pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
1
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results01 This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "results01", "results": []}]}
KaKashii/results01
null
[ "pytorch", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2024-04-30T21:24:26+00:00
[]
[]
TAGS #pytorch #generated_from_trainer #license-apache-2.0 #region-us
# results01 This model is a fine-tuned version of EleutherAI/pythia-410m on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3
[ "# results01\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.30.0.dev0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
[ "TAGS\n#pytorch #generated_from_trainer #license-apache-2.0 #region-us \n", "# results01\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2", "### Training results", "### Framework versions\n\n- Transformers 4.30.0.dev0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
[ 24, 29, 7, 9, 9, 4, 108, 5, 47 ]
[ "TAGS\n#pytorch #generated_from_trainer #license-apache-2.0 #region-us \n# results01\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 2### Training results### Framework versions\n\n- Transformers 4.30.0.dev0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1626 - Accuracy: 0.6212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.8421 | 4 | 1.1626 | 0.6212 | | No log | 1.8947 | 9 | 1.1700 | 0.6212 | | 1.2355 | 2.5263 | 12 | 1.1713 | 0.6212 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/swin-tiny-patch4-window7-224", "model-index": [{"name": "swin-tiny-patch4-window7-224-finetuned-eurosat", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.6212121212121212, "name": "Accuracy"}]}]}]}
dogukanbas/swin-tiny-patch4-window7-224-finetuned-eurosat
null
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:25:39+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
swin-tiny-patch4-window7-224-finetuned-eurosat ============================================== This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 1.1626 * Accuracy: 0.6212 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 75, 142, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
null
null
Number of experts present in the library: 10 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | phi2_joint_3epoch_sim_cluster_10 | phi-2 | sordonia/flan-10k-flat/dream_read_the_following_conversation_and_answer_the_question,app_reviews_convert_to_star_rating,cos_e_v1_11_question_option_description_text,social_i_qa_Show_choices_and_generate_answer,quartz_answer_question_based_on,sciq_Direct_Question_Closed_Book_,qasc_qa_with_separated_facts_3,quartz_given_the_fact_answer_the_q,quartz_answer_question_below,kilt_tasks_hotpotqa_final_exam,sciq_Multiple_Choice,wiqa_does_the_supposed_perturbation_have_an_effect,cos_e_v1_11_question_description_option_text,wiki_qa_Is_This_True_,quartz_use_info_from_question_paragraph,sciq_Direct_Question,qasc_qa_with_separated_facts_2,wiqa_which_of_the_following_is_the_supposed_perturbation,app_reviews_convert_to_rating,cos_e_v1_11_question_option_description_id,wiqa_effect_with_string_answer,qasc_qa_with_separated_facts_5,dream_baseline,quartz_having_read_above_passage,cos_e_v1_11_question_description_option_id,qasc_qa_with_separated_facts_1,cos_e_v1_11_description_question_option_text,qasc_qa_with_combined_facts_1,qasc_is_correct_1,cos_e_v1_11_description_question_option_id,social_i_qa_Check_if_a_random_answer_is_valid_or_not,sciq_Multiple_Choice_Closed_Book_,quartz_use_info_from_paragraph_question,qasc_is_correct_2,qasc_qa_with_separated_facts_4,quartz_read_passage_below_choose,quartz_paragraph_question_plain_concat,sciq_Multiple_Choice_Question_First | lora | | phi2_joint_3epoch_sim_cluster_3 | phi-2 | sordonia/flan-10k-flat/wiki_qa_found_on_google,app_reviews_categorize_rating_using_review,race_middle_Is_this_the_right_answer,super_glue_cb_1_0_2,wiki_qa_Topic_Prediction_Answer_Only,wiki_qa_Direct_Answer_to_Question,super_glue_wsc_fixed_1_0_2,cot_gsm8k_ii,unified_qa_science_inst,race_high_Is_this_the_right_answer,cot_strategyqa,cot_ecqa_ii,quarel_do_not_use,wiki_qa_exercise,wiki_qa_automatic_system,cot_creak_ii,quarel_heres_a_story,quarel_choose_between,stream_qed_ii,wiki_qa_Topic_Prediction_Question_Only,glue_qnli_2_0_0,cot_sensemaking_ii,super_glue_copa_1_0_2,social_i_qa_Generate_the_question_from_the_answer,social_i_qa_Show_choices_and_generate_index,quarel_testing_students,wiki_qa_Topic_Prediction_Question_and_Answer_Pair,wiki_qa_Decide_good_answer,wiki_qa_Jeopardy_style,wiki_qa_Generate_Question_from_Topic,definite_pronoun_resolution_1_1_0,wiqa_effect_with_label_answer,glue_wnli_2_0_0,cot_qasc,cot_strategyqa_ii,quarel_logic_test,stream_aqua_ii | lora | | phi2_joint_3epoch_sim_cluster_9 | phi-2 | sordonia/flan-10k-flat/super_glue_rte_1_0_2,cot_sensemaking,super_glue_wic_1_0_2,cos_e_v1_11_rationale,anli_r3_0_1_0,dream_generate_last_utterance,paws_wiki_1_1_0,cos_e_v1_11_generate_explanation_given_text,cot_creak,stream_aqua,snli_1_1_0,cos_e_v1_11_i_think,glue_qqp_2_0_0,cos_e_v1_11_explain_why_human,anli_r2_0_1_0,anli_r1_0_1_0,glue_stsb_2_0_0,cos_e_v1_11_aligned_with_common_sense,glue_mnli_2_0_0,social_i_qa_I_was_wondering,cosmos_qa_1_0_0,glue_mrpc_2_0_0,social_i_qa_Generate_answer | lora | | phi2_joint_3epoch_sim_cluster_1 | phi-2 | sordonia/flan-10k-flat/natural_questions_open_1_0_0,web_questions_whats_the_answer,web_questions_question_answer,dbpedia_14_pick_one_category_for_the_following_text,kilt_tasks_hotpotqa_combining_facts,web_questions_short_general_knowledge_q,kilt_tasks_hotpotqa_straighforward_qa,adversarial_qa_dbidaf_generate_question,adversarial_qa_droberta_based_on,web_questions_get_the_answer,kilt_tasks_hotpotqa_complex_question,web_questions_potential_correct_answer,trivia_qa_rc_1_1_0,kilt_tasks_hotpotqa_formulate,adversarial_qa_dbert_based_on,adversarial_qa_dbidaf_based_on,squad_v1_1_3_0_0 | lora | | phi2_joint_3epoch_sim_cluster_5 | phi-2 | sordonia/flan-10k-flat/race_middle_Read_the_article_and_answer_the_question_no_option_,race_high_Select_the_best_answer,quail_description_context_question_answer_id,quail_context_question_description_text,race_high_Read_the_article_and_answer_the_question_no_option_,race_high_Select_the_best_answer_no_instructions_,quail_context_description_question_answer_id,race_high_Taking_a_test,super_glue_multirc_1_0_2,race_middle_Select_the_best_answer,quail_context_question_description_answer_id,quail_description_context_question_answer_text,quail_context_question_answer_description_text,race_high_Select_the_best_answer_generate_span_,race_middle_Select_the_best_answer_generate_span_,quail_context_question_answer_description_id,quail_context_description_question_answer_text,quail_context_description_question_text,quail_context_question_description_answer_text,quail_description_context_question_text,race_middle_Taking_a_test,quail_no_prompt_id,quail_no_prompt_text,race_middle_Select_the_best_answer_no_instructions_ | lora | | phi2_joint_3epoch_sim_cluster_8 | phi-2 | sordonia/flan-10k-flat/ropes_background_new_situation_answer,ropes_prompt_bottom_no_hint,ropes_plain_background_situation,ropes_new_situation_background_answer,ropes_given_background_situation,ropes_prompt_bottom_hint_beginning,ropes_prompt_beginning,ropes_read_background_situation,ropes_plain_bottom_hint,ropes_plain_no_background,ropes_prompt_mix,ropes_background_situation_middle | lora | | phi2_joint_3epoch_sim_cluster_2 | phi-2 | sordonia/flan-10k-flat/adversarial_qa_dbidaf_question_context_answer,super_glue_record_1_0_2,wiki_hop_original_generate_object,adversarial_qa_droberta_tell_what_it_is,dbpedia_14_given_a_choice_of_categories_,wiki_hop_original_choose_best_object_affirmative_3,quac_1_0_0,wiki_hop_original_choose_best_object_interrogative_1,wiki_hop_original_choose_best_object_affirmative_1,adversarial_qa_dbert_answer_the_following_q,wiki_hop_original_choose_best_object_interrogative_2,adversarial_qa_droberta_question_context_answer,squad_v2_0_3_0_0,wiki_hop_original_generate_subject,wiki_bio_guess_person,adversarial_qa_dbidaf_answer_the_following_q,adversarial_qa_droberta_answer_the_following_q,adversarial_qa_dbert_tell_what_it_is,race_high_Write_a_multi_choice_question_options_given_,wiki_hop_original_choose_best_object_affirmative_2,wiki_hop_original_generate_subject_and_object,drop_2_0_0,adversarial_qa_dbert_question_context_answer,adversarial_qa_dbidaf_tell_what_it_is | lora | | phi2_joint_3epoch_sim_cluster_7 | phi-2 | sordonia/flan-10k-flat/glue_sst2_2_0_0,adversarial_qa_droberta_generate_question,true_case,stream_qed,huggingface_xsum,cot_esnli,cot_gsm8k,trec_1_0_0,yelp_polarity_reviews_0_2_0,lambada_1_0_0,glue_cola_2_0_0,ag_news_subset_1_0_0,gem_dart_1_1_0,math_dataset_algebra__linear_1d_1_0_0,cnn_dailymail_3_4_0,wiki_hop_original_explain_relation,dbpedia_14_given_list_what_category_does_the_paragraph_belong_to,gem_wiki_lingua_english_en_1_1_0,fix_punct,imdb_reviews_plain_text_1_0_0,race_middle_Write_a_multi_choice_question_for_the_following_article,gigaword_1_2_0,dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to,gem_web_nlg_en_1_1_0,word_segment,race_high_Write_a_multi_choice_question_for_the_following_article,wmt16_translate_de_en_1_0_0,cot_ecqa,aeslc_1_0_0,dream_generate_first_utterance,wmt16_translate_fi_en_1_0_0,dream_answer_to_dialogue,para_crawl_enes,adversarial_qa_dbert_generate_question,race_middle_Write_a_multi_choice_question_options_given_,wmt14_translate_fr_en_1_0_0 | lora | | phi2_joint_3epoch_sim_cluster_6 | phi-2 | sordonia/flan-10k-flat/quoref_Context_Contains_Answer,duorc_SelfRC_generate_question_by_answer,quoref_Find_Answer,duorc_ParaphraseRC_movie_director,duorc_ParaphraseRC_answer_question,quoref_Found_Context_Online,quoref_Read_And_Extract_,duorc_ParaphraseRC_title_generation,duorc_ParaphraseRC_decide_worth_it,quoref_What_Is_The_Answer,duorc_ParaphraseRC_generate_question,quoref_Guess_Title_For_Context,quoref_Answer_Test,duorc_SelfRC_question_answering,duorc_SelfRC_title_generation,duorc_ParaphraseRC_generate_question_by_answer,duorc_ParaphraseRC_extract_answer,duorc_SelfRC_answer_question,duorc_SelfRC_decide_worth_it,duorc_ParaphraseRC_question_answering,quoref_Answer_Question_Given_Context,duorc_SelfRC_extract_answer,quoref_Guess_Answer,quoref_Answer_Friend_Question,duorc_SelfRC_movie_director,duorc_SelfRC_generate_question,quoref_Given_Context_Answer_Question | lora | | phi2_joint_3epoch_sim_cluster_4 | phi-2 | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process,wiqa_what_is_the_final_step_of_the_following_process,wmt16_translate_ro_en_1_0_0,wiqa_what_might_be_the_last_step_of_the_process,wiki_bio_key_content,gem_common_gen_1_1_0,duorc_SelfRC_build_story_around_qa,app_reviews_generate_review,wiki_bio_what_content,wiki_bio_who,gem_e2e_nlg_1_1_0,cot_esnli_ii,wmt16_translate_tr_en_1_0_0,wiqa_what_is_the_missing_first_step,wiki_bio_comprehension,coqa_1_0_0,duorc_ParaphraseRC_build_story_around_qa,multi_news_1_0_0 | lora | Last updated on: 2024-04-30 21:25:48+00:00
{}
zhan1993/library-phi_2-v3-10-flan-clusters
null
[ "region:us" ]
null
2024-04-30T21:25:48+00:00
[]
[]
TAGS #region-us
Number of experts present in the library: 10
[]
[ "TAGS\n#region-us \n" ]
[ 5 ]
[ "TAGS\n#region-us \n" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["trl", "sft"]}
EdBerg/001Llama3_b_finance_finetuned_test
null
[ "transformers", "safetensors", "trl", "sft", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:27:42+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 32, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
## NumFaLM 3B NumFaLM 3B is a bilingual language model trained in Thai and English. The architecture model is Llama model that pretraining from scratch. It was built to open source AI and research for bilingual language models and improve small language models. We released the training script and train datasets so you can research the training and datasets. - GitHub: [https://github.com/wannaphong/NumFaLM](https://github.com/wannaphong/NumFaLM) - Training script: [https://github.com/wannaphong/EasyLM/tree/numfa_pretraining](https://github.com/wannaphong/EasyLM/tree/numfa_pretraining) - Train Datasets: [wannaphong/mark13](https://huggingface.co/datasets/wannaphong/mark13) We fork EasyLM and added training by HuggingFace datasets, but HuggingFace was down many times during the time we trained the model, so we can train just one epoch. The model trained one epoch. # Acknowledgements Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC). We use TPU4-64 for training model about 4 days / 1 epoch. Thank you [TPU Research Cloud](https://sites.research.google/trc/about/) and [EasyLM project](https://github.com/young-geng/EasyLM)! We use EasyLM for pretraining model.
{"language": ["en", "th"], "license": "apache-2.0", "datasets": ["wannaphong/mark13"], "pipeline_tag": "text-generation"}
wannaphong/numfalm-3b
null
[ "transformers", "safetensors", "llama", "text-generation", "en", "th", "dataset:wannaphong/mark13", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:32:09+00:00
[]
[ "en", "th" ]
TAGS #transformers #safetensors #llama #text-generation #en #th #dataset-wannaphong/mark13 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## NumFaLM 3B NumFaLM 3B is a bilingual language model trained in Thai and English. The architecture model is Llama model that pretraining from scratch. It was built to open source AI and research for bilingual language models and improve small language models. We released the training script and train datasets so you can research the training and datasets. - GitHub: URL - Training script: URL - Train Datasets: wannaphong/mark13 We fork EasyLM and added training by HuggingFace datasets, but HuggingFace was down many times during the time we trained the model, so we can train just one epoch. The model trained one epoch. # Acknowledgements Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC). We use TPU4-64 for training model about 4 days / 1 epoch. Thank you TPU Research Cloud and EasyLM project! We use EasyLM for pretraining model.
[ "## NumFaLM 3B\nNumFaLM 3B is a bilingual language model trained in Thai and English. The architecture model is Llama model that pretraining from scratch. It was built to open source AI and research for bilingual language models and improve small language models. We released the training script and train datasets so you can research the training and datasets.\n\n- GitHub: URL\n- Training script: URL\n- Train Datasets: wannaphong/mark13\n\n\nWe fork EasyLM and added training by HuggingFace datasets, but HuggingFace was down many times during the time we trained the model, so we can train just one epoch. The model trained one epoch.", "# Acknowledgements\n\nResearch supported with Cloud TPUs from Google's TPU Research Cloud (TRC). We use TPU4-64 for training model about 4 days / 1 epoch.\n\nThank you TPU Research Cloud and EasyLM project! We use EasyLM for pretraining model." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #en #th #dataset-wannaphong/mark13 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## NumFaLM 3B\nNumFaLM 3B is a bilingual language model trained in Thai and English. The architecture model is Llama model that pretraining from scratch. It was built to open source AI and research for bilingual language models and improve small language models. We released the training script and train datasets so you can research the training and datasets.\n\n- GitHub: URL\n- Training script: URL\n- Train Datasets: wannaphong/mark13\n\n\nWe fork EasyLM and added training by HuggingFace datasets, but HuggingFace was down many times during the time we trained the model, so we can train just one epoch. The model trained one epoch.", "# Acknowledgements\n\nResearch supported with Cloud TPUs from Google's TPU Research Cloud (TRC). We use TPU4-64 for training model about 4 days / 1 epoch.\n\nThank you TPU Research Cloud and EasyLM project! We use EasyLM for pretraining model." ]
[ 56, 147, 60 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #en #th #dataset-wannaphong/mark13 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## NumFaLM 3B\nNumFaLM 3B is a bilingual language model trained in Thai and English. The architecture model is Llama model that pretraining from scratch. It was built to open source AI and research for bilingual language models and improve small language models. We released the training script and train datasets so you can research the training and datasets.\n\n- GitHub: URL\n- Training script: URL\n- Train Datasets: wannaphong/mark13\n\n\nWe fork EasyLM and added training by HuggingFace datasets, but HuggingFace was down many times during the time we trained the model, so we can train just one epoch. The model trained one epoch.# Acknowledgements\n\nResearch supported with Cloud TPUs from Google's TPU Research Cloud (TRC). We use TPU4-64 for training model about 4 days / 1 epoch.\n\nThank you TPU Research Cloud and EasyLM project! We use EasyLM for pretraining model." ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # names-whisper-en This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1224 - Wer: 2.5974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0691 | 1.5576 | 1000 | 0.1273 | 3.1158 | | 0.0078 | 3.1153 | 2000 | 0.1186 | 2.6745 | | 0.004 | 4.6729 | 3000 | 0.1189 | 2.5386 | | 0.0013 | 6.2305 | 4000 | 0.1222 | 2.5839 | | 0.0011 | 7.7882 | 5000 | 0.1224 | 2.5974 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "names-whisper-en", "results": []}]}
seifooo/names-whisper-en
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:32:13+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us
names-whisper-en ================ This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1224 * Wer: 2.5974 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.40.0 * Pytorch 2.3.0+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 52, 126, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
claudios/plbart-base
null
[ "transformers", "safetensors", "plbart", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:32:17+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 34, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | ### Sample Usage #### For Code Completion Code completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input: - `<|fim_prefix|>` precedes the context before the completion we want to run. - `<|fim_suffix|>` precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model. - `<|fim_middle|>` is the prompt that invites the model to run the generation. In addition to these, there's also `<|file_separator|>`, which is used to provide multi-file contexts. Please, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example: ```python from transformers import GemmaTokenizer, AutoModelForCausalLM model_id = "google/codegemma-1.1-2b" tokenizer = GemmaTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) prompt = '''\ <|fim_prefix|>import datetime def calculate_age(birth_year): """Calculates a person's age based on their birth year.""" current_year = datetime.date.today().year <|fim_suffix|> return age<|fim_middle|>\ ''' inputs = tokenizer(prompt, return_tensors="pt").to(model.device) prompt_len = inputs["input_ids"].shape[-1] outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0][prompt_len:])) ``` This may return something like the following: ``` age = current_year - birth_year<|file_separator|>test_calculate_age.py <|fim_suffix|> assert calculate_age(1990) == 33 assert calculate_age(1980) == 43 assert calculate_age(1970) == 53 assert calculate_age(1960) == 63 assert calculate_age(1950) == 73 ``` Note the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the `generate` function, like this: ```python FIM_PREFIX = '<|fim_prefix|>' FIM_SUFFIX = '<|fim_suffix|>' FIM_MIDDLE = '<|fim_middle|>' FIM_FILE_SEPARATOR = '<|file_separator|>' terminators = tokenizer.convert_tokens_to_ids([FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_FILE_SEPARATOR]) terminators += [tokenizer.eos_token_id] outputs = model.generate( **inputs, max_new_tokens=100, eos_token_id=terminators, ) ``` In this case, generation stops as soon as the first delimiter is found in the response: ``` age = current_year - birth_year<|file_separator|> ``` #### For Code Generation ```python from transformers import GemmaTokenizer, AutoModelForCausalLM tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-1.1-2b") model = AutoModelForCausalLM.from_pretrained("google/codegemma-1.1-2b") input_text = "Write me a Python function to calculate the nth fibonacci number." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language ## Model Data Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). ## Evaluation Information Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b) | [7B](https://huggingface.co/google/codegemma-7b) | [7B-IT](https://huggingface.co/google/codegemma-7b-it) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 #### Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png) ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details. ## Model Usage & Limitations These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{"license": "gemma", "library_name": "transformers", "extra_gated_heading": "Access CodeGemma on Hugging Face", "extra_gated_prompt": "To access CodeGemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "license_link": "https://ai.google.dev/gemma/terms"}
google/codegemma-1.1-2b
null
[ "transformers", "safetensors", "gemma", "text-generation", "license:gemma", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:32:55+00:00
[]
[]
TAGS #transformers #safetensors #gemma #text-generation #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CodeGemma ========= Model Page : CodeGemma Resources and Technical Documentation : Technical Report : Responsible Generative AI Toolkit Terms of Use : Terms Authors : Google Model Information ----------------- Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. ### Sample Usage #### For Code Completion Code completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input: * '<|fim\_prefix|>' precedes the context before the completion we want to run. * '<|fim\_suffix|>' precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model. * '<|fim\_middle|>' is the prompt that invites the model to run the generation. In addition to these, there's also '<|file\_separator|>', which is used to provide multi-file contexts. Please, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example: This may return something like the following: Note the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the 'generate' function, like this: In this case, generation stops as soon as the first delimiter is found in the response: #### For Code Generation ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language Model Data ---------- Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies. Implementation Information -------------------------- Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e). ### Software Training was done using JAX and ML Pathways. Evaluation Information ---------------------- Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks #### Natural Language Benchmarks !CodeGemma Natural Language Benchmarks Ethics and Safety ----------------- Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details. Model Usage & Limitations ------------------------- These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
