886148453, 0.04900317266583443, -0.01652640476822853, 0.03454214707016945, 0.01233384758234024, -0.021977487951517105, 0.052945803850889206, -0.02247367985546589, -0.04186533764004707, -0.048161253333091736, 0.06881145387887955, -0.12103749811649323, -0.09110918641090393, -0.001883261022157967, -0.040594737976789474, -0.11451569944620132, -0.3206920325756073, -0.0884762704372406, -0.16800615191459656, 0.05518094450235367, 0.009168119169771671, 0.07230065762996674, 0.11524815112352371, -0.12376648932695389, -0.02262822911143303, -0.045647237449884415, 0.0067418403923511505, 0.06694187968969345, 0.21820195019245148, 0.011731022037565708, 0.13959230482578278, 0.09559673815965652, 0.022019093856215477, 0.1582929939031601, -0.044418901205062866, -0.013031426817178726, -0.02761208638548851, 0.001201860373839736, 0.1252886950969696, -0.06405384838581085, -0.07478194683790207, 0.27896395325660706, -0.05420270562171936, 0.014558474533259869, 0.03171607106924057, -0.058339349925518036, -0.09046516567468643, -0.03959672152996063, -0.06418357789516449, 0.1503276526927948, 0.040642064064741135, 0.10941794514656067, 0.06482803076505661, -0.0532691515982151, -0.08002185821533203, -0.19921892881393433, 0.10921795666217804, -0.0370304137468338, 0.1292448341846466, -0.24822422862052917, -0.027980877086520195, -0.1317300945520401, 0.01027490571141243, -0.028063489124178886, -0.040894508361816406, -0.01738041266798973, -0.037049151957035065, -0.08035936951637268, 0.05723703280091286, 0.06760729104280472, 0.043063919991254807, -0.0031280159018933773, -0.04224667698144913, -0.026029113680124283, 0.006169376894831657, 0.19106467068195343, 0.00872785784304142, -0.10694478452205658, -0.23959632217884064, 0.012301074340939522, -0.14075104892253876, 0.02115478366613388, -0.01247613225132227, -0.0955158919095993, -0.09397999942302704, -0.06403599679470062, 0.08284240961074829, -0.09213146567344666, -0.10573280602693558, 0.0207050833851099, -0.0028294676449149847, 0.23055359721183777, -0.052882302552461624, -0.00908893533051014, 0.0027420504484325647, -0.18404772877693176, 0.08395947515964508, -0.18991056084632874, -0.061485324054956436, 0.07276453077793121, 0.00289593986235559, -0.09513233602046967, -0.10255540907382965, -0.08486167341470718, -0.08346244692802429, 0.1078881099820137, -0.241940438747406, 0.03505977988243103, -0.03448248654603958, -0.34686872363090515, 0.04293852299451828, -0.051679518073797226, -0.05368855595588684, 0.08904410153627396, -0.013652310706675053, 0.028351427987217903, -0.03347085416316986, -0.06321543455123901, 0.16534246504306793, -0.11113595962524414, 0.006703941151499748, 0.05859915539622307, 0.1268317848443985, -0.24046690762043, 0.0947221890091896, -0.10931146889925003, -0.060494549572467804, -0.03975239023566246, 0.06923019140958786, -0.023967737331986427, 0.03523607179522514, -0.04228457063436508, -0.030565861612558365, -0.09823179990053177, 0.08093516528606415, -0.010476409457623959, 0.05320725589990616, -0.32449671626091003, -0.05032791942358017, 0.16479098796844482, -0.04773610085248947, -0.07961096614599228, 0.04649742692708969, -0.048332978039979935, 0.010858321562409401, 0.08043784648180008, 0.12967409193515778, -0.1018090695142746, 0.07022101432085037, 0.11591543257236481, 0.14272497594356537, -0.14587080478668213, -0.2937491834163666, 0.031956080347299576, -0.01452391967177391, -0.027351802214980125, 0.013823195360600948, 0.11337536573410034, 0.037825822830200195, -0.03649840131402016, -0.021950263530015945, 0.03293202444911003, -0.14540405571460724, -0.0037450636737048626, -0.01495017297565937, 0.013920205645263195, -0.04169357195496559, 0.17143955826759338, 0.21336573362350464, 0.0711546465754509, 0.11459455639123917, -0.04688698798418045, 0.03277423232793808, -0.003045584075152874, -0.08762162178754807, 0.025503866374492645, -0.14066143333911896, -0.06646420806646347, 0.05155470594763756, 0.03927280753850937, 0.0056196218356490135, 0.23102954030036926, 0.028532816097140312, -0.09127210825681686, 0.04680856317281723, 0.11293671280145645, 0.14536018669605255, 0.018640482798218727, -0.008480426855385303, 0.10871674120426178, 0.12415758520364761, -0.09104016423225403, -0.025066614151000977, -0.011553535237908363, -0.042981747537851334, 0.056045278906822205, -0.04665040597319603, 0.003263054648414254, 0.009770863689482212, -0.00431034853681922, 0.059279512614011765, -0.020628564059734344, -0.05513647571206093, -0.0714634507894516, -0.09925620257854462, -0.04565587639808655, 0.13653960824012756, -0.14128713309764862, 0.2705346345901489, 0.10512730479240417, 0.0614672526717186, 0.013119987212121487, 0.11340568959712982, 0.08533351123332977, -0.041089534759521484, 0.04076525196433067, -0.01347937062382698, -0.08201072365045547, -0.06573694944381714, 0.04464744031429291, -0.06515056639909744, 0.017882373183965683, 0.02037721313536167, 0.08557549864053726, -0.13100676238536835, -0.0271637924015522, 0.06620009988546371, -0.21907509863376617, 0.1465785801410675, 0.17402268946170807, 0.05923152342438698, 0.1269856095314026, -0.029893139377236366, -0.13539427518844604, 0.020631464198231697, -0.16626088321208954, -0.1300000250339508, 0.14032256603240967, -0.05705760791897774, -0.004373624920845032, 0.06937965005636215, 0.09763677418231964, 0.11009696125984192, -0.03983331471681595, -0.03549259528517723, -0.02563098818063736, -0.011231471784412861, -0.18091139197349548, 0.04275626316666603, 0.048927191644907, 0.09488870203495026, 0.0822577178478241, -0.09803187102079391, 0.1424354612827301, 0.017181646078824997, 0.031119827181100845, 0.1413685530424118, -0.17003615200519562, -0.24439337849617004, 0.023038921877741814, -0.04832535609602928, 0.007639722432941198, 0.01004712376743555, 0.016491638496518135, -0.07034473121166229, -0.04701230302453041, 0.03204743191599846, -0.02204088494181633, -0.1464158147573471, -0.006280344910919666, -0.010389907285571098, -0.038325753062963486, -0.09112223237752914, -0.14957532286643982, 0.019492443650960922, -0.06638739258050919, 0.07804816961288452, 0.0807814821600914, -0.10074487328529358, 0.04738490283489227, 0.09539122879505157, -0.07421568036079407, 0.061404019594192505, -0.03655840456485748, 0.04465123638510704, -0.09204892814159393, -0.06999944150447845, 0.21992801129817963, 0.11652009189128876, -0.028530443087220192, -0.03348086029291153, 0.009300973266363144, -0.1752403825521469, -0.037572313100099564, 0.07139343023300171, -0.18009869754314423, -0.19584745168685913, -0.14697209000587463, -0.03177099674940109, 0.042990826070308685, -0.0500413179397583, 0.04426270350813866, 0.007179067004472017, -0.07678361237049103, 0.06206103786826134, 0.019363654777407646, -0.11169102787971497, -0.12552854418754578, -0.03660998493432999, -0.014500034973025322, -0.014289208687841892, -0.1401090770959854, -0.01835377886891365, 0.19678445160388947, 0.1576385498046875, 0.06465928256511688, 0.06852748990058899, 0.07104776054620743, -0.08044882118701935, -0.09847940504550934, -0.03824838995933533, 0.025209102779626846, 0.07695843279361725, -0.039140354841947556, -0.02454298362135887, 0.04645681381225586, 0.009491421282291412, 0.04290902242064476, 0.15960706770420074, -0.2051931619644165, 0.051456745713949203, -0.0819104015827179, 0.036354295909404755, -0.03150072693824768, 0.08067736029624939, -0.3526875376701355, 0.11253131926059723, 0.05095617100596428, 0.191132053732872, -0.1184883639216423, 0.12880079448223114, -0.05466242507100105, 0.08353059738874435, 0.13756516575813293, 0.08194229006767273, 0.05418994650244713, -0.0826064944267273, 0.012787343934178352, -0.017952486872673035, 0.014511159621179104, 0.012008167803287506, 0.0420343317091465, -0.1714349389076233, 0.10112094134092331, 0.002751425141468644, -0.01663278415799141, -0.1317676603794098, -0.06221986562013626, -0.02252351865172386, 0.038973499089479446, 0.031212272122502327, -0.00046166879474185407, -0.08060386776924133, -0.03085557371377945, -0.07764791697263718, -0.02081163413822651, 0.03215529024600983, 0.06748394668102264, -0.1406852900981903, 0.051060281693935394, 0.03430963307619095, 0.03606557101011276, -0.13137418031692505, -0.00870356336236, 0.04615803062915802, -0.008311115205287933, 0.10358492285013199, -0.11231455206871033, 0.039333853870630264, 0.044457562267780304, -0.1069738045334816, 0.02901095524430275, 0.09568231552839279, -0.03271026164293289, -0.0890549048781395, -0.06457816064357758, 0.1761419028043747, 0.0774163231253624, -0.054702505469322205, 0.08386342227458954, 0.07240010797977448, 0.030731579288840294, -0.17510287463665009, 0.14021126925945282, -0.05680834874510765, 0.15063706040382385, -0.026721464470028877, -0.04423952102661133, 0.06483951210975647, -0.02351030334830284, -0.04155764728784561, -0.046582624316215515, -0.05441056936979294, 0.019541827961802483, 0.1759222447872162, -0.046190764755010605, 0.1368635892868042, 0.12917673587799072, 0.09858518093824387, -0.009338722564280033, 0.16918307542800903, 0.014920694753527641, 0.04068988189101219, 0.11571674048900604, -0.018817264586687088, 0.1451864242553711, 0.20170317590236664, 0.031075913459062576, -0.33057066798210144, 0.15054188668727875, -0.17920944094657898, -0.009465496987104416, -0.06544685363769531, -0.216900035738945, -0.029991725459694862, 0.24345184862613678, -0.00748531986027956, 0.3415088653564453, -0.2726520597934723, -0.014175111427903175, 0.19459378719329834, -0.15448984503746033, 0.46641889214515686, -0.05946986377239227, 0.01373338047415018, -0.14414288103580475, 0.013309977948665619, 0.115075021982193, -0.08468768000602722, 0.004215619992464781, -0.0312160924077034, 0.1269380897283554, -0.05030541494488716, -0.0206617321819067, 0.12270665168762207, 0.05447208136320114, 0.1926284283399582, -0.012724569998681545, -0.04967613145709038, 0.22007915377616882, -0.07218776643276215, 0.1277962327003479, 0.02372855506837368, 0.015112126246094704, -0.08991910517215729, -0.022272024303674698, 0.04272068664431572, 0.012810436077415943, 0.05329228937625885, -0.07774869352579117, -0.031219182536005974, -0.013550026342272758, -0.11295725405216217, -0.100052110850811, 0.05610962584614754, 0.054108988493680954, -0.16508512198925018, -0.0358266718685627, 0.006550276186317205, -0.1421499401330948, 0.09292890876531601, -0.06527882814407349, -0.0633431151509285, 0.11189916729927063, -0.1888069063425064, 0.03417457267642021, 0.02129080519080162, -0.011514682322740555, -0.0027002724818885326, 0.05741584673523903, 0.008703552186489105, 0.007950609549880028, 0.0513964518904686, -0.04487716779112816, -0.027180232107639313, 0.11853963136672974, -0.22472098469734192, 0.1350582391023636, 0.12752944231033325, 0.05823805555701256, 0.06091799587011337, -0.02153914049267769, -0.039082858711481094, 0.08085565268993378, -0.03455531969666481, 0.10830435156822205, -0.040657855570316315, -0.007120067719370127, -0.19915343821048737, 0.2961558997631073, -0.02351316623389721, -0.14093714952468872, 0.0412423238158226, -0.007832566276192665, -0.063555508852005, -0.0669785588979721, 0.0211438350379467, 0.14291498064994812, -0.20867334306240082, -0.1447276771068573, 0.017395678907632828, -0.08635640889406204, 0.10657887905836105, 0.22396475076675415, 0.07363006472587585, 0.15136532485485077, 0.03363318368792534, 0.017221974208950996, -0.021180324256420135, -0.057386092841625214, -0.10825609415769577, 0.07042413204908371, 0.03901918977499008, -0.035513609647750854, -0.08412663638591766, 0.04539204761385918, -0.07890120893716812, -0.01228519156575203, -0.03142542764544487, 0.03902105614542961, -0.29940518736839294, -0.08301141113042831, 0.13947497308254242, 0.01234953012317419, -0.010099342092871666, 0.07232826203107834, -0.0019465150544419885, -0.007669201586395502, -0.04689956456422806, 0.08331514894962311, 0.027116701006889343, 0.02191896364092827, -0.10181578248739243, -0.05715470388531685, -0.059799183160066605, 0.038795143365859985, 0.13061758875846863, 0.18890593945980072, 0.04572276398539543, -0.02576361410319805, 0.09623531997203827, -0.09415927529335022, 0.12200985848903656, 0.0707741305232048, 0.1289559304714203, 0.09410074353218079, 0.000919405254535377, 0.1093815267086029, -0.14720499515533447, 0.02316603809595108, -0.1465488076210022, -0.04569141939282417, 0.09120345860719681, -0.19515980780124664, -0.032379601150751114, 0.039489783346652985, -0.12633252143859863, 0.2183631956577301, 0.09616874158382416, -0.08548673987388611, 0.07311184704303741, -0.08577210456132889, 0.06711225211620331, -0.08869718015193939, -0.032585375010967255, -0.13199183344841003, -0.10486703366041183, 0.13800455629825592, 0.08147065341472626, -0.04492558166384697, 0.5238679647445679, 0.009533506818115711, -0.12781929969787598, -0.005971237551420927, 0.05486653745174408, -0.003745417110621929, 0.05717245489358902, 0.23995700478553772, 0.056925151497125626, -0.04811786860227585, -0.12286146730184555, 0.15616902709007263, 0.09546653181314468, 0.11188551783561707, 0.09263961017131805, 0.12387774139642715, 0.1169147714972496, 0.05995175242424011, -0.014339554123580456, -0.18309250473976135, -0.06570639461278915, 0.07163335382938385, 0.01944044977426529, -0.013844991102814674, 0.08957687020301819, -0.013589976355433464, 0.0397651307284832, 0.017457488924264908, -0.04952840134501457, -0.09590046852827072, 0.03404764086008072, -0.048708874732255936, 0.12110752612352371, -0.038564592599868774, -0.05791637301445007, 0.0022683662828058004, -0.06094780191779137, 0.014056751504540443, 0.16593535244464874, 0.06855548918247223, -0.006761220283806324, 0.036451730877161026, -0.07671885192394257, 0.05722464248538017, 0.061356913298368454, -0.01603139191865921, -0.06531849503517151, 0.05571388453245163, -0.15479758381843567, 0.04017671197652817, -0.11080659180879593, 0.01366722397506237, -0.03693385049700737, 0.020776493474841118, 0.040972232818603516, -0.07588941603899002, 0.008971808478236198, -0.03883245214819908, 0.04511677101254463, -0.13839133083820343, 0.03579852730035782, 0.05698641389608383, -0.06384777277708054, 0.07850918173789978, -0.03428490459918976, -0.02016071416437626, 0.06075967475771904, 0.03244328126311302, 0.048099979758262634, 0.11350823938846588, 0.20366448163986206, 0.01594257727265358, -0.030557772144675255, -0.12715758383274078, -0.013226615265011787, 0.21040862798690796, -0.09608966112136841, -0.06247664988040924, 0.05283801257610321, 0.03038981184363365, -0.026020776480436325, 0.15333586931228638, 0.044126007705926895, 0.22978462278842926, 0.03993697464466095, -0.17200623452663422, 0.005048895254731178, 0.028454167768359184, -0.04972279444336891, 0.16003987193107605, 0.021972479298710823, -0.05882883444428444, -0.026607735082507133, 0.05061367154121399, -0.11564373224973679, 0.0393378809094429, 0.08747927844524384, -0.07476997375488281, -0.06968921422958374, 0.02913893572986126, -0.008569122292101383, -0.047896306961774826, 0.04249671474099159, -0.07834067940711975, -0.017773568630218506, -0.0764348953962326, -0.041943442076444626, -0.2591049373149872, -0.16620075702667236, -0.046793971210718155, 0.27220213413238525, 0.08062524348497391, -0.03899579122662544, 0.13075007498264313, -0.007395781110972166, 0.02363070473074913, -0.025880390778183937, 0.06878998875617981, -0.03186893090605736, 0.07306160777807236, -0.0606570728123188, -0.10788952559232712, -0.14217862486839294, -0.03036288172006607, 0.08744917809963226, 0.005800650920718908, -0.08208179473876953, 0.10091424733400345, -0.10029551386833191, -0.03707827627658844, -0.06510249525308609, -0.02459457889199257, 0.05212591588497162, -0.056416068226099014, 0.025848913937807083, 0.018347403034567833, -0.010923685505986214, 0.07968725264072418, 0.06340345740318298, -0.02940867841243744, -0.060313716530799866, 0.005344095639884472, -0.036690909415483475, 0.12686635553836823, 0.04121505469083786, -0.0710562989115715, 0.09140867739915848, -0.07261461764574051, 0.059802476316690445, 0.05861469358205795, -0.0036594269331544638, 0.037953149527311325, 0.04523991420865059, -0.0560673363506794, 0.034520115703344345, 0.0187050923705101, 0.040841031819581985, -0.07643266022205353, -0.13499735295772552 ]
7cf89961a7993ef4d1a6017002ac44d70c3e2216
# Dataset Card for "massive_recommendation-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_recommendation-de-DE
[ "region:us" ]
2023-03-30T11:38:54+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 137660, "num_examples": 433}, {"name": "validation", "num_bytes": 22189, "num_examples": 69}, {"name": "test", "num_bytes": 31179, "num_examples": 94}], "download_size": 67251, "dataset_size": 191028}}
2023-03-30T11:50:42+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_recommendation-de-DE" More Information needed
[ "# Dataset Card for \"massive_recommendation-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_recommendation-de-DE\"\n\nMore Information needed" ]
[ 6, 21 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_recommendation-de-DE\"\n\nMore Information needed" ]
[ -0.06222044676542282, 0.08051855862140656, -0.0047402409836649895, -0.047067973762750626, 0.10897865146398544, 0.12540258467197418, -0.02206231653690338, 0.08316126465797424, 0.1153813973069191, -0.05029919743537903, 0.07480981200933456, 0.1390077769756317, 0.018376704305410385, 0.24143239855766296, -0.0884685143828392, -0.025465454906225204, 0.06609948724508286, 0.051724810153245926, -0.16543324291706085, 0.014565297402441502, 0.08768042922019958, -0.09632518887519836, 0.07511470466852188, -0.13736487925052643, -0.07960312068462372, 0.07710887491703033, 0.006010343320667744, -0.06350845098495483, 0.055309396237134933, -0.07313774526119232, 0.11380989849567413, 0.01642163284122944, -0.034044165164232254, -0.11138991266489029, -0.0010369704104959965, 0.03529507294297218, -0.032971370965242386, 0.04076707735657692, 0.03967767208814621, -0.05699610710144043, -0.049414969980716705, -0.06771598011255264, 0.03916455805301666, -0.012279779650270939, -0.07256441563367844, -0.3055768609046936, -0.07783198356628418, -0.034829117357730865, 0.000025952655050787143, -0.09797145426273346, 0.06595853716135025, 0.139105424284935, -0.20621822774410248, -0.04210007190704346, -0.042816486209630966, 0.12136902660131454, 0.0545976422727108, 0.19564983248710632, -0.022320421412587166, 0.10184157639741898, 0.009596546180546284, 0.020467057824134827, 0.1399269700050354, -0.07407139241695404, 0.017269356176257133, 0.004121158272027969, 0.09151512384414673, 0.10162121057510376, -0.00578190665692091, 0.011740462854504585, 0.2970886826515198, 0.04114504158496857, -0.03613165766000748, 0.021549785509705544, -0.0399344302713871, -0.017926836386322975, 0.018831802532076836, -0.07486734539270401, 0.08228998631238937, 0.010479968972504139, 0.07419636100530624, 0.04634828865528107, -0.059595637023448944, -0.15439936518669128, -0.16879771649837494, 0.11316730082035065, -0.06551322340965271, 0.10330689698457718, -0.12960010766983032, 0.051636386662721634, -0.08392030000686646, -0.019264228641986847, -0.0027114490512758493, -0.17074154317378998, -0.09630966186523438, -0.08700886368751526, 0.03626469895243645, 0.0944938063621521, 0.1708887815475464, 0.1326991617679596, 0.17615850269794464, -0.02605533041059971, -0.09715805947780609, 0.03994389623403549, 0.1510419249534607, -0.11209370940923691, -0.09903363883495331, -0.12593047320842743, -0.004085469990968704, -0.0636056438088417, 0.029566289857029915, -0.03200433403253555, -0.044813208281993866, -0.022264139726758003, -0.0762297734618187, 0.1090477854013443, -0.09440916776657104, -0.09592994302511215, -0.09335299581289291, -0.04758676886558533, 0.2625361382961273, -0.020299823954701424, -0.004180895630270243, 0.06941267102956772, -0.12543246150016785, 0.10795727372169495, -0.18877162039279938, -0.010980977676808834, 0.10085700452327728, 0.18251849710941315, -0.08338457345962524, -0.06598612666130066, -0.07754413038492203, -0.02345113456249237, 0.10496963560581207, -0.15664568543434143, 0.14131173491477966, -0.10953415930271149, -0.20189717411994934, 0.04664802923798561, -0.025873057544231415, -0.09220967441797256, 0.04396410658955574, 0.06055324897170067, 0.017132962122559547, -0.02126624435186386, -0.07589893788099289, 0.1883487105369568, -0.13669994473457336, 0.06374247372150421, -0.024373557418584824, 0.028437357395887375, -0.1982811838388443, 0.03174150735139847, -0.0899585410952568, -0.04384591430425644, -0.08577398210763931, 0.027022816240787506, -0.12251481413841248, 0.20626391470432281, -0.1123894602060318, -0.04973046854138374, -0.0694262683391571, 0.019912907853722572, -0.059839993715286255, 0.08962986618280411, -0.3076043426990509, -0.016150226816534996, 0.030064275488257408, -0.11760323494672775, -0.1290288269519806, 0.0920594334602356, -0.09682289510965347, 0.020512130111455917, 0.12353832274675369, 0.20719856023788452, 0.020535064861178398, 0.039631105959415436, 0.07969697564840317, 0.10283594578504562, -0.16629981994628906, -0.27184855937957764, 0.10389858484268188, -0.010423981584608555, -0.23495633900165558, 0.012029068544507027, 0.04150708392262459, -0.0112643763422966, -0.05131799355149269, -0.02585732936859131, 0.028029706329107285, -0.17826126515865326, 0.02490214817225933, -0.02301408350467682, -0.010522451251745224, -0.09292441606521606, 0.10203851014375687, 0.029495595023036003, 0.14297600090503693, 0.0901736170053482, -0.09039858728647232, -0.00014720557373948395, 0.12995368242263794, -0.08908651769161224, -0.0080874627456069, -0.10397075861692429, 0.07479636371135712, 0.022146685048937798, -0.07514483481645584, -0.05882130190730095, 0.19134530425071716, 0.017908060923218727, -0.09505217522382736, 0.01373080164194107, 0.10625451803207397, 0.1419694870710373, 0.05070815607905388, 0.08433999121189117, -0.01996445655822754, 0.07850772887468338, -0.09441421926021576, -0.14910437166690826, -0.12634912133216858, -0.10224650800228119, 0.18200643360614777, 0.04567636176943779, 0.08890517801046371, 0.030027547851204872, 0.06286583095788956, 0.003552768612280488, -0.021825265139341354, -0.024624625220894814, -0.0002535514358896762, -0.05426551774144173, -0.11570136994123459, -0.03041623719036579, -0.06258168816566467, 0.37321293354034424, 0.11364321410655975, -0.06283076107501984, 0.029370425269007683, 0.0446237288415432, 0.06325597316026688, 0.006073853466659784, -0.05347723513841629, -0.011957656592130661, -0.09032880514860153, -0.00845962855964899, 0.06554365158081055, -0.03736951947212219, 0.005626343656331301, 0.03420447185635567, 0.06669658422470093, -0.04293690249323845, 0.018167853355407715, 0.11659310758113861, -0.20277078449726105, 0.11470236629247665, 0.13487806916236877, 0.06167934834957123, 0.06648297607898712, -0.05133926123380661, -0.08875511586666107, 0.015886280685663223, -0.07397015392780304, -0.09257348626852036, 0.1522563248872757, -0.08861330896615982, 0.041568346321582794, 0.08168527483940125, 0.03946828842163086, 0.07422158122062683, -0.04430706426501274, -0.06974045187234879, 0.0032408819533884525, -0.02856750600039959, -0.20041459798812866, 0.05325961858034134, 0.035574883222579956, 0.1016191840171814, 0.026573384180665016, -0.031234106048941612, 0.14777871966362, -0.05451370030641556, 0.03879617899656296, 0.13775844871997833, -0.06831821799278259, -0.19079817831516266, 0.04542605206370354, -0.032009948045015335, 0.04479343071579933, 0.041010063141584396, -0.033876191824674606, -0.1369491070508957, -0.09656519442796707, 0.04833638668060303, -0.023418311029672623, -0.150757297873497, 0.0077718342654407024, -0.0848214402794838, 0.06858133524656296, -0.01682869903743267, -0.09907033294439316, 0.0011053758207708597, -0.026719452813267708, 0.10077687352895737, 0.08338894695043564, -0.01987004280090332, 0.10526219010353088, 0.04980692267417908, -0.014399039559066296, 0.0334484726190567, -0.024915698915719986, -0.04916192963719368, -0.06598226726055145, -0.07797521352767944, 0.14130041003227234, 0.005471486132591963, -0.02965070866048336, 0.13253159821033478, 0.0812331959605217, -0.17327040433883667, 0.03908069431781769, 0.004454256035387516, -0.13112495839595795, -0.25447091460227966, -0.1399049460887909, -0.03548090532422066, 0.030331771820783615, 0.010175314731895924, 0.07313134521245956, 0.0018762595718726516, 0.04090030863881111, 0.09615296870470047, -0.020244354382157326, -0.12695752084255219, -0.08000344783067703, -0.0031981212086975574, 