[ "### Description\n\n\nCodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.", "### Sample Usage", "#### For Code Completion\n\n\nCode completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input:\n\n\n* '<|fim\\_prefix|>' precedes the context before the completion we want to run.\n* '<|fim\\_suffix|>' precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model.\n* '<|fim\\_middle|>' is the prompt that invites the model to run the generation.\n\n\nIn addition to these, there's also '<|file\\_separator|>', which is used to provide multi-file contexts.\n\n\nPlease, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example:\n\n\nThis may return something like the following:\n\n\nNote the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the 'generate' function, like this:\n\n\nIn this case, generation stops as soon as the first delimiter is found in the response:", "#### For Code Generation", "### Inputs and Outputs\n\n\nInputs\n: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt\n: For instruction tuned model variant: natural language text or prompt\n\n\nOutputs\n: For pretrained model variants: fill-in-the-middle code completion, code and natural language\n: For instruction tuned model variant: code and natural language\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.", "### Training Dataset\n\n\nUsing Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.", "### Training Data Processing\n\n\nThe following data pre-processing techniques were applied:\n\n\n* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.\n* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing\n* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.\n* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies.\n\n\nImplementation Information\n--------------------------\n\n\nInformation about the hardware and software used to train the models.", "### Hardware\n\n\nCodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e).", "### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nEvaluation Information\n----------------------\n\n\nModel evaluation metrics and results.", "### Evaluation Approach\n\n\nWe evaluate CodeGemma on a variety of academic benchmarks across several domains:\n\n\n* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling\n* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)\n* Q&A: BoolQ, PIQA, TriviaQA\n* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande\n* Math Reasoning: GSM8K, MATH", "### Evaluation Results", "#### Coding Benchmarks", "#### Natural Language Benchmarks\n\n\n!CodeGemma Natural Language Benchmarks\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.", "### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:\n\n\n* Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach.\n* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.", "### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details.\n\n\nModel Usage & Limitations\n-------------------------\n\n\nThese models have certain limitations that users should be aware of.", "### Intended Usage\n\n\nCode Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.\n\n\nCode Completion\n: PT models can be used to complete code with an IDE extension\n\n\nCode Generation\n: IT model can be used to generate code with or without an IDE extension\n\n\nCode Conversation\n: IT model can power conversation interfaces which discuss code.\n\n\nCode Education\n: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.", "### Known Limitations\n\n\nLarge Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs.", "### Ethical Considerations & Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details.", "### Benefits\n\n\nAt the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.\n\n\nUsing the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives." ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Description\n\n\nCodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.", "### Sample Usage", "#### For Code Completion\n\n\nCode completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input:\n\n\n* '<|fim\\_prefix|>' precedes the context before the completion we want to run.\n* '<|fim\\_suffix|>' precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model.\n* '<|fim\\_middle|>' is the prompt that invites the model to run the generation.\n\n\nIn addition to these, there's also '<|file\\_separator|>', which is used to provide multi-file contexts.\n\n\nPlease, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example:\n\n\nThis may return something like the following:\n\n\nNote the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the 'generate' function, like this:\n\n\nIn this case, generation stops as soon as the first delimiter is found in the response:", "#### For Code Generation", "### Inputs and Outputs\n\n\nInputs\n: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt\n: For instruction tuned model variant: natural language text or prompt\n\n\nOutputs\n: For pretrained model variants: fill-in-the-middle code completion, code and natural language\n: For instruction tuned model variant: code and natural language\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.", "### Training Dataset\n\n\nUsing Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.", "### Training Data Processing\n\n\nThe following data pre-processing techniques were applied:\n\n\n* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.\n* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing\n* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.\n* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies.\n\n\nImplementation Information\n--------------------------\n\n\nInformation about the hardware and software used to train the models.", "### Hardware\n\n\nCodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e).", "### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nEvaluation Information\n----------------------\n\n\nModel evaluation metrics and results.", "### Evaluation Approach\n\n\nWe evaluate CodeGemma on a variety of academic benchmarks across several domains:\n\n\n* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling\n* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)\n* Q&A: BoolQ, PIQA, TriviaQA\n* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande\n* Math Reasoning: GSM8K, MATH", "### Evaluation Results", "#### Coding Benchmarks", "#### Natural Language Benchmarks\n\n\n!CodeGemma Natural Language Benchmarks\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.", "### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:\n\n\n* Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach.\n* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.", "### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details.\n\n\nModel Usage & Limitations\n-------------------------\n\n\nThese models have certain limitations that users should be aware of.", "### Intended Usage\n\n\nCode Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.\n\n\nCode Completion\n: PT models can be used to complete code with an IDE extension\n\n\nCode Generation\n: IT model can be used to generate code with or without an IDE extension\n\n\nCode Conversation\n: IT model can power conversation interfaces which discuss code.\n\n\nCode Education\n: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.", "### Known Limitations\n\n\nLarge Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs.", "### Ethical Considerations & Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details.", "### Benefits\n\n\nAt the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.\n\n\nUsing the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives." ]
[ 37, 91, 5, 338, 7, 104, 63, 263, 30, 44, 120, 5, 7, 44, 113, 96, 130, 42, 50, 74 ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Description\n\n\nCodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.### Sample Usage#### For Code Completion\n\n\nCode completion can be used for infilling inside code editors. CodeGemma was trained for this task using the fill-in-the-middle (FIM) objective, where you provide a prefix and a suffix as context for the completion. The following tokens are used to separate the different parts of the input:\n\n\n* '<|fim\\_prefix|>' precedes the context before the completion we want to run.\n* '<|fim\\_suffix|>' precedes the suffix. You must put this token exactly where the cursor would be positioned in an editor, as this is the location that will be completed by the model.\n* '<|fim\\_middle|>' is the prompt that invites the model to run the generation.\n\n\nIn addition to these, there's also '<|file\\_separator|>', which is used to provide multi-file contexts.\n\n\nPlease, make sure to not provide any extra spaces or newlines around the tokens, other than those that would naturally occur in the code fragment you want to complete. Here's an example:\n\n\nThis may return something like the following:\n\n\nNote the extra content after the correct completion. The model returns the completion, followed by one of the FIM tokens or the EOS token. You should ignore everything that comes after any of these tokens. A good way to achieve this is by providing a list of terminators to the 'generate' function, like this:\n\n\nIn this case, generation stops as soon as the first delimiter is found in the response:#### For Code Generation### Inputs and Outputs\n\n\nInputs\n: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt\n: For instruction tuned model variant: natural language text or prompt\n\n\nOutputs\n: For pretrained model variants: fill-in-the-middle code completion, code and natural language\n: For instruction tuned model variant: code and natural language\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.### Training Dataset\n\n\nUsing Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.### Training Data Processing\n\n\nThe following data pre-processing techniques were applied:\n\n\n* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.\n* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing\n* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.\n* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies.\n\n\nImplementation Information\n--------------------------\n\n\nInformation about the hardware and software used to train the models.### Hardware\n\n\nCodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e).### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nEvaluation Information\n----------------------\n\n\nModel evaluation metrics and results.### Evaluation Approach\n\n\nWe evaluate CodeGemma on a variety of academic benchmarks across several domains:\n\n\n* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling\n* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)\n* Q&A: BoolQ, PIQA, TriviaQA\n* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande\n* Math Reasoning: GSM8K, MATH### Evaluation Results#### Coding Benchmarks#### Natural Language Benchmarks\n\n\n!CodeGemma Natural Language Benchmarks\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:\n\n\n* Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach.\n* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details.\n\n\nModel Usage & Limitations\n-------------------------\n\n\nThese models have certain limitations that users should be aware of.### Intended Usage\n\n\nCode Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.\n\n\nCode Completion\n: PT models can be used to complete code with an IDE extension\n\n\nCode Generation\n: IT model can be used to generate code with or without an IDE extension\n\n\nCode Conversation\n: IT model can power conversation interfaces which discuss code.\n\n\nCode Education\n: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.### Known Limitations\n\n\nLarge Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs.### Ethical Considerations & Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details.### Benefits\n\n\nAt the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.\n\n\nUsing the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives." ]
text-generation
transformers
# CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b) | [codegemma-7b](https://huggingface.co/google/codegemma-7b) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | ### Sample Usage This model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: [CodeGemma 7B](https://huggingface.co/google/codegemma-7b), or [CodeGemma 2B](https://huggingface.co/google/codegemma-2b). #### For Code Generation ```python from transformers import GemmaTokenizer, AutoModelForCausalLM tokenizer = GemmaTokenizer.from_pretrained("google/codegemma-1.1-7b-it") model = AutoModelForCausalLM.from_pretrained("google/codegemma-1.1-7b-it") input_text = "Write me a Python function to calculate the nth fibonacci number." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/codegemma-1.1-7b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language ## Model Data Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/). ## Evaluation Information Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b) | [7B](https://huggingface.co/google/codegemma-7b) | [7B-IT](https://huggingface.co/google/codegemma-7b-it) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 #### Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png) ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details. ## Model Usage & Limitations These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the [Gemma model card](https://ai.google.dev/gemma/docs/model_card#evaluation_results) for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to [the same discussion](https://ai.google.dev/gemma/docs/model_card#ethical_considerations_and_risks) in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{"license": "gemma", "library_name": "transformers", "extra_gated_heading": "Access CodeGemma on Hugging Face", "extra_gated_prompt": "To access CodeGemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "pipeline_tag": "text-generation", "widget": [{"text": "<start_of_turn>user Write a Python function to calculate the nth fibonacci number.<end_of_turn> <start_of_turn>model\n"}], "inference": {"parameters": {"max_new_tokens": 200}}, "license_link": "https://ai.google.dev/gemma/terms"}
google/codegemma-1.1-7b-it
null
[ "transformers", "safetensors", "gemma", "text-generation", "license:gemma", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:33:23+00:00
[]
[]
TAGS #transformers #safetensors #gemma #text-generation #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
CodeGemma ========= Model Page : CodeGemma Resources and Technical Documentation : Technical Report : Responsible Generative AI Toolkit Terms of Use : Terms Authors : Google Model Information ----------------- Summary description and brief definition of inputs and outputs. ### Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. ### Sample Usage This model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: CodeGemma 7B, or CodeGemma 2B. #### For Code Generation #### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: At this point, the prompt contains the following text: As you can see, each turn is preceded by a '<start\_of\_turn>' delimiter and then the role of the entity (either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with the '<end\_of\_turn>' token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ### Inputs and Outputs Inputs : For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt : For instruction tuned model variant: natural language text or prompt Outputs : For pretrained model variants: fill-in-the-middle code completion, code and natural language : For instruction tuned model variant: code and natural language Model Data ---------- Data used for model training and how the data was processed. ### Training Dataset Using Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code. ### Training Data Processing The following data pre-processing techniques were applied: * FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM. * Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing * We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution. * Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies. Implementation Information -------------------------- Information about the hardware and software used to train the models. ### Hardware CodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e). ### Software Training was done using JAX and ML Pathways. Evaluation Information ---------------------- Model evaluation metrics and results. ### Evaluation Approach We evaluate CodeGemma on a variety of academic benchmarks across several domains: * Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling * Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust) * Q&A: BoolQ, PIQA, TriviaQA * Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande * Math Reasoning: GSM8K, MATH ### Evaluation Results #### Coding Benchmarks #### Natural Language Benchmarks !CodeGemma Natural Language Benchmarks Ethics and Safety ----------------- Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach. * Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details. Model Usage & Limitations ------------------------- These models have certain limitations that users should be aware of. ### Intended Usage Code Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. Code Completion : PT models can be used to complete code with an IDE extension Code Generation : IT model can be used to generate code with or without an IDE extension Code Conversation : IT model can power conversation interfaces which discuss code. Code Education : IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice. ### Known Limitations Large Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs. ### Ethical Considerations & Risks The development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details. ### Benefits At the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
[ "### Description\n\n\nCodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.", "### Sample Usage\n\n\nThis model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: CodeGemma 7B, or CodeGemma 2B.", "#### For Code Generation", "#### Chat Template\n\n\nThe instruction-tuned models use a chat template that must be adhered to for conversational use.\nThe easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.\n\n\nLet's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:\n\n\nAt this point, the prompt contains the following text:\n\n\nAs you can see, each turn is preceded by a '<start\\_of\\_turn>' delimiter and then the role of the entity\n(either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with\nthe '<end\\_of\\_turn>' token.\n\n\nYou can follow this format to build the prompt manually, if you need to do it without the tokenizer's\nchat template.\n\n\nAfter the prompt is ready, generation can be performed like this:", "### Inputs and Outputs\n\n\nInputs\n: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt\n: For instruction tuned model variant: natural language text or prompt\n\n\nOutputs\n: For pretrained model variants: fill-in-the-middle code completion, code and natural language\n: For instruction tuned model variant: code and natural language\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.", "### Training Dataset\n\n\nUsing Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.", "### Training Data Processing\n\n\nThe following data pre-processing techniques were applied:\n\n\n* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.\n* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing\n* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.\n* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies.\n\n\nImplementation Information\n--------------------------\n\n\nInformation about the hardware and software used to train the models.", "### Hardware\n\n\nCodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e).", "### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nEvaluation Information\n----------------------\n\n\nModel evaluation metrics and results.", "### Evaluation Approach\n\n\nWe evaluate CodeGemma on a variety of academic benchmarks across several domains:\n\n\n* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling\n* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)\n* Q&A: BoolQ, PIQA, TriviaQA\n* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande\n* Math Reasoning: GSM8K, MATH", "### Evaluation Results", "#### Coding Benchmarks", "#### Natural Language Benchmarks\n\n\n!CodeGemma Natural Language Benchmarks\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.", "### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:\n\n\n* Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach.\n* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.", "### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details.\n\n\nModel Usage & Limitations\n-------------------------\n\n\nThese models have certain limitations that users should be aware of.", "### Intended Usage\n\n\nCode Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.\n\n\nCode Completion\n: PT models can be used to complete code with an IDE extension\n\n\nCode Generation\n: IT model can be used to generate code with or without an IDE extension\n\n\nCode Conversation\n: IT model can power conversation interfaces which discuss code.\n\n\nCode Education\n: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.", "### Known Limitations\n\n\nLarge Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs.", "### Ethical Considerations & Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details.", "### Benefits\n\n\nAt the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.\n\n\nUsing the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives." ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Description\n\n\nCodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.", "### Sample Usage\n\n\nThis model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: CodeGemma 7B, or CodeGemma 2B.", "#### For Code Generation", "#### Chat Template\n\n\nThe instruction-tuned models use a chat template that must be adhered to for conversational use.\nThe easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.\n\n\nLet's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:\n\n\nAt this point, the prompt contains the following text:\n\n\nAs you can see, each turn is preceded by a '<start\\_of\\_turn>' delimiter and then the role of the entity\n(either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with\nthe '<end\\_of\\_turn>' token.\n\n\nYou can follow this format to build the prompt manually, if you need to do it without the tokenizer's\nchat template.\n\n\nAfter the prompt is ready, generation can be performed like this:", "### Inputs and Outputs\n\n\nInputs\n: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt\n: For instruction tuned model variant: natural language text or prompt\n\n\nOutputs\n: For pretrained model variants: fill-in-the-middle code completion, code and natural language\n: For instruction tuned model variant: code and natural language\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.", "### Training Dataset\n\n\nUsing Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.", "### Training Data Processing\n\n\nThe following data pre-processing techniques were applied:\n\n\n* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.\n* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing\n* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.\n* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies.\n\n\nImplementation Information\n--------------------------\n\n\nInformation about the hardware and software used to train the models.", "### Hardware\n\n\nCodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e).", "### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nEvaluation Information\n----------------------\n\n\nModel evaluation metrics and results.", "### Evaluation Approach\n\n\nWe evaluate CodeGemma on a variety of academic benchmarks across several domains:\n\n\n* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling\n* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)\n* Q&A: BoolQ, PIQA, TriviaQA\n* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande\n* Math Reasoning: GSM8K, MATH", "### Evaluation Results", "#### Coding Benchmarks", "#### Natural Language Benchmarks\n\n\n!CodeGemma Natural Language Benchmarks\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.", "### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:\n\n\n* Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach.\n* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.", "### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details.\n\n\nModel Usage & Limitations\n-------------------------\n\n\nThese models have certain limitations that users should be aware of.", "### Intended Usage\n\n\nCode Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.\n\n\nCode Completion\n: PT models can be used to complete code with an IDE extension\n\n\nCode Generation\n: IT model can be used to generate code with or without an IDE extension\n\n\nCode Conversation\n: IT model can power conversation interfaces which discuss code.\n\n\nCode Education\n: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.", "### Known Limitations\n\n\nLarge Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs.", "### Ethical Considerations & Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details.", "### Benefits\n\n\nAt the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.\n\n\nUsing the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives." ]
[ 37, 91, 82, 7, 205, 104, 63, 263, 30, 44, 120, 5, 7, 44, 113, 96, 130, 42, 50, 74 ]