0.02397909387946129, 0.023084750398993492, -0.18421334028244019, -0.06400014460086823, 0.22020752727985382, 0.13201618194580078, 0.18122069537639618, 0.08499027788639069, 0.10820764303207397, -0.01294446736574173, -0.08046837151050568, 0.06654099375009537, 0.14525610208511353, 0.13818691670894623, -0.02755761332809925, -0.044857319444417953, 0.036440253257751465, -0.033552125096321106, 0.03943117707967758, 0.1315380036830902, -0.10568718612194061, -0.026490839198231697, -0.1408424824476242, 0.0867447480559349, -0.13065485656261444, 0.04557621479034424, -0.252517431974411, 0.1280309557914734, 0.09490090608596802, 0.11047978699207306, -0.06530282646417618, 0.11312613636255264, -0.04354826733469963, 0.02014797553420067, 0.1279492825269699, 0.043447740375995636, 0.0827217698097229, -0.23298248648643494, 0.026927828788757324, -0.004661956336349249, 0.0018226576503366232, -0.01023358665406704, 0.0889056846499443, -0.24264933168888092, 0.15276876091957092, 0.008358597755432129, -0.025689082220196724, -0.1341540664434433, -0.1091812327504158, 0.014706705696880817, 0.08079147338867188, 0.10952949523925781, -0.014751667156815529, -0.10046391934156418, -0.09966130554676056, -0.09994405508041382, 0.012763552367687225, -0.0026842874940484762, -0.06031828746199608, -0.15604695677757263, 0.030508404597640038, 0.04056208208203316, -0.04507021978497505, -0.11514243483543396, -0.06812311708927155, -0.01767290011048317, -0.04148715361952782, 0.019958514720201492, -0.02117893472313881, -0.0043867165222764015, -0.01363184954971075, 0.017555639147758484, 0.06473976373672485, -0.023423464968800545, -0.03210999071598053, -0.099740169942379, 0.008494543842971325, 0.14137978851795197, 0.04722251370549202, -0.05076988413929939, 0.024849003180861473, 0.017732586711645126, 0.04312831535935402, -0.15562887489795685, 0.1156531423330307, -0.08326587826013565, 0.0953197255730629, -0.05812951549887657, 0.03895140439271927, -0.021729469299316406, 0.0399022251367569, -0.013490824960172176, -0.08369021117687225, 0.00541165703907609, -0.07358942925930023, 0.10425755381584167, 0.019388193264603615, 0.10036387294530869, 0.21366338431835175, 0.14736436307430267, -0.012459879741072655, 0.10996661335229874, -0.013989191502332687, 0.10992473363876343, 0.1035093292593956, -0.03956984728574753, 0.13902199268341064, 0.10661043226718903, -0.0223578829318285, -0.2133600413799286, 0.1328507661819458, -0.16168305277824402, -0.04267418012022972, -0.09243877232074738, -0.23813261091709137, 0.11661968380212784, 0.16372379660606384, -0.048440735787153244, 0.23526769876480103, -0.016728883609175682, -0.02424013987183571, 0.16761036217212677, -0.046638090163469315, 0.5487685799598694, -0.09778648614883423, -0.06831257045269012, -0.17350034415721893, -0.003069158410653472, 0.2565910816192627, -0.12955327332019806, -0.04053628072142601, 0.00515262084081769, 0.03164897486567497, 0.01571238413453102, -0.03865085169672966, 0.20886574685573578, 0.04734724387526512, 0.22925755381584167, -0.056703705340623856, -0.024680085480213165, 0.0510873943567276, -0.004011696670204401, 0.0738079622387886, -0.0050253183580935, -0.0028869393281638622, -0.03165518119931221, -0.0699060782790184, 0.029848340898752213, 0.03930972144007683, 0.0896063968539238, -0.09054165333509445, -0.09129485487937927, 0.032895609736442566, -0.12287365645170212, -0.05799347534775734, 0.05450988560914993, 0.02508360520005226, -0.06102684512734413, -0.1665940284729004, 0.18973465263843536, -0.14213430881500244, 0.009964754804968834, 0.016039611771702766, -0.08213721215724945, 0.1511562466621399, -0.29430538415908813, 0.06266142427921295, 0.10386662185192108, -0.02573571726679802, 0.012582207098603249, 0.04757118970155716, -0.03292546793818474, 0.017161857336759567, 0.16640761494636536, -0.03979407623410225, -0.028491316363215446, 0.097172811627388, -0.09892456978559494, 0.10683956742286682, 0.09434997290372849, 0.019629986956715584, 0.05149475485086441, 0.006717590149492025, 0.008211426436901093, 0.036509279161691666, -0.04365171864628792, 0.08760210871696472, 0.07109232991933823, 0.04589492827653885, -0.17251907289028168, 0.23644603788852692, 0.005896634887903929, -0.20793357491493225, -0.049504656344652176, -0.18714892864227295, -0.09877201914787292, -0.07697959244251251, -0.04647250100970268, 0.1944417953491211, -0.024459509178996086, -0.18864665925502777, -0.02383900061249733, -0.11182337254285812, 0.0484032928943634, 0.03486688435077667, 0.10653458535671234, 0.12462478131055832, -0.007125992327928543, -0.04520970210433006, -0.01591513305902481, -0.07300684601068497, -0.07697642594575882, 0.013430172577500343, -0.1420505940914154, -0.1747320294380188, -0.03531542047858238, 0.04796944931149483, -0.08343033492565155, 0.05676407366991043, -0.03365299478173256, 0.04253942146897316, -0.3124485909938812, 0.013253805227577686, 0.04022778198122978, 0.04947872459888458, 0.0045485650189220905, 0.05094737187027931, -0.05155598744750023, -0.0516568124294281, -0.11152984201908112, 0.08963846415281296, 0.10582996159791946, 0.08235511183738708, -0.018894057720899582, -0.010209471918642521, 0.025918710976839066, 0.021346427500247955, 0.162084698677063, 0.0738857313990593, 0.019406266510486603, 0.00875574816018343, -0.015819735825061798, -0.08140280842781067, 0.11440261453390121, 0.07350251078605652, 0.033492330461740494, -0.03406991809606552, 0.06745661050081253, 0.09689562767744064, -0.0669185221195221, 0.012905849143862724, -0.1442876160144806, -0.10008546710014343, 0.013633343391120434, -0.09607511758804321, -0.06724129617214203, 0.029967134818434715, -0.13534468412399292, 0.1561046540737152, 0.1174861341714859, 0.01732061058282852, 0.10874535143375397, -0.03481242060661316, 0.046236589550971985, -0.07829979062080383, -0.06588778644800186, -0.1283208429813385, -0.12441413849592209, 0.1095161885023117, 0.06927413493394852, -0.06007910892367363, 0.6118733882904053, -0.032193247228860855, -0.10064123570919037, -0.04101327061653137, 0.12345262616872787, 0.08267801254987717, 0.05609918385744095, 0.3507479429244995, 0.07170984894037247, -0.057826071977615356, -0.09778562188148499, 0.03854978829622269, 0.0952615886926651, 0.1271699219942093, 0.06939564645290375, 0.24351713061332703, 0.06390147656202316, -0.03718109801411629, -0.015393486246466637, -0.1358087807893753, 0.07694695889949799, 0.05649004131555557, 0.040106888860464096, -0.02464945800602436, 0.09184093028306961, -0.04816514626145363, 0.05787654221057892, 0.03485046699643135, -0.038414403796195984, -0.05366465449333191, 0.0053613497875630856, -0.10401102900505066, -0.05905478075146675, -0.053804509341716766, -0.12918899953365326, 0.05035123601555824, -0.022915761917829514, -0.07611842453479767, 0.22647155821323395, 0.07497599720954895, -0.05771861597895622, 0.0075774830766022205, -0.04729132726788521, 0.047224242240190506, 0.13388575613498688, 0.030281774699687958, -0.15077003836631775, 0.051536642014980316, -0.08532817661762238, -0.014617054723203182, -0.06501736491918564, -0.05393228307366371, -0.009465092793107033, -0.024975480511784554, 0.022744333371520042, -0.08056744933128357, 0.00977942906320095, -0.05700848996639252, 0.009019782766699791, -0.14803221821784973, 0.14020593464374542, 0.006540934555232525, -0.019859757274389267, 0.05440637096762657, 0.08195722848176956, 0.03306012973189354, 0.07676058262586594, -0.0801018550992012, -0.03399338573217392, 0.02089988812804222, 0.13900695741176605, 0.030130909755825996, -0.08795494586229324, -0.06321926414966583, -0.014867627061903477, 0.3218327760696411, -0.04377342760562897, 0.01408402994275093, 0.004152186680585146, 0.03623238578438759, -0.00755983404815197, 0.15418966114521027, -0.04190065711736679, 0.01628490351140499, 0.0083258505910635, -0.09689079970121384, 0.0230215135961771, 0.005875126924365759, 0.09091448783874512, 0.14951807260513306, 0.09396708756685257, -0.05122566223144531, -0.11843042820692062, 0.16357667744159698, -0.17070960998535156, 0.08893328160047531, 0.053732749074697495, -0.07668624073266983, -0.11813972890377045, -0.016334151849150658, -0.03447399660944939, 0.02692478708922863, -0.015280268155038357, -0.09338734298944473, -0.0861109048128128, -0.013164606876671314, -0.05369188264012337, -0.3578912615776062, -0.1621013581752777, -0.023384694010019302, 0.35931673645973206, 0.043851088732481, 0.01617445796728134, 0.1608608067035675, 0.02859841287136078, -0.006266339216381311, -0.10855371505022049, 0.08118680119514465, -0.003393084043636918, 0.03648067265748978, 0.008950979448854923, -0.061176370829343796, -0.07493056356906891, -0.07852999866008759, 0.07901479303836823, -0.051503658294677734, -0.07605499029159546, 0.02702411077916622, -0.1350608766078949, -0.11896040290594101, 0.007047539576888084, -0.06791815906763077, 0.05165660381317139, -0.004869666416198015, -0.01068437285721302, 0.01427275687456131, -0.003964600618928671, 0.13003472983837128, 0.07277880609035492, -0.050264663994312286, -0.03120349906384945, -0.03785191476345062, -0.002009095624089241, 0.12406811863183975, 0.01634538546204567, -0.10097768157720566, 0.10343386977910995, -0.10158832371234894, 0.06310992687940598, 0.013503781519830227, 0.00155681895557791, -0.007335560861974955, 0.07860986888408661, -0.06715559214353561, -0.045024991035461426, 0.0016050300328060985, 0.013205568306148052, -0.05986099690198898, -0.131173238158226 ]
5b873761a6d28a5a971cc47d6677945880e27056
# Dataset Card for "massive_email-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_email-de-DE
[ "region:us" ]
2023-03-30T11:39:10+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 285273, "num_examples": 953}, {"name": "validation", "num_bytes": 46537, "num_examples": 157}, {"name": "test", "num_bytes": 79990, "num_examples": 271}], "download_size": 116461, "dataset_size": 411800}}
2023-03-30T11:51:07+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_email-de-DE" More Information needed
[ "# Dataset Card for \"massive_email-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_email-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_email-de-DE\"\n\nMore Information needed" ]
[ -0.00046510036918334663, 0.061201781034469604, -0.002636794000864029, 0.02352684736251831, 0.0835704430937767, 0.13588903844356537, 0.1064949557185173, 0.014563648030161858, 0.1341579705476761, -0.04254597797989845, 0.1696038544178009, 0.011074721813201904, -0.035834524780511856, 0.29762959480285645, -0.07802443951368332, -0.01907571591436863, 0.008040150627493858, 0.024780478328466415, -0.2360808551311493, -0.01493009738624096, 0.09238546341657639, -0.04581115022301674, 0.08361522108316422, -0.20797570049762726, -0.05382901802659035, 0.13594336807727814, -0.049809396266937256, -0.03212890774011612, 0.04598338156938553, -0.04605463519692421, 0.09174612909555435, -0.018283786252141, -0.001936495304107666, -0.11340904980897903, -0.015643704682588577, 0.025856299325823784, -0.05028164014220238, 0.003074606880545616, -0.0725407525897026, -0.029299506917595863, -0.05968642979860306, -0.1454547494649887, 0.002427666215226054, -0.07238907366991043, -0.027016112580895424, -0.23455415666103363, -0.07584156095981598, 0.0003279256052337587, 0.054795172065496445, 0.03418847173452377, 0.10429771989583969, 0.05808552727103233, -0.1184353455901146, -0.003048432758077979, -0.05319065600633621, 0.07479754835367203, 0.09840285778045654, 0.1346990317106247, -0.05610432103276253, 0.1803806722164154, 0.07016357034444809, 0.01592104323208332, 0.14992685616016388, -0.033386748284101486, -0.043102722615003586, 0.019550899043679237, -0.023357540369033813, 0.09764166921377182, 0.022389305755496025, -0.09847056865692139, 0.24937617778778076, 0.0486174039542675, 0.02741168811917305, 0.03213508054614067, -0.02101832628250122, -0.053713057190179825, 0.03882316127419472, -0.05262432247400284, 0.08074899762868881, 0.017915351316332817, 0.02460116520524025, 0.01191250141710043, -0.08702431619167328, -0.10965348035097122, -0.21613819897174835, 0.004054155666381121, -0.08485499769449234, 0.13411679863929749, -0.23115836083889008, -0.013316644355654716, -0.0580427423119545, -0.018979445099830627, 0.05662013962864876, -0.06808893382549286, 0.11255161464214325, -0.020922137424349785, -0.03003111109137535, 0.01589547097682953, 0.16262544691562653, 0.09639692306518555, 0.13393628597259521, -0.0385902002453804, -0.013116119429469109, 0.033143602311611176, 0.2150585949420929, -0.14921924471855164, -0.025056006386876106, -0.15770725905895233, 0.03814882040023804, -0.10763061791658401, 0.0025193935725837946, -0.05465704947710037, -0.13854585587978363, 0.05291620269417763, -0.059052493423223495, 0.10406967252492905, -0.05902863293886185, -0.1440882831811905, 0.00146176025737077, 0.004615429323166609, 0.25539809465408325, -0.0752609372138977, 0.023391978815197945, -0.004770650528371334, -0.12072800099849701, 0.10562533885240555, -0.1573273092508316, 0.009670065715909004, 0.07967416942119598, 0.13273337483406067, -0.059953488409519196, -0.07232355326414108, -0.06323034316301346, -0.06321251392364502, 0.13604287803173065, -0.23627151548862457, 0.07715534418821335, -0.09536473453044891, -0.27029237151145935, 0.04660460725426674, -0.025609472766518593, -0.03725162521004677, 0.07020324468612671, 0.03535569831728935, 0.05284532532095909, 0.03804785758256912, -0.06762039661407471, 0.15341070294380188, -0.12129691988229752, 0.027813510969281197, -0.01216221321374178, 0.053570665419101715, -0.2686372399330139, 0.022820888087153435, -0.01972472481429577, -0.08912865072488785, 0.008287519216537476, 0.03131129965186119, -0.12046139687299728, 0.10733824968338013, -0.10413696616888046, 0.027135802432894707, -0.03788349777460098, 0.06079498305916786, -0.04140937328338623, 0.055270638316869736, -0.22710241377353668, -0.040978848934173584, -0.014202375896275043, -0.09655556827783585, -0.14079166948795319, 0.06539390236139297, -0.06039858236908913, 0.02062770165503025, 0.07151838392019272, 0.16745534539222717, -0.07505321502685547, 0.015733573585748672, 0.018063873052597046, 0.16909122467041016, -0.14956505596637726, -0.30323559045791626, 0.05477174371480942, -0.05382285639643669, -0.058791883289813995, -0.015070722438395023, 0.13491855561733246, 0.009405574761331081, -0.053294677287340164, -0.04467364028096199, 0.020109323784708977, -0.164680615067482, -0.06164579838514328, -0.0766715556383133, 0.029623210430145264, -0.03747132420539856, 0.14896143972873688, 0.1325490027666092, 0.042800068855285645, 0.054430145770311356, -0.03666890412569046, -0.006741292309015989, -0.055549006909132004, -0.07399482280015945, -0.0009494615369476378, -0.10584419220685959, -0.07319901883602142, -0.0026405625976622105, -0.0386647954583168, 0.05577617511153221, 0.1097632497549057, 0.08550029247999191, -0.09865548461675644, -0.0030903008300811052, 0.1421576291322708, 0.11530811339616776, 0.06639789789915085, 0.00948582123965025, 0.018933681771159172, 0.05648650601506233, -0.07687777280807495, -0.05667198821902275, -0.01119387149810791, -0.06299187988042831, 0.1252966821193695, 0.028221560642123222, 0.02966708317399025, 0.02505195140838623, -0.029337985441088676, 0.0069014751352369785, -0.030127491801977158, -0.04923791065812111, -0.04536817595362663, -0.08600255101919174, -0.11594390869140625, -0.06587208807468414, 0.026498379185795784, 0.3985503017902374, 0.10899669677019119, 0.05582648888230324, 0.031468041241168976, 0.0601097010076046, 0.07404132932424545, -0.028078049421310425, -0.02802901342511177, -0.06421767175197601, 0.003048241138458252, -0.08347474783658981, 0.03917283937335014, -0.045464109629392624, 0.013988849706947803, 0.013181411661207676, 0.0750611424446106, -0.08962445706129074, -0.03149041533470154, 0.11137077957391739, -0.21804504096508026, 0.1325414627790451, 0.149382084608078, 0.004665517248213291, 0.08801001310348511, -0.06928272545337677, -0.07130832970142365, 0.01948334090411663, -0.1700894683599472, -0.09048261493444443, 0.10574708878993988, -0.003247335087507963, 0.032634612172842026, 0.05717482045292854, 0.08307916671037674, 0.12737266719341278, 0.02086968906223774, -0.07989499717950821, 0.00985639076679945, -0.01906569115817547, -0.15540054440498352, 0.015016845427453518, 0.012488062493503094, 0.10302495956420898, 0.04537662863731384, -0.06561187654733658, 0.16597403585910797, -0.027608944103121758, -0.0007310661603696644, 0.09084735810756683, -0.12064521759748459, -0.2804766595363617, 0.013580353930592537, -0.026588652282953262, 0.013064085505902767, -0.001922164810821414, -0.020532166585326195, -0.17290711402893066, -0.059881243854761124, -0.022757917642593384, -0.09521615505218506, -0.11204678565263748, 0.03882003575563431, 0.029292931780219078, 0.009871674701571465, -0.008322657085955143, -0.10866229236125946, 0.020317023620009422, -0.005740806460380554, 0.10049010068178177, 0.056481026113033295, -0.03582251816987991, 0.13143861293792725, 0.041052836924791336, -0.05163160338997841, 0.07971443980932236, -0.003370894817635417, 0.004254615865647793, -0.055397987365722656, -0.03317725285887718, 0.1599969118833542, 0.05872168764472008, -0.02787160873413086, 0.027981404215097427, 0.030396316200494766, -0.13139492273330688, 0.021315472200512886, 0.04787581041455269, -0.1566709727048874, -0.251045286655426, -0.15269842743873596, 0.043657537549734116, 0.060778580605983734, 0.03023824468255043, 0.10627313703298569, 0.07672679424285889, -0.0438818596303463, 0.10719287395477295, 0.007097349036484957, -0.11262858659029007, -0.05895314738154411, -0.06669545918703079, 0.05354294180870056, -0.012821934185922146, -0.19173705577850342, -0.05022963136434555, 0.22149202227592468, 0.12819451093673706, 0.056404925882816315, 0.07474678754806519, 0.06896034628152847, -0.10393832623958588, -0.10139067471027374, 0.02001025900244713, 0.13884374499320984, 0.10396818071603775, -0.042195599526166916, -0.032935187220573425, 0.07532723993062973, 0.01257193274796009, 0.023848529905080795, 0.11841832101345062, -0.18459884822368622, 0.000827860611025244, -0.08191227912902832, 0.042001646012067795, -0.12629389762878418, 0.05366082862019539, -0.2224692553281784, 0.09783033281564713, 0.059725403785705566, 0.09874363243579865, -0.04162779077887535, 0.06631354242563248, 0.014109611511230469, 0.028102537617087364, 0.11615247279405594, 0.09330928325653076, 0.06625085324048996, -0.14945447444915771, 0.030333522707223892, 0.004494577646255493, -0.03620264306664467, 0.025252845138311386, 0.0929831936955452, -0.2311253845691681, 0.08984576165676117, 0.01587635837495327, -0.06229623034596443, -0.13485656678676605, -0.08431019634008408, -0.023645976558327675, -0.005063917022198439, 0.008809899911284447, 0.01776253804564476, 0.025915563106536865, -0.02379993535578251, -0.09325672686100006, 0.03688816353678703, 0.08035989105701447, -0.011592196300625801, -0.12817826867103577, 0.09594856202602386, 0.029426971450448036, 0.014954791404306889, -0.06597167998552322, -0.05670485645532608, -0.10723769664764404, -0.06855952739715576, 0.0807938352227211, -0.01912752166390419, 0.04614344984292984, 0.004218060057610273, -0.061345476657152176, 0.08982554823160172, -0.04721007123589516, -0.023849602788686752, -0.0597202442586422, 0.0171333160251379, 0.08463224023580551, 0.04993423819541931, -0.03975575417280197, 0.08207020908594131, -0.03731537610292435, -0.05310770496726036, -0.16929946839809418, 0.11652325093746185, -0.07854004204273224, 0.13342735171318054, -0.04394865781068802, -0.009455429390072823, 0.003978670574724674, -0.015911653637886047, -0.04628491401672363, -0.09326477348804474, -0.04412296786904335, -0.08888944238424301, 0.14578518271446228, 0.061951763927936554, 0.15611784160137177, 0.25808149576187134, 0.1363094598054886, -0.023235496133565903, 0.14447133243083954, -0.046402495354413986, 0.16538755595684052, 0.15720537304878235, -0.029335448518395424, 0.10947923362255096, 0.15247571468353271, -0.01447906345129013, -0.26186367869377136, 0.0024392406921833754, -0.15520550310611725, -0.05978238210082054, -0.053335048258304596, -0.19244948029518127, 0.03266846388578415, 0.2033926099538803, -0.034270238131284714, 0.23420193791389465, -0.12587189674377441, -0.04762142151594162, 0.13648876547813416, -0.1350400745868683, 0.506600022315979, -0.10659848898649216, -0.027496764436364174, -0.26505109667778015, -0.046339016407728195, 0.22498519718647003, -0.11377956718206406, -0.02108725532889366, 0.025544578209519386, 0.06045173853635788, -0.07999762147665024, -0.07194545120000839, 0.1555648148059845, 0.08952834457159042, 0.20184268057346344, -0.04103871062397957, -0.07869131118059158, 0.09324554353952408, -0.04031712934374809, 0.15601013600826263, -0.10043593496084213, -0.0010076963808387518, -0.10621217638254166, -0.05621854588389397, 0.04270818829536438, 0.017843550071120262, 0.09135667234659195, -0.06401274353265762, -0.09522313624620438, -0.03661820665001869, -0.09816215932369232, -0.05915765091776848, 0.07279056310653687, 0.033846013247966766, -0.06446503847837448, 0.0032407583203166723, 0.0951446145772934, -0.15821434557437897, 0.04370340332388878, -0.03102823905646801, -0.13539086282253265, 0.09652960300445557, -0.27855798602104187, 0.046775490045547485, 0.07200683653354645, -0.045922260731458664, 0.03619580715894699, 0.04355136305093765, 0.010638326406478882, -0.033825863152742386, 0.11100348085165024, -0.04513326287269592, 0.02272714488208294, 0.11319509893655777, -0.05463287606835365, 0.1103828102350235, 0.13558129966259003, 0.06979679316282272, 0.005489877425134182, -0.010889247059822083, -0.015827832743525505, 0.05850674584507942, -0.07001602649688721, 0.08036832511425018, 0.046835362911224365, 0.022854773327708244, -0.1643306016921997, 0.2625810205936432, 0.012960170395672321, -0.22943302989006042, 0.0717673972249031, -0.027290573343634605, -0.09454886615276337, -0.060115694999694824, 0.06208575516939163, 0.2301921397447586, -0.08781850337982178, -0.14716942608356476, -0.01592998579144478, -0.059555213898420334, 0.07242892682552338, 0.12234081327915192, 0.05927279219031334, 0.11876315623521805, 0.034775830805301666, 0.002567876596003771, -0.029903773218393326, -0.10740894079208374, -0.0907805785536766, 0.007246727589517832, -0.07012902945280075, -0.15051136910915375, -0.031166983768343925, 0.05880009010434151, -0.06713596731424332, 0.04308386519551277, -0.043734610080718994, -0.006401871796697378, -0.2364528626203537, -0.036375708878040314, 0.13566501438617706, 0.027621213346719742, -0.0023697332944720984, 0.04554824158549309, 0.018339961767196655, -0.027031688019633293, -0.04032722860574722, 0.06761996448040009, 0.07830613851547241, 0.009020926430821419, -0.06720288842916489, -0.019475338980555534, -0.015038956888020039, 0.09490784257650375, 0.16075977683067322, 0.13900770246982574, 0.04901718348264694, 0.0005428142030723393, 0.03524896129965782, -0.07150305807590485, 0.08290453255176544, 0.0715501680970192, 0.03548892214894295, 0.09167015552520752, -0.007684160955250263, 0.0943862721323967, -0.07863352447748184, 0.02566567435860634, -0.10109049826860428, -0.036880213767290115, 0.08564911037683487, -0.10790150612592697, -0.054206203669309616, -0.022595399990677834, -0.13859505951404572, 0.2390873283147812, 0.08118291944265366, 0.021346943452954292, 0.051048021763563156, -0.03793378546833992, 0.02950877510011196, -0.05183010920882225, -0.026227351278066635, -0.07668682187795639, -0.18327990174293518, 0.09096860885620117, 0.04672732576727867, -0.07980047911405563, 0.5337002873420715, -0.019070520997047424, -0.19032049179077148, -0.014845927245914936, 0.01575637236237526, 0.025400908663868904, 0.012041640467941761, 0.2892802059650421, 0.05318772792816162, -0.026750760152935982, -0.09700589627027512, 0.0432889387011528, 0.06465213745832443, 0.22878219187259674, 0.12763170897960663, 0.0962776318192482, 0.13218338787555695, 0.002193726599216461, 0.04279020056128502, -0.12707515060901642, 0.0714133009314537, -0.038566626608371735, 0.05623697489500046, -0.014733448624610901, 0.07039251178503036, -0.169194296002388, 0.03544711321592331, 0.03562617301940918, -0.060837872326374054, -0.07082651555538177, 0.01435492467135191, -0.02688448131084442, 0.03624483570456505, -0.04665062949061394, -0.09199968725442886, 0.03786575794219971, -0.03252881392836571, -0.06719379127025604, 0.18693003058433533, 0.05604484677314758, -0.03224204108119011, -0.018190622329711914, -0.1396154910326004, 0.07251103222370148, 0.08954785764217377, -0.02097865380346775, -0.11168552190065384, 0.08709640055894852, -0.11045803874731064, -0.026422500610351562, -0.046209562569856644, -0.0729006975889206, 0.0018077759305015206, 0.05235688015818596, 0.03417329490184784, -0.06849902868270874, -0.012866659089922905, -0.0556555911898613, 0.06616832315921783, -0.08547349274158478, 0.16812101006507874, 0.009488425217568874, -0.041421033442020416, 0.06439876556396484, 0.018558401614427567, -0.00445395614951849, -0.06620822101831436, -0.0007980875670909882, 0.05621100217103958, 0.026921769604086876, 0.1833593100309372, -0.0193026065826416, -0.03560780733823776, -0.1559041291475296, -0.05094262957572937, 0.3656977713108063, -0.11654745787382126, 0.014160891994833946, 0.008108066394925117, 0.042722437530756, 0.04760812968015671, 0.13715648651123047, 0.06134166195988655, 0.17416630685329437, 0.01225272472947836, -0.055936675518751144, 0.02509455196559429, 0.0064994096755981445, -0.0179083701223135, 0.18328842520713806, 0.04999614879488945, -0.06944112479686737, -0.034636180847883224, 0.09816614538431168, -0.1721654236316681, 0.07672949880361557, 0.023144688457250595, -0.12063116580247879, -0.07329485565423965, 0.07127455621957779, 0.06636688858270645, -0.012798605486750603, -0.022698843851685524, -0.05255166068673134, -0.01878114603459835, -0.06506689637899399, -0.044027574360370636, -0.32077741622924805, -0.12536536157131195, -0.06350431591272354, 0.1546638309955597, -0.051483843475580215, 0.023435277864336967, 0.2319791465997696, 0.031122062355279922, 0.009481357410550117, -0.03800122067332268, 0.1170584186911583, -0.03193826228380203, 0.07324230670928955, -0.016585228964686394, -0.12654085457324982, -0.08110357820987701, -0.08619944006204605, 0.06250455230474472, -0.0775928646326065, -0.1041465625166893, 0.16371843218803406, -0.07056260854005814, -0.06614849716424942, -0.01701808162033558, -0.07249695807695389, 0.0823923870921135, -0.023727579042315483, -0.006063528824597597, 0.010431766510009766, 0.018386121839284897, 0.11346650123596191, 0.061584968119859695, -0.07913229614496231, -0.0936465710401535, 0.001317089656367898, -0.04563760757446289, 0.02544882334768772, 0.042550571262836456, -0.04873610660433769, 0.08498664945363998, -0.14620693027973175, 0.00815309677273035, -0.02647814154624939, -0.009685317985713482, 0.10733510553836823, 0.06053124740719795, -0.06336851418018341, 0.07354210317134857, 0.052832234650850296, 0.008418089710175991, -0.05916376784443855, -0.10807537287473679 ]
34fee651d175bde5d7285d6d8f3f48ab154ebe7f
# Dataset Card for "massive_iot-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_iot-de-DE
[ "region:us" ]
2023-03-30T11:39:27+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 212741, "num_examples": 769}, {"name": "validation", "num_bytes": 31932, "num_examples": 118}, {"name": "test", "num_bytes": 60007, "num_examples": 220}], "download_size": 84035, "dataset_size": 304680}}
2023-03-30T11:51:32+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_iot-de-DE" More Information needed
[ "# Dataset Card for \"massive_iot-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_iot-de-DE\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_iot-de-DE\"\n\nMore Information needed" ]
[ -0.10071469843387604, -0.01201639138162136, -0.00410859752446413, 0.02354133501648903, 0.05301673710346222, 0.11941291391849518, 0.054930079728364944, 0.06321611255407333, 0.16547249257564545, -0.012358627282083035, 0.12851561605930328, 0.07605316489934921, 0.021486369892954826, 0.29358071088790894, -0.07255539298057556, -0.02220758982002735, 0.06582856178283691, 0.07789336889982224, -0.2579769790172577, -0.032445408403873444, 0.12075791507959366, -0.043756429105997086, 0.07252419739961624, -0.1784048080444336, -0.11891603469848633, 0.11471167951822281, -0.02402498573064804, -0.03225580230355263, 0.06328900158405304, -0.06418348848819733, 0.0542423315346241, -0.0008679047459736466, 0.0016237004892900586, -0.07927791029214859, 0.0026441554073244333, 0.07378731667995453, -0.030722714960575104, 0.02467173896729946, -0.008466426283121109, -0.0008624339825473726, -0.15698550641536713, -0.13900162279605865, -0.014846529811620712, -0.046977899968624115, -0.0221785269677639, -0.33968889713287354, -0.054388049989938736, -0.03320014849305153, 0.030624978244304657, -0.035719286650419235, 0.09032981842756271, 0.1286485493183136, -0.09191375225782394, 0.005554170347750187, -0.011408225633203983, 0.06975628435611725, 0.08563574403524399, 0.18352091312408447, -0.03704185038805008, 0.19117259979248047, 0.06592120975255966, 0.016293011605739594, 0.14401452243328094, -0.028190387412905693, -0.02214919403195381, -0.0062655736692249775, -0.03870806843042374, 0.09260047972202301, -0.015850799158215523, -0.03548648953437805, 0.3058066964149475, -0.012558180838823318, 0.006938622333109379, 0.054789550602436066, -0.06189873442053795, -0.07689474523067474, 0.005984927993267775, -0.06777673214673996, 0.09913020581007004, 0.048743054270744324, 0.09630757570266724, 0.03997567668557167, -0.0896635502576828, -0.10517669469118118, -0.21201191842556, 0.06352781504392624, -0.027955805882811546, 0.13584594428539276, -0.20235274732112885, -0.027364863082766533, -0.24836483597755432, -0.011172335594892502, -0.004656397271901369, -0.09035526216030121, -0.02636820264160633, -0.02380034513771534, -0.023473422974348068, -0.0009747538133524358, 0.16343405842781067, 0.0653107762336731, 0.07282533496618271, -0.015733735635876656, -0.08649872243404388, 0.06889594346284866, 0.20458757877349854, -0.07888500392436981, -0.1318027526140213, -0.13333478569984436, 0.026250645518302917, -0.10233734548091888, 0.00584792485460639, -0.0738842785358429, -0.10491450130939484, -0.043852560222148895, -0.026572810485959053, 0.0804859921336174, 0.006388473324477673, -0.12794813513755798, -0.048861075192689896, -0.028616992756724358, 0.20701277256011963, -0.03423130139708519, 0.017608361318707466, -0.0006175801390781999, -0.08037823438644409, 0.1338513046503067, -0.18265245854854584, -0.01363344956189394, 0.08041156083345413, 0.05634032562375069, -0.07142723351716995, -0.06256267428398132, -0.06582117825746536, -0.06563271582126617, 0.12663641571998596, -0.16004148125648499, 0.08336014300584793, -0.09883658587932587, -0.23999756574630737, 0.06495246291160583, 0.011213298887014389, -0.08806261420249939, 0.13283802568912506, 0.06948640197515488, 0.028105709701776505, -0.02837383560836315, -0.06413128972053528, 0.08472983539104462, -0.08105725049972534, 0.041336819529533386, -0.005551963113248348, 0.08520244061946869, -0.2738534212112427, 0.05576341599225998, -0.0825415775179863, -0.02863774634897709, -0.030638428404927254, 0.05074489861726761, -0.10574489086866379, 0.03805462270975113, -0.08701114356517792, -0.011011212132871151, -0.10831466317176819, 0.048678915947675705, 0.009693394415080547, 0.05752807483077049, -0.33146700263023376, -0.0259211678057909, 0.04112614318728447, -0.09643478691577911, -0.1320711076259613, 0.11654885113239288, -0.026851804926991463, 0.011902906931936741, 0.031910523772239685, 0.2572162449359894, -0.05995805561542511, 0.03128831461071968, 0.035210564732551575, 0.18804310262203217, -0.12714022397994995, -0.30270445346832275, 0.10877127200365067, -0.015984507277607918, -0.04619637504220009, -0.0214958768337965, 0.07953231036663055, -0.021882617846131325, -0.04407285898923874, -0.03662753850221634, 0.004339391831308603, -0.1360706388950348, 0.0044717928394675255, -0.021662600338459015, 0.014042708091437817, -0.017297742888331413, 0.15852056443691254, 0.0796670988202095, 0.09744717925786972, 0.049316830933094025, -0.018803656101226807, 0.010416502133011818, 0.08440551906824112, -0.18533006310462952, 0.02406371384859085, -0.14051510393619537, -0.04566285386681557, 0.048115525394678116, -0.0901399478316307, 0.011470944620668888, 0.14345188438892365, 0.048091527074575424, -0.07715128362178802, 0.002391488989815116, 0.12816017866134644, 0.12254209816455841, 0.058205462992191315, 0.021942881867289543, -0.020747613161802292, 0.0456436388194561, -0.08408178389072418, -0.06624242663383484, -0.038751907646656036, -0.042866192758083344, 0.10937397927045822, -0.02075602300465107, 0.027819514274597168, 0.03835991770029068, -0.03723974525928497, 0.004492571577429771, -0.053527869284152985, -0.06327642500400543, -0.07336287200450897, -0.08451618999242783, -0.08824464678764343, -0.010359267704188824, 0.004090798087418079, 0.413516104221344, 0.14535413682460785, 0.028236351907253265, 0.04503043740987778, 0.03288687765598297, 0.07794936746358871, -0.04603412002325058, 0.010096602141857147, -0.04794829338788986, -0.15207304060459137, -0.07508398592472076, 0.012789923697710037, -0.04025757312774658, 0.03796662390232086, 0.040285758674144745, 0.03402937576174736, -0.11627720296382904, -0.01168192271143198, 0.15998722612857819, -0.21828490495681763, 0.17143723368644714, 0.21065932512283325, 0.01721837744116783, 0.05853408947587013, -0.04762547090649605, -0.11565107852220535, 0.007765743415802717, -0.10505590587854385, -0.06356606632471085, 0.17520862817764282, -0.10735665261745453, 0.05212979391217232, 0.0791507288813591, 0.06098977103829384, 0.11232881247997284, -0.010413012467324734, -0.05777452886104584, -0.006591124460101128, -0.0025202641263604164, -0.21697202324867249, 0.044803377240896225, 0.010965094901621342, 0.0909171774983406, 0.04661259055137634, -0.034206341952085495, 0.15072277188301086, -0.00023299969325307757, 0.024395398795604706, 0.1292126327753067, -0.15259674191474915, -0.22502975165843964, 0.014474747702479362, -0.021870270371437073, 0.02684195525944233, 0.012902777642011642, -0.03428887948393822, -0.13752718269824982, -0.0641721710562706, 0.013895262964069843, -0.0007933596498332918, -0.13355281949043274, 0.038868263363838196, 0.03522816300392151, -0.02181878499686718, -0.04098200052976608, -0.11069533228874207, 0.020134523510932922, 0.011581451632082462, 0.11147423088550568, 0.08376409113407135, -0.068030446767807, 0.08836695551872253, 0.07408908009529114, -0.036838702857494354, 0.06168680638074875, -0.008279029279947281, -0.018119102343916893, -0.07978815585374832, -0.0011851430172100663, 0.17839494347572327, 0.06116683408617973, -0.04023198038339615, 0.06374873220920563, 0.042715199291706085, -0.11989869922399521, -0.03900977596640587, -0.027134960517287254, -0.17415378987789154, -0.24242030084133148, -0.12879127264022827, -0.050380121916532516, 0.1047566682100296, -0.032122768461704254, 0.09364091604948044, 0.04384012892842293, 0.018577471375465393, 0.10488801449537277, 0.08347899466753006, -0.13265585899353027, -0.08720386773347855, -0.03575128689408302, 0.002144802128896117, -0.008193422108888626, -0.15354086458683014, -0.009062517434358597, 0.23090460896492004, 0.17531313002109528, 0.12116411328315735, 0.04739362746477127, 0.0781291127204895, -0.05616231635212898, 0.02736116759479046, -0.005967553239315748, 0.15736836194992065, 0.06616402417421341, -0.017709925770759583, -0.025277411565184593, 0.03316281735897064, 0.021455980837345123, 0.031494032591581345, 0.1382797211408615, -0.18748007714748383, 0.07203271239995956, -0.06787553429603577, 0.09581147879362106, -0.15066857635974884, 0.07132573425769806, -0.2563905119895935, 0.07109247148036957, 0.07889225333929062, 0.18156534433364868, -0.08918029069900513, 0.07818050682544708, 0.040206797420978546, 0.05242999643087387, 0.0657021552324295, 0.06896241009235382, 0.017375823110342026, -0.09289263933897018, 0.020624175667762756, 0.0885004997253418, 0.03618829697370529, 0.027000056579709053, 0.05814318731427193, -0.22480346262454987, 0.09319351613521576, 0.015361007302999496, -0.056861408054828644, -0.14827853441238403, -0.0594518668949604, -0.014891925267875195, 0.0607120655477047, 0.06611685454845428, 0.0260850228369236, 0.02269289456307888, -0.09438802301883698, -0.09401097893714905, 0.0029726605862379074, 0.06177974492311478, 0.03155975043773651, -0.16358277201652527, 0.03824235498905182, 0.024201758205890656, 0.016045644879341125, -0.0651225820183754, -0.02840891107916832, -0.05793270096182823, 0.009291548281908035, 0.08636507391929626, -0.0641370415687561, -0.006768287159502506, -0.012228088453412056, -0.01851942390203476, 0.1333983689546585, -0.013087468221783638, -0.02378556877374649, -0.09758653491735458, 0.05253056436777115, 0.17349129915237427, 0.03357949107885361, -0.038208793848752975, 0.06531181186437607, 0.027470557019114494, -0.008421173319220543, -0.18131482601165771, 0.15367391705513, -0.11606360971927643, 0.13879702985286713, -0.049385927617549896, -0.013025164604187012, -0.017460452392697334, 0.013299920596182346, -0.04162696748971939, -0.06972996890544891, -0.00872704479843378, -0.0651523619890213, 0.12847046554088593, 0.015044987201690674, 0.034199610352516174, 0.22441834211349487, 0.13442522287368774, -0.08934307098388672, 0.1517162024974823, -0.05401971936225891, 0.08682478964328766, 0.12569335103034973, -0.028622807934880257, 0.10379476845264435, 0.19803352653980255, -0.008818555623292923, -0.3082311451435089, 0.13425955176353455, -0.20026686787605286, -0.0312438253313303, -0.04391685873270035, -0.19037306308746338, 0.07369906455278397, 0.18956628441810608, -0.02558150701224804, 0.31986328959465027, -0.19245177507400513, -0.030705345794558525, 0.16928724944591522, -0.07053341716527939, 0.47768938541412354, -0.11697867512702942, -0.007490752264857292, -0.17347462475299835, -0.009403643198311329, 0.10809813439846039, -0.154563769698143, 0.0018485860200598836, -0.00831837859004736, 0.05434628948569298, -0.04163460060954094, -0.0649716928601265, 0.181579127907753, 0.05649694427847862, 0.17770399153232574, -0.014565576799213886, -0.039542876183986664, 0.17961837351322174, -0.02619362249970436, 0.12685292959213257, 0.019572509452700615, 0.00025944874505512416, 0.022960204631090164, -0.044718727469444275, 0.03824963420629501, 0.009957248345017433, 0.050195544958114624, -0.10861046612262726, -0.07954052090644836, 0.025304390117526054, -0.1360391229391098, -0.0995098128914833, 0.06785564124584198, 0.09257577359676361, -0.14785490930080414, -0.06292691081762314, 0.062353167682886124, -0.10717709362506866, 0.05104196444153786, -0.006628359202295542, -0.09871341288089752, 0.11368309706449509, -0.2322419434785843, 0.06294026970863342, 0.09969004988670349, -0.025598596781492233, 0.0077339112758636475, 0.08117078989744186, -0.05004072189331055, 0.019517747685313225, 0.12990273535251617, -0.027200225740671158, -0.06280510127544403, 0.11275457590818405, -0.08864586800336838, 0.09609289467334747, 0.170895054936409, 0.039987217634916306, 0.01974843256175518, -0.0013582523679360747, -0.022990332916378975, 0.08962924033403397, -0.09248258173465729, 0.1062074825167656, 0.049372024834156036, 0.009875365532934666, -0.17706939578056335, 0.24222037196159363, -0.024269264191389084, -0.17061492800712585, 0.029879044741392136, -0.06166324019432068, -0.05120677873492241, -0.0859881043434143, 0.04842900484800339, 0.09511055797338486, -0.04411599412560463, -0.14912576973438263, 0.02301807329058647, -0.09060711413621902, 0.04293282330036163, 0.05489681661128998, 0.06586021929979324, 0.085323266685009, 0.014663226902484894, -0.020813900977373123, -0.07230956107378006, -0.056814201176166534, -0.07215073704719543, 0.06258310377597809, -0.0908706933259964, -0.1989564597606659, -0.08743509650230408, 0.09086784720420837, -0.06746669113636017, 0.023368272930383682, -0.016061119735240936, 0.020467692986130714, -0.2740621864795685, -0.06876246631145477, 0.06617408990859985, 0.009661569260060787, 0.005472314078360796, 0.02872387319803238, -0.012502161785960197, 0.006833246443420649, -0.05549141764640808, 0.0800783783197403, 0.04547468200325966, 0.0006995057337917387, -0.08926878869533539, -0.03815683349967003, -0.006121303420513868, 0.04543742910027504, 0.16026897728443146, 0.1411309689283371, 0.031764399260282516, 0.012964117340743542, 0.001869382569566369, -0.07949323952198029, 0.09573647379875183, 0.10440311580896378, 0.10998926311731339, 0.056578200310468674, 0.016500964760780334, 0.10013876855373383, -0.07932855188846588, 0.005642405711114407, -0.05173781141638756, -0.011590538546442986, 0.07808263599872589, -0.20278069376945496, -0.032077815383672714, 0.0035155490040779114, -0.0788537785410881, 0.21867850422859192, 0.08219143748283386, -0.06788712739944458, 0.08870754390954971, -0.002904355525970459, 0.02367316372692585, -0.04427142068743706, -0.01618354767560959, -0.10439818352460861, -0.048440176993608475, 0.10390117019414902, 0.08968814462423325, -0.06600119173526764, 0.5232924818992615, -0.002081044716760516, -0.1967129111289978, -0.03657246753573418, -0.030170990154147148, 0.04279695823788643, 0.0319288931787014, 0.2428959608078003, 0.06300733983516693, -0.03996620327234268, -0.1723715215921402, 0.10278738290071487, 0.08956878632307053, 0.22140726447105408, 0.10353272408246994, 0.17433558404445648, 0.061923421919345856, 0.006345516536384821, 0.025832151994109154, -0.15688520669937134, -0.014774862676858902, -0.0013099168427288532, -0.028548335656523705, -0.006174210924655199, 0.09213580936193466, -0.06641660630702972, 0.011670928448438644, -0.008944698609411716, -0.06961771845817566, -0.09717472642660141, -0.02577836997807026, -0.06034541130065918, -0.002021454507485032, -0.04404556006193161, -0.09773539006710052, -0.003935269080102444, -0.04885803535580635, -0.052172765135765076, 0.19626440107822418, 0.10367783159017563, -0.025832131505012512, 0.09939997643232346, -0.08056560158729553, 0.0679711401462555, 0.06227167695760727, -0.0026908384170383215, -0.11919687688350677, 0.10875254124403, -0.1308271586894989, -0.02292179875075817, -0.06717704236507416, -0.002395762363448739, -0.002123215002939105, 0.014946171082556248, 0.05495957285165787, -0.10097648203372955, -0.01974528282880783, -0.08751684427261353, 0.039535339921712875, -0.14684802293777466, 0.1023433730006218, 0.015851788222789764, -0.043452538549900055, 0.07285159081220627, -0.03572149574756622, 0.02617712691426277, -0.021234823390841484, 0.0027858347166329622, -0.01292208582162857, 0.022288840264081955, 0.1108817532658577, 0.01748751290142536, -0.08210267871618271, -0.12988311052322388, 0.006468614563345909, 0.3180863857269287, -0.07483240962028503, -0.01812051236629486, 0.09492429345846176, 0.03933742269873619, -0.05946166068315506, 0.16442765295505524, 0.07735887169837952, 0.15780290961265564, 0.002411345951259136, -0.060020461678504944, 0.009568942710757256, -0.00499302102252841, -0.0011235818965360522, 0.13666211068630219, 0.04482518509030342, -0.050586845725774765, -0.09666210412979126, 0.09266887605190277, -0.08696459233760834, -0.02654951624572277, 0.10670071840286255, -0.08226075023412704, -0.08386460691690445, 0.02167164906859398, 0.03630148619413376, -0.03542528301477432, -0.018936317414045334, -0.09384472668170929, -0.004015156999230385, -0.0701724961400032, -0.019935427233576775, -0.2695979177951813, -0.07448333501815796, -0.01356006320565939, 0.15317383408546448, 0.021316980943083763, -0.0021379292011260986, 0.18014341592788696, 0.03810279071331024, 0.03134579211473465, -0.08852843940258026, 0.07183004915714264, -0.024438899010419846, 0.10214437544345856, -0.05846548080444336, -0.06768864393234253, -0.11284198611974716, -0.08013612776994705, 0.08610909432172775, -0.018393060192465782, -0.1062561571598053, 0.05349080264568329, -0.1107693538069725, -0.08804520219564438, -0.058570746332407, -0.07832439988851547, 0.07473175972700119, -0.027538670226931572, -0.00590338883921504, 0.004919361788779497, -0.03348216041922569, 0.1036846935749054, 0.060973815619945526, -0.04126368835568428, -0.08503354340791702, 0.008648323826491833, -0.012365005910396576, 0.059642110019922256, 0.05418233200907707, -0.05152878165245056, 0.07410939037799835, -0.11762918531894684, 0.02059531956911087, -0.012655808590352535, 0.0027895544189959764, 0.08569664508104324, 0.05491506680846214, -0.05679016932845116, 0.01635223999619484, -0.01455196924507618, -0.0015717498026788235, -0.02939741685986519, -0.11311017721891403 ]
e8c86661cde54a13c52fdc07e5a2876ffbff44b5
# Dataset Card for "massive_general-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_general-de-DE
[ "region:us" ]
2023-03-30T11:39:44+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 171110, "num_examples": 652}, {"name": "validation", "num_bytes": 31311, "num_examples": 122}, {"name": "test", "num_bytes": 49862, "num_examples": 189}], "download_size": 90317, "dataset_size": 252283}}
2023-03-30T11:51:57+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_general-de-DE" More Information needed
[ "# Dataset Card for \"massive_general-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_general-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_general-de-DE\"\n\nMore Information needed" ]