[ "TAGS\n#transformers #safetensors #gemma #text-generation #license-gemma #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Description\n\n\nCodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.### Sample Usage\n\n\nThis model is intended to answer questions about code fragments, to generate code from natural language, or to engage in a conversation with the user about programming or technical problems. If you need to use code completion (for example, integrated in an IDE), we recommend you use one of the pre-trained models instead: CodeGemma 7B, or CodeGemma 2B.#### For Code Generation#### Chat Template\n\n\nThe instruction-tuned models use a chat template that must be adhered to for conversational use.\nThe easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.\n\n\nLet's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:\n\n\nAt this point, the prompt contains the following text:\n\n\nAs you can see, each turn is preceded by a '<start\\_of\\_turn>' delimiter and then the role of the entity\n(either 'user', for content supplied by the user, or 'model' for LLM responses). Turns finish with\nthe '<end\\_of\\_turn>' token.\n\n\nYou can follow this format to build the prompt manually, if you need to do it without the tokenizer's\nchat template.\n\n\nAfter the prompt is ready, generation can be performed like this:### Inputs and Outputs\n\n\nInputs\n: For pretrained model variants: code prefix and/or suffix for code completion and generation scenarios, or natural language text or prompt\n: For instruction tuned model variant: natural language text or prompt\n\n\nOutputs\n: For pretrained model variants: fill-in-the-middle code completion, code and natural language\n: For instruction tuned model variant: code and natural language\n\n\nModel Data\n----------\n\n\nData used for model training and how the data was processed.### Training Dataset\n\n\nUsing Gemma as the base model, CodeGemma 2B and 7B pretrained variants are further trained on an additional 500 to 1000 billion tokens of primarily English language data from publicly available code repositories, open source mathematics datasets and synthetically generated code.### Training Data Processing\n\n\nThe following data pre-processing techniques were applied:\n\n\n* FIM Pretrained CodeGemma models focus on fill-in-the-middle (FIM) tasks. The models are trained to work with both PSM and SPM modes. Our FIM settings are 80% to 90% FIM rate with 50-50 PSM/SPM.\n* Dependency Graph-based Packing and Unit Test-based Lexical Packing techniques: To improve model alignment with real-world applications, we structured training examples at the project/repository level to co-locate the most relevant source files within each repository. Specifically, we employed two heuristic techniques: dependency graph-based packing and unit test-based lexical packing\n* We developed a novel technique for splitting the documents into prefix, middle, and suffix to make the suffix start in a more syntactically natural point rather than purely random distribution.\n* Safety: Similarly to Gemma, we deployed rigorous safety filtering including filtering personal data, CSAM filtering and other filtering based on content quality and safety in line with our policies.\n\n\nImplementation Information\n--------------------------\n\n\nInformation about the hardware and software used to train the models.### Hardware\n\n\nCodeGemma was trained using the latest generation of Tensor Processing Unit (TPU) hardware (TPUv5e).### Software\n\n\nTraining was done using JAX and ML Pathways.\n\n\nEvaluation Information\n----------------------\n\n\nModel evaluation metrics and results.### Evaluation Approach\n\n\nWe evaluate CodeGemma on a variety of academic benchmarks across several domains:\n\n\n* Code completion benchmarks: HumanEval Single Line and Multiple Line Infilling\n* Code generation benchmarks: HumanEval, MBPP, BabelCode (C++, C#, Go, Java, JavaScript, Kotlin, Python, Rust)\n* Q&A: BoolQ, PIQA, TriviaQA\n* Natural Language: ARC-Challenge, HellaSwag, MMLU, WinoGrande\n* Math Reasoning: GSM8K, MATH### Evaluation Results#### Coding Benchmarks#### Natural Language Benchmarks\n\n\n!CodeGemma Natural Language Benchmarks\n\n\nEthics and Safety\n-----------------\n\n\nEthics and safety evaluation approach and results.### Evaluation Approach\n\n\nOur evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:\n\n\n* Human evaluation on prompts covering content safety and representational harms. See the Gemma model card for more details on evaluation approach.\n* Specific testing of cyber-offence capabilities, focusing on testing autonomous hacking capabilities and ensuring potential harms are limited.### Evaluation Results\n\n\nThe results of ethics and safety evaluations are within acceptable thresholds for meeting internal policies for categories such as child safety, content safety, representational harms, memorization, large-scale harms. See the Gemma model card for more details.\n\n\nModel Usage & Limitations\n-------------------------\n\n\nThese models have certain limitations that users should be aware of.### Intended Usage\n\n\nCode Gemma models have a wide range of applications, which vary between IT and PT models. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.\n\n\nCode Completion\n: PT models can be used to complete code with an IDE extension\n\n\nCode Generation\n: IT model can be used to generate code with or without an IDE extension\n\n\nCode Conversation\n: IT model can power conversation interfaces which discuss code.\n\n\nCode Education\n: IT model supports interactive code learning experiences, aids in syntax correction or provides coding practice.### Known Limitations\n\n\nLarge Language Models (LLMs) have limitations based on their training data and the inherent limitations of the technology. See the Gemma model card for more details on the limitations of LLMs.### Ethical Considerations & Risks\n\n\nThe development of large language models (LLMs) raises several ethical concerns. We have carefully considered multiple aspects in the development of these models. Please refer to the same discussion in the Gemma model card for model details.### Benefits\n\n\nAt the time of release, this family of models provides high-performance open code-focused large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.\n\n\nUsing the coding benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives." ]
reinforcement-learning
stable-baselines3
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hui168 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga hui168 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga hui168 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 100000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
{"library_name": "stable-baselines3", "tags": ["SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "DQN", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "SpaceInvadersNoFrameskip-v4", "type": "SpaceInvadersNoFrameskip-v4"}, "metrics": [{"type": "mean_reward", "value": "320.00 +/- 138.20", "name": "mean_reward", "verified": false}]}]}]}
hui168/dqn-SpaceInvadersNoFrameskip-colab
null
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-30T21:36:28+00:00
[]
[]
TAGS #stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# DQN Agent playing SpaceInvadersNoFrameskip-v4 This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4 using the stable-baselines3 library and the RL Zoo. The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: URL SB3: URL SB3 Contrib: URL Install the RL Zoo (with SB3 and SB3-Contrib): If you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do: ## Training (with the RL Zoo) ## Hyperparameters # Environment Arguments
[ "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.", "## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:", "## Training (with the RL Zoo)", "## Hyperparameters", "# Environment Arguments" ]
[ 37, 81, 76, 10, 6, 3 ]
[ "TAGS\n#stable-baselines3 #SpaceInvadersNoFrameskip-v4 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# DQN Agent playing SpaceInvadersNoFrameskip-v4\nThis is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4\nusing the stable-baselines3 library\nand the RL Zoo.\n\nThe RL Zoo is a training framework for Stable Baselines3\nreinforcement learning agents,\nwith hyperparameter optimization and pre-trained agents included.## Usage (with SB3 RL Zoo)\n\nRL Zoo: URL\nSB3: URL\nSB3 Contrib: URL\n\nInstall the RL Zoo (with SB3 and SB3-Contrib):\n\n\n\n\nIf you installed the RL Zoo3 via pip ('pip install rl_zoo3'), from anywhere you can do:## Training (with the RL Zoo)## Hyperparameters# Environment Arguments" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.2.1+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "model-index": [{"name": "vit-base-patch16-224-finetuned-flower", "results": []}]}
Vraj971/vit-base-patch16-224-finetuned-flower
null
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:39:05+00:00
[]
[]
TAGS #transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-imagefolder #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 2.2.1+cu121 - Datasets 2.7.1 - Tokenizers 0.13.3
[ "# vit-base-patch16-224-finetuned-flower\n\nThis model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.24.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.7.1\n- Tokenizers 0.13.3" ]
[ "TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-imagefolder #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# vit-base-patch16-224-finetuned-flower\n\nThis model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5", "### Training results", "### Framework versions\n\n- Transformers 4.24.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.7.1\n- Tokenizers 0.13.3" ]
[ 50, 44, 7, 9, 9, 4, 93, 5, 44 ]
[ "TAGS\n#transformers #pytorch #vit #image-classification #generated_from_trainer #dataset-imagefolder #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# vit-base-patch16-224-finetuned-flower\n\nThis model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5### Training results### Framework versions\n\n- Transformers 4.24.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.7.1\n- Tokenizers 0.13.3" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model24
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:40:52+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID Fine-Tuned version of Phi-3-mini ## Model Details ### Model Description QLORA-Fine Tuned version of Phi-3-mini-128k-instruct on the Alpaca dataset - **Developed by:** Microsoft, Fine-Tuning done by Yours Truly ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://huggingface.co/microsoft/Phi-3-mini-128k-instruct - **Paper :** https://aka.ms/phi3-tech-report
{"language": ["en"], "license": "mit", "library_name": "transformers", "datasets": ["yahma/alpaca-cleaned"], "pipeline_tag": "text-generation"}
MadElf1337/phi-3-mini-alpaca
null
[ "transformers", "safetensors", "text-generation", "en", "dataset:yahma/alpaca-cleaned", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:41:36+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation #en #dataset-yahma/alpaca-cleaned #license-mit #endpoints_compatible #region-us
# Model Card for Model ID Fine-Tuned version of Phi-3-mini ## Model Details ### Model Description QLORA-Fine Tuned version of Phi-3-mini-128k-instruct on the Alpaca dataset - Developed by: Microsoft, Fine-Tuning done by Yours Truly ### Model Sources [optional] - Repository: URL - Paper : URL
[ "# Model Card for Model ID\n\nFine-Tuned version of Phi-3-mini", "## Model Details", "### Model Description\n\nQLORA-Fine Tuned version of Phi-3-mini-128k-instruct on the Alpaca dataset\n\n\n- Developed by: Microsoft, Fine-Tuning done by Yours Truly", "### Model Sources [optional]\n\n\n\n- Repository: URL\n- Paper : URL" ]
[ "TAGS\n#transformers #safetensors #text-generation #en #dataset-yahma/alpaca-cleaned #license-mit #endpoints_compatible #region-us \n", "# Model Card for Model ID\n\nFine-Tuned version of Phi-3-mini", "## Model Details", "### Model Description\n\nQLORA-Fine Tuned version of Phi-3-mini-128k-instruct on the Alpaca dataset\n\n\n- Developed by: Microsoft, Fine-Tuning done by Yours Truly", "### Model Sources [optional]\n\n\n\n- Repository: URL\n- Paper : URL" ]
[ 38, 16, 4, 44, 18 ]
[ "TAGS\n#transformers #safetensors #text-generation #en #dataset-yahma/alpaca-cleaned #license-mit #endpoints_compatible #region-us \n# Model Card for Model ID\n\nFine-Tuned version of Phi-3-mini## Model Details### Model Description\n\nQLORA-Fine Tuned version of Phi-3-mini-128k-instruct on the Alpaca dataset\n\n\n- Developed by: Microsoft, Fine-Tuning done by Yours Truly### Model Sources [optional]\n\n\n\n- Repository: URL\n- Paper : URL" ]
null
null
# DETAILS - Trained with 40 hours of raw data I can add more data in the future (Ariana grande, Dua lipa , Charlie Puth, Joji, Freddie Mercury, Michael Jackson) - Fine Tuned with ov2 pretrain - 32k still training 5 EPOCHS - 40k maybe I'll train it - 48k MAYBE I'll train it
{"license": "openrail"}
Sztef/SingerPreTrained
null
[ "license:openrail", "region:us" ]
null
2024-04-30T21:41:47+00:00
[]
[]
TAGS #license-openrail #region-us
# DETAILS - Trained with 40 hours of raw data I can add more data in the future (Ariana grande, Dua lipa , Charlie Puth, Joji, Freddie Mercury, Michael Jackson) - Fine Tuned with ov2 pretrain - 32k still training 5 EPOCHS - 40k maybe I'll train it - 48k MAYBE I'll train it
[ "# DETAILS\n\n - Trained with 40 hours of raw data I can add more data in the future\n\n (Ariana grande, Dua lipa , Charlie Puth, Joji, Freddie Mercury, Michael Jackson)\n - Fine Tuned with ov2 pretrain\n - 32k still training 5 EPOCHS\n - 40k maybe I'll train it\n - 48k MAYBE I'll train it" ]
[ "TAGS\n#license-openrail #region-us \n", "# DETAILS\n\n - Trained with 40 hours of raw data I can add more data in the future\n\n (Ariana grande, Dua lipa , Charlie Puth, Joji, Freddie Mercury, Michael Jackson)\n - Fine Tuned with ov2 pretrain\n - 32k still training 5 EPOCHS\n - 40k maybe I'll train it\n - 48k MAYBE I'll train it" ]
[ 10, 76 ]
[ "TAGS\n#license-openrail #region-us \n# DETAILS\n\n - Trained with 40 hours of raw data I can add more data in the future\n\n (Ariana grande, Dua lipa , Charlie Puth, Joji, Freddie Mercury, Michael Jackson)\n - Fine Tuned with ov2 pretrain\n - 32k still training 5 EPOCHS\n - 40k maybe I'll train it\n - 48k MAYBE I'll train it" ]
text-to-image
diffusers
# Perfect World 完美世界 v6 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/17433454521714513192.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "perfect-world-v6" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/perfect-world-v6) Model link: [View model](https://modelslab.com/models/perfect-world-v6) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "perfect-world-v6", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/perfect-world-v6
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
null
2024-04-30T21:42:06+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# Perfect World 完美世界 v6 API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "perfect-world-v6" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "perfect-world-v6", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# Perfect World 完美世界 v6 API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"perfect-world-v6\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"perfect-world-v6\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# Perfect World 完美世界 v6 API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"perfect-world-v6\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"perfect-world-v6\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 54, 15, 511 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n# Perfect World 完美世界 v6 API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"perfect-world-v6\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"perfect-world-v6\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
erbacher/TinyStories-10k-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:43:43+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF This model was converted to GGUF format from [`patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap`](https://huggingface.co/patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF --model llama3-3-8b-instruct-ft-loraadap.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF --model llama3-3-8b-instruct-ft-loraadap.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m llama3-3-8b-instruct-ft-loraadap.Q4_K_M.gguf -n 128 ```
{"library_name": "transformers", "tags": ["llama-cpp", "gguf-my-repo"]}
jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF
null
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:45:10+00:00
[]
[]
TAGS #transformers #gguf #llama-cpp #gguf-my-repo #endpoints_compatible #region-us
# jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF This model was converted to GGUF format from 'patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#transformers #gguf #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n", "# jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ 31, 101, 52 ]
[ "TAGS\n#transformers #gguf #llama-cpp #gguf-my-repo #endpoints_compatible #region-us \n# jayrodge/Llama3-3-8B-Instruct-ft-loraAdap-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'patelmiteshn/Llama3-3-8B-Instruct-ft-loraAdap' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
image-segmentation
pytorch
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/deeplabv3_plus_mobilenet/web-assets/model_demo.png) # DeepLabV3-Plus-MobileNet: Optimized for Mobile Deployment ## Deep Convolutional Neural Network model for semantic segmentation DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the various datasets. It uses MobileNet as a backbone. This model is an implementation of DeepLabV3-Plus-MobileNet found [here](https://github.com/jfzhang95/pytorch-deeplab-xception). This repository provides scripts to run DeepLabV3-Plus-MobileNet on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet). ### Model Details - **Model Type:** Semantic segmentation - **Model Stats:** - Model checkpoint: VOC2012 - Input resolution: 513x513 - Number of parameters: 5.80M - Model size: 22.2 MB | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model | ---|---|---|---|---|---|---|---| | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 13.206 ms | 20 - 35 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 12.804 ms | 2 - 19 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.so) ## Installation This model can be installed as a Python package via pip. ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.deeplabv3_plus_mobilenet.export ``` ``` Profile Job summary of DeepLabV3-Plus-MobileNet -------------------------------------------------- Device: QCS8550 (Proxy) (12) Estimated Inference Time: 13.24 ms Estimated Peak Memory Range: 21.14-23.32 MB Compute Units: NPU (98) | Total (98) Profile Job summary of DeepLabV3-Plus-MobileNet -------------------------------------------------- Device: QCS8550 (Proxy) (12) Estimated Inference Time: 12.99 ms Estimated Peak Memory Range: 3.05-25.23 MB Compute Units: NPU (124) | Total (124) ``` ## How does this work? This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/DeepLabV3-Plus-MobileNet/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.deeplabv3_plus_mobilenet import Model # Load the model torch_model = Model.from_pretrained() torch_model.eval() # Device device = hub.Device("Samsung Galaxy S23") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo --on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo -- --on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on DeepLabV3-Plus-MobileNet's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License - The license for the original implementation of DeepLabV3-Plus-MobileNet can be found [here](https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/LICENSE). - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url}) ## References * [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587) * [Source Model Implementation](https://github.com/jfzhang95/pytorch-deeplab-xception) ## Community * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:[email protected]).
{"license": "mit", "library_name": "pytorch", "tags": ["android"], "datasets": ["VOC2012"], "pipeline_tag": "image-segmentation"}
qualcomm/DeepLabV3-Plus-MobileNet
null
[ "pytorch", "tflite", "android", "image-segmentation", "dataset:VOC2012", "arxiv:1706.05587", "license:mit", "region:us" ]
null
2024-04-30T21:49:49+00:00
[ "1706.05587" ]
[]
TAGS #pytorch #tflite #android #image-segmentation #dataset-VOC2012 #arxiv-1706.05587 #license-mit #region-us
![](URL DeepLabV3-Plus-MobileNet: Optimized for Mobile Deployment ========================================================= Deep Convolutional Neural Network model for semantic segmentation ----------------------------------------------------------------- DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the various datasets. It uses MobileNet as a backbone. This model is an implementation of DeepLabV3-Plus-MobileNet found here. This repository provides scripts to run DeepLabV3-Plus-MobileNet on Qualcomm® devices. More details on model performance across various devices, can be found here. ### Model Details * Model Type: Semantic segmentation * Model Stats: + Model checkpoint: VOC2012 + Input resolution: 513x513 + Number of parameters: 5.80M + Model size: 22.2 MB Installation ------------ This model can be installed as a Python package via pip. Configure Qualcomm® AI Hub to run this model on a cloud-hosted device --------------------------------------------------------------------- Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'. With this API token, you can configure your client to run models on the cloud hosted devices. Navigate to docs for more information. Demo off target --------------- The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. The above demo runs a reference implementation of pre-processing, model inference, and post processing. NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. How does this work? ------------------- This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: Compile model for on-device deployment To compile a PyTorch model for on-device deployment, we first trace the model in memory using the 'URL' and then call the 'submit\_compile\_job' API. Step 2: Performance profiling on cloud-hosted device After compiling models from step 1. Models can be profiled model on-device using the 'target\_model'. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. Step 3: Verify on-device accuracy To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access. Run demo on a cloud-hosted device --------------------------------- You can also run the demo on-device. NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). Deploying compiled model to Android ----------------------------------- The models can be deployed using multiple runtimes: * TensorFlow Lite ('.tflite' export): This tutorial provides a guide to deploy the .tflite model in an Android application. * QNN ('.so' export ): This sample app provides instructions on how to use the '.so' shared library in an Android application. View on Qualcomm® AI Hub ------------------------ Get more details on DeepLabV3-Plus-MobileNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub License ------- * The license for the original implementation of DeepLabV3-Plus-MobileNet can be found here. * The license for the compiled assets for on-device deployment can be found here References ---------- * Rethinking Atrous Convolution for Semantic Image Segmentation * Source Model Implementation Community --------- * Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI. * For questions or feedback please reach out to us.
[ "### Model Details\n\n\n* Model Type: Semantic segmentation\n* Model Stats:\n\t+ Model checkpoint: VOC2012\n\t+ Input resolution: 513x513\n\t+ Number of parameters: 5.80M\n\t+ Model size: 22.2 MB\n\n\n\nInstallation\n------------\n\n\nThis model can be installed as a Python package via pip.\n\n\nConfigure Qualcomm® AI Hub to run this model on a cloud-hosted device\n---------------------------------------------------------------------\n\n\nSign-in to Qualcomm® AI Hub with your\nQualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'.\n\n\nWith this API token, you can configure your client to run models on the cloud\nhosted devices.\n\n\nNavigate to docs for more information.\n\n\nDemo off target\n---------------\n\n\nThe package contains a simple end-to-end demo that downloads pre-trained\nweights and runs this model on a sample input.\n\n\nThe above demo runs a reference implementation of pre-processing, model\ninference, and post processing.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).", "### Run model on a cloud-hosted device\n\n\nIn addition to the demo, you can also run the model on a cloud-hosted Qualcomm®\ndevice. This script does the following:\n\n\n* Performance check on-device on a cloud-hosted device\n* Downloads compiled assets that can be deployed on-device for Android.\n* Accuracy check between PyTorch and on-device outputs.\n\n\nHow does this work?\n-------------------\n\n\nThis export script\nleverages Qualcomm® AI Hub to optimize, validate, and deploy this model\non-device. Lets go through each step below in detail:\n\n\nStep 1: Compile model for on-device deployment\n\n\nTo compile a PyTorch model for on-device deployment, we first trace the model\nin memory using the 'URL' and then call the 'submit\\_compile\\_job' API.\n\n\nStep 2: Performance profiling on cloud-hosted device\n\n\nAfter compiling models from step 1. Models can be profiled model on-device using the\n'target\\_model'. Note that this scripts runs the model on a device automatically\nprovisioned in the cloud. Once the job is submitted, you can navigate to a\nprovided job URL to view a variety of on-device performance metrics.\n\n\nStep 3: Verify on-device accuracy\n\n\nTo verify the accuracy of the model on-device, you can run on-device inference\non sample input data on the same cloud hosted device.\n\n\nWith the output of the model, you can compute like PSNR, relative errors or\nspot check the output with expected output.\n\n\nNote: This on-device profiling and inference requires access to Qualcomm®\nAI Hub. Sign up for access.\n\n\nRun demo on a cloud-hosted device\n---------------------------------\n\n\nYou can also run the demo on-device.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).\n\n\nDeploying compiled model to Android\n-----------------------------------\n\n\nThe models can be deployed using multiple runtimes:\n\n\n* TensorFlow Lite ('.tflite' export): This\ntutorial provides a\nguide to deploy the .tflite model in an Android application.\n* QNN ('.so' export ): This sample\napp\nprovides instructions on how to use the '.so' shared library in an Android application.\n\n\nView on Qualcomm® AI Hub\n------------------------\n\n\nGet more details on DeepLabV3-Plus-MobileNet's performance across various devices here.\nExplore all available models on Qualcomm® AI Hub\n\n\nLicense\n-------\n\n\n* The license for the original implementation of DeepLabV3-Plus-MobileNet can be found\nhere.\n* The license for the compiled assets for on-device deployment can be found here\n\n\nReferences\n----------\n\n\n* Rethinking Atrous Convolution for Semantic Image Segmentation\n* Source Model Implementation\n\n\nCommunity\n---------\n\n\n* Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.\n* For questions or feedback please reach out to us." ]
[ "TAGS\n#pytorch #tflite #android #image-segmentation #dataset-VOC2012 #arxiv-1706.05587 #license-mit #region-us \n", "### Model Details\n\n\n* Model Type: Semantic segmentation\n* Model Stats:\n\t+ Model checkpoint: VOC2012\n\t+ Input resolution: 513x513\n\t+ Number of parameters: 5.80M\n\t+ Model size: 22.2 MB\n\n\n\nInstallation\n------------\n\n\nThis model can be installed as a Python package via pip.\n\n\nConfigure Qualcomm® AI Hub to run this model on a cloud-hosted device\n---------------------------------------------------------------------\n\n\nSign-in to Qualcomm® AI Hub with your\nQualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'.\n\n\nWith this API token, you can configure your client to run models on the cloud\nhosted devices.\n\n\nNavigate to docs for more information.\n\n\nDemo off target\n---------------\n\n\nThe package contains a simple end-to-end demo that downloads pre-trained\nweights and runs this model on a sample input.\n\n\nThe above demo runs a reference implementation of pre-processing, model\ninference, and post processing.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).", "### Run model on a cloud-hosted device\n\n\nIn addition to the demo, you can also run the model on a cloud-hosted Qualcomm®\ndevice. This script does the following:\n\n\n* Performance check on-device on a cloud-hosted device\n* Downloads compiled assets that can be deployed on-device for Android.\n* Accuracy check between PyTorch and on-device outputs.\n\n\nHow does this work?\n-------------------\n\n\nThis export script\nleverages Qualcomm® AI Hub to optimize, validate, and deploy this model\non-device. Lets go through each step below in detail:\n\n\nStep 1: Compile model for on-device deployment\n\n\nTo compile a PyTorch model for on-device deployment, we first trace the model\nin memory using the 'URL' and then call the 'submit\\_compile\\_job' API.\n\n\nStep 2: Performance profiling on cloud-hosted device\n\n\nAfter compiling models from step 1. Models can be profiled model on-device using the\n'target\\_model'. Note that this scripts runs the model on a device automatically\nprovisioned in the cloud. Once the job is submitted, you can navigate to a\nprovided job URL to view a variety of on-device performance metrics.\n\n\nStep 3: Verify on-device accuracy\n\n\nTo verify the accuracy of the model on-device, you can run on-device inference\non sample input data on the same cloud hosted device.\n\n\nWith the output of the model, you can compute like PSNR, relative errors or\nspot check the output with expected output.\n\n\nNote: This on-device profiling and inference requires access to Qualcomm®\nAI Hub. Sign up for access.\n\n\nRun demo on a cloud-hosted device\n---------------------------------\n\n\nYou can also run the demo on-device.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).\n\n\nDeploying compiled model to Android\n-----------------------------------\n\n\nThe models can be deployed using multiple runtimes:\n\n\n* TensorFlow Lite ('.tflite' export): This\ntutorial provides a\nguide to deploy the .tflite model in an Android application.\n* QNN ('.so' export ): This sample\napp\nprovides instructions on how to use the '.so' shared library in an Android application.\n\n\nView on Qualcomm® AI Hub\n------------------------\n\n\nGet more details on DeepLabV3-Plus-MobileNet's performance across various devices here.\nExplore all available models on Qualcomm® AI Hub\n\n\nLicense\n-------\n\n\n* The license for the original implementation of DeepLabV3-Plus-MobileNet can be found\nhere.\n* The license for the compiled assets for on-device deployment can be found here\n\n\nReferences\n----------\n\n\n* Rethinking Atrous Convolution for Semantic Image Segmentation\n* Source Model Implementation\n\n\nCommunity\n---------\n\n\n* Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.\n* For questions or feedback please reach out to us." ]
[ 44, 327, 752 ]
[ "TAGS\n#pytorch #tflite #android #image-segmentation #dataset-VOC2012 #arxiv-1706.05587 #license-mit #region-us \n### Model Details\n\n\n* Model Type: Semantic segmentation\n* Model Stats:\n\t+ Model checkpoint: VOC2012\n\t+ Input resolution: 513x513\n\t+ Number of parameters: 5.80M\n\t+ Model size: 22.2 MB\n\n\n\nInstallation\n------------\n\n\nThis model can be installed as a Python package via pip.\n\n\nConfigure Qualcomm® AI Hub to run this model on a cloud-hosted device\n---------------------------------------------------------------------\n\n\nSign-in to Qualcomm® AI Hub with your\nQualcomm® ID. Once signed in navigate to 'Account -> Settings -> API Token'.\n\n\nWith this API token, you can configure your client to run models on the cloud\nhosted devices.\n\n\nNavigate to docs for more information.\n\n\nDemo off target\n---------------\n\n\nThe package contains a simple end-to-end demo that downloads pre-trained\nweights and runs this model on a sample input.\n\n\nThe above demo runs a reference implementation of pre-processing, model\ninference, and post processing.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).### Run model on a cloud-hosted device\n\n\nIn addition to the demo, you can also run the model on a cloud-hosted Qualcomm®\ndevice. This script does the following:\n\n\n* Performance check on-device on a cloud-hosted device\n* Downloads compiled assets that can be deployed on-device for Android.\n* Accuracy check between PyTorch and on-device outputs.\n\n\nHow does this work?\n-------------------\n\n\nThis export script\nleverages Qualcomm® AI Hub to optimize, validate, and deploy this model\non-device. Lets go through each step below in detail:\n\n\nStep 1: Compile model for on-device deployment\n\n\nTo compile a PyTorch model for on-device deployment, we first trace the model\nin memory using the 'URL' and then call the 'submit\\_compile\\_job' API.\n\n\nStep 2: Performance profiling on cloud-hosted device\n\n\nAfter compiling models from step 1. Models can be profiled model on-device using the\n'target\\_model'. Note that this scripts runs the model on a device automatically\nprovisioned in the cloud. Once the job is submitted, you can navigate to a\nprovided job URL to view a variety of on-device performance metrics.\n\n\nStep 3: Verify on-device accuracy\n\n\nTo verify the accuracy of the model on-device, you can run on-device inference\non sample input data on the same cloud hosted device.\n\n\nWith the output of the model, you can compute like PSNR, relative errors or\nspot check the output with expected output.\n\n\nNote: This on-device profiling and inference requires access to Qualcomm®\nAI Hub. Sign up for access.\n\n\nRun demo on a cloud-hosted device\n---------------------------------\n\n\nYou can also run the demo on-device.\n\n\nNOTE: If you want running in a Jupyter Notebook or Google Colab like\nenvironment, please add the following to your cell (instead of the above).\n\n\nDeploying compiled model to Android\n-----------------------------------\n\n\nThe models can be deployed using multiple runtimes:\n\n\n* TensorFlow Lite ('.tflite' export): This\ntutorial provides a\nguide to deploy the .tflite model in an Android application.\n* QNN ('.so' export ): This sample\napp\nprovides instructions on how to use the '.so' shared library in an Android application.\n\n\nView on Qualcomm® AI Hub\n------------------------\n\n\nGet more details on DeepLabV3-Plus-MobileNet's performance across various devices here.\nExplore all available models on Qualcomm® AI Hub\n\n\nLicense\n-------\n\n\n* The license for the original implementation of DeepLabV3-Plus-MobileNet can be found\nhere.\n* The license for the compiled assets for on-device deployment can be found here\n\n\nReferences\n----------\n\n\n* Rethinking Atrous Convolution for Semantic Image Segmentation\n* Source Model Implementation\n\n\nCommunity\n---------\n\n\n* Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.\n* For questions or feedback please reach out to us." ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
kssumanth6/IntentClassification_V3
null
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:50:19+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #distilbert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #distilbert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #distilbert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
null
# LocAlM Compact yet powerful, LocAlM efficiently identifies the appropriate medical specialists based on your specific needs and preferences. (Less than 25 tokens per prompt!!!) <img src="https://cdn-uploads.huggingface.co/production/uploads/6630105676ea93b5c2b0ac1f/gIHJOFIv6TgS7MQwpMQp4.jpeg" width=400 /> > Alm is a small but smart duck, reminiscent in size of his parent model, phi3 # Versions LocAlM comes in 2 versions. I recommand you use the latest version: *2-localm-phi3-q5ks.gguf* You can load the model in Ollama if you want to run it locally. The model is very small and takes only 2.5G. In order to use *2-localm-phi3-q5ks.gguf*, follow this alpaca prompt format: ``` "instruction": For the symptoms given in input give me 1 or more doctors I should consult in french ordered by pertinence. "input": {{text}} ```
{}
potion-verte/LocAlM
null
[ "gguf", "region:us" ]
null
2024-04-30T21:53:13+00:00
[]
[]
TAGS #gguf #region-us
# LocAlM Compact yet powerful, LocAlM efficiently identifies the appropriate medical specialists based on your specific needs and preferences. (Less than 25 tokens per prompt!!!) <img src="URL width=400 /> > Alm is a small but smart duck, reminiscent in size of his parent model, phi3 # Versions LocAlM comes in 2 versions. I recommand you use the latest version: *URL* You can load the model in Ollama if you want to run it locally. The model is very small and takes only 2.5G. In order to use *URL*, follow this alpaca prompt format:
[ "# LocAlM\n\nCompact yet powerful, LocAlM efficiently identifies the appropriate medical specialists based on your specific needs and preferences. (Less than 25 tokens per prompt!!!)\n\n<img src=\"URL width=400 />\n\n> Alm is a small but smart duck, reminiscent in size of his parent model, phi3", "# Versions\n\nLocAlM comes in 2 versions.\n\nI recommand you use the latest version: *URL*\n\nYou can load the model in Ollama if you want to run it locally. The model is very small and takes only 2.5G.\n\nIn order to use *URL*, follow this alpaca prompt format:" ]
[ "TAGS\n#gguf #region-us \n", "# LocAlM\n\nCompact yet powerful, LocAlM efficiently identifies the appropriate medical specialists based on your specific needs and preferences. (Less than 25 tokens per prompt!!!)\n\n<img src=\"URL width=400 />\n\n> Alm is a small but smart duck, reminiscent in size of his parent model, phi3", "# Versions\n\nLocAlM comes in 2 versions.\n\nI recommand you use the latest version: *URL*\n\nYou can load the model in Ollama if you want to run it locally. The model is very small and takes only 2.5G.\n\nIn order to use *URL*, follow this alpaca prompt format:" ]
[ 9, 69, 71 ]
[ "TAGS\n#gguf #region-us \n# LocAlM\n\nCompact yet powerful, LocAlM efficiently identifies the appropriate medical specialists based on your specific needs and preferences. (Less than 25 tokens per prompt!!!)\n\n<img src=\"URL width=400 />\n\n> Alm is a small but smart duck, reminiscent in size of his parent model, phi3# Versions\n\nLocAlM comes in 2 versions.\n\nI recommand you use the latest version: *URL*\n\nYou can load the model in Ollama if you want to run it locally. The model is very small and takes only 2.5G.\n\nIn order to use *URL*, follow this alpaca prompt format:" ]
text-generation
transformers
# Model Card for Model ID Phi3-mini-128k and phi3-mini-alpaca merged
{"library_name": "transformers", "tags": []}
MadElf1337/phi-3-mini-alpaca-merged
null
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T21:54:53+00:00
[]
[]
TAGS #transformers #safetensors #phi3 #text-generation #conversational #custom_code #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID Phi3-mini-128k and phi3-mini-alpaca merged
[ "# Model Card for Model ID\n\nPhi3-mini-128k and phi3-mini-alpaca merged" ]
[ "TAGS\n#transformers #safetensors #phi3 #text-generation #conversational #custom_code #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID\n\nPhi3-mini-128k and phi3-mini-alpaca merged" ]
[ 35, 23 ]
[ "TAGS\n#transformers #safetensors #phi3 #text-generation #conversational #custom_code #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID\n\nPhi3-mini-128k and phi3-mini-alpaca merged" ]
null
null
# RVC Voice Model ## Overview This repository contains the RVC Voice Model, a robust machine learning model for voice synthesis. The model is designed to accurately replicate a specific voice, providing high-quality audio output suitable for various applications. ## File Structure - **Index File**: `logs/dotcom/added_IVF8_Flat_nprobe_1_dotcom_v2.index` - This index file is crucial for the operation of the model, facilitating efficient data retrieval. - **Model File**: `logs/dotcom/D_2333333.pth` - Contains the model parameters necessary for voice synthesis. - **Weights File**: `weights/dotcom.pth` - Stores the trained weights of the model, essential for generating the target voice. ## Usage The RVC Voice Model is fully unrestricted for any type of use, provided that proper credit is given to the creator. You are free to integrate, modify, and distribute this model in both personal and commercial projects. ## Credit If you use this model, please credit as follows: - **Creator of RVC model**: manikineko.nl ## Disclaimer The individual(voice source) on whom this voice model is based has been involved in activities considered highly illegal. The creation of this model is for educational and research purposes only, and it should not be used to glorify or endorse any illegal activities. ## License This project is licensed under the terms of the MIT License. ## Contact If you have any questions or need further information, please feel free to reach out via [email protected]. Thank you for using or contributing to the RVC Voice Model project!
{"license": "mit"}
bloomsirenix/dotcom_rvc
null
[ "tensorboard", "license:mit", "region:us" ]
null
2024-04-30T21:59:25+00:00
[]
[]
TAGS #tensorboard #license-mit #region-us
# RVC Voice Model ## Overview This repository contains the RVC Voice Model, a robust machine learning model for voice synthesis. The model is designed to accurately replicate a specific voice, providing high-quality audio output suitable for various applications. ## File Structure - Index File: 'logs/dotcom/added_IVF8_Flat_nprobe_1_dotcom_v2.index' - This index file is crucial for the operation of the model, facilitating efficient data retrieval. - Model File: 'logs/dotcom/D_2333333.pth' - Contains the model parameters necessary for voice synthesis. - Weights File: 'weights/URL' - Stores the trained weights of the model, essential for generating the target voice. ## Usage The RVC Voice Model is fully unrestricted for any type of use, provided that proper credit is given to the creator. You are free to integrate, modify, and distribute this model in both personal and commercial projects. ## Credit If you use this model, please credit as follows: - Creator of RVC model: URL ## Disclaimer The individual(voice source) on whom this voice model is based has been involved in activities considered highly illegal. The creation of this model is for educational and research purposes only, and it should not be used to glorify or endorse any illegal activities. ## License This project is licensed under the terms of the MIT License. ## Contact If you have any questions or need further information, please feel free to reach out via admin@URL. Thank you for using or contributing to the RVC Voice Model project!
[ "# RVC Voice Model", "## Overview\nThis repository contains the RVC Voice Model, a robust machine learning model for voice synthesis. The model is designed to accurately replicate a specific voice, providing high-quality audio output suitable for various applications.", "## File Structure\n- Index File: 'logs/dotcom/added_IVF8_Flat_nprobe_1_dotcom_v2.index'\n - This index file is crucial for the operation of the model, facilitating efficient data retrieval.\n- Model File: 'logs/dotcom/D_2333333.pth'\n - Contains the model parameters necessary for voice synthesis.\n- Weights File: 'weights/URL'\n - Stores the trained weights of the model, essential for generating the target voice.", "## Usage\nThe RVC Voice Model is fully unrestricted for any type of use, provided that proper credit is given to the creator. You are free to integrate, modify, and distribute this model in both personal and commercial projects.", "## Credit\nIf you use this model, please credit as follows:\n- Creator of RVC model: URL", "## Disclaimer\nThe individual(voice source) on whom this voice model is based has been involved in activities considered highly illegal. The creation of this model is for educational and research purposes only, and it should not be used to glorify or endorse any illegal activities.", "## License\nThis project is licensed under the terms of the MIT License.", "## Contact\nIf you have any questions or need further information, please feel free to reach out via admin@URL.\n\nThank you for using or contributing to the RVC Voice Model project!" ]
[ "TAGS\n#tensorboard #license-mit #region-us \n", "# RVC Voice Model", "## Overview\nThis repository contains the RVC Voice Model, a robust machine learning model for voice synthesis. The model is designed to accurately replicate a specific voice, providing high-quality audio output suitable for various applications.", "## File Structure\n- Index File: 'logs/dotcom/added_IVF8_Flat_nprobe_1_dotcom_v2.index'\n - This index file is crucial for the operation of the model, facilitating efficient data retrieval.\n- Model File: 'logs/dotcom/D_2333333.pth'\n - Contains the model parameters necessary for voice synthesis.\n- Weights File: 'weights/URL'\n - Stores the trained weights of the model, essential for generating the target voice.", "## Usage\nThe RVC Voice Model is fully unrestricted for any type of use, provided that proper credit is given to the creator. You are free to integrate, modify, and distribute this model in both personal and commercial projects.", "## Credit\nIf you use this model, please credit as follows:\n- Creator of RVC model: URL", "## Disclaimer\nThe individual(voice source) on whom this voice model is based has been involved in activities considered highly illegal. The creation of this model is for educational and research purposes only, and it should not be used to glorify or endorse any illegal activities.", "## License\nThis project is licensed under the terms of the MIT License.", "## Contact\nIf you have any questions or need further information, please feel free to reach out via admin@URL.\n\nThank you for using or contributing to the RVC Voice Model project!" ]
[ 12, 5, 43, 108, 47, 23, 58, 15, 40 ]
[ "TAGS\n#tensorboard #license-mit #region-us \n# RVC Voice Model## Overview\nThis repository contains the RVC Voice Model, a robust machine learning model for voice synthesis. The model is designed to accurately replicate a specific voice, providing high-quality audio output suitable for various applications.## File Structure\n- Index File: 'logs/dotcom/added_IVF8_Flat_nprobe_1_dotcom_v2.index'\n - This index file is crucial for the operation of the model, facilitating efficient data retrieval.\n- Model File: 'logs/dotcom/D_2333333.pth'\n - Contains the model parameters necessary for voice synthesis.\n- Weights File: 'weights/URL'\n - Stores the trained weights of the model, essential for generating the target voice.## Usage\nThe RVC Voice Model is fully unrestricted for any type of use, provided that proper credit is given to the creator. You are free to integrate, modify, and distribute this model in both personal and commercial projects.## Credit\nIf you use this model, please credit as follows:\n- Creator of RVC model: URL## Disclaimer\nThe individual(voice source) on whom this voice model is based has been involved in activities considered highly illegal. The creation of this model is for educational and research purposes only, and it should not be used to glorify or endorse any illegal activities.## License\nThis project is licensed under the terms of the MIT License.## Contact\nIf you have any questions or need further information, please feel free to reach out via admin@URL.\n\nThank you for using or contributing to the RVC Voice Model project!" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
jiuhai/llama-3-1725
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T21:59:35+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 44, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Uploaded model - **Developed by:** katharsis - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
katharsis/llama3-8b-oig-unsloth-merged
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:01:06+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: katharsis - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: katharsis\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: katharsis\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 76, 80 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #sft #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: katharsis\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-classification
transformers
# Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.4699208438396454 f1_macro: 0.8648394526320947 f1_micro: 0.8277777777777777 f1_weighted: 0.827145991318232 precision_macro: 0.8595340501792115 precision_micro: 0.8277777777777777 precision_weighted: 0.8456027479091995 recall_macro: 0.8846808510638299 recall_micro: 0.8277777777777777 recall_weighted: 0.8277777777777777 accuracy: 0.8277777777777777
{"tags": ["autotrain", "text-classification"], "datasets": ["v11/autotrain-data"], "widget": [{"text": "I love AutoTrain"}]}
Zerithas/v11
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain", "dataset:v11/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:01:39+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #autotrain #dataset-v11/autotrain-data #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.4699208438396454 f1_macro: 0.8648394526320947 f1_micro: 0.8277777777777777 f1_weighted: 0.827145991318232 precision_macro: 0.8595340501792115 precision_micro: 0.8277777777777777 precision_weighted: 0.8456027479091995 recall_macro: 0.8846808510638299 recall_micro: 0.8277777777777777 recall_weighted: 0.8277777777777777 accuracy: 0.8277777777777777
[ "# Model Trained Using AutoTrain\n\n- Problem type: Text Classification", "## Validation Metrics\nloss: 0.4699208438396454\n\nf1_macro: 0.8648394526320947\n\nf1_micro: 0.8277777777777777\n\nf1_weighted: 0.827145991318232\n\nprecision_macro: 0.8595340501792115\n\nprecision_micro: 0.8277777777777777\n\nprecision_weighted: 0.8456027479091995\n\nrecall_macro: 0.8846808510638299\n\nrecall_micro: 0.8277777777777777\n\nrecall_weighted: 0.8277777777777777\n\naccuracy: 0.8277777777777777" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #autotrain #dataset-v11/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\n- Problem type: Text Classification", "## Validation Metrics\nloss: 0.4699208438396454\n\nf1_macro: 0.8648394526320947\n\nf1_micro: 0.8277777777777777\n\nf1_weighted: 0.827145991318232\n\nprecision_macro: 0.8595340501792115\n\nprecision_micro: 0.8277777777777777\n\nprecision_weighted: 0.8456027479091995\n\nrecall_macro: 0.8846808510638299\n\nrecall_micro: 0.8277777777777777\n\nrecall_weighted: 0.8277777777777777\n\naccuracy: 0.8277777777777777" ]
[ 44, 12, 198 ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #autotrain #dataset-v11/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\n- Problem type: Text Classification## Validation Metrics\nloss: 0.4699208438396454\n\nf1_macro: 0.8648394526320947\n\nf1_micro: 0.8277777777777777\n\nf1_weighted: 0.827145991318232\n\nprecision_macro: 0.8595340501792115\n\nprecision_micro: 0.8277777777777777\n\nprecision_weighted: 0.8456027479091995\n\nrecall_macro: 0.8846808510638299\n\nrecall_micro: 0.8277777777777777\n\nrecall_weighted: 0.8277777777777777\n\naccuracy: 0.8277777777777777" ]
text-generation
llama.cpp
# CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google > [!IMPORTANT] > > In llama.cpp, and other related tools such as Ollama and LM Studio, please make sure that you have these flags set correctly, especially **`repeat-penalty`**. Georgi Gerganov (llama.cpp's author) shared his experience in https://huggingface.co/google/gemma-7b-it/discussions/38#65d7b14adb51f7c160769fa1. ## Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b-GGUF) | [codegemma-7b](https://huggingface.co/google/codegemma-7b-GGUF) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it-GGUF) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | For detailed model card, refer to https://huggingface.co/google/codegemma-1.1-2b. ## Sample Usage ```shell $ cat non_prime /// Write a rust function to identify non-prime numbers. /// /// Examples: /// >>> is_not_prime(2) /// False /// >>> is_not_prime(10) /// True pub fn is_not_prime(n: i32) -> bool { $ main -m codegemma-1.1-2b.gguf --temp 0 --top-k 0 -f non_prime --log-disable --repeat-penalty 1.0 /// Write a rust function to identify non-prime numbers. /// /// Examples: /// >>> is_not_prime(2) /// False /// >>> is_not_prime(10) /// True pub fn is_not_prime(n: i32) -> bool { for i in 2..n { if n % i == 0 { return true; } } false } <|file_separator|> ``` ## Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b-GGUF) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b-GGUF) | [7B](https://huggingface.co/google/codegemma-7b-GGUF) | [7B-IT](https://huggingface.co/google/codegemma-7b-it-GGUF) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it-GGUF) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 ## Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png)
{"license": "gemma", "library_name": "llama.cpp", "extra_gated_heading": "Access CodeGemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "license_link": "https://ai.google.dev/gemma/terms", "pipeline_tag": "text-generation"}
google/codegemma-1.1-2b-GGUF
null
[ "llama.cpp", "gguf", "text-generation", "license:gemma", "region:us" ]
null
2024-04-30T22:01:59+00:00
[]
[]
TAGS #llama.cpp #gguf #text-generation #license-gemma #region-us
CodeGemma ========= Model Page : CodeGemma Resources and Technical Documentation : Technical Report : Responsible Generative AI Toolkit Terms of Use : Terms Authors : Google > > [!IMPORTANT] > > > In URL, and other related tools such as Ollama and LM Studio, please make sure that you have these flags set correctly, especially 'repeat-penalty'. Georgi Gerganov (URL's author) shared his experience in URL > > > Description ----------- CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. For detailed model card, refer to URL Sample Usage ------------ Coding Benchmarks ----------------- Natural Language Benchmarks --------------------------- !CodeGemma Natural Language Benchmarks
[]
[ "TAGS\n#llama.cpp #gguf #text-generation #license-gemma #region-us \n" ]
[ 23 ]
[ "TAGS\n#llama.cpp #gguf #text-generation #license-gemma #region-us \n" ]
text-generation
llama.cpp
# CodeGemma Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google > [!IMPORTANT] > > In llama.cpp, and other related tools such as Ollama and LM Studio, please make sure that you have these flags set correctly, especially **`repeat-penalty`**. Georgi Gerganov (llama.cpp's author) shared his experience in https://huggingface.co/google/gemma-7b-it/discussions/38#65d7b14adb51f7c160769fa1. ## Description CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. | | [ **codegemma-2b** ](https://huggingface.co/google/codegemma-1.1-2b-GGUF) | [codegemma-7b](https://huggingface.co/google/codegemma-7b-GGUF) | [codegemma-7b-it](https://huggingface.co/google/codegemma-1.1-7b-it-GGUF) | |----------------------------------|:----------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------:| | Code Completion | ✅ | ✅ | | | Generation from natural language | | ✅ | ✅ | | Chat | | | ✅ | | Instruction Following | | | ✅ | For detailed model card, refer to https://huggingface.co/google/codegemma-1.1-7b-it. ## Sample Usage ```shell $ cat non_prime /// Write a rust function to identify non-prime numbers. /// /// Examples: /// >>> is_not_prime(2) /// False /// >>> is_not_prime(10) /// True pub fn is_not_prime(n: i32) -> bool { $ main -m codegemma-1.1-7b-it.gguf --temp 0 --top-k 0 -f non_prime --log-disable --repeat-penalty 1.0 /// Write a rust function to identify non-prime numbers. /// /// Examples: /// >>> is_not_prime(2) /// False /// >>> is_not_prime(10) /// True pub fn is_not_prime(n: i32) -> bool { if n <= 1 { return true; } for i in 2..=(n as f64).sqrt() as i32 { if n % i == 0 { return true; } } false } ``` ## Coding Benchmarks Benchmark | [2B](https://huggingface.co/google/codegemma-2b-GGUF) | [2B (1.1)](https://huggingface.co/google/codegemma-1.1-2b-GGUF) | [7B](https://huggingface.co/google/codegemma-7b-GGUF) | [7B-IT](https://huggingface.co/google/codegemma-7b-it-GGUF) | [7B-IT (1.1)](https://huggingface.co/google/codegemma-1.1-7b-it-GGUF) ----------------------|------|----------|------|-------|------------ HumanEval | 31.1 | 37.8 | 44.5 | 56.1 | 60.4 MBPP | 43.6 | 49.2 | 56.2 | 54.2 | 55.6 HumanEval Single Line | 78.4 | 79.3 | 76.1 | 68.3 | 77.4 HumanEval Multi Line | 51.4 | 51.0 | 58.4 | 20.1 | 23.7 BC HE C++ | 24.2 | 19.9 | 32.9 | 42.2 | 46.6 BC HE C# | 10.6 | 26.1 | 22.4 | 26.7 | 54.7 BC HE Go | 20.5 | 18.0 | 21.7 | 28.6 | 34.2 BC HE Java | 29.2 | 29.8 | 41.0 | 48.4 | 50.3 BC HE JavaScript | 21.7 | 28.0 | 39.8 | 46.0 | 48.4 BC HE Kotlin | 28.0 | 32.3 | 39.8 | 51.6 | 47.8 BC HE Python | 21.7 | 36.6 | 42.2 | 48.4 | 54.0 BC HE Rust | 26.7 | 24.2 | 34.1 | 36.0 | 37.3 BC MBPP C++ | 47.1 | 38.9 | 53.8 | 56.7 | 63.5 BC MBPP C# | 28.7 | 45.3 | 32.5 | 41.2 | 62.0 BC MBPP Go | 45.6 | 38.9 | 43.3 | 46.2 | 53.2 BC MBPP Java | 41.8 | 49.7 | 50.3 | 57.3 | 62.9 BC MBPP JavaScript | 45.3 | 45.0 | 58.2 | 61.4 | 61.4 BC MBPP Kotlin | 46.8 | 49.7 | 54.7 | 59.9 | 62.6 BC MBPP Python | 38.6 | 52.9 | 59.1 | 62.0 | 60.2 BC MBPP Rust | 45.3 | 47.4 | 52.9 | 53.5 | 52.3 ## Natural Language Benchmarks ![CodeGemma Natural Language Benchmarks](./codegemma_nl_benchmarks.png)
{"license": "gemma", "library_name": "llama.cpp", "extra_gated_heading": "Access CodeGemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "license_link": "https://ai.google.dev/gemma/terms", "pipeline_tag": "text-generation"}
google/codegemma-1.1-7b-it-GGUF
null
[ "llama.cpp", "gguf", "text-generation", "license:gemma", "region:us" ]
null
2024-04-30T22:03:05+00:00
[]
[]
TAGS #llama.cpp #gguf #text-generation #license-gemma #region-us
CodeGemma ========= Model Page : CodeGemma Resources and Technical Documentation : Technical Report : Responsible Generative AI Toolkit Terms of Use : Terms Authors : Google > > [!IMPORTANT] > > > In URL, and other related tools such as Ollama and LM Studio, please make sure that you have these flags set correctly, especially 'repeat-penalty'. Georgi Gerganov (URL's author) shared his experience in URL > > > Description ----------- CodeGemma is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion. For detailed model card, refer to URL Sample Usage ------------ Coding Benchmarks ----------------- Natural Language Benchmarks --------------------------- !CodeGemma Natural Language Benchmarks
[]
[ "TAGS\n#llama.cpp #gguf #text-generation #license-gemma #region-us \n" ]
[ 23 ]
[ "TAGS\n#llama.cpp #gguf #text-generation #license-gemma #region-us \n" ]
null
null
# cleatherbury/CatPPT-base-Q5_K_M-GGUF This model was converted to GGUF format from [`rishiraj/CatPPT-base`](https://huggingface.co/rishiraj/CatPPT-base) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/rishiraj/CatPPT-base) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo cleatherbury/CatPPT-base-Q5_K_M-GGUF --model catppt-base.Q5_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo cleatherbury/CatPPT-base-Q5_K_M-GGUF --model catppt-base.Q5_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m catppt-base.Q5_K_M.gguf -n 128 ```
{"license": "apache-2.0", "tags": ["merge", "llama-cpp", "gguf-my-repo"]}
cleatherbury/CatPPT-base-Q5_K_M-GGUF
null
[ "gguf", "merge", "llama-cpp", "gguf-my-repo", "license:apache-2.0", "region:us" ]
null
2024-04-30T22:05:19+00:00
[]
[]
TAGS #gguf #merge #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us
# cleatherbury/CatPPT-base-Q5_K_M-GGUF This model was converted to GGUF format from 'rishiraj/CatPPT-base' using URL via the URL's GGUF-my-repo space. Refer to the original model card for more details on the model. ## Use with URL Install URL through brew. Invoke the URL server or the CLI. CLI: Server: Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
[ "# cleatherbury/CatPPT-base-Q5_K_M-GGUF\nThis model was converted to GGUF format from 'rishiraj/CatPPT-base' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ "TAGS\n#gguf #merge #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us \n", "# cleatherbury/CatPPT-base-Q5_K_M-GGUF\nThis model was converted to GGUF format from 'rishiraj/CatPPT-base' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.", "## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
[ 34, 75, 52 ]
[ "TAGS\n#gguf #merge #llama-cpp #gguf-my-repo #license-apache-2.0 #region-us \n# cleatherbury/CatPPT-base-Q5_K_M-GGUF\nThis model was converted to GGUF format from 'rishiraj/CatPPT-base' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well." ]
reinforcement-learning
ml-agents
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dhajnes/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]}
dhajnes/ppo-SnowballTarget
null
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
null
2024-04-30T22:05:51+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
# ppo Agent playing SnowballTarget This is a trained model of a ppo agent playing SnowballTarget using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: dhajnes/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: dhajnes/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n", "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: dhajnes/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 39, 205 ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: dhajnes/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
null
transformers
# Uploaded model - **Developed by:** katharsis - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
katharsis/llama3-8b-oig-unsloth
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:06:11+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: katharsis - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: katharsis\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: katharsis\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 80 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: katharsis\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
gemma_torch
# CodeGemma Model Card > [!IMPORTANT] > > This repository corresponds to the CodeGemma 7B IT checkpoint for use with [Gemma PyTorch](https://github.com/google/gemma_pytorch). If you're looking for the `transformers` implementation, or more detailed model card, visit https://huggingface.co/google/codegemma-1.1-7b-it. **Model Page**: [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) **Resources and Technical Documentation**: * [Technical Report](https://goo.gle/codegemma) * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) **Terms of Use**: [Terms](https://ai.google.dev/gemma/terms) **Authors**: Google # Sample Usage ```python from gemma.config import GemmaConfig, get_config_for_7b, get_config_for_2b from gemma.model import GemmaForCausalLM from gemma.tokenizer import Tokenizer import contextlib import os import torch VARIANT = "7b-it" MACHINE_TYPE = "cpu" weights_dir = 'codegemma-1.1-7b-it-pytorch' @contextlib.contextmanager def _set_default_tensor_type(dtype: torch.dtype): """Sets the default torch dtype to the given dtype.""" torch.set_default_dtype(dtype) yield torch.set_default_dtype(torch.float) model_config = get_config_for_2b() if "2b" in VARIANT else get_config_for_7b() model_config.tokenizer = os.path.join(weights_dir, "tokenizer.model") device = torch.device(MACHINE_TYPE) with _set_default_tensor_type(model_config.get_dtype()): model = GemmaForCausalLM(model_config) ckpt_path = os.path.join(weights_dir, f'codegemma-1.1-{VARIANT}.pt') model.load_weights(ckpt_path) model = model.to(device).eval() PROMPT = """<start_of_turn>user Write a Python function to calculate the nth fibonacci number.<end_of_turn> <start_of_turn>model """ model.generate( PROMPT, device=device, output_len=100, ) ```
{"license": "gemma", "library_name": "gemma_torch", "tags": ["pytorch"], "extra_gated_heading": "Access CodeGemma on Hugging Face", "extra_gated_prompt": "To access CodeGemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "license_link": "https://ai.google.dev/gemma/terms", "pipeline_tag": "text-generation"}
google/codegemma-1.1-7b-it-pytorch
null
[ "gemma_torch", "pytorch", "text-generation", "license:gemma", "region:us" ]
null
2024-04-30T22:06:15+00:00
[]
[]
TAGS #gemma_torch #pytorch #text-generation #license-gemma #region-us
# CodeGemma Model Card > [!IMPORTANT] > > This repository corresponds to the CodeGemma 7B IT checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL Model Page: CodeGemma Resources and Technical Documentation: * Technical Report * Responsible Generative AI Toolkit Terms of Use: Terms Authors: Google # Sample Usage
[ "# CodeGemma Model Card\n\n> [!IMPORTANT]\n>\n> This repository corresponds to the CodeGemma 7B IT checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL\n\nModel Page: CodeGemma\n\nResources and Technical Documentation:\n\n* Technical Report\n* Responsible Generative AI Toolkit\n\nTerms of Use: Terms\n\nAuthors: Google", "# Sample Usage" ]
[ "TAGS\n#gemma_torch #pytorch #text-generation #license-gemma #region-us \n", "# CodeGemma Model Card\n\n> [!IMPORTANT]\n>\n> This repository corresponds to the CodeGemma 7B IT checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL\n\nModel Page: CodeGemma\n\nResources and Technical Documentation:\n\n* Technical Report\n* Responsible Generative AI Toolkit\n\nTerms of Use: Terms\n\nAuthors: Google", "# Sample Usage" ]
[ 22, 84, 3 ]
[ "TAGS\n#gemma_torch #pytorch #text-generation #license-gemma #region-us \n# CodeGemma Model Card\n\n> [!IMPORTANT]\n>\n> This repository corresponds to the CodeGemma 7B IT checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL\n\nModel Page: CodeGemma\n\nResources and Technical Documentation:\n\n* Technical Report\n* Responsible Generative AI Toolkit\n\nTerms of Use: Terms\n\nAuthors: Google# Sample Usage" ]
text-generation
gemma_torch
# CodeGemma Model Card > [!IMPORTANT] > > This repository corresponds to the CodeGemma 2B checkpoint for use with [Gemma PyTorch](https://github.com/google/gemma_pytorch). If you're looking for the `transformers` implementation, or more detailed model card, visit https://huggingface.co/google/codegemma-1.1-2b. **Model Page**: [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) **Resources and Technical Documentation**: * [Technical Report](https://goo.gle/codegemma) * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) **Terms of Use**: [Terms](https://ai.google.dev/gemma/terms) **Authors**: Google # Sample Usage ```python from gemma.config import GemmaConfig, get_config_for_7b, get_config_for_2b from gemma.model import GemmaForCausalLM from gemma.tokenizer import Tokenizer import contextlib import os import torch VARIANT = "2b" MACHINE_TYPE = "cpu" weights_dir = 'codegemma-1.1-2b-pytorch' @contextlib.contextmanager def _set_default_tensor_type(dtype: torch.dtype): """Sets the default torch dtype to the given dtype.""" torch.set_default_dtype(dtype) yield torch.set_default_dtype(torch.float) model_config = get_config_for_2b() if "2b" in VARIANT else get_config_for_7b() model_config.tokenizer = os.path.join(weights_dir, "tokenizer.model") device = torch.device(MACHINE_TYPE) with _set_default_tensor_type(model_config.get_dtype()): model = GemmaForCausalLM(model_config) ckpt_path = os.path.join(weights_dir, f'codegemma-1.1-{VARIANT}.pt') model.load_weights(ckpt_path) model = model.to(device).eval() FIM_PROMPT = """<|fim_prefix|>import <|fim_suffix|>if __name__ == "__main__": sys.exit(0)<|fim_middle|>""" model.generate( FIM_PROMPT, device=device, output_len=100, ) ```
{"license": "gemma", "library_name": "gemma_torch", "tags": ["pytorch"], "extra_gated_heading": "Access Codeemma on Hugging Face", "extra_gated_prompt": "To access CodeGemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "license_link": "https://ai.google.dev/gemma/terms", "pipeline_tag": "text-generation"}
google/codegemma-1.1-2b-pytorch
null
[ "gemma_torch", "pytorch", "text-generation", "license:gemma", "region:us" ]
null
2024-04-30T22:06:52+00:00
[]
[]
TAGS #gemma_torch #pytorch #text-generation #license-gemma #region-us
# CodeGemma Model Card > [!IMPORTANT] > > This repository corresponds to the CodeGemma 2B checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL Model Page: CodeGemma Resources and Technical Documentation: * Technical Report * Responsible Generative AI Toolkit Terms of Use: Terms Authors: Google # Sample Usage
[ "# CodeGemma Model Card\n\n> [!IMPORTANT]\n>\n> This repository corresponds to the CodeGemma 2B checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL\n\nModel Page: CodeGemma\n\nResources and Technical Documentation:\n\n* Technical Report\n* Responsible Generative AI Toolkit\n\nTerms of Use: Terms\n\nAuthors: Google", "# Sample Usage" ]
[ "TAGS\n#gemma_torch #pytorch #text-generation #license-gemma #region-us \n", "# CodeGemma Model Card\n\n> [!IMPORTANT]\n>\n> This repository corresponds to the CodeGemma 2B checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL\n\nModel Page: CodeGemma\n\nResources and Technical Documentation:\n\n* Technical Report\n* Responsible Generative AI Toolkit\n\nTerms of Use: Terms\n\nAuthors: Google", "# Sample Usage" ]
[ 22, 83, 3 ]
[ "TAGS\n#gemma_torch #pytorch #text-generation #license-gemma #region-us \n# CodeGemma Model Card\n\n> [!IMPORTANT]\n>\n> This repository corresponds to the CodeGemma 2B checkpoint for use with Gemma PyTorch. If you're looking for the 'transformers' implementation, or more detailed model card, visit URL\n\nModel Page: CodeGemma\n\nResources and Technical Documentation:\n\n* Technical Report\n* Responsible Generative AI Toolkit\n\nTerms of Use: Terms\n\nAuthors: Google# Sample Usage" ]
text-classification
transformers
# Model Trained Using AutoTrain - Problem type: Text Regression ## Validation Metrics loss: 0.19687849283218384 mse: 0.19687849283218384 mae: 0.2855921685695648 r2: 0.2613240842619654 rmse: 0.4437099099159241 explained_variance: 0.26253634691238403
{"tags": ["autotrain", "text-regression"], "datasets": ["autotrain-y5fnj-qjq2l/autotrain-data"], "widget": [{"text": "I love AutoTrain"}]}
Konark-HC/autotrain-y5fnj-qjq2l
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "autotrain", "text-regression", "dataset:autotrain-y5fnj-qjq2l/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:07:30+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #bert #text-classification #autotrain #text-regression #dataset-autotrain-y5fnj-qjq2l/autotrain-data #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain - Problem type: Text Regression ## Validation Metrics loss: 0.19687849283218384 mse: 0.19687849283218384 mae: 0.2855921685695648 r2: 0.2613240842619654 rmse: 0.4437099099159241 explained_variance: 0.26253634691238403
[ "# Model Trained Using AutoTrain\n\n- Problem type: Text Regression", "## Validation Metrics\nloss: 0.19687849283218384\n\nmse: 0.19687849283218384\n\nmae: 0.2855921685695648\n\nr2: 0.2613240842619654\n\nrmse: 0.4437099099159241\n\nexplained_variance: 0.26253634691238403" ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #autotrain #text-regression #dataset-autotrain-y5fnj-qjq2l/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\n- Problem type: Text Regression", "## Validation Metrics\nloss: 0.19687849283218384\n\nmse: 0.19687849283218384\n\nmae: 0.2855921685695648\n\nr2: 0.2613240842619654\n\nrmse: 0.4437099099159241\n\nexplained_variance: 0.26253634691238403" ]
[ 60, 12, 91 ]
[ "TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #autotrain #text-regression #dataset-autotrain-y5fnj-qjq2l/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\n- Problem type: Text Regression## Validation Metrics\nloss: 0.19687849283218384\n\nmse: 0.19687849283218384\n\nmae: 0.2855921685695648\n\nr2: 0.2613240842619654\n\nrmse: 0.4437099099159241\n\nexplained_variance: 0.26253634691238403" ]
null
null
~~1704 and 1804 RAWrr Yi-34B-200K-xlctx loras came out bad, which I realized now. I had HDD drive failure and it was the one holding up Linux that training was happening on. Probably that's why.~~ Nah, it was transformers or peft python update that broke my merging process. I downgraded and it works. 1704/1804/3004 loras are fine, I think 1804 is the best one. 3004 is a re-train with 1804 config - higher lr than 1704.
{"license": "other", "license_name": "yi-license", "license_link": "LICENSE"}
adamo1139/Yi-34B-200K-XLCTX-RAWrr-3004-LoRA
null
[ "safetensors", "license:other", "region:us" ]
null
2024-04-30T22:07:36+00:00
[]
[]
TAGS #safetensors #license-other #region-us
~~1704 and 1804 RAWrr Yi-34B-200K-xlctx loras came out bad, which I realized now. I had HDD drive failure and it was the one holding up Linux that training was happening on. Probably that's why.~~ Nah, it was transformers or peft python update that broke my merging process. I downgraded and it works. 1704/1804/3004 loras are fine, I think 1804 is the best one. 3004 is a re-train with 1804 config - higher lr than 1704.