[ -0.08896590024232864, 0.06032393500208855, -0.0032383501529693604, -0.007190729025751352, 0.06980646401643753, 0.1336860954761505, -0.022728165611624718, 0.06614477932453156, 0.1055917963385582, -0.025476114824414253, 0.16356141865253448, 0.016617197543382645, 0.004016333259642124, 0.20845039188861847, -0.023704344406723976, -0.08869881182909012, 0.04724772647023201, 0.07968182116746902, -0.19858086109161377, -0.05464167147874832, 0.08582466095685959, -0.034238915890455246, 0.04380245879292488, -0.1822511851787567, -0.10709010064601898, 0.1345190703868866, -0.04070719704031944, -0.05297378823161125, 0.0928783267736435, -0.05133064463734627, 0.06553442031145096, -0.020168283954262733, 0.018468571826815605, -0.11207685619592667, -0.00996334943920374, 0.02583356387913227, -0.060545414686203, 0.03366991505026817, 0.023704415187239647, -0.010048327967524529, -0.109812892973423, -0.14087092876434326, -0.017133597284555435, -0.02983487956225872, -0.06496261060237885, -0.4190767705440521, -0.038129307329654694, -0.0973324254155159, -0.008825017139315605, -0.058343250304460526, 0.0748232826590538, -0.010965981520712376, -0.13517586886882782, -0.02198115363717079, -0.01991841197013855, -0.024389658123254776, 0.07829291373491287, 0.2426372766494751, -0.038156796246767044, 0.13207341730594635, 0.050478458404541016, 0.06985162198543549, 0.14911450445652008, -0.027192814275622368, 0.00238873646594584, -0.010383629240095615, -0.024149592965841293, 0.13419057428836823, -0.011839425191283226, -0.04107292369008064, 0.2905706763267517, -0.03291316702961922, 0.03139922767877579, 0.02929961308836937, -0.03330015763640404, -0.01437575463205576, 0.010120260529220104, -0.031516022980213165, 0.07615730911493301, 0.036913368850946426, 0.06158572435379028, 0.001415278180502355, -0.05841677263379097, -0.16490057110786438, -0.24245095252990723, 0.055587999522686005, -0.0490664578974247, 0.10057096928358078, -0.154922217130661, 0.018011685460805893, -0.28195568919181824, -0.003084166208282113, -0.022861847653985023, -0.06830885261297226, -0.05185770243406296, -0.01226217020303011, -0.04547065868973732, 0.06251654773950577, 0.15575936436653137, 0.06805368512868881, 0.06859152019023895, 0.011009210720658302, -0.08184907585382462, 0.053607258945703506, 0.2028552144765854, -0.014806373044848442, -0.15754735469818115, -0.1110684722661972, 0.01464060414582491, -0.15063394606113434, 0.00703855324536562, -0.07107680290937424, -0.12181656807661057, -0.03939194604754448, -0.051580123603343964, 0.08553656190633774, -0.06877778470516205, -0.13875256478786469, -0.06017128750681877, -0.0012125218054279685, 0.2403198629617691, -0.05204588174819946, 0.01585599221289158, -0.009057747200131416, -0.05531672015786171, 0.06302479654550552, -0.1802159994840622, -0.007795047480612993, 0.11227626353502274, 0.08014955371618271, -0.08866076171398163, -0.11443640291690826, -0.07542181015014648, -0.03484465926885605, 0.08064476400613785, -0.13633321225643158, 0.09436721354722977, -0.08631736785173416, -0.2970064580440521, 0.10226840525865555, 0.011328073218464851, -0.11901489645242691, 0.09971833974123001, 0.06714946031570435, 0.08272048085927963, -0.03478946164250374, -0.08556188642978668, 0.14847663044929504, -0.10319578647613525, 0.019835885614156723, 0.045890431851148605, 0.06055064871907234, -0.2750174403190613, 0.049479518085718155, -0.06028071418404579, 0.003958758898079395, -0.05529593676328659, 0.08013793081045151, -0.11349748075008392, 0.034345291554927826, -0.06403017044067383, -0.03312771022319794, -0.08245206624269485, 0.0530397966504097, -0.0010727215558290482, 0.005050783511251211, -0.2893229126930237, -0.04280182346701622, 0.1092706248164177, -0.09949063509702682, -0.0824623852968216, 0.07071553170681, -0.05287790670990944, -0.007409597281366587, 0.06919323652982712, 0.28358131647109985, -0.07686571031808853, 0.07186410576105118, 0.09448875486850739, 0.1810680776834488, -0.10618121176958084, -0.24809768795967102, 0.11776717752218246, -0.06573722511529922, -0.15728257596492767, 0.012373591773211956, 0.06922022998332977, -0.004145899787545204, -0.042421866208314896, -0.02348972298204899, 0.017793279141187668, -0.14244428277015686, 0.02142818458378315, -0.025560136884450912, 0.04321223497390747, -0.026264384388923645, 0.14264707267284393, 0.10655172914266586, 0.09461627900600433, 0.0249494519084692, -0.05360568314790726, 0.029103511944413185, 0.051919836550951004, -0.15727190673351288, 0.018907535821199417, -0.1201137974858284, -0.07273735105991364, 0.04706409201025963, -0.08986294269561768, -0.0012872969964519143, 0.14148899912834167, 0.06785609573125839, -0.027007294818758965, -0.03795132413506508, 0.12734775245189667, 0.08963562548160553, 0.06269638985395432, 0.05452660471200943, 0.012265975587069988, 0.03955729678273201, -0.08279313892126083, -0.12524396181106567, -0.027422722429037094, -0.06197351962327957, 0.12806692719459534, -0.022579802200198174, 0.011997143737971783, 0.03629838675260544, -0.002005151705816388, 0.03378494828939438, -0.014748305082321167, -0.05806364491581917, -0.0551673099398613, -0.07380328327417374, -0.10133082419633865, -0.018865108489990234, 0.021597381681203842, 0.41107532382011414, 0.08897507190704346, 0.028975218534469604, 0.02884858474135399, 0.014117537997663021, 0.07605540752410889, -0.0326552651822567, -0.009482194669544697, -0.09863495081663132, -0.014142381027340889, -0.06727243959903717, 0.025067301467061043, -0.04072480648756027, 0.03474178537726402, 0.02807008847594261, 0.041302405297756195, -0.07425428926944733, -0.010722759179770947, 0.1278386116027832, -0.2220865786075592, 0.16945289075374603, 0.1599390208721161, -0.010072968900203705, 0.11640630662441254, -0.023940835148096085, -0.13107706606388092, -0.010617799125611782, -0.15263274312019348, -0.06991859525442123, 0.2316877394914627, -0.09273353964090347, 0.03769957646727562, 0.07340013980865479, 0.05746980383992195, 0.15504927933216095, -0.029626231640577316, -0.07991306483745575, -0.004297264851629734, -0.014481013640761375, -0.17328181862831116, 0.02096482738852501, -0.029724154621362686, 0.09210459142923355, 0.06208226829767227, -0.04209241271018982, 0.15001633763313293, -0.0044476487673819065, 0.04881330206990242, 0.13876086473464966, -0.1428099423646927, -0.2317550927400589, 0.03629811480641365, 0.004752580542117357, 0.017274579033255577, 0.03788125514984131, -0.021598337218165398, -0.17118112742900848, -0.07949597388505936, 0.03901929780840874, -0.034038301557302475, -0.17417214810848236, 0.0017542402492836118, -0.0027756744530051947, -0.023297112435102463, -0.04489361494779587, -0.14054593443870544, 0.01924106478691101, 0.0011141012655571103, 0.04415763169527054, 0.07897412776947021, -0.0837971642613411, 0.1233481839299202, 0.11030653864145279, 0.008123955689370632, 0.06764321774244308, -0.04005030170083046, -0.060557447373867035, -0.06524354964494705, -0.0767388567328453, 0.10913843661546707, 0.059754449874162674, -0.03684983775019646, 0.03387778252363205, 0.06795203685760498, -0.15456022322177887, -0.03284445032477379, -0.0011912574991583824, -0.18014657497406006, -0.20991456508636475, -0.14383456110954285, -0.04312441870570183, 0.1021251305937767, 0.014871231280267239, 0.07945503294467926, 0.022982114925980568, 0.013307998888194561, 0.12643276154994965, 0.020572727546095848, -0.1383499801158905, -0.08976825326681137, 0.01769036054611206, -0.013748486526310444, 0.007407798897475004, -0.13671065866947174, -0.03624879568815231, 0.21611404418945312, 0.21065349876880646, 0.14906492829322815, 0.06973592936992645, 0.14491626620292664, -0.0769689753651619, 0.0024907854385674, 0.005807403940707445, 0.13716119527816772, 0.0617891289293766, -0.012636709026992321, -0.04012860730290413, 0.03809666633605957, 0.011640972457826138, 0.012107087299227715, 0.11879752576351166, -0.20354397594928741, 0.04963042587041855, -0.1856658160686493, 0.0784982442855835, -0.17533816397190094, 0.05334740877151489, -0.23364877700805664, 0.0693015307188034, 0.0797584056854248, 0.19419105350971222, -0.09424173086881638, 0.0881117507815361, 0.033438749611377716, -0.000006118789315223694, 0.08858364075422287, 0.08147714287042618, 0.02603025920689106, -0.10309379547834396, 0.030239218845963478, 0.03028011880815029, -0.004196594934910536, 0.01698567159473896, 0.10104695707559586, -0.22039291262626648, 0.13571156561374664, 0.011138076893985271, -0.06985675543546677, -0.15075694024562836, -0.04853907600045204, -0.018064897507429123, 0.0011808648705482483, 0.08462647348642349, 0.006100399885326624, -0.06963220983743668, -0.06369046121835709, -0.05803343281149864, 0.038324031978845596, 0.03194492310285568, -0.05797893926501274, -0.1731174737215042, 0.07025294005870819, 0.023754745721817017, 0.019799867644906044, -0.12280180305242538, -0.0611412450671196, -0.08547373116016388, -0.00032766402000561357, 0.027191435918211937, -0.051037244498729706, -0.006600081920623779, -0.005026023834943771, -0.054591257125139236, 0.16223107278347015, 0.028837261721491814, -0.045371297746896744, -0.07551251351833344, 0.0033963907044380903, 0.19298876821994781, 0.0437275692820549, -0.006881752051413059, 0.06222517043352127, 0.0330122672021389, -0.0078170420601964, -0.20023296773433685, 0.16426298022270203, -0.0956827774643898, 0.12797196209430695, -0.04524477198719978, 0.009557032957673073, 0.002584509551525116, 0.027215179055929184, -0.032175350934267044, -0.031619876623153687, 0.0006882282323203981, -0.09698997437953949, 0.17467226088047028, -0.03418772295117378, 0.10492505133152008, 0.21850888431072235, 0.11391644179821014, 0.00493036350235343, 0.18205471336841583, -0.03231075033545494, 0.13934920728206635, 0.05474034324288368, -0.03748975321650505, 0.12453244626522064, 0.18162284791469574, -0.015523998998105526, -0.2861689031124115, 0.08733402192592621, -0.16520759463310242, -0.015103789046406746, -0.008171876892447472, -0.2979426383972168, 0.08040989935398102, 0.2565927505493164, -0.044042665511369705, 0.2981241047382355, -0.21618928015232086, -0.025098340585827827, 0.1938851922750473, -0.07405032217502594, 0.5135013461112976, -0.13625913858413696, -0.0242836382240057, -0.17541196942329407, 0.03237488120794296, 0.1527688205242157, -0.164557546377182, 0.018741965293884277, -0.006540695670992136, 0.0704386904835701, -0.025451818481087685, -0.0616702102124691, 0.2289126217365265, 0.03760923817753792, 0.16584692895412445, -0.03102080151438713, -0.009538090787827969, 0.20086421072483063, -0.016714654862880707, 0.07735355943441391, -0.018414126709103584, -0.008990705013275146, -0.03796758875250816, -0.060213394463062286, 0.0650990679860115, 0.014473853632807732, 0.0786898136138916, -0.12306269258260727, -0.062071170657873154, 0.026482587680220604, -0.13930891454219818, -0.07756601274013519, 0.08570267260074615, 0.03856152296066284, -0.08586842566728592, -0.08912458270788193, 0.058433208614587784, -0.10262978821992874, -0.003846300533041358, 0.00868930108845234, -0.09468726813793182, 0.1384579837322235, -0.21303783357143402, 0.07652264088392258, 0.12452071160078049, -0.018222356215119362, 0.013795167207717896, 0.08270104229450226, -0.013679121620953083, 0.04678726941347122, 0.13068825006484985, -0.03434615209698677, -0.08998094499111176, 0.09793300181627274, -0.08934872597455978, 0.11103059351444244, 0.17009341716766357, 0.019050104543566704, 0.08152960240840912, -0.013388059101998806, -0.011877083219587803, 0.06247155740857124, -0.09024965763092041, 0.10244818776845932, 0.023660609498620033, -0.00916056614369154, -0.17280307412147522, 0.23973403871059418, 0.019998416304588318, -0.12902531027793884, 0.01134261954575777, -0.0898633748292923, -0.032293900847435, -0.06522832065820694, -0.03955049067735672, 0.17332884669303894, -0.10237640887498856, -0.13630762696266174, 0.01989034004509449, -0.11314264684915543, 0.027277108281850815, 0.04172905161976814, 0.0862375944852829, 0.09880083054304123, 0.006744831334799528, 0.005517863668501377, -0.02750479057431221, -0.08334068953990936, -0.09212465584278107, 0.06190209835767746, -0.06401772797107697, -0.17655304074287415, -0.04490284249186516, 0.09027556329965591, -0.07773002237081528, 0.019557315856218338, -0.04536588117480278, 0.023724887520074844, -0.3521486222743988, -0.05594872683286667, 0.03631647303700447, 0.02070300281047821, 0.010539657436311245, 0.06630339473485947, -0.0007434216095134616, -0.0064597176387906075, -0.05256422236561775, 0.08691080659627914, 0.06040269136428833, 0.023395780473947525, -0.062353141605854034, -0.04711327329277992, 0.004285967443138361, 0.04625135287642479, 0.16121189296245575, 0.12542863190174103, 0.07794686406850815, 0.031909652054309845, 0.016278667375445366, -0.06597625464200974, 0.08512483537197113, 0.07059872895479202, 0.05741504952311516, 0.015762757509946823, 0.006086553912609816, 0.09445158392190933, -0.10667411237955093, 0.024583010002970695, -0.08341043442487717, -0.06219492480158806, 0.08611434698104858, -0.13329999148845673, -0.05932965502142906, 0.03866475820541382, -0.12118654698133469, 0.19255198538303375, 0.1045270562171936, -0.12404347211122513, 0.06970968097448349, -0.020067522302269936, 0.010358462110161781, -0.051972679793834686, -0.036789242178201675, -0.08644724637269974, -0.1185503751039505, 0.12344963103532791, 0.06759370118379593, -0.04909783601760864, 0.6374353766441345, -0.0756039172410965, -0.16108086705207825, -0.056647174060344696, 0.015925999730825424, 0.14258165657520294, 0.04991059750318527, 0.3206298053264618, 0.0589783750474453, -0.05069392919540405, -0.13677920401096344, 0.12005474418401718, 0.04218444600701332, 0.1906994730234146, 0.10701370239257812, 0.08055249601602554, 0.04585787281394005, -0.03290902450680733, -0.011660514399409294, -0.19581739604473114, 0.030606240034103394, 0.09168969094753265, 0.04312809556722641, -0.05006873235106468, 0.09315434843301773, -0.12562142312526703, 0.05875595286488533, -0.015236693434417248, -0.017696676775813103, -0.052681684494018555, -0.018624689429998398, -0.042910587042570114, -0.03528076782822609, -0.0424211211502552, -0.09331034123897552, 0.0021396123338490725, -0.08513476699590683, -0.05435507744550705, 0.2238541692495346, 0.06801978498697281, -0.013535691425204277, 0.09701772779226303, -0.06047661229968071, 0.05709163472056389, 0.052873048931360245, 0.008891112171113491, -0.08608637750148773, 0.0668478012084961, -0.10642119497060776, -0.013894950039684772, -0.03179236128926277, -0.02706855535507202, -0.0062853023409843445, 0.0030290137510746717, 0.008947218768298626, -0.06744571775197983, 0.0349760465323925, -0.09484749287366867, 0.06956581026315689, -0.15476198494434357, 0.11950363218784332, 0.01310778595507145, -0.06322898715734482, 0.07851188629865646, -0.00705744419246912, 0.01174992136657238, 0.031972527503967285, 0.0005858279764652252, 0.06393470615148544, 0.02433118037879467, 0.14045508205890656, 0.029625074937939644, -0.06747663021087646, -0.09132056683301926, -0.02178099937736988, 0.33675071597099304, -0.0916757732629776, -0.027201715856790543, 0.04083238169550896, 0.03494413197040558, 0.02585448883473873, 0.11865728348493576, 0.047071222215890884, 0.2087596356868744, -0.026643360033631325, -0.15261568129062653, 0.03235160559415817, 0.03470683842897415, -0.020482825115323067, 0.08337431401014328, 0.07443155348300934, -0.04320501536130905, -0.08445855230093002, 0.10297499597072601, -0.13153620064258575, 0.08870851993560791, 0.057335518300533295, -0.08904854953289032, -0.10007204115390778, 0.04480206221342087, -0.011806241236627102, -0.06253897398710251, 0.009905490092933178, -0.1023721694946289, -0.02229461632668972, -0.056549251079559326, -0.019641775637865067, -0.29800716042518616, -0.11686421930789948, -0.021861542016267776, 0.25833699107170105, 0.06619922071695328, -0.02736753784120083, 0.17772851884365082, 0.019101055338978767, 0.03879709914326668, -0.06882431358098984, 0.07432249933481216, -0.006040594540536404, 0.05367326736450195, -0.05766260623931885, -0.09079932421445847, -0.09477629512548447, -0.0663134902715683, 0.0724477767944336, -0.012719728983938694, -0.07500810921192169, 0.1794842928647995, -0.07955630868673325, -0.053577523678541183, -0.06462233513593674, -0.10688479989767075, 0.07825221866369247, -0.035123106092214584, -0.011021723970770836, -0.008186904713511467, -0.026530424132943153, 0.09893344342708588, 0.0721096619963646, -0.006481040734797716, -0.09005162864923477, -0.0008735220180824399, -0.008932332508265972, 0.10318442434072495, 0.009505324065685272, -0.03951192647218704, 0.06658267974853516, -0.04557725042104721, 0.07762839645147324, 0.027127321809530258, -0.010726229287683964, 0.06708351522684097, 0.05637837573885918, -0.04858815670013428, -0.031170891597867012, -0.016664501279592514, -0.008597389794886112, -0.047282587736845016, -0.11562689393758774 ]
50596ed705995cc776b244d8c9806be00cbae2d1
# Dataset Card for "massive_audio-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_audio-de-DE
[ "region:us" ]
2023-03-30T11:40:01+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 71359, "num_examples": 290}, {"name": "validation", "num_bytes": 8438, "num_examples": 35}, {"name": "test", "num_bytes": 14871, "num_examples": 62}], "download_size": 42899, "dataset_size": 94668}}
2023-03-30T11:52:22+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_audio-de-DE" More Information needed
[ "# Dataset Card for \"massive_audio-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_audio-de-DE\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_audio-de-DE\"\n\nMore Information needed" ]
[ -0.1144404411315918, 0.07231949269771576, -0.0016152128810063004, -0.00828112568706274, 0.07035751640796661, 0.0452759750187397, 0.052101340144872665, -0.002204270102083683, 0.02482321672141552, -0.0058296797797083855, 0.031550243496894836, 0.11287055909633636, -0.0060274433344602585, 0.17222480475902557, -0.0430336557328701, -0.07477421313524246, 0.001095486106351018, 0.05525854229927063, -0.16593636572360992, -0.027891531586647034, 0.08372339606285095, -0.011282273568212986, 0.01254179235547781, -0.13076336681842804, -0.13972170650959015, 0.09385228157043457, -0.0009635103633627295, -0.04167742282152176, 0.028644882142543793, -0.07861815392971039, 0.054192304611206055, 0.011623736470937729, 0.04697456583380699, -0.05556531623005867, 0.012550602667033672, 0.02462393417954445, -0.003612019820138812, 0.004575646948069334, 0.03932368755340576, -0.03179161250591278, -0.19882062077522278, -0.03195393830537796, -0.04812585934996605, -0.027837330475449562, -0.022044161334633827, -0.3969218134880066, -0.05673150718212128, -0.09886807203292847, 0.00761285750195384, -0.022483868524432182, 0.033697709441185, 0.0010889213299378753, -0.0709441751241684, 0.012569976039230824, 0.005400080233812332, 0.0684635192155838, 0.11213161051273346, 0.15568700432777405, 0.05322086066007614, 0.20710225403308868, 0.07490070164203644, 0.07642427831888199, 0.16435587406158447, -0.02322571910917759, -0.0378817543387413, -0.04913561791181564, -0.05190649628639221, -0.00042613415280357003, -0.011891624890267849, -0.017762307077646255, 0.33007538318634033, -0.03699076920747757, -0.03636518120765686, 0.05069711431860924, -0.005640228278934956, -0.13383246958255768, -0.0064904228784143925, -0.011493531987071037, 0.06226193532347679, 0.029447847977280617, -0.02952270582318306, 0.024276191368699074, -0.026719748973846436, -0.146083265542984, -0.16757847368717194, 0.019790073856711388, -0.06089923158288002, 0.08136911690235138, -0.14896264672279358, -0.02185627445578575, -0.21333354711532593, -0.02282194420695305, 0.026862235739827156, -0.05112186074256897, -0.023845434188842773, -0.008788800798356533, -0.03194325789809227, 0.014082551002502441, 0.09193544089794159, 0.041245024651288986, 0.028652826324105263, -0.033307287842035294, -0.12556198239326477, 0.06695518642663956, 0.202862948179245, -0.14547617733478546, -0.053055282682180405, -0.2145257592201233, 0.014436829835176468, -0.10859109461307526, 0.044568173587322235, -0.0784093588590622, -0.14160984754562378, 0.00678296759724617, -0.09894098341464996, 0.07731813937425613, -0.0383346788585186, -0.19587372243404388, -0.09023768454790115, -0.034630581736564636, 0.13139668107032776, -0.04699594900012016, 0.023683123290538788, -0.04181184992194176, 0.04504815489053726, 0.11692650616168976, -0.17705614864826202, 0.04041361063718796, 0.10324616730213165, 0.12547320127487183, 0.0029030442237854004, -0.07130397111177444, -0.05011435225605965, -0.024476926773786545, 0.13327424228191376, -0.14852745831012726, 0.12642204761505127, -0.05517563968896866, -0.18195757269859314, 0.029787573963403702, 0.019441502168774605, -0.024432571604847908, -0.016345132142305374, 0.04541870579123497, 0.06478291004896164, 0.04263295978307724, -0.14418774843215942, 0.11668149381875992, -0.10769067704677582, 0.06615287065505981, 0.05117350444197655, 0.11583945155143738, -0.2759096920490265, 0.11624767631292343, -0.020078938454389572, 0.007755646947771311, -0.11776775121688843, 0.10077812522649765, -0.09889379888772964, -0.030050992965698242, -0.039006199687719345, -0.05665553733706474, -0.14196601510047913, 0.11726561933755875, 0.013913817703723907, -0.08867719024419785, -0.34573397040367126, -0.11903619766235352, 0.05004311352968216, -0.09963463246822357, -0.07102137804031372, 0.1438879817724228, -0.013962415978312492, 0.010573035106062889, 0.09388652443885803, 0.2713513970375061, 0.009407935664057732, -0.03400726616382599, 0.059578899294137955, 0.13570758700370789, -0.06032106280326843, -0.23776623606681824, 0.0880437046289444, -0.0777893215417862, -0.05634601414203644, -0.06321291625499725, 0.16488085687160492, 0.023187728598713875, -0.022771352902054787, -0.018999801948666573, 0.024210214614868164, -0.14040328562259674, 0.007900536991655827, -0.03025795891880989, -0.03355291113257408, -0.011696122586727142, 0.10739539563655853, 0.17992766201496124, 0.08912696689367294, 0.018744057044386864, -0.02752067707479, 0.04630594328045845, 0.10919860005378723, -0.22034810483455658, -0.01722334511578083, -0.18374523520469666, 0.12208132445812225, 0.0020831176079809666, -0.08897722512483597, 0.1381540596485138, 0.1659100204706192, 0.016716424375772476, -0.05936314910650253, -0.029585571959614754, 0.06239244341850281, 0.0973845049738884, 0.042991138994693756, 0.09177634119987488, -0.03657161444425583, 0.07709748297929764, -0.07686721533536911, -0.1214878112077713, 0.05827877297997475, -0.14017543196678162, 0.06790463626384735, -0.03037605993449688, 0.027886267751455307, 0.009649044834077358, -0.013261904008686543, 0.04206690937280655, -0.010054778307676315, 0.013488730415701866, -0.05402204766869545, -0.06552780419588089, -0.04203719273209572, 0.04947373643517494, -0.09746662527322769, 0.3542538285255432, 0.15064258873462677, -0.04095056653022766, 0.028468217700719833, 0.08484364300966263, 0.10946844518184662, -0.0608321838080883, -0.046403881162405014, -0.10210520029067993, -0.00042416719952598214, -0.09285667538642883, 0.04953480511903763, -0.07884048670530319, 0.04681345447897911, 0.05523810163140297, 0.04225512221455574, -0.04936142638325691, -0.017703598365187645, 0.059929247945547104, -0.18140572309494019, 0.1444336175918579, 0.2399863600730896, -0.06714605540037155, 0.2481258362531662, -0.04701509326696396, -0.16614775359630585, 0.009677460417151451, -0.1513686180114746, -0.08392547816038132, 0.19468806684017181, -0.059633608907461166, 0.050807319581508636, 0.08649291843175888, 0.09128840267658234, 0.07677869498729706, -0.04351973161101341, -0.007004271261394024, 0.006376950070261955, -0.018510984256863594, -0.28308412432670593, 0.012822824530303478, 0.0030090638902038336, 0.03698214888572693, -0.02216607891023159, -0.08702794462442398, 0.16812758147716522, -0.028378939256072044, 0.02374517358839512, -0.006590320263057947, -0.1900186389684677, -0.21664735674858093, -0.05948333814740181, -0.08404625207185745, 0.01548815704882145, 0.06642967462539673, 0.06753057986497879, -0.10457386076450348, -0.04929835721850395, 0.09980640560388565, 0.048270512372255325, -0.1561727374792099, -0.032461978495121, 0.04398529231548309, 0.024051085114479065, 0.027410028502345085, -0.09202109277248383, 0.0319136418402195, 0.05472422391176224, 0.14543256163597107, 0.002541744615882635, -0.007329711690545082, 0.07992039620876312, 0.12676358222961426, 0.047023944556713104, 0.018065674230456352, -0.009611974470317364, -0.02377832494676113, -0.13493284583091736, -0.025140058249235153, 0.1584593504667282, -0.045871611684560776, -0.0501563623547554, 0.11673162877559662, 0.09044160693883896, -0.08019953966140747, -0.03980189189314842, 0.02466384507715702, -0.1866016387939453, -0.2514302432537079, -0.1424357146024704, -0.09581246972084045, 0.06824091076850891, -0.06359650939702988, 0.03047414869070053, 0.07386717200279236, -0.02776063233613968, 0.06523622572422028, 0.05754825845360756, -0.06361731886863708, -0.12906697392463684, -0.013073273003101349, -0.049332134425640106, 0.0333346426486969, -0.14583708345890045, -0.052420474588871, 0.17872968316078186, 0.21355995535850525, 0.08392376452684402, 0.16448788344860077, 0.1596793532371521, -0.03490003943443298, -0.08111440390348434, 0.09503747522830963, 0.14676381647586823, 0.08557630330324173, 0.013773469254374504, -0.029847797006368637, -0.015680711716413498, 0.03456512466073036, 0.007605164777487516, 0.23839007318019867, -0.10856375098228455, 0.021613622084259987, -0.0872100442647934, -0.030122045427560806, -0.1526411920785904, 0.08880958706140518, -0.204318106174469, 0.09947002679109573, 0.0967603549361229, 0.15779156982898712, -0.11749707907438278, 0.14189085364341736, 0.06952790915966034, 0.048821836709976196, 0.08012041449546814, 0.11156432330608368, 0.06483064591884613, -0.15227676928043365, 0.013287669979035854, 0.05963362753391266, 0.04541177675127983, 0.026859454810619354, 0.007549531292170286, -0.1403854340314865, 0.07688985764980316, 0.06747586280107498, 0.017854435369372368, -0.044720359146595, -0.029234349727630615, -0.0025388598442077637, 0.01421641930937767, 0.10679230839014053, 0.0022051602136343718, -0.14987967908382416, -0.07229356467723846, -0.07413014769554138, -0.03213780000805855, 0.07970153540372849, 0.0914958119392395, -0.2137170284986496, 0.02131606638431549, 0.0027241131756454706, 0.035494256764650345, -0.18040451407432556, -0.1115884780883789, -0.08285119384527206, -0.027093369513750076, 0.18783056735992432, -0.000055570028052898124, -0.00205774768255651, -0.04877019673585892, -0.1040627658367157, 0.06539306789636612, -0.0016366366762667894, -0.01051312405616045, -0.02717515639960766, -0.10612842440605164, 0.1881246566772461, 0.11760050058364868, 0.037319768220186234, 0.06460017710924149, 0.014867852441966534, -0.04115348681807518, -0.15662634372711182, 0.13069425523281097, -0.09948182851076126, 0.15565849840641022, -0.0669901892542839, 0.1334133744239807, 0.009950453415513039, 0.05432073399424553, -0.04858717322349548, -0.02828090824186802, 0.03461124002933502, -0.019653618335723877, 0.14647887647151947, -0.06763439625501633, 0.06533201038837433, 0.2118867188692093, 0.06829962879419327, -0.10146351158618927, 0.18001820147037506, -0.08596788346767426, 0.09831701219081879, 0.09861458092927933, -0.004421555902808905, 0.16990196704864502, 0.23642243444919586, -0.016884854063391685, -0.3225348889827728, 0.0954737514257431, -0.08311524242162704, -0.012309045530855656, 0.02200579270720482, -0.24179163575172424, 0.09621208161115646, 0.11303329467773438, -0.024625224992632866, 0.27650636434555054, -0.14491477608680725, 0.005056112073361874, 0.19875134527683258, -0.1741911768913269, 