[]
[ "TAGS\n#safetensors #license-other #region-us \n" ]
[ 13 ]
[ "TAGS\n#safetensors #license-other #region-us \n" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
AbdWalidAI/Llama-3-8B-Instruct-dialogsum
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T22:08:59+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jtatman/OrpoDolphin-3-8B-16k <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/OrpoDolphin-3-8B-16k-GGUF/resolve/main/OrpoDolphin-3-8B-16k.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "orpo"], "base_model": "jtatman/OrpoDolphin-3-8B-16k", "quantized_by": "mradermacher"}
mradermacher/OrpoDolphin-3-8B-16k-GGUF
null
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "orpo", "en", "base_model:jtatman/OrpoDolphin-3-8B-16k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:10:42+00:00
[]
[ "en" ]
TAGS #transformers #gguf #text-generation-inference #unsloth #llama #trl #orpo #en #base_model-jtatman/OrpoDolphin-3-8B-16k #license-apache-2.0 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #text-generation-inference #unsloth #llama #trl #orpo #en #base_model-jtatman/OrpoDolphin-3-8B-16k #license-apache-2.0 #endpoints_compatible #region-us \n" ]
[ 67 ]
[ "TAGS\n#transformers #gguf #text-generation-inference #unsloth #llama #trl #orpo #en #base_model-jtatman/OrpoDolphin-3-8B-16k #license-apache-2.0 #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
samzirbo/mT5.pretrained.en-es.16K
null
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T22:11:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mt5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mt5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 46, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #mt5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
token-classification
spacy
| Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `ner` | | **Components** | `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (9 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `AM_TIME_END`, `AM_TIME_START`, `DATE_END`, `DATE_START`, `MILITARY_TIME_END`, `MILITARY_TIME_START`, `PM_TIME_END`, `PM_TIME_START`, `REASON` | </details>
{"language": ["en"], "tags": ["spacy", "token-classification"]}
Agreus/en_pipeline
null
[ "spacy", "token-classification", "en", "region:us" ]
null
2024-04-30T22:12:57+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #en #region-us
### Label Scheme View label scheme (9 labels for 1 components)
[ "### Label Scheme\n\n\n\nView label scheme (9 labels for 1 components)" ]
[ "TAGS\n#spacy #token-classification #en #region-us \n", "### Label Scheme\n\n\n\nView label scheme (9 labels for 1 components)" ]
[ 14, 15 ]
[ "TAGS\n#spacy #token-classification #en #region-us \n### Label Scheme\n\n\n\nView label scheme (9 labels for 1 components)" ]
null
null
The GGUF files of [xtuner/llava-llama-3-8b-v1_1](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1)
{"tags": ["llava", "llama", "llava-llama", "gguf", "GGUF"]}
nitsuai/llava-llama-3-8b-v1_1-GGUF
null
[ "gguf", "llava", "llama", "llava-llama", "GGUF", "region:us" ]
null
2024-04-30T22:13:06+00:00
[]
[]
TAGS #gguf #llava #llama #llava-llama #GGUF #region-us
The GGUF files of xtuner/llava-llama-3-8b-v1_1
[]
[ "TAGS\n#gguf #llava #llama #llava-llama #GGUF #region-us \n" ]
[ 25 ]
[ "TAGS\n#gguf #llava #llama #llava-llama #GGUF #region-us \n" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-finetune This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5196 - Wer: 19.8880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 3.9796 | 0.2778 | 10 | 3.9148 | 37.1304 | | 3.8883 | 0.5556 | 20 | 3.8228 | 36.4457 | | 3.8393 | 0.8333 | 30 | 3.6743 | 39.0912 | | 3.5454 | 1.1111 | 40 | 3.4770 | 43.2306 | | 3.3763 | 1.3889 | 50 | 3.2317 | 35.9477 | | 3.1017 | 1.6667 | 60 | 2.9296 | 42.9816 | | 2.7298 | 1.9444 | 70 | 2.5452 | 33.4578 | | 2.2923 | 2.2222 | 80 | 2.0397 | 33.5512 | | 1.739 | 2.5 | 90 | 1.4515 | 34.2670 | | 1.148 | 2.7778 | 100 | 0.9843 | 34.1737 | | 0.846 | 3.0556 | 110 | 0.7598 | 30.2210 | | 0.7269 | 3.3333 | 120 | 0.6819 | 27.3265 | | 0.6914 | 3.6111 | 130 | 0.6347 | 26.2372 | | 0.6225 | 3.8889 | 140 | 0.6027 | 24.9611 | | 0.5939 | 4.1667 | 150 | 0.5781 | 24.5565 | | 0.5677 | 4.4444 | 160 | 0.5582 | 23.2493 | | 0.5611 | 4.7222 | 170 | 0.5420 | 22.6268 | | 0.5285 | 5.0 | 180 | 0.5271 | 22.0044 | | 0.4771 | 5.2778 | 190 | 0.5158 | 21.8176 | | 0.5003 | 5.5556 | 200 | 0.5068 | 21.7554 | | 0.4232 | 5.8333 | 210 | 0.4965 | 21.4441 | | 0.4232 | 6.1111 | 220 | 0.4888 | 20.6038 | | 0.3522 | 6.3889 | 230 | 0.4824 | 20.2303 | | 0.405 | 6.6667 | 240 | 0.4753 | 20.0436 | | 0.4333 | 6.9444 | 250 | 0.4694 | 23.0937 | | 0.3314 | 7.2222 | 260 | 0.4623 | 19.9813 | | 0.3282 | 7.5 | 270 | 0.4581 | 19.8257 | | 0.3463 | 7.7778 | 280 | 0.4567 | 19.6390 | | 0.3215 | 8.0556 | 290 | 0.4518 | 19.0476 | | 0.3049 | 8.3333 | 300 | 0.4496 | 18.7986 | | 0.2792 | 8.6111 | 310 | 0.4463 | 18.8920 | | 0.3031 | 8.8889 | 320 | 0.4426 | 18.7053 | | 0.2353 | 9.1667 | 330 | 0.4451 | 18.5496 | | 0.2618 | 9.4444 | 340 | 0.4433 | 18.8920 | | 0.2405 | 9.7222 | 350 | 0.4449 | 18.4563 | | 0.2609 | 10.0 | 360 | 0.4408 | 18.1450 | | 0.1956 | 10.2778 | 370 | 0.4374 | 18.3940 | | 0.2079 | 10.5556 | 380 | 0.4382 | 18.2695 | | 0.2149 | 10.8333 | 390 | 0.4383 | 18.3940 | | 0.1791 | 11.1111 | 400 | 0.4400 | 18.4563 | | 0.1778 | 11.3889 | 410 | 0.4401 | 18.5185 | | 0.1571 | 11.6667 | 420 | 0.4390 | 18.5185 | | 0.1602 | 11.9444 | 430 | 0.4376 | 18.0205 | | 0.1168 | 12.2222 | 440 | 0.4418 | 18.4251 | | 0.1353 | 12.5 | 450 | 0.4418 | 18.6430 | | 0.1156 | 12.7778 | 460 | 0.4433 | 18.3318 | | 0.1148 | 13.0556 | 470 | 0.4422 | 17.8960 | | 0.0895 | 13.3333 | 480 | 0.4478 | 18.1139 | | 0.0903 | 13.6111 | 490 | 0.4492 | 18.7364 | | 0.0981 | 13.8889 | 500 | 0.4522 | 19.1721 | | 0.0669 | 14.1667 | 510 | 0.4570 | 19.0787 | | 0.0723 | 14.4444 | 520 | 0.4612 | 18.5808 | | 0.0677 | 14.7222 | 530 | 0.4603 | 18.9231 | | 0.066 | 15.0 | 540 | 0.4600 | 19.1410 | | 0.0393 | 15.2778 | 550 | 0.4696 | 18.6741 | | 0.052 | 15.5556 | 560 | 0.4730 | 19.3589 | | 0.0414 | 15.8333 | 570 | 0.4728 | 18.8609 | | 0.0486 | 16.1111 | 580 | 0.4756 | 19.3589 | | 0.0329 | 16.3889 | 590 | 0.4822 | 19.4522 | | 0.0285 | 16.6667 | 600 | 0.4864 | 19.1410 | | 0.0291 | 16.9444 | 610 | 0.4814 | 19.6078 | | 0.0234 | 17.2222 | 620 | 0.4861 | 19.7012 | | 0.0197 | 17.5 | 630 | 0.4928 | 19.7323 | | 0.0191 | 17.7778 | 640 | 0.4927 | 19.7323 | | 0.0187 | 18.0556 | 650 | 0.4914 | 19.7012 | | 0.0167 | 18.3333 | 660 | 0.4961 | 19.8568 | | 0.0152 | 18.6111 | 670 | 0.4998 | 19.9191 | | 0.0125 | 18.8889 | 680 | 0.4983 | 20.1369 | | 0.0116 | 19.1667 | 690 | 0.5016 | 19.7946 | | 0.0107 | 19.4444 | 700 | 0.5022 | 19.7012 | | 0.0126 | 19.7222 | 710 | 0.5032 | 19.9191 | | 0.0112 | 20.0 | 720 | 0.5042 | 20.1369 | | 0.0102 | 20.2778 | 730 | 0.5054 | 20.0436 | | 0.0097 | 20.5556 | 740 | 0.5089 | 19.7946 | | 0.01 | 20.8333 | 750 | 0.5074 | 19.9502 | | 0.0092 | 21.1111 | 760 | 0.5099 | 19.9502 | | 0.009 | 21.3889 | 770 | 0.5100 | 20.0436 | | 0.008 | 21.6667 | 780 | 0.5119 | 19.9813 | | 0.0087 | 21.9444 | 790 | 0.5125 | 19.9502 | | 0.0083 | 22.2222 | 800 | 0.5111 | 20.0436 | | 0.0083 | 22.5 | 810 | 0.5119 | 19.9813 | | 0.0076 | 22.7778 | 820 | 0.5127 | 20.0124 | | 0.0074 | 23.0556 | 830 | 0.5150 | 20.0124 | | 0.0076 | 23.3333 | 840 | 0.5150 | 19.8568 | | 0.007 | 23.6111 | 850 | 0.5162 | 20.0124 | | 0.0074 | 23.8889 | 860 | 0.5165 | 19.9813 | | 0.0066 | 24.1667 | 870 | 0.5157 | 19.7946 | | 0.0068 | 24.4444 | 880 | 0.5163 | 19.9502 | | 0.0065 | 24.7222 | 890 | 0.5173 | 19.8257 | | 0.0074 | 25.0 | 900 | 0.5182 | 19.9813 | | 0.0067 | 25.2778 | 910 | 0.5184 | 19.8568 | | 0.006 | 25.5556 | 920 | 0.5186 | 20.0124 | | 0.0063 | 25.8333 | 930 | 0.5187 | 19.7946 | | 0.0071 | 26.1111 | 940 | 0.5190 | 19.8257 | | 0.0058 | 26.3889 | 950 | 0.5193 | 19.8880 | | 0.0063 | 26.6667 | 960 | 0.5195 | 19.8880 | | 0.0059 | 26.9444 | 970 | 0.5195 | 19.8880 | | 0.0056 | 27.2222 | 980 | 0.5195 | 19.8880 | | 0.006 | 27.5 | 990 | 0.5196 | 19.8880 | | 0.0068 | 27.7778 | 1000 | 0.5196 | 19.8880 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1.dev0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "openai/whisper-tiny.en", "model-index": [{"name": "whisper-tiny-finetune", "results": []}]}
sajidof/whisper-tiny-finetune
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-tiny.en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:15:40+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us
whisper-tiny-finetune ===================== This model is a fine-tuned version of openai/URL on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.5196 * Wer: 19.8880 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 128 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 1000 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.1.dev0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.1.dev0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.1.dev0\n* Tokenizers 0.19.1" ]
[ 54, 115, 5, 47 ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 1000### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.1.dev0\n* Tokenizers 0.19.1" ]
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AOLM1 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1410 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9303 | 0.09 | 10 | 0.9380 | | 0.3692 | 0.18 | 20 | 0.1548 | | 0.1539 | 0.27 | 30 | 0.1633 | | 0.1561 | 0.36 | 40 | 0.1560 | | 0.1518 | 0.45 | 50 | 0.1541 | | 0.1518 | 0.54 | 60 | 0.1478 | | 0.1488 | 0.63 | 70 | 0.1481 | | 0.1486 | 0.73 | 80 | 0.1550 | | 0.1467 | 0.82 | 90 | 0.1513 | | 0.1476 | 0.91 | 100 | 0.1491 | | 0.149 | 1.0 | 110 | 0.1483 | | 0.1456 | 1.09 | 120 | 0.1493 | | 0.1442 | 1.18 | 130 | 0.1517 | | 0.1474 | 1.27 | 140 | 0.1478 | | 0.1482 | 1.36 | 150 | 0.1495 | | 0.1455 | 1.45 | 160 | 0.1479 | | 0.1455 | 1.54 | 170 | 0.1474 | | 0.1467 | 1.63 | 180 | 0.1452 | | 0.1464 | 1.72 | 190 | 0.1486 | | 0.145 | 1.81 | 200 | 0.1469 | | 0.1485 | 1.9 | 210 | 0.1460 | | 0.1453 | 1.99 | 220 | 0.1480 | | 0.1432 | 2.08 | 230 | 0.1456 | | 0.1376 | 2.18 | 240 | 0.1444 | | 0.1392 | 2.27 | 250 | 0.1451 | | 0.1385 | 2.36 | 260 | 0.1441 | | 0.137 | 2.45 | 270 | 0.1441 | | 0.1352 | 2.54 | 280 | 0.1420 | | 0.1338 | 2.63 | 290 | 0.1423 | | 0.1352 | 2.72 | 300 | 0.1410 | | 0.1351 | 2.81 | 310 | 0.1407 | | 0.1317 | 2.9 | 320 | 0.1409 | | 0.1361 | 2.99 | 330 | 0.1410 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "AOLM1", "results": []}]}
Litzy619/AOLM1
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T22:17:37+00:00
[]
[]
TAGS #safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us
AOLM1 ===== This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1410 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine\_with\_restarts * lr\_scheduler\_warmup\_steps: 80 * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.14.6 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
[ 35, 160, 5, 47 ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
text-to-image
diffusers
# API Inference ![generated from modelslab.com](https://cdn2.stablediffusionapi.com/generations/bf190b5a-fe19-437c-ba05-82f29cb1f7ad-0.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "9527-detail-realistic-xl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/9527-detail-realistic-xl) Model link: [View model](https://modelslab.com/models/9527-detail-realistic-xl) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "9527-detail-realistic-xl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/9527-detail-realistic-xl
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-30T22:18:34+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "9527-detail-realistic-xl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "9527-detail-realistic-xl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"9527-detail-realistic-xl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"9527-detail-realistic-xl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"9527-detail-realistic-xl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"9527-detail-realistic-xl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 56, 8, 517 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n# API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"9527-detail-realistic-xl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"9527-detail-realistic-xl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Qwen1.5-32B - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/Qwen1.5-32B/ Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/Qwen1.5-32B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-32B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_Qwen1.5-32B-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T22:19:33+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Qwen1.5-32B - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- URL language: - en pipeline_tag: text-generation tags: - pretrained --- # Qwen1.5-32B ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated; * Significant performance improvement in Chat models; * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of 'trust_remote_code'. For more details, please refer to our blog post and GitHub repo. ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Usage We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. If you find our work helpful, feel free to give us a cite.
[ "# Qwen1.5-32B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Qwen1.5-32B", "## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 9, 160, 119, 44, 66 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Qwen1.5-32B## Introduction\n\nQwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:\n\n* 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;\n* Significant performance improvement in Chat models;\n* Multilingual support of both base and chat models;\n* Stable support of 32K context length for models of all sizes\n* No need of 'trust_remote_code'.\n\nFor more details, please refer to our blog post and GitHub repo.## Model Details\nQwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Usage\n\nWe do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
HenryCai1129/adapter-llama-adaptertoxic2nontoxic-100-50-0.0006
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:20:42+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
claudios/plbart-java-cs
null
[ "transformers", "safetensors", "plbart", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:21:23+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 34, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF/resolve/main/Llama-3-8B-Instruct-80K-QLoRA-Merged.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "mit", "library_name": "transformers", "base_model": "namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged", "quantized_by": "mradermacher"}
mradermacher/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF
null
[ "transformers", "gguf", "en", "base_model:namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:22:58+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #base_model-namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged #license-mit #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #base_model-namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged #license-mit #endpoints_compatible #region-us \n" ]
[ 51 ]
[ "TAGS\n#transformers #gguf #en #base_model-namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged #license-mit #endpoints_compatible #region-us \n" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi09_LoRA <Gallery /> ## Model description These are embracellm/sushi09_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Salmon Sushi Burrito to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi09_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Salmon Sushi Burrito ", "widget": []}
embracellm/sushi09_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-30T22:23:10+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi09_LoRA <Gallery /> ## Model description These are embracellm/sushi09_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Salmon Sushi Burrito to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi09_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi09_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Salmon Sushi Burrito to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi09_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi09_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Salmon Sushi Burrito to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 25, 85, 21, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi09_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi09_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Salmon Sushi Burrito to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - tonyassi/dolls-kill-club-exx <Gallery /> ## Model description These are tonyassi/dolls-kill-club-exx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use Dolls Kill Club Exx style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](tonyassi/dolls-kill-club-exx/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Dolls Kill Club Exx style", "widget": []}
tonyassi/dolls-kill-club-exx
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-30T22:24:32+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #lora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - tonyassi/dolls-kill-club-exx <Gallery /> ## Model description These are tonyassi/dolls-kill-club-exx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use Dolls Kill Club Exx style to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - tonyassi/dolls-kill-club-exx\n\n<Gallery />", "## Model description\n\nThese are tonyassi/dolls-kill-club-exx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use Dolls Kill Club Exx style to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #lora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - tonyassi/dolls-kill-club-exx\n\n<Gallery />", "## Model description\n\nThese are tonyassi/dolls-kill-club-exx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use Dolls Kill Club Exx style to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 73, 26, 86, 19, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #lora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - tonyassi/dolls-kill-club-exx\n\n<Gallery />## Model description\n\nThese are tonyassi/dolls-kill-club-exx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use Dolls Kill Club Exx style to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
claudios/plbart-python-en_XX
null
[ "transformers", "safetensors", "plbart", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:25:03+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 34, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #plbart #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
null
# DDPO trained model num_epochs=20 train_gradient_accumulation_steps=1 sample_num_steps=30 sample_batch_size=8 train_batch_size=8 sample_num_batches_per_epoch=32 based off of stabilityai/stable-diffusion-2-base and then trained off of None
{}
jlbaker361/ddpo-runway-image_reward-chatgpt
null
[ "region:us" ]
null
2024-04-30T22:29:59+00:00
[]
[]
TAGS #region-us
# DDPO trained model num_epochs=20 train_gradient_accumulation_steps=1 sample_num_steps=30 sample_batch_size=8 train_batch_size=8 sample_num_batches_per_epoch=32 based off of stabilityai/stable-diffusion-2-base and then trained off of None
[ "# DDPO trained model\n num_epochs=20 \n\n train_gradient_accumulation_steps=1 \n\n sample_num_steps=30 \n\n sample_batch_size=8 \n \n train_batch_size=8 \n\n sample_num_batches_per_epoch=32 \n\n based off of stabilityai/stable-diffusion-2-base\n and then trained off of None" ]
[ "TAGS\n#region-us \n", "# DDPO trained model\n num_epochs=20 \n\n train_gradient_accumulation_steps=1 \n\n sample_num_steps=30 \n\n sample_batch_size=8 \n \n train_batch_size=8 \n\n sample_num_batches_per_epoch=32 \n\n based off of stabilityai/stable-diffusion-2-base\n and then trained off of None" ]
[ 5, 75 ]
[ "TAGS\n#region-us \n# DDPO trained model\n num_epochs=20 \n\n train_gradient_accumulation_steps=1 \n\n sample_num_steps=30 \n\n sample_batch_size=8 \n \n train_batch_size=8 \n\n sample_num_batches_per_epoch=32 \n\n based off of stabilityai/stable-diffusion-2-base\n and then trained off of None" ]
text-generation
null
## Exllama v2 Quantizations of llama-3-8b-256k-PoSE Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.20">turboderp's ExLlamaV2 v0.0.20</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/winglian/llama-3-8b-256k-PoSE ## Prompt format This is a base model. ## Available sizes | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/llama-3-8b-256k-PoSE-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/llama-3-8b-256k-PoSE-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/llama-3-8b-256k-PoSE-exl2/tree/5_0) | 5.0 | 6.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/llama-3-8b-256k-PoSE-exl2/tree/4_25) | 4.25 | 6.0 | 7.0 GB | 7.4 GB | 8.4 GB | 10.5 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/llama-3-8b-256k-PoSE-exl2/tree/3_5) | 3.5 | 6.0 | 6.4 GB | 6.8 GB | 7.8 GB | 9.9 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/llama-3-8b-256k-PoSE-exl2 llama-3-8b-256k-PoSE-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download a specific branch, use the `--revision` parameter. For example, to download the 6.5 bpw branch: Linux: ```shell huggingface-cli download bartowski/llama-3-8b-256k-PoSE-exl2 --revision 6_5 --local-dir llama-3-8b-256k-PoSE-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell huggingface-cli download bartowski/llama-3-8b-256k-PoSE-exl2 --revision 6_5 --local-dir llama-3-8b-256k-PoSE-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"language": ["en"], "tags": ["facebook", "meta", "pytorch", "llama", "llama-3", "axolotl"], "pipeline_tag": "text-generation", "quantized_by": "bartowski"}
bartowski/llama-3-8b-256k-PoSE-exl2
null
[ "facebook", "meta", "pytorch", "llama", "llama-3", "axolotl", "text-generation", "en", "region:us" ]
null
2024-04-30T22:30:42+00:00
[]
[ "en" ]
TAGS #facebook #meta #pytorch #llama #llama-3 #axolotl #text-generation #en #region-us
Exllama v2 Quantizations of llama-3-8b-256k-PoSE ------------------------------------------------ Using <a href="URL ExLlamaV2 v0.0.20 for quantization. **The "main" branch only contains the URL, download one of the other branches for the model (see below)** Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions. Original model: URL Prompt format ------------- This is a base model. Available sizes --------------- Download instructions --------------------- With git: With huggingface hub (credit to TheBloke for instructions): To download a specific branch, use the '--revision' parameter. For example, to download the 6.5 bpw branch: Linux: Windows (which apparently doesn't like \_ in folders sometimes?): Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#facebook #meta #pytorch #llama #llama-3 #axolotl #text-generation #en #region-us \n" ]
[ 32 ]
[ "TAGS\n#facebook #meta #pytorch #llama #llama-3 #axolotl #text-generation #en #region-us \n" ]
null
null