0.3825153112411499, -0.04255080595612526, -0.047010622918605804, -0.23051758110523224, -0.04285570979118347, 0.14420448243618011, -0.2356063574552536, 0.06281503289937973, 0.0932854637503624, 0.08805456757545471, -0.029414232820272446, -0.013723048381507397, 0.13353876769542694, 0.07678437978029251, 0.09777507930994034, 0.017216820269823074, 0.06770390272140503, 0.11754385381937027, 0.01803699880838394, 0.008439339697360992, -0.0319981686770916, -0.019193267449736595, -0.022984087467193604, -0.07155179977416992, 0.0786031037569046, 0.022429438307881355, 0.035273559391498566, -0.0722755417227745, -0.0029606737662106752, -0.011961585842072964, -0.14379949867725372, -0.10217931121587753, 0.12612895667552948, 0.0015372808557003736, -0.08029232919216156, -0.03468060493469238, 0.14289115369319916, -0.05930031090974808, -0.1320590376853943, 0.01570461131632328, -0.11045579612255096, 0.11720048636198044, -0.17562057077884674, 0.11939549446105957, 0.052973657846450806, 0.0031041144393384457, -0.004851299338042736, 0.08572353422641754, -0.051828935742378235, 0.03178650513291359, 0.11216430366039276, 0.020779531449079514, 0.006541722919791937, 0.0391840785741806, -0.09628014266490936, 0.15287066996097565, 0.09024955332279205, 0.04658804088830948, 0.06311280280351639, 0.004347675014287233, 0.02535555511713028, 0.031768158078193665, -0.18222908675670624, 0.14200229942798615, -0.004907895810902119, -0.000532234029378742, -0.18242858350276947, 0.2462783306837082, -0.022532522678375244, -0.2057100534439087, 0.0005607042112387717, -0.10232758522033691, 0.0015335165662690997, -0.05697724595665932, 0.04179484024643898, 0.12741458415985107, -0.05985896661877632, -0.1731770783662796, 0.09140715003013611, -0.10406099259853363, -0.009410546161234379, 0.019108988344669342, 0.02034658193588257, 0.07278690487146378, -0.03850477188825607, 0.013746318407356739, -0.047209642827510834, 0.0168637465685606, -0.07372269034385681, 0.09553967416286469, -0.12614691257476807, -0.1750265657901764, -0.06376376003026962, 0.07427573204040527, -0.10200362652540207, 0.0301880594342947, -0.014630424790084362, 0.06037444993853569, -0.2903469204902649, -0.05175909399986267, 0.08145041018724442, -0.0013113912427797914, 0.012590877711772919, 0.08699732273817062, 0.004126803483814001, 0.03608807548880577, -0.031953115016222, 0.06136631965637207, 0.07410071045160294, 0.03623375669121742, -0.042675189673900604, 0.0000923954212339595, -0.026443196460604668, 0.015833035111427307, 0.09417552500963211, 0.15334324538707733, 0.011944563128054142, -0.025778653100132942, -0.10462392866611481, -0.1705905646085739, 0.12479677051305771, 0.0897219330072403, 0.04418652877211571, -0.04534641653299332, -0.003022528486326337, 0.12048318237066269, -0.01873866841197014, -0.025403518229722977, -0.10328611731529236, -0.004857503343373537, 0.037181537598371506, -0.21138687431812286, -0.04793220013380051, 0.004329698160290718, -0.09656757861375809, 0.23809927701950073, 0.11351679265499115, 0.0018022998701781034, 0.06811012327671051, -0.012630961835384369, 0.07623496651649475, -0.0035009710118174553, -0.02406901679933071, -0.15460094809532166, -0.1498020738363266, 0.06631174683570862, 0.03142230585217476, -0.0660388395190239, 0.44405004382133484, -0.033422183245420456, -0.16602665185928345, -0.04305271431803703, -0.015557932667434216, 0.03534020483493805, 0.035637449473142624, 0.33330193161964417, 0.038734521716833115, -0.040369100868701935, -0.20944802463054657, 0.06114909052848816, 0.07737106829881668, 0.2727974057197571, 0.011170484125614166, 0.13560889661312103, 0.07504443824291229, -0.04208339750766754, 0.07935135066509247, -0.1466861367225647, -0.10655529797077179, 0.06294296681880951, 0.08784835040569305, 0.0035289591178297997, 0.10037560015916824, -0.02516034059226513, -0.03385315090417862, 0.01798732951283455, 0.0481659471988678, -0.08828574419021606, -0.012147482484579086, -0.1313471496105194, 0.04529791325330734, -0.04950200021266937, -0.08317605406045914, 0.0012109592789784074, -0.07347369939088821, 0.03599660098552704, 0.1141706183552742, 0.025600526481866837, -0.03991415724158287, 0.12355685979127884, -0.13578450679779053, 0.019027136266231537, 0.06279348582029343, 0.014172428287565708, -0.10395931452512741, 0.07175476104021072, -0.11030943691730499, 0.1022329181432724, -0.06608457118272781, -0.029724175110459328, -0.04442383348941803, -0.03933427482843399, 0.059683602303266525, -0.0984402522444725, -0.007646156940609217, -0.05638745054602623, 0.024983055889606476, -0.06754263490438461, 0.17544613778591156, 0.026720011606812477, -0.07380319386720657, 0.07642550766468048, -0.03856726363301277, -0.03163949027657509, -0.011740862391889095, 0.02216429077088833, -0.03419014438986778, -0.09610245376825333, 0.17979425191879272, 0.01088293269276619, -0.052701786160469055, -0.10691003501415253, -0.03621024638414383, 0.30541959404945374, -0.07503430545330048, -0.0028621184173971415, 0.062009070068597794, 0.017114268615841866, -0.11371635645627975, 0.08341741561889648, 0.1130480244755745, 0.21148940920829773, 0.03710030019283295, -0.0930565670132637, -0.029413072392344475, 0.03410705551505089, 0.011420447379350662, 0.07832799106836319, 0.018466973677277565, -0.11386654525995255, 0.026434993371367455, 0.11859607696533203, -0.1982538253068924, 0.05150013417005539, -0.00926199834793806, -0.056496188044548035, -0.05067018046975136, -0.015681974589824677, 0.09881152957677841, 0.03906656801700592, -0.0969676673412323, -0.10386942327022552, -0.048440076410770416, -0.04055289179086685, -0.03495318815112114, -0.22387300431728363, -0.03019232675433159, -0.09886078536510468, 0.14523236453533173, -0.051179561764001846, 0.008591415360569954, 0.19560320675373077, -0.03624505177140236, 0.10162618011236191, 0.02150053344666958, 0.11088059097528458, -0.03415903449058533, -0.08437330275774002, -0.04262380301952362, 0.12427887320518494, -0.14097312092781067, 0.03179056942462921, 0.059537872672080994, 0.04369813948869705, -0.04400894418358803, 0.07727646082639694, -0.12492229044437408, -0.0872122198343277, -0.09011711180210114, -0.09794177114963531, 0.099664606153965, -0.13100722432136536, 0.052035365253686905, -0.0014811739092692733, -0.02015271596610546, 0.08638462424278259, 0.15492579340934753, -0.0077431295067071915, -0.027110597118735313, -0.014283823780715466, -0.05437307432293892, 0.07778026163578033, 0.04129844531416893, -0.15769529342651367, 0.0896778330206871, -0.10295682400465012, 0.03727106377482414, -0.046242889016866684, -0.051640305668115616, 0.04359201341867447, 0.03774994984269142, -0.06632032990455627, 0.0031310736667364836, 0.003907126374542713, -0.019938845187425613, -0.07632233202457428, -0.12922745943069458 ]
8e655834c57a2fca6f95f611ae972253cd61188c
# Dataset Card for "massive_lists-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_lists-de-DE
[ "region:us" ]
2023-03-30T11:40:17+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 143624, "num_examples": 539}, {"name": "validation", "num_bytes": 29446, "num_examples": 112}, {"name": "test", "num_bytes": 37628, "num_examples": 142}], "download_size": 69778, "dataset_size": 210698}}
2023-03-30T11:52:48+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_lists-de-DE" More Information needed
[ "# Dataset Card for \"massive_lists-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_lists-de-DE\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_lists-de-DE\"\n\nMore Information needed" ]
[ -0.08274518698453903, 0.09665458649396896, -0.003732401179149747, 0.02169136516749859, 0.11416900902986526, 0.15480679273605347, -0.0016655310755595565, 0.06886865943670273, 0.20496302843093872, -0.024308105930685997, 0.12461118400096893, 0.10230181366205215, -0.02588091604411602, 0.22347033023834229, -0.04336869344115257, -0.07495539635419846, 0.06157544627785683, 0.06343571096658707, -0.2519945800304413, -0.035260092467069626, 0.09394396841526031, -0.055916961282491684, 0.05081083998084068, -0.19515539705753326, -0.06143729016184807, 0.10504832863807678, -0.04849986359477043, -0.03250150755047798, 0.09489446133375168, -0.09671267122030258, 0.0757165476679802, -0.018240485340356827, 0.0218944288790226, -0.10929679870605469, -0.005507918074727058, 0.03000969998538494, -0.04088990017771721, 0.016748633235692978, -0.015282107517123222, -0.033331986516714096, -0.1618448793888092, -0.16634082794189453, -0.007905160076916218, -0.011518675833940506, -0.06329617649316788, -0.3913742005825043, -0.0572376474738121, -0.11704778671264648, -0.0013068643165752292, -0.034061212092638016, 0.07996557652950287, 0.08928816020488739, -0.1258770227432251, -0.01252170279622078, 0.04743102192878723, 0.002768652280792594, 0.07081679999828339, 0.17641307413578033, -0.005242084618657827, 0.11655796319246292, 0.058150514960289, 0.0423649437725544, 0.13530787825584412, -0.036888495087623596, -0.010499028488993645, -0.015592815354466438, -0.03335444629192352, 0.06464528292417526, 0.015640517696738243, -0.024993441998958588, 0.33771368861198425, -0.010239175520837307, 0.04393594712018967, 0.007218922954052687, -0.05789963901042938, -0.04674430191516876, 0.03370463103055954, -0.02311679907143116, 0.09179042279720306, 0.01512105017900467, 0.05009607598185539, 0.02506137639284134, -0.05593408644199371, -0.1091068834066391, -0.17169035971164703, 0.027887597680091858, -0.06809225678443909, 0.09098224341869354, -0.1804378777742386, -0.013210046105086803, -0.18248890340328217, -0.02494734711945057, -0.0021830906625837088, -0.09731905907392502, -0.08587318658828735, -0.036120906472206116, -0.008808227255940437, 0.05023467540740967, 0.1679108589887619, 0.09297413378953934, 0.11390221863985062, -0.03093370422720909, -0.0828707292675972, 0.046661414206027985, 0.20873066782951355, -0.0668121799826622, -0.10401114076375961, -0.18192976713180542, 0.0027613623533397913, -0.11420964449644089, 0.009631430730223656, -0.05335700139403343, -0.11350693553686142, -0.05132298171520233, -0.05728132277727127, 0.12069384753704071, -0.04900752380490303, -0.1350039392709732, -0.055052973330020905, 0.00004717039701063186, 0.13661493360996246, -0.07213865220546722, 0.026799382641911507, 0.025223230943083763, -0.0622062161564827, 0.09356885403394699, -0.19509433209896088, -0.033166296780109406, 0.10028508305549622, 0.1215539276599884, -0.09060744941234589, -0.09156332165002823, -0.07035037875175476, -0.061275746673345566, 0.08834672719240189, -0.2179555892944336, 0.11320449411869049, -0.06286360323429108, -0.267680287361145, 0.06865054368972778, -0.000019325778339407407, -0.07381486147642136, 0.06767751276493073, 0.07013373076915741, 0.05808524414896965, -0.04260960593819618, -0.07687820494174957, 0.1207984909415245, -0.10678381472826004, 0.05313529074192047, 0.007198443170636892, 0.07226340472698212, -0.23842793703079224, 0.05274435132741928, -0.07541823387145996, -0.00847063772380352, -0.05896083265542984, 0.05882113054394722, -0.06293430179357529, 0.12934254109859467, -0.06564846634864807, -0.02236950770020485, -0.059242766350507736, 0.03983389958739281, -0.026710456237196922, 0.04112546145915985, -0.36571818590164185, -0.024834711104631424, 0.08519401401281357, -0.09996987879276276, -0.15077051520347595, 0.075651615858078, -0.07051234692335129, 0.03965030983090401, 0.08225519955158234, 0.2346700131893158, -0.06785425543785095, 0.12096038460731506, 0.0457245372235775, 0.15282651782035828, -0.09749571979045868, -0.2796182334423065, 0.10745921730995178, -0.06757405400276184, -0.06525248289108276, -0.010988278314471245, 0.10923594236373901, -0.0335376113653183, -0.04365162178874016, -0.03082745522260666, 0.013271722942590714, -0.1576274037361145, 0.0447767935693264, -0.034134186804294586, 0.002765172626823187, -0.04317360743880272, 0.15781350433826447, 0.1523028463125229, 0.10005178302526474, 0.03146303445100784, -0.06268267333507538, 0.058969590812921524, 0.03960854560136795, -0.10744033753871918, -0.005536994431167841, -0.14927513897418976, -0.06618420779705048, 0.03047480247914791, -0.11789368838071823, -0.012680825777351856, 0.16117019951343536, 0.042599085718393326, -0.07733482122421265, 0.01622074469923973, 0.15436477959156036, 0.11194651573896408, 0.07996176928281784, 0.0593620240688324, 0.003964835312217474, 0.02223747968673706, -0.09177785366773605, -0.1289708912372589, -0.04568636789917946, -0.07153219729661942, 0.10548032820224762, 0.02214686945080757, 0.03660739213228226, 0.024290001019835472, 0.003875973867252469, 0.025344090536236763, -0.017855551093816757, -0.06972266733646393, -0.021625952795147896, -0.08100369572639465, -0.06583884358406067, -0.08504924923181534, -0.01648561656475067, 0.37429025769233704, 0.13010312616825104, 0.02316422574222088, 0.046405527740716934, 0.07598277926445007, 0.08608683943748474, -0.020960092544555664, -0.03406012803316116, -0.05904358997941017, -0.12732766568660736, -0.03675378859043121, 0.062068577855825424, -0.029795246198773384, 0.03308222442865372, 0.025938507169485092, 0.08645271509885788, -0.07126819342374802, -0.0063688624650239944, 0.1658238023519516, -0.23275230824947357, 0.16693881154060364, 0.18055807054042816, 0.04226163029670715, 0.10463500767946243, -0.04712884500622749, -0.10277742892503738, 0.004365014843642712, -0.1316603720188141, -0.0818583071231842, 0.18680299818515778, -0.14454779028892517, 0.05218450725078583, 0.08243385702371597, 0.034442413598299026, 0.0961928591132164, -0.009183308109641075, -0.06670312583446503, 0.016345189884305, -0.008291740901768208, -0.1256786733865738, 0.004810044541954994, 0.03432648256421089, 0.08706659823656082, 0.05767526477575302, -0.05484747886657715, 0.16205504536628723, -0.02144574746489525, 0.04425923526287079, 0.12301398068666458, -0.13633166253566742, -0.22848786413669586, 0.03676140680909157, -0.0475054569542408, 0.016181984916329384, 0.047263968735933304, -0.0064820824190974236, -0.10863444209098816, -0.06179782375693321, 0.06197502464056015, 0.011127954348921776, -0.20205417275428772, 0.017701661214232445, 0.010234232991933823, 0.038463395088911057, -0.058029718697071075, -0.12131005525588989, 0.023780202493071556, -0.003227118868380785, 0.08544188737869263, 0.07030577212572098, -0.06148921698331833, 0.0855630412697792, 0.06835921108722687, -0.031889770179986954, 0.05974981561303139, -0.03984116017818451, -0.05140280723571777, -0.062422975897789, -0.06213533505797386, 0.12705682218074799, 0.012042746879160404, -0.04904065281152725, 0.08532465249300003, 0.06477287411689758, -0.15459251403808594, -0.006097255274653435, -0.004003598354756832, -0.17562326788902283, -0.2276635617017746, -0.1395270973443985, -0.047196149826049805, 0.09218860417604446, 0.06183754280209541, 0.07113604247570038, -0.0245126411318779, 0.03196698799729347, 0.1025734394788742, 0.022726023569703102, -0.15517720580101013, -0.09105348587036133, 0.042096566408872604, -0.004105905070900917, -0.014227071776986122, -0.15162213146686554, -0.04266384243965149, 0.19843193888664246, 0.18086278438568115, 0.1484932005405426, 0.0933588519692421, 0.16048330068588257, -0.07587326318025589, -0.04382123798131943, 0.03514469414949417, 0.1841716170310974, 0.10712014883756638, 0.005746518261730671, -0.02883947640657425, 0.020667728036642075, -0.013630022294819355, 0.013925684615969658, 0.12757250666618347, -0.14010025560855865, 0.023428358137607574, -0.1329900622367859, 0.07533849030733109, -0.10023565590381622, 0.11903578042984009, -0.23105260729789734, 0.0898517593741417, 0.07897075265645981, 0.1770397126674652, -0.10698267817497253, 0.10307016968727112, -0.017822906374931335, 0.009070885367691517, 0.08531919866800308, 0.0506853424012661, 0.04969555884599686, -0.15961775183677673, 0.04681470990180969, 0.032693859189748764, 0.009524351917207241, 0.010132640600204468, 0.09479639679193497, -0.19130605459213257, 0.14852282404899597, 0.003912499640136957, -0.06069500744342804, -0.14505413174629211, -0.07498741149902344, -0.02660827524960041, -0.003093185368925333, 0.11423445492982864, -0.018098557367920876, -0.044071048498153687, -0.04787452518939972, -0.05707554146647453, 0.01660068705677986, 0.022998863831162453, -0.05926712229847908, -0.13300590217113495, 0.03957764804363251, 0.030175048857927322, 0.010278725065290928, -0.06268919259309769, -0.012193768285214901, -0.09316125512123108, -0.02456427924335003, 0.04579397663474083, -0.03651672229170799, 0.01677601970732212, -0.00883818045258522, -0.07404731959104538, 0.1469944566488266, -0.003353023435920477, -0.06202208623290062, -0.08298929780721664, -0.02453748509287834, 0.22460614144802094, 0.047063473612070084, -0.012638655491173267, 0.03377154842019081, 0.020025737583637238, -0.0681602954864502, -0.17562931776046753, 0.14697818458080292, -0.09535429626703262, 0.13305340707302094, -0.053094420582056046, 0.04347379505634308, -0.027450080960989, 0.01966973952949047, -0.018155746161937714, -0.02258170023560524, 0.018989309668540955, -0.06299727410078049, 0.10522980242967606, -0.03561904653906822, 0.10618463158607483, 0.26267725229263306, 0.05898752808570862, -0.014039919711649418, 0.1525544822216034, -0.040676359087228775, 0.16510143876075745, 0.11626679450273514, -0.0707538053393364, 0.13800901174545288, 0.16197341680526733, -0.00522654177621007, -0.24790340662002563, 0.0655103325843811, -0.196788027882576, -0.031761471182107925, 0.022952310740947723, -0.2734680473804474, 0.0818009227514267, 0.218486025929451, -0.02517573907971382, 0.280814528465271, -0.2233257293701172, -0.02587525174021721, 0.20822179317474365, -0.08302203565835953, 0.47803694009780884, -0.1169358417391777, -0.017725029960274696, -0.22071698307991028, 0.02947460301220417, 0.21848300099372864, -0.13828466832637787, 0.010079941712319851, 0.0016972022131085396, 0.046054448932409286, -0.027425779029726982, -0.03926808014512062, 0.20433510839939117, 0.08002593368291855, 0.16380977630615234, -0.029370980337262154, -0.042559195309877396, 0.17857562005519867, -0.037295594811439514, 0.07938860356807709, 0.013570270501077175, -0.028141576796770096, -0.12945416569709778, -0.06627955287694931, 0.07850077748298645, 0.02699429914355278, 0.06304644793272018, -0.11459862440824509, -0.07220621407032013, 0.0070138955488801, -0.13452835381031036, -0.07169563323259354, 0.10803962498903275, 0.07704813778400421, -0.04178796708583832, -0.08597809076309204, 0.10888663679361343, -0.07941055297851562, -0.030278384685516357, 0.02304154448211193, -0.07858781516551971, 0.09956655651330948, -0.17579837143421173, 0.06991784274578094, 0.12299784272909164, -0.009233462624251842, 0.00010176953219342977, 0.07739434391260147, -0.021924015134572983, 0.015247988514602184, 0.11528034508228302, -0.01438883040100336, -0.10918762534856796, 0.10765361040830612, -0.17524662613868713, 0.06157029792666435, 0.11888719350099564, 0.04976630210876465, 0.05737375095486641, -0.010201296769082546, -0.025668436661362648, 0.04114598408341408, -0.057654187083244324, 0.08062060177326202, 0.017252333462238312, 0.03596983104944229, -0.18582290410995483, 0.24290277063846588, 0.017012355849146843, -0.14100682735443115, -0.007752080447971821, -0.015378103591501713, -0.0507868155837059, -0.09698200970888138, -0.028402863070368767, 0.12945431470870972, -0.0951845794916153, -0.12047494947910309, 0.02090047486126423, -0.09843530505895615, 0.033257827162742615, 0.07699041068553925, 0.09783652424812317, 0.10658688098192215, 0.00877390056848526, -0.05177633836865425, -0.04648416489362717, -0.0756232962012291, -0.08209046721458435, 0.023868123069405556, -0.08780510723590851, -0.17324785888195038, -0.0707947239279747, 0.0849754810333252, -0.07015910744667053, 0.024243056774139404, -0.06623221188783646, 0.03621385991573334, -0.3351544737815857, -0.034675318747758865, 0.036387648433446884, 0.007911614142358303, 0.013460902497172356, 0.0674823448061943, -0.00015412835637107491, -0.04824136197566986, -0.05735546723008156, 0.0783732682466507, 0.04477358236908913, 0.03594602271914482, -0.06640083342790604, -0.023624669760465622, -0.009533684700727463, 0.011092640459537506, 0.16408656537532806, 0.09803648293018341, 0.032115209847688675, -0.00770260114222765, 0.02057144232094288, -0.12748800218105316, 0.08246297389268875, 0.06943206489086151, 0.07526317238807678, 0.007378083188086748, 0.01396472193300724, 0.09359254688024521, -0.040027864277362823, 0.010290713049471378, -0.1271936595439911, -0.0656089186668396, 0.052046749740839005, -0.11851543933153152, -0.023591093719005585, 0.0605136938393116, -0.14690528810024261, 0.2248677909374237, 0.09620093554258347, -0.05713370814919472, 0.09762343764305115, 0.010188082233071327, 0.01318172924220562, -0.0669749453663826, -0.06180276721715927, -0.09490448981523514, -0.06426957249641418, 0.12932933866977692, 0.06913194060325623, -0.036398179829120636, 0.599186360836029, -0.02390207163989544, -0.10892996191978455, -0.02497384510934353, 0.02506653219461441, 0.028299011290073395, 0.04313267394900322, 0.348924845457077, 0.09790487587451935, -0.030298154801130295, -0.13176953792572021, 0.09571009874343872, 0.0591789186000824, 0.23309899866580963, 0.13474425673484802, 0.16098259389400482, 0.07435431331396103, -0.02072814479470253, 0.023014331236481667, -0.16976866126060486, 0.02023334987461567, 0.04895160347223282, 0.11443547904491425, -0.030244026333093643, 0.09755563735961914, -0.1656191647052765, 0.059884440153837204, 0.015880484133958817, -0.007070893421769142, -0.07939688116312027, -0.0018110148375853896, -0.07383451610803604, 0.005140245892107487, -0.05794541537761688, -0.04522301256656647, 0.0025297256652265787, -0.05873824656009674, -0.07257271558046341, 0.2515202462673187, 0.07963825017213821, -0.009996188804507256, 0.01587194949388504, -0.05984748899936676, 0.04396318644285202, 0.05718155950307846, 0.025971651077270508, -0.08130913227796555, 0.07894010096788406, -0.10338901728391647, -0.02930406853556633, -0.07010144740343094, -0.05668303743004799, -0.006271569058299065, 0.012646549381315708, 0.035361260175704956, -0.09785418957471848, 0.013448347337543964, -0.07048958539962769, 0.06658483296632767, -0.13478851318359375, 0.15313726663589478, 0.01250268705189228, -0.08669441938400269, 0.06428280472755432, 0.003527256892994046, 0.017346838489174843, -0.026001932099461555, 0.010510433465242386, 0.04381581023335457, 0.02840537391602993, 0.12160634994506836, 0.008389133028686047, -0.06291651725769043, -0.08332128822803497, -0.04671420902013779, 0.3881584405899048, -0.07712908089160919, -0.008620355278253555, 0.04340396821498871, 0.03785552829504013, 0.0016610026359558105, 0.12467189133167267, 0.03695137798786163, 0.176474466919899, 0.01092461496591568, -0.06292010098695755, 0.02834991365671158, 0.003817823948338628, -0.03785507380962372, 0.08962835371494293, 0.09177803248167038, -0.032900914549827576, -0.05516434460878372, 0.15510772168636322, -0.11898693442344666, 0.03183232992887497, 0.08161389082670212, -0.10603784024715424, -0.11488033086061478, 0.01801089383661747, -0.023690225556492805, -0.017731374129652977, -0.013545301742851734, -0.08924621343612671, -0.05182900279760361, -0.05199148878455162, -0.03973932936787605, -0.3388712406158447, -0.11782123893499374, -0.039940398186445236, 0.23106056451797485, 0.0052172960713505745, -0.008750660344958305, 0.13296076655387878, 0.007908608764410019, 0.015279095619916916, -0.08103734254837036, 0.06259263306856155, 0.012535657733678818, 0.11146147549152374, -0.01850852556526661, -0.08945703506469727, -0.12012268602848053, -0.07490096986293793, 0.06399291753768921, -0.03443127125501633, -0.06652448326349258, 0.1546328216791153, -0.10231595486402512, -0.06782729178667068, -0.04703884571790695, -0.0815710723400116, 0.07182755321264267, -0.012345981784164906, -0.008400272578001022, 0.009960364550352097, 0.012758303433656693, 0.0855177491903305, 0.06415826827287674, -0.07070803642272949, -0.12040174752473831, 0.00378404906950891, -0.036205388605594635, 0.05758462846279144, -0.006900525651872158, -0.058711208403110504, 0.0798068568110466, -0.08095894008874893, 0.037531133741140366, -0.0049353837966918945, -0.023441769182682037, 0.028255639597773552, 0.06370468437671661, -0.04427671432495117, -0.014837443828582764, -0.007259484846144915, 0.0007343693287111819, -0.07463499903678894, -0.13756456971168518 ]
d295a88c95ac39aab5e440fcb84c32d5b67a02ff