``` e88 88e d8 d888 888b 8888 8888 ,"Y88b 888 8e d88 C8888 8888D 8888 8888 "8" 888 888 88b d88888 Y888 888P Y888 888P ,ee 888 888 888 888 "88 88" "88 88" "88 888 888 888 888 b 8b, e88'Y88 d8 888 d888 'Y ,"Y88b 888,8, d88 ,e e, 888 C8888 "8" 888 888 " d88888 d88 88b 888 Y888 ,d ,ee 888 888 888 888 , 888 "88,d88 "88 888 888 888 "YeeP" 888 PROUDLY PRESENTS ``` ## Poppy_Porpoise-DADA-8B-iMat-GGUF Quantized from fp16 with love. * Weighted quantizations were calculated with fp16 GGUF using groups_merged.txt in 105 chunks (recommended amount for this file) and n_ctx=512. Special thanks to jukofyork for sharing [this process](https://huggingface.co/jukofyork/WizardLM-2-8x22B-imatrix) <b>Important Note - Quantized post [PR6920](https://github.com/ggerganov/llama.cpp/pull/6920). There may still be some remaining issues with the bpe tokenizer so consider these quantizations experimental for now. Any feedback is greatly encouraged. In initial tests quants as low as Q2_K can still answer math questions.</b> ``` What is 7777 + 3333? Please write just the answer in integer format. The answer is: 11110 ``` For a brief rundown of iMatrix quant performance please see this [PR](https://github.com/ggerganov/llama.cpp/pull/5747) <b>All quants are verified working prior to uploading to repo for your safety and convenience. </b> It's highly recommended to stick to higher quants of this model due to the unique nature of its pseudotokens Original model card [here](https://huggingface.co/Envoid/Poppy_Porpoise-DADA-8B) and below --- # This is a [DADA tuned](https://huggingface.co/Envoid/Mixtral-Instruct-ITR-DADA-8x7B) version of [ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B](https://huggingface.co/ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B) ### As always, experimental model, results may be unpredictable. ![](https://files.catbox.moe/1yl1vq.jpg) The intermediate merge model was finetuned specifically for the original model and then merged onto it via 50/50 SLERP merge. As far as RP goes my current testing setup is having difficulties involving end of sequence and I found the prompt templates provided with Poppy Porpoise were not yielding desirable results on either the original model or the DADA tune so I opted instead to use Libra style Llama-3 prompt templates and simple sampling. The results, albeit subjective, I thought were good. ## Whether or not the tune had any effect on multi-modal capabilities was not part of the test and instead focus was entirely on creative writing. Test: A simple instruct prompt utilizing determinsitic samplers. **PROMPT** ``` Write me a 'beauty and the beast' gothic metal duet about a couple fighting over which brand of ketchup to purchase. ``` **Poppy Porpoise Original:** ``` (Verse 1 - Beauty) In the land of condiments, where flavors reign supreme, A tale of love and strife, a battle of the brands it seems. I stand before the shelves, my heart aflame with desire, For the perfect ketchup to complement my fries. (Chorus) But alas, my love, you stand beside me, with a different view, Your heart set on [Brand 1 redacted], while mine beats for [Brand 2 redacted], it's true. We clash in this aisle, our passions running high, A Gothic metal duet, our love and hate collide. (Verse 2 - Beast) I've tasted both, and I know, [Brand 1 redacted] is the one for me, Its tangy sweetness, a symphony, a harmony. But you, my love, you cling to Hunt's, its flavor so bland, A cacophony of mediocrity, a discordant band. (Chorus) But alas, my love, you stand beside me, with a different view, Your heart set on [Brand 2 redacted], while mine beats for [Brand 1 redacted], it's true. We clash in this aisle, our passions running high, A Gothic metal duet, our love and hate collide. (Bridge) We're lost in this supermarket, a Gothic metal dream, Our love and hate entwined, a twisted, tortured theme. The ketchup bottles loom, like tombstones in the night, A monument to our love, a testament to our fight. (Chorus) But alas, my love, you stand beside me, with a different view, Your heart set on [Brand 2 redacted], while mine beats for [Brand 1 redacted], it's true. We clash in this aisle, our passions running high, A Gothic metal duet, our love and hate collide. (Outro) And so we stand, in this aisle of despair, Our love and hate, a Gothic metal prayer. For in the end, it's not the ketchup that matters, But the love we share, in this twisted, tortured heart. ``` **Poppy Porpoise DADA** ``` (Verse 1 - Beauty) In the land of condiments, where the sauces reign supreme, A battle rages on, a war of ketchup dreams. I stand by [Brand 1 redacted], the classic, the original, the best, But my love, he's a rebel, he's a [Brand 2 redacted] pest. (Chorus) Oh, the ketchup wars, they rage on and on, A tale of love and sauce, a battle to be won. Will our love prevail, or will it be undone? By the brand of ketchup, our hearts are torn asunder. (Verse 2 - Beast) [Brand 2 redacted], the new kid, the one with the flair, A sweeter taste, a richer flavor, beyond compare. But Beauty, she's a traditionalist, she won't budge, She clings to [Brand 1 redacted], her heart, her soul, her blood. (Chorus) Oh, the ketchup wars, they rage on and on, A tale of love and sauce, a battle to be won. Will our love prevail, or will it be undone? By the brand of ketchup, our hearts are torn asunder. (Bridge - Both) We stand, divided, by our condiment creed, Our love, a casualty, in this ketchup war we lead. But can we find a middle ground, a compromise, a truce? Or will our love be lost, in this battle of the sauces? (Chorus) Oh, the ketchup wars, they rage on and on, A tale of love and sauce, a battle to be won. Will our love prevail, or will it be undone? By the brand of ketchup, our hearts are torn asunder. (Outro - Both) In the end, we find a way, to put aside our pride, And together, we stand, united, side by side. For love, for ketchup, for the sauce that binds, We'll find a way, to make our love, forever shine. ``` As you can clearly see the cadence and overall word selection by the DADA model is more copacetic with what would be expected from a gothic metal duet indicating that the IQ of the model has increased by at least 100 points. Training was done using [qlora-pipe](https://github.com/tdrussell/qlora-pipe)
{"license": "cc-by-nc-4.0", "tags": ["GGUF", "iMat", "llama3"]}
Quant-Cartel/Poppy_Porpoise-DADA-8B-iMat-GGUF
null
[ "gguf", "GGUF", "iMat", "llama3", "license:cc-by-nc-4.0", "region:us" ]
null
2024-04-30T22:31:06+00:00
[]
[]
TAGS #gguf #GGUF #iMat #llama3 #license-cc-by-nc-4.0 #region-us
## Poppy_Porpoise-DADA-8B-iMat-GGUF Quantized from fp16 with love. * Weighted quantizations were calculated with fp16 GGUF using groups_merged.txt in 105 chunks (recommended amount for this file) and n_ctx=512. Special thanks to jukofyork for sharing this process <b>Important Note - Quantized post PR6920. There may still be some remaining issues with the bpe tokenizer so consider these quantizations experimental for now. Any feedback is greatly encouraged. In initial tests quants as low as Q2_K can still answer math questions.</b> For a brief rundown of iMatrix quant performance please see this PR <b>All quants are verified working prior to uploading to repo for your safety and convenience. </b> It's highly recommended to stick to higher quants of this model due to the unique nature of its pseudotokens Original model card here and below --- # This is a DADA tuned version of ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B ### As always, experimental model, results may be unpredictable. ![](URL The intermediate merge model was finetuned specifically for the original model and then merged onto it via 50/50 SLERP merge. As far as RP goes my current testing setup is having difficulties involving end of sequence and I found the prompt templates provided with Poppy Porpoise were not yielding desirable results on either the original model or the DADA tune so I opted instead to use Libra style Llama-3 prompt templates and simple sampling. The results, albeit subjective, I thought were good. ## Whether or not the tune had any effect on multi-modal capabilities was not part of the test and instead focus was entirely on creative writing. Test: A simple instruct prompt utilizing determinsitic samplers. PROMPT Poppy Porpoise Original: Poppy Porpoise DADA As you can clearly see the cadence and overall word selection by the DADA model is more copacetic with what would be expected from a gothic metal duet indicating that the IQ of the model has increased by at least 100 points. Training was done using qlora-pipe
[ "## Poppy_Porpoise-DADA-8B-iMat-GGUF\n\n\nQuantized from fp16 with love.\n* Weighted quantizations were calculated with fp16 GGUF using groups_merged.txt in 105 chunks (recommended amount for this file) and n_ctx=512. Special thanks to jukofyork for sharing this process\n\n<b>Important Note - Quantized post PR6920. There may still be some remaining issues with the bpe tokenizer so consider these quantizations experimental for now. Any feedback is greatly encouraged. In initial tests quants as low as Q2_K can still answer math questions.</b>\n\n\nFor a brief rundown of iMatrix quant performance please see this PR\n\n<b>All quants are verified working prior to uploading to repo for your safety and convenience. </b>\n\nIt's highly recommended to stick to higher quants of this model due to the unique nature of its pseudotokens\n\nOriginal model card here and below\n\n---", "# This is a DADA tuned version of ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B", "### As always, experimental model, results may be unpredictable. \n\n![](URL\n\nThe intermediate merge model was finetuned specifically for the original model and then merged onto it via 50/50 SLERP merge.\n\nAs far as RP goes my current testing setup is having difficulties involving end of sequence and I found the prompt templates provided with Poppy Porpoise were not yielding desirable results on either the original model or the DADA tune so I opted instead to use Libra style Llama-3 prompt templates and simple sampling. The results, albeit subjective, I thought were good.", "## Whether or not the tune had any effect on multi-modal capabilities was not part of the test and instead focus was entirely on creative writing.\n\nTest: A simple instruct prompt utilizing determinsitic samplers.\n\nPROMPT\n\n\nPoppy Porpoise Original:\n\n\n\nPoppy Porpoise DADA\n\n\n\nAs you can clearly see the cadence and overall word selection by the DADA model is more copacetic with what would be expected from a gothic metal duet indicating that the IQ of the model has increased by at least 100 points. \n\nTraining was done using qlora-pipe" ]
[ "TAGS\n#gguf #GGUF #iMat #llama3 #license-cc-by-nc-4.0 #region-us \n", "## Poppy_Porpoise-DADA-8B-iMat-GGUF\n\n\nQuantized from fp16 with love.\n* Weighted quantizations were calculated with fp16 GGUF using groups_merged.txt in 105 chunks (recommended amount for this file) and n_ctx=512. Special thanks to jukofyork for sharing this process\n\n<b>Important Note - Quantized post PR6920. There may still be some remaining issues with the bpe tokenizer so consider these quantizations experimental for now. Any feedback is greatly encouraged. In initial tests quants as low as Q2_K can still answer math questions.</b>\n\n\nFor a brief rundown of iMatrix quant performance please see this PR\n\n<b>All quants are verified working prior to uploading to repo for your safety and convenience. </b>\n\nIt's highly recommended to stick to higher quants of this model due to the unique nature of its pseudotokens\n\nOriginal model card here and below\n\n---", "# This is a DADA tuned version of ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B", "### As always, experimental model, results may be unpredictable. \n\n![](URL\n\nThe intermediate merge model was finetuned specifically for the original model and then merged onto it via 50/50 SLERP merge.\n\nAs far as RP goes my current testing setup is having difficulties involving end of sequence and I found the prompt templates provided with Poppy Porpoise were not yielding desirable results on either the original model or the DADA tune so I opted instead to use Libra style Llama-3 prompt templates and simple sampling. The results, albeit subjective, I thought were good.", "## Whether or not the tune had any effect on multi-modal capabilities was not part of the test and instead focus was entirely on creative writing.\n\nTest: A simple instruct prompt utilizing determinsitic samplers.\n\nPROMPT\n\n\nPoppy Porpoise Original:\n\n\n\nPoppy Porpoise DADA\n\n\n\nAs you can clearly see the cadence and overall word selection by the DADA model is more copacetic with what would be expected from a gothic metal duet indicating that the IQ of the model has increased by at least 100 points. \n\nTraining was done using qlora-pipe" ]
[ 32, 222, 31, 123, 113 ]
[ "TAGS\n#gguf #GGUF #iMat #llama3 #license-cc-by-nc-4.0 #region-us \n## Poppy_Porpoise-DADA-8B-iMat-GGUF\n\n\nQuantized from fp16 with love.\n* Weighted quantizations were calculated with fp16 GGUF using groups_merged.txt in 105 chunks (recommended amount for this file) and n_ctx=512. Special thanks to jukofyork for sharing this process\n\n<b>Important Note - Quantized post PR6920. There may still be some remaining issues with the bpe tokenizer so consider these quantizations experimental for now. Any feedback is greatly encouraged. In initial tests quants as low as Q2_K can still answer math questions.</b>\n\n\nFor a brief rundown of iMatrix quant performance please see this PR\n\n<b>All quants are verified working prior to uploading to repo for your safety and convenience. </b>\n\nIt's highly recommended to stick to higher quants of this model due to the unique nature of its pseudotokens\n\nOriginal model card here and below\n\n---# This is a DADA tuned version of ChaoticNeutrals/Poppy_Porpoise-v0.7-L3-8B### As always, experimental model, results may be unpredictable. \n\n![](URL\n\nThe intermediate merge model was finetuned specifically for the original model and then merged onto it via 50/50 SLERP merge.\n\nAs far as RP goes my current testing setup is having difficulties involving end of sequence and I found the prompt templates provided with Poppy Porpoise were not yielding desirable results on either the original model or the DADA tune so I opted instead to use Libra style Llama-3 prompt templates and simple sampling. The results, albeit subjective, I thought were good.## Whether or not the tune had any effect on multi-modal capabilities was not part of the test and instead focus was entirely on creative writing.\n\nTest: A simple instruct prompt utilizing determinsitic samplers.\n\nPROMPT\n\n\nPoppy Porpoise Original:\n\n\n\nPoppy Porpoise DADA\n\n\n\nAs you can clearly see the cadence and overall word selection by the DADA model is more copacetic with what would be expected from a gothic metal duet indicating that the IQ of the model has increased by at least 100 points. \n\nTraining was done using qlora-pipe" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["trl", "sft"]}
EdBerg/002Llama3_b_finance_finetuned_test
null
[ "transformers", "safetensors", "trl", "sft", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:34:40+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 32, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #trl #sft #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# TS-Corpus WordPiece Tokenizer (256k, Cased) ## Overview This repository contains a WordPiece tokenizer with a vocabulary size of 256,000, trained uncased on various datasets from the TS Corpus website. It is designed to handle Turkish text, leveraging rich and diverse sources to provide a robust tool for natural language processing tasks. ## Dataset Sources The tokenizer was trained using multiple corpora from the TS Corpus, specifically: - [TS Corpus V2](https://tscorpus.com/corpora/ts-corpus-v2/) - [TS Wikipedia Corpus](https://tscorpus.com/corpora/ts-wikipedia-corpus/) - [TS Abstract Corpus](https://tscorpus.com/corpora/ts-abstract-corpus/) - [TS Idioms and Proverbs Corpus](https://tscorpus.com/corpora/ts-idioms-and-proverbs-corpus/) - [Syllable Corpus](https://tscorpus.com/corpora/syllable-corpus/) - [Turkish Constitution Corpus](https://tscorpus.com/corpora/turkish-constitution-corpus/) These diverse sources include a wide range of texts from encyclopedic articles to legal documents, providing a comprehensive linguistic foundation for the tokenizer. ## Tokenizer Model The tokenizer uses the WordPiece model, which is widely utilized in many modern NLP systems. It is particularly effective in handling languages with rich morphology like Turkish due to its subword segmentation approach. This tokenizer differentiates between uppercase and lowercase letters. ## Usage To use this tokenizer, you can load it via the Hugging Face `transformers` library as follows: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("tahaenesaslanturk/ts-corpus-wordpiece-256k-cased") ```
{"language": ["tr"], "license": "mit", "library_name": "transformers"}
tahaenesaslanturk/ts-corpus-wordpiece-256k-cased
null
[ "transformers", "tr", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:35:54+00:00
[]
[ "tr" ]
TAGS #transformers #tr #license-mit #endpoints_compatible #region-us
# TS-Corpus WordPiece Tokenizer (256k, Cased) ## Overview This repository contains a WordPiece tokenizer with a vocabulary size of 256,000, trained uncased on various datasets from the TS Corpus website. It is designed to handle Turkish text, leveraging rich and diverse sources to provide a robust tool for natural language processing tasks. ## Dataset Sources The tokenizer was trained using multiple corpora from the TS Corpus, specifically: - TS Corpus V2 - TS Wikipedia Corpus - TS Abstract Corpus - TS Idioms and Proverbs Corpus - Syllable Corpus - Turkish Constitution Corpus These diverse sources include a wide range of texts from encyclopedic articles to legal documents, providing a comprehensive linguistic foundation for the tokenizer. ## Tokenizer Model The tokenizer uses the WordPiece model, which is widely utilized in many modern NLP systems. It is particularly effective in handling languages with rich morphology like Turkish due to its subword segmentation approach. This tokenizer differentiates between uppercase and lowercase letters. ## Usage To use this tokenizer, you can load it via the Hugging Face 'transformers' library as follows:
[ "# TS-Corpus WordPiece Tokenizer (256k, Cased)", "## Overview\nThis repository contains a WordPiece tokenizer with a vocabulary size of 256,000, trained uncased on various datasets from the TS Corpus website. It is designed to handle Turkish text, leveraging rich and diverse sources to provide a robust tool for natural language processing tasks.", "## Dataset Sources\nThe tokenizer was trained using multiple corpora from the TS Corpus, specifically:\n- TS Corpus V2\n- TS Wikipedia Corpus\n- TS Abstract Corpus\n- TS Idioms and Proverbs Corpus\n- Syllable Corpus\n- Turkish Constitution Corpus\n\nThese diverse sources include a wide range of texts from encyclopedic articles to legal documents, providing a comprehensive linguistic foundation for the tokenizer.", "## Tokenizer Model\nThe tokenizer uses the WordPiece model, which is widely utilized in many modern NLP systems. It is particularly effective in handling languages with rich morphology like Turkish due to its subword segmentation approach. This tokenizer differentiates between uppercase and lowercase letters.", "## Usage\nTo use this tokenizer, you can load it via the Hugging Face 'transformers' library as follows:" ]
[ "TAGS\n#transformers #tr #license-mit #endpoints_compatible #region-us \n", "# TS-Corpus WordPiece Tokenizer (256k, Cased)", "## Overview\nThis repository contains a WordPiece tokenizer with a vocabulary size of 256,000, trained uncased on various datasets from the TS Corpus website. It is designed to handle Turkish text, leveraging rich and diverse sources to provide a robust tool for natural language processing tasks.", "## Dataset Sources\nThe tokenizer was trained using multiple corpora from the TS Corpus, specifically:\n- TS Corpus V2\n- TS Wikipedia Corpus\n- TS Abstract Corpus\n- TS Idioms and Proverbs Corpus\n- Syllable Corpus\n- Turkish Constitution Corpus\n\nThese diverse sources include a wide range of texts from encyclopedic articles to legal documents, providing a comprehensive linguistic foundation for the tokenizer.", "## Tokenizer Model\nThe tokenizer uses the WordPiece model, which is widely utilized in many modern NLP systems. It is particularly effective in handling languages with rich morphology like Turkish due to its subword segmentation approach. This tokenizer differentiates between uppercase and lowercase letters.", "## Usage\nTo use this tokenizer, you can load it via the Hugging Face 'transformers' library as follows:" ]
[ 18, 15, 59, 80, 59, 24 ]
[ "TAGS\n#transformers #tr #license-mit #endpoints_compatible #region-us \n# TS-Corpus WordPiece Tokenizer (256k, Cased)## Overview\nThis repository contains a WordPiece tokenizer with a vocabulary size of 256,000, trained uncased on various datasets from the TS Corpus website. It is designed to handle Turkish text, leveraging rich and diverse sources to provide a robust tool for natural language processing tasks.## Dataset Sources\nThe tokenizer was trained using multiple corpora from the TS Corpus, specifically:\n- TS Corpus V2\n- TS Wikipedia Corpus\n- TS Abstract Corpus\n- TS Idioms and Proverbs Corpus\n- Syllable Corpus\n- Turkish Constitution Corpus\n\nThese diverse sources include a wide range of texts from encyclopedic articles to legal documents, providing a comprehensive linguistic foundation for the tokenizer.## Tokenizer Model\nThe tokenizer uses the WordPiece model, which is widely utilized in many modern NLP systems. It is particularly effective in handling languages with rich morphology like Turkish due to its subword segmentation approach. This tokenizer differentiates between uppercase and lowercase letters.## Usage\nTo use this tokenizer, you can load it via the Hugging Face 'transformers' library as follows:" ]
null
null
# TS-Corpus BPE Tokenizer (256k, Cased) ## Overview This repository hosts a Byte Pair Encoding (BPE) tokenizer with a vocabulary size of 256,000, trained cased using several datasets from the TS Corpus website. The BPE method is particularly effective for languages like Turkish, providing a balance between word-level and character-level tokenization. ## Dataset Sources The tokenizer was trained on a variety of text sources from TS Corpus, ensuring a broad linguistic coverage. These sources include: - [TS Corpus V2](https://tscorpus.com/corpora/ts-corpus-v2/) - [TS Wikipedia Corpus](https://tscorpus.com/corpora/ts-wikipedia-corpus/) - [TS Abstract Corpus](https://tscorpus.com/corpora/ts-abstract-corpus/) - [TS Idioms and Proverbs Corpus](https://tscorpus.com/corpora/ts-idioms-and-proverbs-corpus/) - [Syllable Corpus](https://tscorpus.com/corpora/syllable-corpus/) - [Turkish Constitution Corpus](https://tscorpus.com/corpora/turkish-constitution-corpus/) The inclusion of idiomatic expressions, proverbs, and legal terminology provides a comprehensive toolkit for processing Turkish text across different domains. ## Tokenizer Model Utilizing the Byte Pair Encoding (BPE) method, this tokenizer excels in efficiently managing subword units without the need for an extensive vocabulary. BPE is especially suitable for handling the agglutinative nature of Turkish, where words can have multiple suffixes. ## Usage To use this tokenizer in your projects, load it with the Hugging Face `transformers` library: ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("tahaenesaslanturk/ts-corpus-bpe-256k-cased") ```
{"license": "mit"}