# Dataset Card for "massive_qa-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_qa-de-DE
[ "region:us" ]
2023-03-30T11:40:34+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 329537, "num_examples": 1183}, {"name": "validation", "num_bytes": 59481, "num_examples": 214}, {"name": "test", "num_bytes": 79960, "num_examples": 288}], "download_size": 141433, "dataset_size": 468978}}
2023-03-30T11:53:14+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_qa-de-DE" More Information needed
[ "# Dataset Card for \"massive_qa-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_qa-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_qa-de-DE\"\n\nMore Information needed" ]
[ -0.11226267367601395, 0.051311373710632324, -0.002393855946138501, 0.0018212819704785943, 0.037442851811647415, 0.11116468906402588, -0.022609278559684753, 0.07820133864879608, 0.13540256023406982, -0.019219353795051575, 0.1312897801399231, 0.014548282139003277, 0.04462292417883873, 0.2394385039806366, -0.014107097871601582, -0.03926080837845802, 0.025368858128786087, 0.04793263226747513, -0.2551515996456146, -0.010395790450274944, 0.08490121364593506, -0.04659609869122505, 0.06705260276794434, -0.14258606731891632, -0.09615534543991089, 0.10733882337808609, -0.041425179690122604, -0.07053960859775543, 0.0927601084113121, -0.03506658226251602, 0.09484810382127762, 0.04641392081975937, 0.003105969401076436, -0.14031407237052917, 0.01999683491885662, 0.0061976066790521145, -0.08659572899341583, 0.01202278770506382, -0.009001245722174644, 0.0024370315950363874, -0.16859422624111176, -0.10440545529127121, -0.06434182822704315, -0.009808257222175598, -0.05596805363893509, -0.33313602209091187, -0.037684135138988495, -0.05026615411043167, 0.010194261558353901, -0.05495699122548103, 0.08738506585359573, 0.042803164571523666, -0.15337039530277252, 0.00019413871632423252, -0.030031999573111534, -0.06110774725675583, 0.07263214886188507, 0.14070014655590057, -0.01898338459432125, 0.16404886543750763, 0.047124166041612625, 0.04800063371658325, 0.14135272800922394, -0.0545957088470459, -0.05525601655244827, -0.029063774272799492, 0.02913782000541687, 0.10438692569732666, 0.0005281700869090855, -0.02230500802397728, 0.23821984231472015, -0.008872345089912415, 0.004024561494588852, 0.08504550904035568, -0.049027323722839355, -0.06686203926801682, 0.0145411416888237, 0.0025272530037909746, 0.07761617749929428, 0.021247925236821175, 0.05574097856879234, 0.05498849228024483, -0.06406190246343613, -0.15322138369083405, -0.23647601902484894, -0.012520210817456245, -0.043436285108327866, 0.11296389997005463, -0.2170013040304184, -0.0009773836936801672, -0.24393509328365326, -0.03363299369812012, -0.026997623965144157, -0.125496044754982, -0.03604729846119881, -0.003048202721402049, -0.009774318896234035, 0.08499334007501602, 0.17384955286979675, 0.002416033996269107, 0.08142983913421631, 0.022564927116036415, -0.06833919882774353, 0.0591147355735302, 0.144472137093544, -0.022813839837908745, -0.10768008232116699, -0.15314368903636932, 0.022777622565627098, -0.07195278257131577, -0.05368928983807564, -0.05319947749376297, -0.11546640843153, -0.05659082159399986, -0.10686324536800385, 0.11689504235982895, -0.06376875191926956, -0.12549568712711334, 0.002578951418399811, 0.006710812449455261, 0.18693621456623077, -0.05762888118624687, -0.021201251074671745, 0.022630488499999046, -0.05410534515976906, 0.0740216001868248, -0.17858633399009705, -0.013272076845169067, 0.11438674479722977, 0.017910553142428398, -0.051266081631183624, -0.09350781887769699, -0.03443580120801926, -0.029055217280983925, 0.07511253654956818, -0.1537427455186844, 0.09233895689249039, -0.11925479024648666, -0.2068014144897461, 0.10315565019845963, -0.017665399238467216, -0.06678814440965652, 0.09737735986709595, 0.07476574927568436, 0.051720526069402695, -0.030269760638475418, -0.08104418218135834, 0.17067433893680573, -0.10319837182760239, 0.07247451692819595, 0.05739119276404381, 0.10780005902051926, -0.2723955810070038, 0.04382089525461197, -0.03892594575881958, 0.03512733802199364, -0.04054655507206917, 0.1012205258011818, -0.10747440159320831, 0.015109226107597351, -0.08145267516374588, -0.029506519436836243, -0.05717260017991066, 0.01983599178493023, 0.0014368471456691623, 0.03412487730383873, -0.36404427886009216, -0.054154958575963974, 0.14654871821403503, -0.08305490761995316, -0.17259423434734344, 0.08449693769216537, -0.0385795421898365, 0.0074216327629983425, 0.042704083025455475, 0.24627044796943665, -0.006206293124705553, 0.04877772554755211, -0.00425894558429718, 0.1988067626953125, -0.09534008055925369, -0.29742002487182617, 0.12752200663089752, -0.016118671745061874, -0.12087444216012955, -0.0012750814203172922, 0.10823199898004532, 0.020359592512249947, -0.02302698604762554, -0.07865016907453537, 0.010202593170106411, -0.17982755601406097, 0.009763188660144806, -0.05291900411248207, 0.0435979887843132, 0.01839488185942173, 0.1545621007680893, -0.0019054753938689828, 0.08343314379453659, 0.06917768716812134, -0.04503116384148598, -0.00009287015564041212, 0.11223406344652176, -0.17513324320316315, 0.027319567278027534, -0.11381041258573532, -0.018640663474798203, 0.02725115977227688, -0.12504392862319946, -0.00523490970954299, 0.10182719677686691, 0.06545539945363998, -0.04011046886444092, 0.003439671127125621, 0.10761996358633041, 0.07392507791519165, 0.06240326911211014, 0.011800378561019897, 0.047428544610738754, 0.06245417147874832, -0.08502377569675446, -0.0799543708562851, 0.020257221534848213, -0.07009150087833405, 0.10162709653377533, -0.028787847608327866, 0.011970632709562778, 0.09043676406145096, -0.0016784673789516091, 0.04788500815629959, -0.002572892000898719, -0.01906726136803627, -0.030490154400467873, -0.09745744615793228, -0.13245542347431183, -0.019526105374097824, 0.01633705198764801, 0.3991348445415497, 0.10884828865528107, 0.06290999799966812, 0.05926612392067909, -0.038571666926145554, 0.06884223967790604, -0.016341982409358025, 0.02931142784655094, -0.017601003870368004, -0.03872697427868843, -0.06244619935750961, 0.06229562312364578, -0.07086418569087982, 0.049514155834913254, 0.042060740292072296, 0.08463472872972488, -0.07642024755477905, 0.03760676831007004, 0.17826662957668304, -0.23091915249824524, 0.12374168634414673, 0.2949790358543396, 0.06557620316743851, 0.09481250494718552, -0.06778787076473236, -0.11635667830705643, 0.010647931136190891, -0.10230139642953873, -0.0824170857667923, 0.21197929978370667, -0.020998897030949593, 0.034786514937877655, 0.07307809591293335, 0.0436243899166584, 0.09042869508266449, -0.028904911130666733, -0.1023908331990242, -0.03690478205680847, -0.011807774193584919, -0.32843372225761414, 0.02816583216190338, 0.0261969156563282, 0.10559435933828354, 0.07543273270130157, -0.04814670607447624, 0.13202044367790222, -0.022974014282226562, 0.04245516285300255, 0.14494800567626953, -0.13322286307811737, -0.2225736528635025, 0.07037970423698425, -0.04004963859915733, 0.03623512014746666, -0.019793814048171043, -0.02717859484255314, -0.20680606365203857, -0.03058793768286705, 0.05317031592130661, -0.03591272607445717, -0.1264331340789795, 0.03431536629796028, 0.0026883110404014587, -0.017858946695923805, -0.009947829879820347, -0.10864440351724625, 0.02603522129356861, -0.0319141186773777, 0.06503748148679733, 0.08028367906808853, -0.0909985825419426, 0.12529006600379944, 0.06846961379051208, -0.04590866342186928, 0.07828380912542343, -0.04166547209024429, 0.07128982245922089, -0.07496171444654465, -0.030178433284163475, 0.15093934535980225, 0.049895029515028, -0.01750865951180458, 0.09549946337938309, 0.06160426884889603, -0.11499745398759842, -0.04146293178200722, -0.0002880029787775129, -0.18770086765289307, -0.19041146337985992, -0.10558415204286575, -0.021284639835357666, 0.07681985944509506, -0.0507371611893177, 0.08314340561628342, -0.0798000693321228, 0.02659578062593937, 0.1356266885995865, -0.0065825688652694225, -0.19352468848228455, -0.10963869094848633, -0.05573352053761482, 0.016057537868618965, 0.011780529282987118, -0.18338359892368317, -0.01247332151979208, 0.19534942507743835, 0.2913065254688263, 0.11849328130483627, 0.043484222143888474, 0.10564962774515152, -0.038770489394664764, 0.09715926647186279, 0.07201125472784042, 0.12786605954170227, 0.05066337063908577, -0.03774980083107948, -0.024015413597226143, 0.03463973477482796, -0.012982452288269997, 0.017938870936632156, 0.15301454067230225, -0.12853921949863434, 0.00830000825226307, -0.05879736691713333, 0.07195288687944412, -0.15438415110111237, 0.05845396965742111, -0.1443227380514145, 0.08423250168561935, 0.061702750623226166, 0.17836914956569672, -0.0567626953125, 0.11441910266876221, 0.0237798523157835, -0.018802976235747337, 0.06264247745275497, 0.06572391837835312, 0.05798044800758362, -0.051717665046453476, 0.05694648250937462, 0.03004281036555767, -0.03947100788354874, -0.00321642542257905, 0.08405732363462448, -0.2832799553871155, 0.1753934770822525, 0.027420857921242714, -0.0547470860183239, -0.106119804084301, -0.07638184726238251, 0.006015132647007704, 0.023837925866246223, 0.1128593310713768, -0.00041573174530640244, -0.01024902518838644, -0.14848706126213074, -0.09661416709423065, 0.09067152440547943, 0.034613899886608124, 0.016324913129210472, -0.14737369120121002, 0.06095504015684128, 0.043486423790454865, -0.01841033436357975, 0.0031342357397079468, -0.041446082293987274, -0.0686395987868309, -0.023937955498695374, 0.04017455130815506, -0.07016334682703018, 0.004253859631717205, 0.007193916477262974, -0.1303471475839615, 0.03536278381943703, -0.07058142870664597, -0.05745094269514084, -0.0520474836230278, -0.07274986803531647, 0.15147116780281067, -0.0028166682459414005, -0.03262918069958687, 0.025003235787153244, -0.018430080264806747, -0.02382666803896427, -0.18642927706241608, 0.1162550076842308, -0.1088758036494255, 0.12838639318943024, -0.03260952606797218, 0.02115359902381897, -0.047409720718860626, 0.049813587218523026, -0.015343048609793186, -0.07679855823516846, -0.05458233878016472, -0.08115494251251221, 0.14458855986595154, -0.12473277002573013, 0.06682946532964706, 0.1810847967863083, 0.09387607127428055, 0.035358529537916183, 0.13585416972637177, -0.005400620400905609, 0.16584311425685883, 0.12763626873493195, -0.05785943940281868, 0.1647786796092987, 0.18638594448566437, 0.027132604271173477, -0.27357015013694763, 0.036277733743190765, -0.16068121790885925, -0.013521521352231503, -0.026426149532198906, -0.2311427891254425, 0.046730611473321915, 0.19239874184131622, -0.02331503853201866, 0.2340276539325714, -0.19141390919685364, -0.017096230760216713, 0.1809375286102295, -0.07470159232616425, 0.45542433857917786, -0.13640117645263672, -0.005437825340777636, -0.18052612245082855, -0.0414217971265316, 0.1386888027191162, -0.19196940958499908, 0.023450959473848343, -0.03386332839727402, 0.09673960506916046, -0.04839950427412987, -0.05093907192349434, 0.20463749766349792, 0.04582369327545166, 0.12229473143815994, -0.020196450874209404, -0.07693585008382797, 0.08282927423715591, -0.03222915530204773, 0.018186185508966446, -0.037979550659656525, 0.01874910295009613, -0.11575353890657425, -0.02671944722533226, 0.021319543942809105, -0.004909156821668148, 0.05235234275460243, -0.10011255741119385, -0.06641516834497452, 0.018297549337148666, -0.1061934158205986, -0.06513034552335739, 0.03911236673593521, 0.018663745373487473, -0.0504918172955513, -0.033562906086444855, 0.09386209398508072, -0.07993928343057632, 0.0026724529452621937, -0.012777773663401604, -0.08556599169969559, 0.1362951695919037, -0.2575691044330597, 0.0739346370100975, 0.13473406434059143, -0.027686526998877525, -0.012546529062092304, 0.08004438877105713, -0.013787629082798958, 0.11230088770389557, 0.1275133192539215, 0.005040465854108334, -0.09215681999921799, 0.09649265557527542, -0.09251296520233154, 0.07991012185811996, 0.1291292905807495, -0.01556356530636549, 0.07553920894861221, -0.00011109058686997741, -0.021200653165578842, 0.03091748245060444, -0.09319352358579636, 0.08896052837371826, 0.07246600091457367, 0.044420648366212845, -0.18260355293750763, 0.2289475053548813, -0.01201668567955494, -0.09987986087799072, 0.010950415395200253, -0.06374862045049667, -0.05784269794821739, -0.05905994400382042, -0.015478764660656452, 0.17757780849933624, -0.12881220877170563, -0.14571735262870789, 0.020216846838593483, -0.12218809127807617, 0.04358890652656555, 0.13341782987117767, 0.041694920510053635, 0.04325057938694954, 0.022367166355252266, -0.04803254082798958, -0.017178725451231003, -0.03317800536751747, -0.1655946522951126, 0.027275443077087402, -0.05558628588914871, -0.17568014562129974, -0.07758121937513351, 0.2190668284893036, -0.06967205554246902, 0.014691708609461784, -0.04598969966173172, 0.036907266825437546, -0.43610090017318726, -0.024198370054364204, 0.08308184146881104, 0.024044621735811234, -0.029586464166641235, 0.05404146388173103, -0.023132504895329475, -0.01458353828638792, -0.07984276860952377, 0.09137582778930664, 0.059954266995191574, 0.028943676501512527, -0.07076846063137054, -0.010616983287036419, -0.008013811893761158, 0.09041287750005722, 0.16384972631931305, 0.09443017095327377, 0.04482930526137352, 0.05589582398533821, 0.059097785502672195, -0.1004704087972641, 0.025434749200940132, 0.07446993887424469, 0.10264047235250473, 0.0783308893442154, 0.03533737733960152, 0.04257337376475334, -0.1510060876607895, 0.02448398806154728, -0.0609891414642334, -0.03224204480648041, 0.06359872967004776, -0.13214239478111267, -0.009555771946907043, 0.03543756529688835, -0.08242292702198029, 0.17228269577026367, 0.07712378352880478, -0.10402528196573257, 0.07872597128152847, -0.004968427121639252, 0.008128060959279537, -0.08083610236644745, -0.032565031200647354, -0.08616585284471512, -0.14015056192874908, 0.08350706100463867, 0.06573517620563507, -0.0835430771112442, 0.5478459000587463, -0.059586264193058014, -0.11526685953140259, -0.041274718940258026, -0.004770376719534397, 0.033259183168411255, 0.008047881536185741, 0.3372454047203064, 0.10247385501861572, -0.013484367169439793, -0.09276659041643143, 0.09302258491516113, 0.004059040453284979, 0.245468407869339, 0.10265990346670151, 0.12253204733133316, 0.11190605163574219, -0.016155727207660675, 0.046766992658376694, -0.13910982012748718, 0.04348187893629074, 0.0052419388666749, 0.012886881828308105, -0.054967693984508514, 0.08738235384225845, -0.16720883548259735, 0.04875792935490608, 0.02250308357179165, -0.027805162593722343, -0.09088240563869476, -0.024417409673333168, -0.08146746456623077, 0.05187293514609337, -0.0449533686041832, -0.026672976091504097, -0.0036344043910503387, -0.06493668258190155, -0.07339483499526978, 0.22066135704517365, 0.07341869920492172, -0.012138656340539455, 0.11406944692134857, -0.07808089256286621, 0.05631369352340698, 0.061061304062604904, 0.018443766981363297, -0.05701722577214241, 0.06727669388055801, -0.07359140366315842, 0.03770098462700844, -0.09914401918649673, -0.054004568606615067, 0.005549328867346048, -0.028170784935355186, 0.009383618831634521, -0.11344785243272781, 0.0026618964038789272, -0.07129205763339996, 0.09270621091127396, -0.07973682880401611, 0.13858065009117126, 0.014120516367256641, -0.04390614479780197, 0.06013480946421623, -0.026324952021241188, 0.047493208199739456, 0.05091744288802147, -0.0003359466791152954, 0.03965885192155838, -0.043251097202301025, 0.13141034543514252, 0.009559160098433495, -0.06080565229058266, -0.10505183786153793, 0.05842750892043114, 0.2922801375389099, -0.18353727459907532, -0.006080744322389364, 0.044995374977588654, 0.057244203984737396, -0.0026086941361427307, 0.16713356971740723, 0.08123241364955902, 0.1673499047756195, -0.057257432490587234, -0.09879396110773087, 0.006426175124943256, 0.0024089773651212454, -0.015527213923633099, 0.162176251411438, 0.0644061341881752, -0.04196843504905701, -0.09566076099872589, 0.09030628204345703, -0.15954266488552094, 0.11867792904376984, 0.026700709015130997, -0.10215381532907486, -0.12743063271045685, 0.004193608649075031, 0.014601086266338825, 0.009724943898618221, -0.06453685462474823, -0.10064971446990967, -0.013554117642343044, -0.0483531579375267, -0.029405180364847183, -0.24084530770778656, -0.10985583066940308, -0.004932721611112356, 0.23970246315002441, 0.0014722879277542233, 0.012284478172659874, 0.13033311069011688, 0.02293526940047741, 0.04720369353890419, -0.049126382917165756, 0.10076769441366196, 0.03948039188981056, 0.030843723565340042, -0.07993195950984955, -0.0785478726029396, -0.05743327736854553, -0.08202838897705078, 0.0885355994105339, 0.03645941987633705, -0.05758949741721153, 0.10951691120862961, -0.08912353962659836, -0.05787625163793564, 0.02146730199456215, -0.0635925680398941, 0.10164286196231842, 0.0015305589186027646, -0.009328852407634258, 0.025198014453053474, -0.02500629983842373, 0.09447900205850601, 0.07805546373128891, -0.06369722634553909, -0.09999331086874008, 0.05243566632270813, -0.012075786478817463, 0.06371443718671799, 0.004071402829140425, -0.09766483306884766, 0.07824411243200302, -0.09852850437164307, 0.06402798742055893, 0.029097193852066994, 0.021609285846352577, 0.0792221948504448, 0.07219846546649933, -0.03296199068427086, 0.013149827718734741, -0.007406190503388643, -0.011591381393373013, -0.05404314026236534, -0.12188780307769775 ]
4a36ec73548b9df753c7952e3850d2801ca1a587
# Dataset Card for "massive_cooking-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_cooking-de-DE
[ "region:us" ]
2023-03-30T11:40:51+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 61653, "num_examples": 211}, {"name": "validation", "num_bytes": 12070, "num_examples": 43}, {"name": "test", "num_bytes": 21241, "num_examples": 72}], "download_size": 46458, "dataset_size": 94964}}
2023-03-30T11:53:38+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_cooking-de-DE" More Information needed
[ "# Dataset Card for \"massive_cooking-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_cooking-de-DE\"\n\nMore Information needed" ]
[ 6, 20 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_cooking-de-DE\"\n\nMore Information needed" ]
[ -0.13242803514003754, 0.07832717895507812, 0.0010329840006306767, -0.013599722646176815, 0.052888814359903336, 0.1478850245475769, -0.022140154615044594, 0.08324968814849854, 0.18360033631324768, -0.03283550962805748, 0.09327392280101776, 0.09760082513093948, -0.02529004216194153, 0.26697808504104614, -0.0147706288844347, -0.030249355360865593, 0.051372963935136795, 0.09625557065010071, -0.2330833226442337, 0.035141728818416595, 0.07507826387882233, -0.05325494706630707, 0.08726181834936142, -0.14063343405723572, -0.17291396856307983, 0.10246769338846207, -0.023844532668590546, -0.050300322473049164, 0.11579704284667969, -0.10373549908399582, 0.13540776073932648, -0.01550566591322422, 0.0033010344486683607, -0.09647779911756516, 0.012780982069671154, 0.016276458278298378, -0.04701276868581772, 0.023105088621377945, -0.043187156319618225, 0.04987380653619766, -0.10171081125736237, -0.09844654053449631, -0.014882886782288551, 0.04923456534743309, -0.07144298404455185, -0.3225407898426056, -0.011746184900403023, -0.12104935944080353, -0.07287848740816116, -0.047665443271398544, 0.10923369973897934, -0.07965845614671707, -0.18238288164138794, -0.000447946775238961, -0.021775363013148308, 0.11357763409614563, 0.02876870147883892, 0.13015423715114594, 0.0006980051402933896, 0.09861160814762115, 0.059558942914009094, 0.06179681792855263, 0.16519521176815033, -0.0011073030764237046, -0.1399381309747696, 0.013096494600176811, 0.01554421428591013, 0.035514168441295624, 0.06986519694328308, -0.02678552083671093, 0.2981286942958832, -0.07664834707975388, -0.035822294652462006, 0.050085484981536865, -0.1147741973400116, -0.08419998735189438, -0.003213432850316167, -0.10760565847158432, 0.07167276740074158, 0.025513388216495514, 0.03778437152504921, 0.021449029445648193, -0.0409369133412838, -0.18395628035068512, -0.16005730628967285, 0.13111910223960876, -0.053413476794958115, 0.016990533098578453, -0.17938114702701569, 0.0119368527084589, -0.14763475954532623, -0.03958223760128021, 0.0044026365503668785, -0.061059270054101944, -0.016573462635278702, -0.0008215412381105125, 0.02256203629076481, 0.0926516056060791, 0.15471194684505463, 0.08943501859903336, 0.06286422908306122, 0.0014823471428826451, -0.08305783569812775, -0.01815936528146267, 0.14576514065265656, -0.06315683573484421, -0.025655273348093033, -0.16391412913799286, -0.05130775645375252, -0.13384157419204712, -0.0484226830303669, -0.08886432647705078, -0.0715089663863182, -0.07847762107849121, -0.01688552275300026, 0.07136067003011703, -0.01741120219230652, -0.1832030713558197, -0.07252289354801178, -0.016581997275352478, 0.3126361668109894, -0.02921612747013569, -0.009358825162053108, 0.017409177497029305, -0.03287862613797188, 0.1700456589460373, -0.16517296433448792, 0.005586949177086353, 0.11540097743272781, 0.07541178166866302, -0.09882203489542007, -0.15809036791324615, -0.07102971524000168, -0.005860491655766964, 0.07426806539297104, -0.23199158906936646, 0.09088029712438583, -0.05621473118662834, -0.24333451688289642, 0.024940872564911842, 0.02463933639228344, -0.09401151537895203, 0.05385901778936386, 0.04867108166217804, 0.08354046940803528, -0.023652752861380577, -0.027208702638745308, 0.19038495421409607, -0.07636243849992752, 0.08675801753997803, 0.008260768838226795, 0.03307202458381653, -0.19600921869277954, 0.07570157200098038, -0.026799552142620087, 0.019559573382139206, -0.13138437271118164, 0.015191773883998394, -0.038933828473091125, 0.027194762602448463, -0.08224530518054962, -0.007265336345881224, -0.10682880133390427, 0.021066350862383842, -0.05896429717540741, 0.11023416370153427, -0.36277979612350464, 0.00017118056712206453, 0.07091163843870163, -0.11590307205915451, -0.07965820282697678, 0.08981878310441971, -0.02826794609427452, 0.1070653423666954, 0.12445111572742462, 0.18669818341732025, -0.010468659922480583, 0.05875086039304733, 0.11322108656167984, 0.19566194713115692, -0.031385742127895355, -0.2549276649951935, 0.07623337209224701, -0.0523984357714653, -0.23146206140518188, -0.002196884248405695, 0.12269919365644455, -0.03173643723130226, -0.030082257464528084, -0.06910500675439835, 0.015048184432089329, -0.13687554001808167, 0.09496065974235535, -0.0696340873837471, 0.02578108385205269, 0.01798384264111519, 0.1347704529762268, 0.05502074584364891, 0.0754614919424057, 0.0366663932800293, -0.028635863214731216, 0.08328744769096375, 0.0618511401116848, -0.09398606419563293, -0.008796869777143002, -0.09191986918449402, -0.05095843970775604, 0.03176327794790268, -0.041281383484601974, -0.054857056587934494, 0.12252756208181381, 0.06142115220427513, -0.020465979352593422, 0.06615550071001053, 0.09032409638166428, 0.06802253425121307, 0.10222864151000977, -0.013968784362077713, 0.043739642947912216, 0.009771857410669327, -0.07938303798437119, -0.05101378262042999, -0.0017359568737447262, -0.06444952636957169, 0.08207259327173233, 0.008943784050643444, 0.0033900553826242685, 0.007865208201110363, -0.06043099984526634, 0.018041355535387993, 0.005517316050827503, 0.0102749178186059, -0.06711461395025253, -0.12191592901945114, -0.11616133898496628, 0.014614006504416466, 0.03251998499035835, 0.35733577609062195, 0.05752965435385704, 0.02780991420149803, 0.03684035316109657, -0.03854759410023689, 0.0694458931684494, -0.04676433280110359, -0.04411426559090614, -0.04875953495502472, -0.1106080636382103, -0.04938926175236702, 0.023798687383532524, -0.014615197665989399, 0.05900426581501961, 0.03841032087802887, 0.11453405022621155, -0.08177785575389862, 0.012810153886675835, 0.088546022772789, -0.15032383799552917, 0.09860537946224213, 0.25598451495170593, 0.1752837747335434, 0.03246466442942619, 0.014280715025961399, -0.0734276995062828, -0.006169627886265516, -0.07058097422122955, -0.1242503672838211, 0.1854557991027832, -0.10907746106386185, 0.11542579531669617, 0.029999220743775368, 0.08499322086572647, 0.11366423219442368, -0.03977559134364128, -0.040179893374443054, 0.02394348382949829, -0.044574566185474396, -0.18652527034282684, -0.01036097388714552, 0.011385570280253887, 0.030226143077015877, 0.05412058159708977, -0.03283941000699997, 0.1519193798303604, 0.0023017798084765673, 0.10185862332582474, 0.16726018488407135, -0.16107185184955597, -0.14591453969478607, 0.032924752682447433, -0.0632668063044548, 0.07676095515489578, 0.025054847821593285, -0.014328253455460072, -0.1589474081993103, -0.10450811684131622, 0.08106167614459991, -0.09414758533239365, -0.15603576600551605, -0.010471027344465256, -0.08419903367757797, -0.027691543102264404, -0.0695672482252121, -0.12813037633895874, 0.0023326522205024958, 0.004206384066492319, 0.09184481203556061, 0.05602649226784706, -0.07397449761629105, 0.11672039330005646, 0.017086219042539597, 0.014116480015218258, 0.034317366778850555, 0.009504485875368118, -0.03861173614859581, -0.06486133486032486, -0.04310332611203194, 0.17296741902828217, 0.06211208179593086, -0.015051056630909443, 0.04167483001947403, 0.09642264246940613, -0.12523037195205688, -0.03040400892496109, -0.01574096269905567, -0.16334795951843262, -0.18711264431476593, -0.11989474296569824, -0.03672225400805473, 0.027674557641148567, 0.05739731714129448, 0.09186694025993347, -0.015570887364447117, 0.02322056144475937, 0.0840981975197792, 0.05540631338953972, -0.14278694987297058, -0.13893242180347443, 0.032166268676519394, -0.026982059702277184, -0.04759028181433678, -0.11269810795783997, 0.0003228038549423218, 0.21645517647266388, 0.26132526993751526, 0.12428603321313858, 0.13490833342075348, 0.20717386901378632, 0.01162888016551733, -0.00808599404990673, 0.017762357369065285, 0.1593029946088791, 0.023302419111132622, 0.01108302641659975, -0.08307191729545593, 0.008217809721827507, -0.04522455483675003, -0.019468853250145912, 0.04434027895331383, -0.20064714550971985, 0.019371984526515007, -0.053768955171108246, 0.04830949008464813, -0.13236235082149506, 0.024931378662586212, -0.19214285910129547, 0.10914084315299988, 0.09190419316291809, 0.13095353543758392, -0.11715027689933777, 0.08007613569498062, -0.0198356993496418, -0.007187695242464542, 0.0013040979392826557, 0.05995042994618416, 0.059090934693813324, -0.07824317365884781, 0.04166054725646973, 0.08348376303911209, 0.011859623715281487, 0.022098790854215622, 0.10741403698921204, -0.26470646262168884, 0.14213110506534576, 0.016300732269883156, -0.04764528572559357, -0.20529252290725708, -0.07814279943704605, -0.07724422961473465, 0.0012788206804543734, 0.1226411685347557, 0.022164838388562202, -0.06628365069627762, -0.11565472185611725, -0.12605948746204376, 0.08057263493537903, 0.02425691857933998, -0.009056386537849903, -0.2146441489458084, 0.04078010842204094, 0.04655957967042923, 0.016774743795394897, -0.10178665816783905, -0.13194994628429413, -0.06022888794541359, -0.048437654972076416, 0.028661485761404037, -0.024001622572541237, 0.009790952317416668, 0.012142306193709373, 0.009750830009579659, 0.1158507689833641, -0.024215664714574814, -0.010323724709451199, -0.12573912739753723, -0.06380219757556915, 0.14986754953861237, 0.021605372428894043, -0.008828836493194103, 0.02180751971900463, 0.0022001981269568205, -0.0677780956029892, -0.1451951414346695, 0.19191916286945343, -0.07692322880029678, 0.07319881021976471, -0.019080376252532005, -0.05388210713863373, 0.10069158673286438, 0.017165271565318108, 0.0031145350076258183, -0.010585818439722061, -0.07089149206876755, -0.06808863580226898, -0.016896927729249, -0.012011387385427952, 0.1045936569571495, 0.2675994634628296, 0.007293696980923414, 0.031046560034155846, 0.1818224936723709, 0.03519248962402344, 0.08681853860616684, 0.08675654977560043, -0.008358159102499485, 0.19322828948497772, 0.1414562612771988, -0.006778125185519457, -0.22923411428928375, 0.019794045016169548, -0.23303823173046112, -0.0018930878723040223, -0.041947945952415466, -0.27123814821243286, 0.23159901797771454, 0.264783650636673, -0.029651088640093803, 0.29137325286865234, -0.23135612905025482, -0.08186259865760803, 0.1425139158964157, -0.02346341870725155, 0.5330472588539124, -0.009926101192831993, -0.015834515914320946, -0.2209172546863556, -0.02383306995034218, 0.1271549016237259, -0.18561217188835144, 0.0021274720784276724, -0.03339581936597824, 0.05060753598809242, -0.061055298894643784, -0.06470059603452682, 0.1779710203409195, 0.15198853611946106, 0.13702541589736938, -0.0007844745996408165, -0.06538257747888565, 0.07002604007720947, 0.011578007601201534, 0.03456718474626541, -0.06033487245440483, -0.02593146078288555, -0.11310096085071564, -0.042770806699991226, 0.04147185757756233, 0.0597698912024498, -0.009390492923557758, -0.09314911812543869, -0.006327752489596605, 0.048820529133081436, -0.13291293382644653, -0.0587150938808918, 0.03847859799861908, 0.07529585808515549, 0.056043099611997604, -0.059422437101602554, 0.08244290202856064, -0.11278441548347473, 0.0343041755259037, -0.009162343107163906, -0.05997466668486595, 0.08121654391288757, -0.1435517966747284, 0.06853168457746506, 0.0837845504283905, -0.008416195400059223, 0.009253378957509995, 0.060520239174366, 0.006213137414306402, 0.007480973843485117, 0.07702980190515518, -0.041838862001895905, 0.004793035797774792, 0.13909149169921875, -0.16934949159622192, 0.044396836310625076, 0.0633397102355957, 0.05058581009507179, 0.08002600818872452, 0.0038245683535933495, -0.027821838855743408, 0.08442821353673935, -0.11047767102718353, 0.13773250579833984, 0.06645098328590393, 0.025879861786961555, -0.1647333949804306, 0.18653252720832825, 0.045412562787532806, -0.17503219842910767, -0.0002147008926840499, -0.05904259532690048, -0.04937542974948883, -0.08656017482280731, 0.02468148246407509, 0.19148683547973633, -0.13114014267921448, -0.14436210691928864, -0.015993308275938034, -0.09021932631731033, 0.04648125171661377, -0.002778568770736456, 0.13269954919815063, 0.1368446946144104, -0.044663205742836, -0.0379955917596817, -0.013898482546210289, -0.04102599620819092, -0.08250739425420761, 0.09924128651618958, -0.026501715183258057, -0.18276605010032654, -0.01679147221148014, 0.13819783926010132, -0.07100610435009003, 0.02608902007341385, -0.046168018132448196, 0.02398483268916607, -0.30702629685401917, -0.017517099156975746, 0.056896667927503586, 0.012607027776539326, -0.048567526042461395, 0.055456507951021194, 0.008764817379415035, -0.027204720303416252, -0.045443952083587646, 0.11406619846820831, 0.0652826726436615, 0.007030258420854807, -0.12437102198600769, 0.003951589111238718, 0.05444778874516487, 0.04970787838101387, 0.07767096906900406, 0.07224271446466446, 0.04505879431962967, -0.01810021884739399, 0.04571228474378586, -0.09229975193738937, 0.03100738860666752, 0.04832622781395912, 0.0987187847495079, 0.008508829399943352, 0.0066524287685751915, 0.07775279879570007, -0.02284933067858219, 0.022554311901330948, -0.0069757443852722645, -0.09301726520061493, 0.06544457376003265, -0.13212591409683228, -0.10287101566791534, -0.012327921576797962, -0.11852654069662094, 0.17472805082798004, 0.010578739456832409, -0.05827553942799568, 0.10150354355573654, -0.02662305161356926, 0.047908615320920944, -0.055248621851205826, -0.041969068348407745, -0.09786780923604965, -0.07907532900571823, 0.07310301810503006, 0.0467415526509285, -0.016914119943976402, 0.5546358227729797, -0.030626675114035606, -0.06121563911437988, 0.006869836710393429, -0.04349903389811516, -0.0187981054186821, -0.01912066340446472, 0.3111394941806793, 0.07624407112598419, 0.026867400854825974, -0.04184728488326073, 0.11201974749565125, 0.02105904370546341, 0.18486355245113373, 0.16777022182941437, 0.20747889578342438, 0.015104507096111774, -0.053059324622154236, 0.0392414890229702, -0.12652362883090973, -0.069346122443676, 0.006226462312042713, -0.03944499418139458, -0.040508974343538284, 0.07813873887062073, -0.16013167798519135, -0.06728822737932205, -0.07271048426628113, -0.055937014520168304, -0.021777521818876266, -0.021076375618577003, -0.11105620115995407, 0.027151579037308693, -0.05443872511386871, -0.048032283782958984, -0.0033947606571018696, -0.048463720828294754, -0.04595417156815529, 0.20448389649391174, 0.04512518644332886, 0.030726730823516846, 0.19438311457633972, -0.06423299759626389, 0.08380831032991409, 0.03141234815120697, 0.03142906352877617, -0.029567835852503777, 0.01787828840315342, -0.1618286818265915, -0.06246420368552208, 0.01657841168344021, -0.014578542672097683, -0.040426287800073624, 0.003674787236377597, -0.004037031903862953, -0.04015730321407318, -0.014309867285192013, -0.11649990826845169, 0.03628877177834511, -0.1110725924372673, 0.07310092449188232, 0.019698897376656532, -0.04909267649054527, 0.05844522640109062, -0.04320642724633217, 0.02151608280837536, -0.010991229675710201, 0.058736346662044525, 0.0893646702170372, 0.008592105470597744, 0.05548696964979172, 0.019801881164312363, -0.019364185631275177, -0.047440771013498306, -0.03969796001911163, 0.3367997407913208, -0.13566173613071442, -0.024832110852003098, 0.060326360166072845, 0.036830026656389236, 0.06485006213188171, 0.14851543307304382, 0.052590712904930115, 0.10767745226621628, -0.027857748791575432, -0.10051844269037247, 0.05933703854680061, -0.008821386843919754, -0.09097082912921906, 0.11764657497406006, 0.0655052587389946, -0.0707453265786171, -0.06823194772005081, 0.18168950080871582, -0.0718529224395752, 0.04334506765007973, 0.042680297046899796, -0.008285594172775745, -0.11806847900152206, -0.034043435007333755, 0.0523841455578804, -0.015255983918905258, 0.0005060836556367576, -0.11094751209020615, -0.044608958065509796, 0.018257945775985718, -0.0004604597925208509, -0.30619582533836365, -0.05861488729715347, 0.023220952600240707, 0.23099523782730103, 0.056672438979148865, 0.04101657122373581, 0.05494014173746109, 0.04494214057922363, 0.04960162565112114, -0.06828154623508453, 0.001390974735841155, 0.0008954356308095157, 0.026225846260786057, -0.046299438923597336, -0.11203327029943466, -0.09077698737382889, -0.14197824895381927, 0.05604327842593193, -0.09819098562002182, -0.05675995722413063, 0.25855007767677307, -0.06609433144330978, -0.08232784271240234, -0.056873518973588943, -0.08070674538612366, 0.12840639054775238, 0.035104673355817795, 0.026108432561159134, -0.014820809476077557, -0.021838020533323288, 0.10466484725475311, 0.05567771568894386, -0.09421470761299133, -0.12621697783470154, -0.041396088898181915, -0.04833747074007988, 0.11380980908870697, -0.008017570711672306, -0.09706093370914459, 0.06693661212921143, -0.1241428554058075, 0.03993236646056175, 0.021947823464870453, -0.010978571139276028, -0.006481156684458256, 0.035886250436306, 0.002044418128207326, -0.010868162848055363, -0.030534157529473305, 0.03507296368479729, -0.1377112716436386, -0.10615313798189163 ]
c8fd26ef5c204332c50c081c7616291e5130e3a6
# Dataset Card for "massive_takeaway-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_takeaway-de-DE
[ "region:us" ]
2023-03-30T11:41:08+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 85401, "num_examples": 257}, {"name": "validation", "num_bytes": 13974, "num_examples": 44}, {"name": "test", "num_bytes": 18174, "num_examples": 57}], "download_size": 51358, "dataset_size": 117549}}
2023-03-30T11:54:03+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_takeaway-de-DE" More Information needed
[ "# Dataset Card for \"massive_takeaway-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_takeaway-de-DE\"\n\nMore Information needed" ]
[ 6, 19 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_takeaway-de-DE\"\n\nMore Information needed" ]
[ -0.09800568968057632, 0.07683205604553223, -0.00279036327265203, 0.023310963064432144, 0.06732252985239029, 0.12192831188440323, -0.012685934081673622, 0.06649069488048553, 0.07739688456058502, -0.029277218505740166, 0.13897481560707092, 0.10024761408567429, 0.009606065228581429, 0.2758291959762573, -0.04773372784256935, -0.07896047085523605, 0.03764299675822258, 0.04315100982785225, -0.2439844161272049, -0.032707907259464264, 0.0813935250043869, -0.05585062876343727, 0.04839383810758591, -0.1666722446680069, -0.0845862478017807, 0.09543514996767044, -0.05364317074418068, -0.03296901285648346, 0.07485103607177734, -0.07860663533210754, 0.10719353705644608, 0.01749981753528118, 0.01886364072561264, -0.09106793999671936, -0.0006022602319717407, 0.004457402508705854, -0.03706139698624611, 0.02210632525384426, -0.024543169885873795, -0.02213386818766594, -0.13290491700172424, -0.05736013874411583, 0.004825175274163485, -0.01055083516985178, -0.05052627623081207, -0.3270316421985626, -0.08695380389690399, -0.08355536311864853, 0.031215401366353035, -0.04513411596417427, 0.07872553169727325, 0.030925072729587555, -0.1576329916715622, -0.010870416648685932, -0.02533266320824623, 0.03279272839426994, 0.08688224852085114, 0.14732062816619873, -0.0358581468462944, 0.10553676635026932, 0.06768807023763657, 0.031747568398714066, 0.15455344319343567, -0.013944636099040508, -0.033318571746349335, 0.01578100584447384, -0.016286415979266167, 0.10851767659187317, -0.02808915451169014, -0.014633565209805965, 0.29102885723114014, -0.0032518820371478796, 0.011837601661682129, -0.02193940244615078, -0.05502985417842865, -0.07759817689657211, 0.00421628262847662, -0.046033136546611786, 0.10091320425271988, 0.024910947307944298, 0.050260890275239944, 0.02504614368081093, -0.08299210667610168, -0.12011425942182541, -0.1999122053384781, -0.03319444879889488, -0.05250810459256172, 0.1309625804424286, -0.17280079424381256, 0.023600121960043907, -0.16298891603946686, -0.02767280489206314, 0.011650385335087776, -0.09884423762559891, -0.014173708856105804, -0.025743680074810982, -0.01455150917172432, 0.01923598162829876, 0.12321911007165909, 0.0447254404425621, 0.10811228305101395, -0.028483834117650986, -0.12435758858919144, 0.05715148150920868, 0.1948072761297226, -0.07955621927976608, -0.1059536337852478, -0.18377862870693207, 0.0037701488472521305, -0.10058102011680603, 0.004196562338620424, -0.051197126507759094, -0.12609612941741943, -0.007024785038083792, -0.10109929740428925, 0.11418373882770538, -0.04266897216439247, -0.1371433436870575, -0.04885109141469002, -0.03411030396819115, 0.2805631756782532, -0.048398204147815704, -0.0004504518292378634, -0.004247579723596573, -0.09471671283245087, 0.13675101101398468, -0.15231069922447205, -0.04535137489438057, 0.11209244281053543, 0.0491822212934494, -0.10027527064085007, -0.09780126065015793, -0.08247200399637222, -0.059270262718200684, 0.10435977578163147, -0.16165097057819366, 0.09270180016756058, -0.09750469774007797, -0.33773329854011536, 0.07880616933107376, 0.0023217301350086927, -0.10132697224617004, 0.10559143126010895, -0.004138404969125986, 0.0654752105474472, -0.03282425180077553, -0.07958502322435379, 0.14579248428344727, -0.10806442052125931, 0.050080448389053345, 0.018378622829914093, 0.07963825017213821, -0.2132599800825119, 0.0432371124625206, -0.07469368726015091, -0.006315498612821102, -0.12796680629253387, 0.07178028672933578, -0.08626161515712738, 0.11229248344898224, -0.0822308361530304, -0.025772782042622566, -0.08891189843416214, 0.05402291193604469, -0.034841734915971756, 0.052317894995212555, -0.32201263308525085, -0.04007277637720108, 0.0818387046456337, -0.11473719775676727, -0.10857006907463074, 0.06370534747838974, -0.07202810794115067, 0.10157882422208786, 0.07087042927742004, 0.24786999821662903, -0.03178640827536583, 0.03366699069738388, 0.06190013512969017, 0.16138571500778198, -0.17432774603366852, -0.30991631746292114, 0.07268974930047989, -0.050930947065353394, -0.1097576692700386, 0.012212447822093964, 0.11769372224807739, 0.037484265863895416, -0.03946610540151596, -0.03703517094254494, 0.0384451188147068, -0.19879798591136932, -0.003183663822710514, -0.047865644097328186, 0.03693639487028122, -0.03627762943506241, 0.13688400387763977, 0.12460336089134216, 0.10820461064577103, 0.04911903291940689, -0.048596981912851334, -0.006677005905658007, 0.06289546936750412, -0.18414856493473053, 0.003908769227564335, -0.09804479032754898, -0.013669434934854507, 0.02949076145887375, -0.08780824393033981, -0.02562389336526394, 0.19583965837955475, 0.072940893471241, -0.06339138001203537, -0.013550135307013988, 0.11691300570964813, 0.1187080517411232, 0.06702294200658798, 0.04409629851579666, 0.012967783026397228, 0.056840311735868454, -0.07927165925502777, -0.05805926024913788, -0.021424425765872, -0.047506675124168396, 0.07140504568815231, -0.01341606117784977, 0.02794225513935089, 0.03444274887442589, -0.024544140323996544, 0.014590931124985218, -0.031008608639240265, -0.053228724747896194, -0.04499571770429611, -0.09208584576845169, -0.08823662996292114, 0.005120651330798864, -0.03769513592123985, 0.3015093505382538, 0.12540964782238007, 0.0546288825571537, 0.006343850400298834, 0.02200767584145069, 0.06510737538337708, -0.02741304598748684, 0.004106510896235704, -0.049992043524980545, -0.1872827410697937, -0.05311925709247589, 0.07623039186000824, -0.02703227289021015, 0.04318585246801376, 0.03786984086036682, 0.08280318975448608, -0.08749320358037949, -0.0184845682233572, 0.13238021731376648, -0.2210400253534317, 0.15823759138584137, 0.2204514890909195, 0.06015125662088394, 0.09289789944887161, -0.04708801582455635, -0.11827005445957184, -0.008282992988824844, -0.12666462361812592, -0.09684011340141296, 0.2267921268939972, -0.03952585533261299, 0.07677677273750305, 0.07166323065757751, 0.07290034741163254, 0.13604015111923218, -0.01593094691634178, -0.08767024427652359, 0.00799854751676321, -0.0038489182479679585, -0.22438952326774597, 0.023862775415182114, -0.0006454212125390768, 0.07150352746248245, 0.034205857664346695, -0.03932218253612518, 0.15876181423664093, -0.003772482043132186, 0.056287847459316254, 0.1312520056962967, -0.14828574657440186, -0.2453221082687378, 0.019565565511584282, -0.08132115751504898, 0.06734687089920044, 0.02469746209681034, -0.016724400222301483, -0.13764363527297974, -0.09900970757007599, 0.028587348759174347, -0.01260349154472351, -0.1614430993795395, -0.020711790770292282, -0.02766268700361252, -0.008313371799886227, -0.0608108751475811, -0.13765470683574677, 0.033055417239665985, -0.01568196527659893, 0.08650714159011841, 0.0741691142320633, -0.09458763897418976, 0.09419316053390503, 0.09992226213216782, -0.013258862309157848, 0.06437497586011887, -0.022945893928408623, -0.04676060006022453, -0.06364639103412628, -0.04511559382081032, 0.18507464230060577, 0.059778843075037, -0.03742130100727081, 0.043593697249889374, 0.04768447205424309, -0.13725289702415466, -0.01669381745159626, -0.016538254916667938, -0.1659085899591446, -0.24008174240589142, -0.11440763622522354, -0.01394357718527317, 0.13295449316501617, 0.026085814461112022, 0.06380868703126907, 0.010259957052767277, 0.03530844300985336, 0.1389043927192688, -0.024314038455486298, -0.14954319596290588, -0.09220121800899506, 0.01265582162886858, -0.04702237620949745, 0.001584129175171256, -0.17058172821998596, -0.03853796795010567, 0.21057678759098053, 0.20448891818523407, 0.12356559187173843, 0.06330659240484238, 0.16689574718475342, -0.06422174721956253, 0.028548436239361763, 0.007629084400832653, 0.2087230384349823, 0.10302482545375824, -0.027043944224715233, -0.05897575244307518, 0.049703653901815414, 0.028154417872428894, 0.018136123195290565, 0.1739036589860916, -0.13503332436084747, 0.008611917495727539, -0.09373269975185394, 0.08220797777175903, -0.11409781128168106, 0.08024641871452332, -0.2580363154411316, 0.09091275930404663, 0.07292032241821289, 0.15668097138404846, -0.08363883197307587, 0.1000991016626358, 0.03674311563372612, 0.029889166355133057, 0.08668328821659088, 0.07139384001493454, 0.03563462197780609, -0.06830119341611862, 0.03105068765580654, 0.004518392961472273, -0.026672488078475, -0.005062699317932129, 0.09621232748031616, -0.20772142708301544, 0.06407564133405685, 0.007915634661912918, -0.06591407209634781, -0.14615724980831146, -0.07205136865377426, -0.022431110963225365, -0.01159765012562275, 0.11927030980587006, -0.028000541031360626, -0.06880252063274384, -0.04652084410190582, -0.09054388105869293, 0.020598119124770164, 0.02093249373137951, -0.021531613543629646, -0.11754697561264038, 0.05222712829709053, 0.02219851315021515, 0.02648194693028927, -0.10549616068601608, -0.013348817825317383, -0.0870821475982666, -0.0417906828224659, -0.0025156016927212477, -0.04230307787656784, 0.030306203290820122, 0.011313265189528465, -0.07802342623472214, 0.08972014486789703, -0.02036023512482643, -0.020982209593057632, -0.08593643456697464, 0.023065369576215744, 0.18115754425525665, 0.05603175237774849, -0.008558275178074837, 0.07299679517745972, -0.014984829351305962, -0.02280825562775135, -0.16990895569324493, 0.14355504512786865, -0.09126311540603638, 0.1001926138997078, -0.050001345574855804, -0.020383533090353012, -0.010225418023765087, 0.0016334635438397527, -0.03798946365714073, -0.08032703399658203, -0.043326254934072495, -0.05978349223732948, 0.10195183753967285, -0.07623273879289627, 0.09977705776691437, 0.22503645718097687, 0.0950113981962204, -0.028335854411125183, 0.1504637598991394, -0.04059528559446335, 0.13070808351039886, 0.1512424498796463, -0.05051195248961449, 0.15022322535514832, 0.13947607576847076, 0.002922255313023925, -0.2944127321243286, 0.0897054672241211, -0.21338626742362976, -0.03856932371854782, 0.035655733197927475, -0.21048229932785034, 0.08940380811691284, 0.22473032772541046, -0.041102129966020584, 0.36193719506263733, -0.19545981287956238, -0.04914561286568642, 0.19464585185050964, -0.04542228579521179, 0.5025463700294495, -0.10402026772499084, 0.022930052131414413, -0.19162783026695251, 0.031722038984298706, 0.17223680019378662, -0.11164554953575134, 0.0027938580606132746, -0.002689213491976261, 0.1243681088089943, -0.0441611111164093, -0.07377256453037262, 0.19105194509029388, 0.028015505522489548, 0.18605028092861176, -0.03679536655545235, -0.018485266715288162, 0.19501078128814697, -0.04449641332030296, 0.10088836401700974, -0.009553667157888412, -0.016073161736130714, -0.013943711295723915, -0.051909636706113815, 0.04811270534992218, 0.022911271080374718, 0.06169578805565834, -0.08294744789600372, -0.07442260533571243, 0.01509029045701027, -0.11749038845300674, -0.07619316875934601, 0.06682993471622467, 0.046567559242248535, -0.10177334398031235, -0.0815836638212204, 0.06970702856779099, -0.025343917310237885, 0.041674982756376266, -0.018435169011354446, -0.10474137961864471, 0.09727528691291809, -0.2563711106777191, 0.06312347948551178, 0.08955271542072296, -0.01756730116903782, 0.02482100948691368, 0.08821503818035126, -0.01398635096848011, 0.04258215054869652, 0.12705790996551514, 0.009188789874315262, -0.08038594573736191, 0.1132880374789238, -0.11756522208452225, 0.06854305416345596, 0.12451793253421783, 0.021901071071624756, 0.0635995864868164, -0.006111269351094961, -0.020329244434833527, 0.07468359917402267, -0.09011072665452957, 0.09804679453372955, 0.04476682096719742, 0.021328581497073174, -0.18490652740001678, 0.24002206325531006, -0.005895566660910845, -0.21131311357021332, 0.018116872757673264, -0.09828092902898788, -0.04207858443260193, -0.08787398040294647, 0.00456211157143116, 0.18759113550186157, -0.09173274040222168, -0.12975738942623138, -0.002336455276235938, -0.10054338723421097, 0.048021357506513596, 0.08680519461631775, 0.07940284162759781, 0.10029236972332001, 0.02757052704691887, 0.004671697039157152, -0.07021789997816086, -0.04869769886136055, -0.10027916729450226, 0.02808338776230812, -0.05046682059764862, -0.18605902791023254, -0.061759065836668015, 0.10972420871257782, -0.07952839136123657, 0.03680642321705818, -0.037608928978443146, 0.03156370669603348, -0.30096718668937683, -0.0374719463288784, 0.03944575786590576, 0.010197119787335396, 0.022384697571396828, 0.07795856893062592, -0.004177119117230177, -0.017391372472047806, -0.08227594941854477, 0.1175932064652443, 0.06993146240711212, 0.005791064817458391, -0.0671948567032814, -0.028083927929401398, -0.019635779783129692, 0.029145976528525352, 0.13169348239898682, 0.13062138855457306, 0.06164814531803131, 0.06277377903461456, 0.06524007022380829, -0.09253591299057007, 0.043836720287799835, 0.07498466223478317, 0.07592397183179855, 0.0856267511844635, 0.012414149008691311, 0.10220083594322205, -0.10783201456069946, -0.004705250263214111, -0.12268130481243134, -0.08272015303373337, 0.08197503536939621, -0.10749433934688568, -0.055973123759031296, 0.029207808896899223, -0.11748901754617691, 0.15323305130004883, 0.07462072372436523, -0.05055641755461693, 0.08978518843650818, -0.003974740859121084, 0.0228008683770895, -0.07958921045064926, -0.032991115003824234, -0.07929347455501556, -0.06998686492443085, 0.11632023751735687, 0.06122715398669243, -0.06408831477165222, 0.5411077737808228, -0.023712467402219772, -0.14259248971939087, -0.040531981736421585, 0.026170704513788223, 0.018559549003839493, 0.043804850429296494, 0.33769166469573975, 0.053374264389276505, -0.017662087455391884, -0.1423538476228714, 0.1315213441848755, 0.07639516890048981, 0.17779335379600525, 0.057794515043497086, 0.14005157351493835, 0.010209789499640465, -0.007839418947696686, -0.005252395756542683, -0.17188210785388947, 0.010921933688223362, 0.0772029384970665, 0.04546385630965233, -0.03274037688970566, 0.0734972134232521, -0.13120608031749725, 0.013253823854029179, 0.033446114510297775, -0.024504434317350388, -0.06984022259712219, 0.0014911189209669828, -0.08538871258497238, -0.030031513422727585, -0.05008944869041443, -0.09511108696460724, 0.009502863511443138, -0.04206160083413124, -0.0787612572312355, 0.2651979923248291, 0.08719006925821304, -0.018343860283493996, 0.05929137021303177, -0.06418858468532562, 0.0661732479929924, 0.03914698585867882, 0.012578152120113373, -0.11410075426101685, 0.0579054094851017, -0.09184616804122925, -0.008495994843542576, -0.05561879649758339, -0.019371310248970985, -0.023711437359452248, -0.028421146795153618, 0.04238533228635788, -0.06479639559984207, 0.00010615998326102272, -0.09796152263879776, 0.07579851150512695, -0.13347406685352325, 0.1524333655834198, -0.003103686263784766, -0.029814131557941437, 0.055391278117895126, -0.012514712288975716, 0.01216209214180708, 0.0003820894053205848, -0.025521699339151382, 0.09899958223104477, 0.03053118847310543, 0.13290315866470337, 0.0033894109074026346, -0.05754883587360382, -0.07820648699998856, 0.051278892904520035, 0.3446686267852783, -0.11284592747688293, -0.023171836510300636, 0.06294780224561691, 0.03876103088259697, -0.0030441442504525185, 0.1381339430809021, 0.06360171735286713, 0.16056512296199799, -0.01798606477677822, -0.06851296871900558, 0.018221279606223106, -0.02093682624399662, 0.015515562146902084, 0.09195122122764587, 0.039487190544605255, -0.02949657291173935, -0.0760844498872757, 0.11280267685651779, -0.1306668221950531, 0.06839677691459656, 0.1037905290722847, -0.06697314977645874, -0.07501355558633804, 0.006249899975955486, 0.08286481350660324, -0.03339231386780739, -0.0160811860114336, -0.11818655580282211, -0.031219815835356712, 0.027204709127545357, -0.04567387327551842, -0.30005723237991333, -0.121128149330616, -0.005908208899199963, 0.21537713706493378, 0.03142484650015831, -0.008107510395348072, 0.11235000193119049, 0.02833785116672516, 0.04343711584806442, -0.05239805579185486, 0.08615733683109283, -0.007445565424859524, 0.025245072320103645, -0.04445849731564522, -0.07705635577440262, -0.10244773328304291, -0.05874760448932648, 0.038782041519880295, -0.10042715072631836, -0.07399264723062515, 0.14878526329994202, -0.11924589425325394, -0.054593589156866074, -0.028679922223091125, -0.06295060366392136, 0.09770272672176361, -0.01914987899363041, -0.007508345879614353, 0.026465149596333504, -0.03144184499979019, 0.09640881419181824, 0.10205801576375961, -0.035694822669029236, -0.08779405057430267, 0.014367824420332909, -0.022525034844875336, 0.07772669196128845, 0.010993841104209423, -0.10603738576173782, 0.08646608889102936, -0.08559385687112808, 0.017363838851451874, 0.013182736933231354, -0.012380718253552914, 0.07543718069791794, 0.08657718449831009, -0.04169737920165062, 0.10426345467567444, -0.013803310692310333, -0.00456226198002696, -0.05707526206970215, -0.13219434022903442 ]
a0b8310ae8f86702010304955e38abfc7531c722
# Dataset Card for "massive_music-de-DE" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
fathyshalab/massive_music-de-DE
[ "region:us" ]
2023-03-30T11:41:24+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "locale", "dtype": "string"}, {"name": "partition", "dtype": "string"}, {"name": "scenario", "dtype": {"class_label": {"names": {"0": "social", "1": "transport", "2": "calendar", "3": "play", "4": "news", "5": "datetime", "6": "recommendation", "7": "email", "8": "iot", "9": "general", "10": "audio", "11": "lists", "12": "qa", "13": "cooking", "14": "takeaway", "15": "music", "16": "alarm", "17": "weather"}}}}, {"name": "intent", "dtype": {"class_label": {"names": {"0": "datetime_query", "1": "iot_hue_lightchange", "2": "transport_ticket", "3": "takeaway_query", "4": "qa_stock", "5": "general_greet", "6": "recommendation_events", "7": "music_dislikeness", "8": "iot_wemo_off", "9": "cooking_recipe", "10": "qa_currency", "11": "transport_traffic", "12": "general_quirky", "13": "weather_query", "14": "audio_volume_up", "15": "email_addcontact", "16": "takeaway_order", "17": "email_querycontact", "18": "iot_hue_lightup", "19": "recommendation_locations", "20": "play_audiobook", "21": "lists_createoradd", "22": "news_query", "23": "alarm_query", "24": "iot_wemo_on", "25": "general_joke", "26": "qa_definition", "27": "social_query", "28": "music_settings", "29": "audio_volume_other", "30": "calendar_remove", "31": "iot_hue_lightdim", "32": "calendar_query", "33": "email_sendemail", "34": "iot_cleaning", "35": "audio_volume_down", "36": "play_radio", "37": "cooking_query", "38": "datetime_convert", "39": "qa_maths", "40": "iot_hue_lightoff", "41": "iot_hue_lighton", "42": "transport_query", "43": "music_likeness", "44": "email_query", "45": "play_music", "46": "audio_volume_mute", "47": "social_post", "48": "alarm_set", "49": "qa_factoid", "50": "calendar_set", "51": "play_game", "52": "alarm_remove", "53": "lists_remove", "54": "transport_taxi", "55": "recommendation_movies", "56": "iot_coffee", "57": "music_query", "58": "play_podcasts", "59": "lists_query"}}}}, {"name": "text", "dtype": "string"}, {"name": "annot_utt", "dtype": "string"}, {"name": "worker_id", "dtype": "string"}, {"name": "slot_method", "sequence": [{"name": "slot", "dtype": "string"}, {"name": "method", "dtype": "string"}]}, {"name": "judgments", "sequence": [{"name": "worker_id", "dtype": "string"}, {"name": "intent_score", "dtype": "int8"}, {"name": "slots_score", "dtype": "int8"}, {"name": "grammar_score", "dtype": "int8"}, {"name": "spelling_score", "dtype": "int8"}, {"name": "language_identification", "dtype": "string"}]}, {"name": "label_name", "dtype": "string"}, {"name": "label", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 86249, "num_examples": 332}, {"name": "validation", "num_bytes": 14803, "num_examples": 56}, {"name": "test", "num_bytes": 20685, "num_examples": 81}], "download_size": 53750, "dataset_size": 121737}}
2023-03-30T11:54:28+00:00
[]
[]
TAGS #region-us
# Dataset Card for "massive_music-de-DE" More Information needed
[ "# Dataset Card for \"massive_music-de-DE\"\n\nMore Information needed" ]
[ "TAGS\n#region-us \n", "# Dataset Card for \"massive_music-de-DE\"\n\nMore Information needed" ]
[ 6, 18 ]
[ "passage: TAGS\n#region-us \n# Dataset Card for \"massive_music-de-DE\"\n\nMore Information needed" ]
[ -0.12052910029888153, 0.10483111441135406, -0.0037629103753715754, 0.040323656052351, 0.06619942933320999, 0.04260393604636192, -0.0032925058621913195, -0.013134913519024849, 0.06745380908250809, 0.029170500114560127, 0.037608902901411057, 0.12758097052574158, -0.007002402562648058, 0.170149564743042, -0.0460112988948822, -0.09206458181142807, 0.04187173396348953, 0.027002722024917603, -0.1892358958721161, -0.0207306407392025, 0.041449837386608124, 0.01701473817229271, 0.0017051963368430734, -0.14609739184379578, -0.12212721258401871, 0.09892164170742035, -0.07569066435098648, -0.015369012020528316, 0.00849743653088808, -0.08030498027801514, 0.006307254079729319, 0.036250919103622437, 0.005768930073827505, -0.02608114294707775, 0.008837120607495308, 0.006618964485824108, -0.05341457948088646, -0.015240507200360298, 0.06750976294279099, -0.07524000853300095, -0.18545134365558624, -0.027072280645370483, -0.030432207509875298, -0.01051783561706543, -0.048977676779031754, -0.38108426332473755, -0.1420670747756958, -0.153651162981987, 0.022547325119376183, -0.020687490701675415, 0.028253015130758286, 0.03359289839863777, -0.1236017569899559, -0.00994156114757061, 0.01813514158129692, 0.05959728732705116, 0.08881644904613495, 0.23866868019104004, 0.08753490447998047, 0.1457051932811737, 0.051086824387311935, 0.08715610951185226, 0.16709670424461365, -0.020776525139808655, 0.008523866534233093, -0.04767799377441406, -0.05590580031275749, 0.009240294806659222, 0.023209480568766594, -0.015162699855864048, 0.34093770384788513, -0.043244753032922745, -0.022913247346878052, 0.05511242151260376, 0.035002075135707855, -0.09875953197479248, -0.03639796003699303, -0.029783621430397034, 0.0995783656835556, 0.04810567572712898, -0.015459420159459114, 0.008916187100112438, 0.006897588726133108, -0.11971843242645264, -0.14739616215229034, -0.03607368469238281, -0.07130465656518936, 0.03703384846448898, -0.0913291722536087, -0.03716043382883072, -0.24116383492946625, -0.00146428809966892, -0.02347153052687645, -0.05968832969665527, -0.05135748162865639, 0.014267357997596264, -0.0596352145075798, 0.08509965986013412, 0.1294253170490265, 0.09503709524869919, 0.08899376541376114, -0.07083062827587128, -0.08430399745702744, 0.060686059296131134, 0.2230953723192215, -0.14657388627529144, -0.06532327085733414, -0.2377459704875946, 0.056819524616003036, -0.12411708384752274, 0.07511855661869049, -0.06222955137491226, -0.1565895825624466, -0.014611171558499336, -0.03670847415924072, 0.06807580590248108, -0.041040536016225815, -0.18345721065998077, -0.1066197007894516, -0.026140715926885605, 0.22709469497203827, -0.04220958426594734, 0.03508121520280838, -0.038929227739572525, 0.011424011550843716, 0.124213807284832, -0.18519721925258636, 0.08328717201948166, 0.13806676864624023, 0.16248781979084015, -0.01002605352550745, -0.09658803045749664, -0.0490017905831337, 0.0016088054981082678, 0.1813477724790573, -0.23145277798175812, 0.15937216579914093, -0.010361344553530216, -0.1845361441373825, 0.0200986098498106, 0.010990853421390057, -0.04589404538273811, -0.04973742738366127, 0.03152066096663475, 0.0492493212223053, 0.006451327819377184, -0.1406792551279068, 0.08189608156681061, -0.1278919130563736, 0.05211338773369789, -0.0004020720371045172, 0.11024726927280426, -0.26109567284584045, 0.134370356798172, -0.08730640262365341, -0.012220213189721107, -0.15575984120368958, 0.04445772245526314, -0.133567675948143, -0.0002865429560188204, -0.003518408862873912, -0.04272766783833504, -0.11594706773757935, 0.1003897562623024, 0.02278679609298706, -0.06625746190547943, -0.36162251234054565, -0.11889959871768951, 0.035364024341106415, -0.0857047587633133, -0.10399413108825684, 0.13015802204608917, -0.022345351055264473, 0.0032370963599532843, 0.04393969103693962, 0.23853100836277008, -0.00003868767089443281, 0.03047109954059124, 0.004539256449788809, 0.15248994529247284, -0.07251317799091339, -0.2758498191833496, 0.09309984743595123, -0.07311946898698807, -0.04262295737862587, -0.027615787461400032, 0.17935974895954132, -0.007777887396514416, -0.023593688383698463, 0.026573311537504196, 0.02100321091711521, -0.14862921833992004, 0.010046248324215412, 0.04041702300310135, -0.023004677146673203, -0.024448852986097336, 0.10722466558218002, 0.19871194660663605, 0.09136184304952621, 0.07249562442302704, -0.03424255922436714, 0.03564457222819328, 0.09943021833896637, -0.14339151978492737, -0.0009663541568443179, -0.19000335037708282, 0.13415703177452087, 0.023157278075814247, -0.059536516666412354, 0.10664574801921844, 0.11831172555685043, -0.010992417111992836, -0.0877288430929184, 0.009869088418781757, 0.08226048201322556, 0.09670329093933105, 0.03915709629654884, 0.08523599803447723, -0.0587441511452198, 0.05854034423828125, -0.07259590923786163, -0.06485864520072937, 0.046530283987522125, -0.13370148837566376, 0.11887454986572266, -0.06596995890140533, 0.03730204701423645, 0.0011723360512405634, 0.00824268814176321, 0.05829445645213127, -0.016528407111763954, 0.021839043125510216, -0.0857895016670227, -0.014321657828986645, -0.00829997193068266, -0.02144692838191986, -0.03150809928774834, 0.3656264841556549, 0.15828049182891846, 0.019198700785636902, 0.01860228180885315, 0.08459949493408203, 0.13265351951122284, -0.05796567350625992, -0.03268413618206978, -0.036290425807237625, -0.126990407705307, -0.06196426600217819, 0.05953102558851242, -0.10733097046613693, 0.047721028327941895, 0.06953909248113632, 0.055329639464616776, -0.05511944741010666, -0.01982726715505123, 0.1198822483420372, -0.1928037852048874, 0.15748439729213715, 0.24343499541282654, -0.033007051795721054, 0.22901345789432526, -0.04735730215907097, -0.11984843015670776, -0.003236637683585286, -0.19734127819538116, -0.09291262179613113, 0.20301195979118347, -0.039106421172618866, 0.07403148710727692, 0.06078871339559555, 0.08375278860330582, 0.07002304494380951, -0.04987863078713417, -0.07705792039632797, 0.012304672040045261, 0.006084417458623648, -0.2567475140094757, 0.058523423969745636, 0.01724684052169323, -0.006967464927583933, -0.0173921100795269, -0.12288917601108551, 0.1756885051727295, -0.041646771132946014, 0.007299365941435099, -0.012264290824532509, -0.21840009093284607, -0.1894824206829071, 0.0285483505576849, -0.05753232166171074, -0.006234756670892239, 0.02155982330441475, 0.05248289555311203, -0.09999024868011475, -0.03875184804201126, 0.07209057360887527, 0.014530760236084461, -0.16574695706367493, -0.08155112713575363, -0.030688246712088585, 0.04766731709241867, -0.034713130444288254, -0.044800519943237305, 0.042339373379945755, 0.041939862072467804, 0.10292809456586838, -0.0005222548497840762, -0.11287286132574081, 0.1204943135380745, 0.10259269922971725, 0.11257487535476685, 0.03582445904612541, -0.013041893020272255, -0.05890979245305061, -0.12412091344594955, -0.0000630819340585731, 0.12376996129751205, 0.01254705898463726, -0.06505431979894638, 0.060845308005809784, 0.11189516633749008, -0.05479750782251358, -0.024803712964057922, 0.07123152911663055, -0.161644846200943, -0.24119313061237335, -0.1639704704284668, -0.07205208390951157, 0.06855779886245728, -0.08569832891225815, 0.014924479648470879, 0.07645042985677719, -0.04206927493214607, 0.07439565658569336, 0.06965803354978561, -0.07233592122793198, -0.13611097633838654, -0.03912462666630745, -0.0055010318756103516, 0.021027306094765663, -0.1536451131105423, -0.011358524672687054, 0.21725179255008698, 0.15832792222499847, 0.12056543678045273, 0.17127248644828796, 0.13670171797275543, -0.05717053636908531, 0.01897166296839714, 0.009349596686661243, 0.17309598624706268, 0.11120766401290894, 0.023742249235510826, -0.028295552358031273, -0.006165820639580488, 0.027525275945663452, -0.009526187554001808, 0.17780789732933044, -0.15195150673389435, -0.023125935345888138, -0.10336114466190338, -0.05830460786819458, -0.13777486979961395, 0.04666846990585327, -0.17129527032375336, 0.10770644247531891, 0.09711015224456787, 0.20977118611335754, -0.08833547681570053, 0.18311510980129242, -0.02778702601790428, 0.04763602837920189, 0.13900087773799896, 0.07332036644220352, 0.09802945703268051, -0.1003231629729271, -0.009749640710651875, 0.10464101284742355, -0.0036333128809928894, 0.05575013533234596, 0.018203023821115494, -0.10683561861515045, 0.09760697185993195, 0.04640093818306923, 0.013648346066474915, -0.036502279341220856, -0.061250705271959305, 0.01463290210813284, 0.09565161168575287, 0.1346903145313263, -0.023829886689782143, -0.10586513578891754, -0.042006369680166245, -0.07405931502580643, -0.005138941574841738, 0.04647737368941307, 0.012244467623531818, -0.19185349345207214, 0.0009764906717464328, 0.02087985910475254, 0.03334895148873329, -0.11572564393281937, -0.1014450266957283, -0.07056969404220581, -0.05821654945611954, 0.05676264315843582, -0.0489865206182003, 0.006183347664773464, -0.04763484001159668, -0.12607114017009735, 0.0519724115729332, 0.0550321526825428, 0.019472595304250717, -0.06079116836190224, -0.10745789110660553, 0.2056942880153656, 0.11095954477787018, 0.035712067037820816, 0.03224216029047966, -0.012212538160383701, -0.062237448990345, -0.15834343433380127, 0.13685038685798645, -0.09175552427768707, 0.1311286985874176, -0.045558732002973557, 0.07037787139415741, 0.02307288534939289, 0.04205440729856491, -0.021293459460139275, 0.006978195626288652, 0.06287036836147308, -0.0249962005764246, 0.18373122811317444, -0.06818743050098419, 0.05584392324090004, 0.1842428296804428, 0.11588466167449951, -0.03717198967933655, 0.23177829384803772, -0.09400960057973862, 0.07074952870607376, 0.1405702382326126, -0.02461702935397625, 0.19489094614982605, 0.1747788041830063, -0.0522683784365654, -0.3269021213054657, 0.10648303478956223, -0.13899394869804382, -0.05496763065457344, 0.058116912841796875, -0.30655139684677124, 0.02790692448616028, 0.14903242886066437, -0.05280580744147301, 0.19781018793582916, -0.19331219792366028, 0.03636067733168602, 0.1779460608959198, -0.1802215874195099, 0.45834869146347046, -0.0679393783211708, -0.04521126300096512, -0.24385523796081543, -0.06377612799406052, 0.20226621627807617, -0.19995173811912537, 0.044278211891651154, 0.08731026947498322, 0.011377626098692417, -0.008171509951353073, 0.008732398971915245, 0.10121889412403107, 0.0672902837395668, 0.12170083075761795, 0.017219284549355507, 0.04827595129609108, 0.15110529959201813, 0.026590686291456223, 0.018103424459695816, -0.026298385113477707, -0.02435031719505787, -0.06431074440479279, -0.08264827728271484, 0.061876170337200165, 0.016336875036358833, 0.0016182847321033478, -0.03898906707763672, -0.06137216091156006, 0.05209089443087578, -0.13796347379684448, -0.09638579934835434, 0.12200691550970078, 0.04238295182585716, -0.15920312702655792, -0.0759563073515892, 0.10070519149303436, -0.014277489855885506, -0.11026479303836823, 0.045302875339984894, -0.08972376585006714, 0.09854407608509064, -0.1908123642206192, 0.1081363782286644, 0.042245931923389435, 0.041627611964941025, -0.06474693864583969, 0.08241509646177292, -0.10331567376852036, 0.006417769938707352, 0.10232464224100113, -0.031705278903245926, -0.07696527987718582, 0.03685954958200455, -0.1270134598016739, 0.20819933712482452, 0.09420802444219589, -0.004034339915961027, 0.05422627925872803, -0.043347470462322235, 0.03324415534734726, 0.06255407631397247, -0.11224628984928131, 0.03390047699213028, -0.011028386652469635, -0.024773819372057915, -0.1981903463602066, 0.2833101451396942, 0.013846486806869507, -0.1930023580789566, -0.021464770659804344, -0.07522892951965332, 0.0007148761651478708, -0.07771299034357071, 0.08420289307832718, 0.1439858376979828, -0.11210453510284424, -0.15115299820899963, 0.0924459844827652, -0.09791544824838638, 0.0009166438831016421, 0.07485506683588028, 0.0739830732345581, 0.07757697999477386, -0.01105374563485384, 0.005094434600323439, -0.034571100026369095, 0.019855717197060585, -0.03064122423529625, 0.07394979894161224, -0.10082770884037018, -0.25372689962387085, -0.05120544880628586, 0.07636315375566483, -0.09918933361768723, 0.011043531820178032, -0.008465568535029888, 0.03823384270071983, -0.30408188700675964, -0.05243712663650513, 0.0846744254231453, -0.01783311925828457, -0.011889202520251274, 0.07851997762918472, -0.010456406511366367, -0.02724483050405979, -0.017265770584344864, 0.061397671699523926, 0.0640830248594284, 0.04692543298006058, -0.08840218931436539, -0.01988910511136055, -0.01037903968244791, 0.01869705319404602, 0.11964808404445648, 0.13108979165554047, 0.036521073430776596, -0.03061605989933014, -0.0376453772187233, -0.1718299686908722, 0.11630221456289291, 0.08558709174394608, 0.07924294471740723, -0.029702331870794296, -0.024534251540899277, 0.07258649170398712, -0.0468321219086647, -0.004091941751539707, -0.09544333070516586, -0.06331922113895416, -0.010498753748834133, -0.18184563517570496, -0.08869964629411697, 0.05896973982453346, -0.07994275540113449, 0.2542254626750946, 0.11877919733524323, 0.04284258931875229, 0.09648726135492325, -0.01581304520368576, 0.05849156901240349, -0.0582590214908123, -0.02044862136244774, -0.1447385996580124, -0.19151724874973297, 0.12091811746358871, 0.022563030943274498, -0.03477367386221886, 0.4574001431465149, 0.0416114367544651, -0.17163194715976715, -0.060303036123514175, 0.03527214750647545, 0.09903872013092041, 0.03641790896654129, 0.32700315117836, 0.03571105748414993, -0.05449267104268074, -0.1663743108510971, 0.08374516665935516, 0.035256411880254745, 0.21550123393535614, -0.011386530473828316, 0.12615129351615906, 0.12224805355072021, -0.04668797180056572, 0.09750958532094955, -0.15690955519676208, -0.04846104606986046, 0.06719093769788742, 0.12517058849334717, 0.03271370753645897, 0.11812644451856613, -0.01735669933259487, -0.04213622957468033, 0.0011362462537363172, 0.06701237708330154, -0.13201895356178284, 0.0014653176767751575, -0.10713248699903488, -0.002697303891181946, -0.06619618088006973, -0.10409568250179291, 0.022588342428207397, -0.09467022120952606, 0.03255898132920265, 0.12115251272916794, -0.004094050265848637, -0.00521437730640173, 0.005957193672657013, -0.12253876030445099, 0.03864745423197746, 0.09252756834030151, -0.03612140566110611, -0.13966979086399078, 0.07933083921670914, -0.09831363707780838, 0.08381927013397217, -0.07340812683105469, -0.0343342199921608, -0.0189459640532732, -0.01152743212878704, 0.08826560527086258, -0.10034356266260147, 0.009779439307749271, -0.03948567435145378, 0.041636474430561066, -0.08176108449697495, 0.1577885001897812, 0.05346408486366272, -0.024516185745596886, 0.09295250475406647, -0.013405675999820232, 0.01725415512919426, 0.08752714097499847, 0.034987788647413254, -0.04708731174468994, -0.06400815397500992, 0.17281757295131683, 0.052540481090545654, -0.03006501868367195, -0.08639899641275406, -0.03279678151011467, 0.2852339744567871, -0.0784347876906395, -0.0251897145062685, 0.05117330327630043, 0.010653048753738403, -0.0781216025352478, 0.10491462796926498, 0.08899544179439545, 0.20679323375225067, 0.026265794411301613, -0.10778675228357315, -0.10788815468549728, 0.019110724329948425, 0.010760835371911526, 0.10698600113391876, 0.08911454677581787, -0.12507234513759613, 0.037768762558698654, 0.1748441606760025, -0.2117467224597931, 0.10568679124116898, -0.00770532013848424, -0.03969007357954979, -0.10687259584665298, -0.028350679203867912, 0.05243363603949547, 0.0862889438867569, -0.025233009830117226, -0.12243153899908066, -0.04864916577935219, -0.03886779770255089, -0.013408688828349113, -0.25994613766670227, -0.059335678815841675, -0.11837159097194672, 0.1612071990966797, -0.004736470524221659, 0.006157684605568647, 0.1812223196029663, -0.034708183258771896, 0.11822100728750229, 0.0025668388698250055, 0.047259263694286346, 0.0008873011101968586, 0.011575686745345592, -0.016837099567055702, 0.05414997413754463, -0.09803282469511032, 0.000218035580473952, 0.09763439744710922, 0.0738544911146164, -0.028923070058226585, 0.13333305716514587, -0.16439476609230042, -0.08090073615312576, -0.028246356174349785, -0.13255906105041504, 0.05489889904856682, -0.12092509120702744, 0.019159045070409775, -0.019011059775948524, 0.0030926379840821028, 0.1061180979013443, 0.12929129600524902, -0.019616132602095604, -0.02185436710715294, 0.05058110132813454, -0.026509936898946762, 0.11720335483551025, 0.03589167445898056, -0.07153607904911041, 0.11961467564105988, -0.1265101134777069, 0.05905080959200859, -0.041959378868341446, -0.011771130375564098, -0.006629288196563721, 0.036187298595905304, -0.06576131284236908, 0.03065486066043377, -0.011620059609413147, -0.04579000920057297, -0.07818413525819778, -0.15675248205661774 ]