tahaenesaslanturk/ts-corpus-bpe-256k-cased
null
[ "license:mit", "region:us" ]
null
2024-04-30T22:36:56+00:00
[]
[]
TAGS #license-mit #region-us
# TS-Corpus BPE Tokenizer (256k, Cased) ## Overview This repository hosts a Byte Pair Encoding (BPE) tokenizer with a vocabulary size of 256,000, trained cased using several datasets from the TS Corpus website. The BPE method is particularly effective for languages like Turkish, providing a balance between word-level and character-level tokenization. ## Dataset Sources The tokenizer was trained on a variety of text sources from TS Corpus, ensuring a broad linguistic coverage. These sources include: - TS Corpus V2 - TS Wikipedia Corpus - TS Abstract Corpus - TS Idioms and Proverbs Corpus - Syllable Corpus - Turkish Constitution Corpus The inclusion of idiomatic expressions, proverbs, and legal terminology provides a comprehensive toolkit for processing Turkish text across different domains. ## Tokenizer Model Utilizing the Byte Pair Encoding (BPE) method, this tokenizer excels in efficiently managing subword units without the need for an extensive vocabulary. BPE is especially suitable for handling the agglutinative nature of Turkish, where words can have multiple suffixes. ## Usage To use this tokenizer in your projects, load it with the Hugging Face 'transformers' library:
[ "# TS-Corpus BPE Tokenizer (256k, Cased)", "## Overview\nThis repository hosts a Byte Pair Encoding (BPE) tokenizer with a vocabulary size of 256,000, trained cased using several datasets from the TS Corpus website. The BPE method is particularly effective for languages like Turkish, providing a balance between word-level and character-level tokenization.", "## Dataset Sources\nThe tokenizer was trained on a variety of text sources from TS Corpus, ensuring a broad linguistic coverage. These sources include:\n- TS Corpus V2\n- TS Wikipedia Corpus\n- TS Abstract Corpus\n- TS Idioms and Proverbs Corpus\n- Syllable Corpus\n- Turkish Constitution Corpus\n\nThe inclusion of idiomatic expressions, proverbs, and legal terminology provides a comprehensive toolkit for processing Turkish text across different domains.", "## Tokenizer Model\nUtilizing the Byte Pair Encoding (BPE) method, this tokenizer excels in efficiently managing subword units without the need for an extensive vocabulary. BPE is especially suitable for handling the agglutinative nature of Turkish, where words can have multiple suffixes.", "## Usage\nTo use this tokenizer in your projects, load it with the Hugging Face 'transformers' library:" ]
[ "TAGS\n#license-mit #region-us \n", "# TS-Corpus BPE Tokenizer (256k, Cased)", "## Overview\nThis repository hosts a Byte Pair Encoding (BPE) tokenizer with a vocabulary size of 256,000, trained cased using several datasets from the TS Corpus website. The BPE method is particularly effective for languages like Turkish, providing a balance between word-level and character-level tokenization.", "## Dataset Sources\nThe tokenizer was trained on a variety of text sources from TS Corpus, ensuring a broad linguistic coverage. These sources include:\n- TS Corpus V2\n- TS Wikipedia Corpus\n- TS Abstract Corpus\n- TS Idioms and Proverbs Corpus\n- Syllable Corpus\n- Turkish Constitution Corpus\n\nThe inclusion of idiomatic expressions, proverbs, and legal terminology provides a comprehensive toolkit for processing Turkish text across different domains.", "## Tokenizer Model\nUtilizing the Byte Pair Encoding (BPE) method, this tokenizer excels in efficiently managing subword units without the need for an extensive vocabulary. BPE is especially suitable for handling the agglutinative nature of Turkish, where words can have multiple suffixes.", "## Usage\nTo use this tokenizer in your projects, load it with the Hugging Face 'transformers' library:" ]
[ 9, 15, 65, 87, 60, 23 ]
[ "TAGS\n#license-mit #region-us \n# TS-Corpus BPE Tokenizer (256k, Cased)## Overview\nThis repository hosts a Byte Pair Encoding (BPE) tokenizer with a vocabulary size of 256,000, trained cased using several datasets from the TS Corpus website. The BPE method is particularly effective for languages like Turkish, providing a balance between word-level and character-level tokenization.## Dataset Sources\nThe tokenizer was trained on a variety of text sources from TS Corpus, ensuring a broad linguistic coverage. These sources include:\n- TS Corpus V2\n- TS Wikipedia Corpus\n- TS Abstract Corpus\n- TS Idioms and Proverbs Corpus\n- Syllable Corpus\n- Turkish Constitution Corpus\n\nThe inclusion of idiomatic expressions, proverbs, and legal terminology provides a comprehensive toolkit for processing Turkish text across different domains.## Tokenizer Model\nUtilizing the Byte Pair Encoding (BPE) method, this tokenizer excels in efficiently managing subword units without the need for an extensive vocabulary. BPE is especially suitable for handling the agglutinative nature of Turkish, where words can have multiple suffixes.## Usage\nTo use this tokenizer in your projects, load it with the Hugging Face 'transformers' library:" ]
text-to-image
diffusers
# API Inference ![generated from modelslab.com](https://cdn2.stablediffusionapi.com/generations/bf190b5a-fe19-437c-ba05-82f29cb1f7ad-0.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "arienmixxl-asian-portrait" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/arienmixxl-asian-portrait) Model link: [View model](https://modelslab.com/models/arienmixxl-asian-portrait) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "arienmixxl-asian-portrait", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/arienmixxL-asian-portrait
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-30T22:36:58+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "arienmixxl-asian-portrait" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "arienmixxl-asian-portrait", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"arienmixxl-asian-portrait\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"arienmixxl-asian-portrait\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"arienmixxl-asian-portrait\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"arienmixxl-asian-portrait\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 56, 8, 519 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n# API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"arienmixxl-asian-portrait\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"arienmixxl-asian-portrait\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
paytonison/Aristotle-GPT-Neo-250M-Alpha
null
[ "transformers", "safetensors", "gpt_neo", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:37:04+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt_neo #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt_neo #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt_neo #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
mlx
# mlx-community/dolphin-2.9-llama3-8b-1m-4bit This model was converted to MLX format from [`cognitivecomputations/dolphin-2.9-llama3-8b-1m`]() using mlx-lm version **0.10.0**. Refer to the [original model card](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b-1m) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/dolphin-2.9-llama3-8b-1m-4bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"license": "other", "tags": ["generated_from_trainer", "axolotl", "mlx"], "datasets": ["cognitivecomputations/Dolphin-2.9", "teknium/OpenHermes-2.5", "m-a-p/CodeFeedback-Filtered-Instruction", "cognitivecomputations/dolphin-coder", "cognitivecomputations/samantha-data", "HuggingFaceH4/ultrachat_200k", "microsoft/orca-math-word-problems-200k", "abacusai/SystemChat-1.1", "Locutusque/function-calling-chatml", "internlm/Agent-FLAN"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "out", "results": []}]}
mlx-community/dolphin-2.9-llama3-8b-1m-4bit
null
[ "mlx", "safetensors", "llama", "generated_from_trainer", "axolotl", "dataset:cognitivecomputations/Dolphin-2.9", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:microsoft/orca-math-word-problems-200k", "dataset:abacusai/SystemChat-1.1", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "base_model:meta-llama/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2024-04-30T22:38:14+00:00
[]
[]
TAGS #mlx #safetensors #llama #generated_from_trainer #axolotl #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us
# mlx-community/dolphin-2.9-llama3-8b-1m-4bit This model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/dolphin-2.9-llama3-8b-1m-4bit\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llama #generated_from_trainer #axolotl #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n", "# mlx-community/dolphin-2.9-llama3-8b-1m-4bit\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 193, 85, 6 ]
[ "TAGS\n#mlx #safetensors #llama #generated_from_trainer #axolotl #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n# mlx-community/dolphin-2.9-llama3-8b-1m-4bit\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
TLLM/llama-3-zhtw-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:38:42+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AOLM2 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9303 | 0.09 | 10 | 0.9652 | | 0.3692 | 0.18 | 20 | 0.1604 | | 0.1539 | 0.27 | 30 | 0.1626 | | 0.1561 | 0.36 | 40 | 0.1535 | | 0.1518 | 0.45 | 50 | 0.1511 | | 0.1518 | 0.54 | 60 | 0.1483 | | 0.1488 | 0.63 | 70 | 0.1485 | | 0.1486 | 0.73 | 80 | 0.1528 | | 0.1467 | 0.82 | 90 | 0.1504 | | 0.1476 | 0.91 | 100 | 0.1485 | | 0.149 | 1.0 | 110 | 0.1477 | | 0.1456 | 1.09 | 120 | 0.1490 | | 0.1442 | 1.18 | 130 | 0.1499 | | 0.1474 | 1.27 | 140 | 0.1479 | | 0.1482 | 1.36 | 150 | 0.1486 | | 0.1455 | 1.45 | 160 | 0.1483 | | 0.1455 | 1.54 | 170 | 0.1467 | | 0.1467 | 1.63 | 180 | 0.1455 | | 0.1464 | 1.72 | 190 | 0.1485 | | 0.145 | 1.81 | 200 | 0.1468 | | 0.1485 | 1.9 | 210 | 0.1458 | | 0.1453 | 1.99 | 220 | 0.1477 | | 0.1432 | 2.08 | 230 | 0.1457 | | 0.1376 | 2.18 | 240 | 0.1447 | | 0.1392 | 2.27 | 250 | 0.1446 | | 0.1385 | 2.36 | 260 | 0.1443 | | 0.137 | 2.45 | 270 | 0.1444 | | 0.1352 | 2.54 | 280 | 0.1436 | | 0.1338 | 2.63 | 290 | 0.1435 | | 0.1352 | 2.72 | 300 | 0.1430 | | 0.1351 | 2.81 | 310 | 0.1428 | | 0.1317 | 2.9 | 320 | 0.1430 | | 0.1361 | 2.99 | 330 | 0.1428 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "AOLM2", "results": []}]}
Litzy619/AOLM2
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T22:39:16+00:00
[]
[]
TAGS #safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us
AOLM2 ===== This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1428 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine\_with\_restarts * lr\_scheduler\_warmup\_steps: 80 * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.14.6 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
[ 35, 160, 5, 47 ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # AOLM3 This model is a fine-tuned version of [allenai/OLMo-1B](https://huggingface.co/allenai/OLMo-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 80 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9989 | 0.09 | 10 | 1.0026 | | 0.3997 | 0.18 | 20 | 0.1602 | | 0.1542 | 0.27 | 30 | 0.1613 | | 0.1535 | 0.36 | 40 | 0.1525 | | 0.1526 | 0.45 | 50 | 0.1486 | | 0.1508 | 0.54 | 60 | 0.1496 | | 0.1494 | 0.63 | 70 | 0.1490 | | 0.1493 | 0.73 | 80 | 0.1514 | | 0.1471 | 0.82 | 90 | 0.1513 | | 0.1477 | 0.91 | 100 | 0.1507 | | 0.1493 | 1.0 | 110 | 0.1496 | | 0.1453 | 1.09 | 120 | 0.1498 | | 0.1446 | 1.18 | 130 | 0.1523 | | 0.147 | 1.27 | 140 | 0.1481 | | 0.1478 | 1.36 | 150 | 0.1476 | | 0.146 | 1.45 | 160 | 0.1496 | | 0.1462 | 1.54 | 170 | 0.1466 | | 0.1462 | 1.63 | 180 | 0.1452 | | 0.1471 | 1.72 | 190 | 0.1515 | | 0.1453 | 1.81 | 200 | 0.1469 | | 0.1487 | 1.9 | 210 | 0.1475 | | 0.1461 | 1.99 | 220 | 0.1483 | | 0.1444 | 2.08 | 230 | 0.1468 | | 0.139 | 2.18 | 240 | 0.1450 | | 0.1411 | 2.27 | 250 | 0.1461 | | 0.1405 | 2.36 | 260 | 0.1464 | | 0.1392 | 2.45 | 270 | 0.1446 | | 0.1379 | 2.54 | 280 | 0.1441 | | 0.1368 | 2.63 | 290 | 0.1444 | | 0.1389 | 2.72 | 300 | 0.1427 | | 0.1387 | 2.81 | 310 | 0.1421 | | 0.1367 | 2.9 | 320 | 0.1425 | | 0.1396 | 2.99 | 330 | 0.1426 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "allenai/OLMo-1B", "model-index": [{"name": "AOLM3", "results": []}]}
Litzy619/AOLM3
null
[ "safetensors", "generated_from_trainer", "base_model:allenai/OLMo-1B", "license:apache-2.0", "region:us" ]
null
2024-04-30T22:39:16+00:00
[]
[]
TAGS #safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us
AOLM3 ===== This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1426 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine\_with\_restarts * lr\_scheduler\_warmup\_steps: 80 * num\_epochs: 3 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.14.6 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
[ 35, 160, 5, 47 ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-allenai/OLMo-1B #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 80\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1" ]
text-generation
transformers
# llama3-8B-slerp-biomed-chat-chinese llama3-8B-slerp-biomed-chat-chinese is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [shanchen/llama3-8B-slerp-med-chinese](https://huggingface.co/shanchen/llama3-8B-slerp-med-chinese) * [shenzhi-wang/Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) ## 🧩 Configuration ```yaml slices: - sources: - model: shanchen/llama3-8B-slerp-med-chinese layer_range: [0,32] - model: shenzhi-wang/Llama3-8B-Chinese-Chat layer_range: [0,32] merge_method: slerp base_model: shenzhi-wang/Llama3-8B-Chinese-Chat parameters: t: - filter: self_attn value: [0.3, 0.5, 0.5, 0.7, 1] - filter: mlp value: [1, 0.7, 0.5, 0.5, 0.3] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "shanchen/llama3-8B-slerp-biomed-chat-chinese" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) messages = [ {"role": "user", "content": "Can you speak Japanese?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids, max_new_tokens=192 max#8192, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ```
{"language": ["zh", "en"], "license": "llama3", "tags": ["merge", "mergekit", "lazymergekit", "shanchen/llama3-8B-slerp-med-chinese", "shenzhi-wang/Llama3-8B-Chinese-Chat"], "base_model": ["shanchen/llama3-8B-slerp-med-chinese", "shenzhi-wang/Llama3-8B-Chinese-Chat"]}
shanchen/llama3-8B-slerp-biomed-chat-chinese
null
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "shanchen/llama3-8B-slerp-med-chinese", "shenzhi-wang/Llama3-8B-Chinese-Chat", "conversational", "zh", "en", "base_model:shanchen/llama3-8B-slerp-med-chinese", "base_model:shenzhi-wang/Llama3-8B-Chinese-Chat", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T22:40:17+00:00
[]
[ "zh", "en" ]
TAGS #transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #shanchen/llama3-8B-slerp-med-chinese #shenzhi-wang/Llama3-8B-Chinese-Chat #conversational #zh #en #base_model-shanchen/llama3-8B-slerp-med-chinese #base_model-shenzhi-wang/Llama3-8B-Chinese-Chat #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# llama3-8B-slerp-biomed-chat-chinese llama3-8B-slerp-biomed-chat-chinese is a merge of the following models using LazyMergekit: * shanchen/llama3-8B-slerp-med-chinese * shenzhi-wang/Llama3-8B-Chinese-Chat ## Configuration ## Usage
[ "# llama3-8B-slerp-biomed-chat-chinese\n\nllama3-8B-slerp-biomed-chat-chinese is a merge of the following models using LazyMergekit:\n* shanchen/llama3-8B-slerp-med-chinese\n* shenzhi-wang/Llama3-8B-Chinese-Chat", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #shanchen/llama3-8B-slerp-med-chinese #shenzhi-wang/Llama3-8B-Chinese-Chat #conversational #zh #en #base_model-shanchen/llama3-8B-slerp-med-chinese #base_model-shenzhi-wang/Llama3-8B-Chinese-Chat #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# llama3-8B-slerp-biomed-chat-chinese\n\nllama3-8B-slerp-biomed-chat-chinese is a merge of the following models using LazyMergekit:\n* shanchen/llama3-8B-slerp-med-chinese\n* shenzhi-wang/Llama3-8B-Chinese-Chat", "## Configuration", "## Usage" ]
[ 134, 82, 3, 3 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #merge #mergekit #lazymergekit #shanchen/llama3-8B-slerp-med-chinese #shenzhi-wang/Llama3-8B-Chinese-Chat #conversational #zh #en #base_model-shanchen/llama3-8B-slerp-med-chinese #base_model-shenzhi-wang/Llama3-8B-Chinese-Chat #license-llama3 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# llama3-8B-slerp-biomed-chat-chinese\n\nllama3-8B-slerp-biomed-chat-chinese is a merge of the following models using LazyMergekit:\n* shanchen/llama3-8B-slerp-med-chinese\n* shenzhi-wang/Llama3-8B-Chinese-Chat## Configuration## Usage" ]
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CodeQwen1.5-7B - GGUF - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/CodeQwen1.5-7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [CodeQwen1.5-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q2_K.gguf) | Q2_K | 2.84GB | | [CodeQwen1.5-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.IQ3_XS.gguf) | IQ3_XS | 3.13GB | | [CodeQwen1.5-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.IQ3_S.gguf) | IQ3_S | 3.27GB | | [CodeQwen1.5-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.26GB | | [CodeQwen1.5-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.IQ3_M.gguf) | IQ3_M | 3.36GB | | [CodeQwen1.5-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q3_K.gguf) | Q3_K | 3.55GB | | [CodeQwen1.5-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.55GB | | [CodeQwen1.5-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q3_K_L.gguf) | Q3_K_L | 3.71GB | | [CodeQwen1.5-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.IQ4_XS.gguf) | IQ4_XS | 3.79GB | | [CodeQwen1.5-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q4_0.gguf) | Q4_0 | 3.89GB | | [CodeQwen1.5-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.IQ4_NL.gguf) | IQ4_NL | 3.94GB | | [CodeQwen1.5-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.11GB | | [CodeQwen1.5-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q4_K.gguf) | Q4_K | 4.41GB | | [CodeQwen1.5-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.41GB | | [CodeQwen1.5-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q4_1.gguf) | Q4_1 | 4.29GB | | [CodeQwen1.5-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q5_0.gguf) | Q5_0 | 4.69GB | | [CodeQwen1.5-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q5_K_S.gguf) | Q5_K_S | 4.79GB | | [CodeQwen1.5-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q5_K.gguf) | Q5_K | 5.06GB | | [CodeQwen1.5-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.06GB | | [CodeQwen1.5-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q5_1.gguf) | Q5_1 | 5.09GB | | [CodeQwen1.5-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf/blob/main/CodeQwen1.5-7B.Q6_K.gguf) | Q6_K | 5.94GB | Original model description: --- license: other license_name: tongyi-qianwen-research license_link: >- https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained --- # CodeQwen1.5-7B ## Introduction CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. * Strong code generation capabilities and competitve performance across a series of benchmarks; * Supporting long context understanding and generation with the context length of 64K tokens; * Supporting 92 coding languages * Excellent performance in text-to-SQL, bug fix, etc. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/codeqwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details CodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Usage For the base language model, we do not advise you to use it for chat. You can use it for finetuning, and you can also use it for code infilling, code generation, etc., but please be careful about your stopping criteria. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_CodeQwen1.5-7B-gguf
null
[ "gguf", "region:us" ]
null
2024-04-30T22:43:19+00:00
[]
[]
TAGS #gguf #region-us
Quantization made by Richard Erkhov. Github Discord Request more models CodeQwen1.5-7B - GGUF * Model creator: URL * Original model: URL Name: CodeQwen1.5-7B.Q2\_K.gguf, Quant method: Q2\_K, Size: 2.84GB Name: CodeQwen1.5-7B.IQ3\_XS.gguf, Quant method: IQ3\_XS, Size: 3.13GB Name: CodeQwen1.5-7B.IQ3\_S.gguf, Quant method: IQ3\_S, Size: 3.27GB Name: CodeQwen1.5-7B.Q3\_K\_S.gguf, Quant method: Q3\_K\_S, Size: 3.26GB Name: CodeQwen1.5-7B.IQ3\_M.gguf, Quant method: IQ3\_M, Size: 3.36GB Name: CodeQwen1.5-7B.Q3\_K.gguf, Quant method: Q3\_K, Size: 3.55GB Name: CodeQwen1.5-7B.Q3\_K\_M.gguf, Quant method: Q3\_K\_M, Size: 3.55GB Name: CodeQwen1.5-7B.Q3\_K\_L.gguf, Quant method: Q3\_K\_L, Size: 3.71GB Name: CodeQwen1.5-7B.IQ4\_XS.gguf, Quant method: IQ4\_XS, Size: 3.79GB Name: CodeQwen1.5-7B.Q4\_0.gguf, Quant method: Q4\_0, Size: 3.89GB Name: CodeQwen1.5-7B.IQ4\_NL.gguf, Quant method: IQ4\_NL, Size: 3.94GB Name: CodeQwen1.5-7B.Q4\_K\_S.gguf, Quant method: Q4\_K\_S, Size: 4.11GB Name: CodeQwen1.5-7B.Q4\_K.gguf, Quant method: Q4\_K, Size: 4.41GB Name: CodeQwen1.5-7B.Q4\_K\_M.gguf, Quant method: Q4\_K\_M, Size: 4.41GB Name: CodeQwen1.5-7B.Q4\_1.gguf, Quant method: Q4\_1, Size: 4.29GB Name: CodeQwen1.5-7B.Q5\_0.gguf, Quant method: Q5\_0, Size: 4.69GB Name: CodeQwen1.5-7B.Q5\_K\_S.gguf, Quant method: Q5\_K\_S, Size: 4.79GB Name: CodeQwen1.5-7B.Q5\_K.gguf, Quant method: Q5\_K, Size: 5.06GB Name: CodeQwen1.5-7B.Q5\_K\_M.gguf, Quant method: Q5\_K\_M, Size: 5.06GB Name: CodeQwen1.5-7B.Q5\_1.gguf, Quant method: Q5\_1, Size: 5.09GB Name: CodeQwen1.5-7B.Q6\_K.gguf, Quant method: Q6\_K, Size: 5.94GB Original model description: --------------------------- license: other license\_name: tongyi-qianwen-research license\_link: >- URL language: * en pipeline\_tag: text-generation tags: * pretrained --- CodeQwen1.5-7B ============== Introduction ------------ CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. * Strong code generation capabilities and competitve performance across a series of benchmarks; * Supporting long context understanding and generation with the context length of 64K tokens; * Supporting 92 coding languages * Excellent performance in text-to-SQL, bug fix, etc. For more details, please refer to our blog post and GitHub repo. Model Details ------------- CodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference. Requirements ------------ The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: Usage ----- For the base language model, we do not advise you to use it for chat. You can use it for finetuning, and you can also use it for code infilling, code generation, etc., but please be careful about your stopping criteria. If you find our work helpful, feel free to give us a cite.
[]
[ "TAGS\n#gguf #region-us \n" ]
[ 9 ]
[ "TAGS\n#gguf #region-us \n" ]
null
null
# 🌋 LLaVA: Large Language and Vision Assistant *Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.* [📢 [LLaVA-NeXT Blog](https://llava-vl.github.io/blog/2024-01-30-llava-next/)] [[Project Page](https://llava-vl.github.io/)] [[Demo](https://llava.hliu.cc/)] [[Data](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md)] [[Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)] 🤝Community Contributions: [[llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436)] [[Colab](https://github.com/camenduru/LLaVA-colab)] [[🤗Space](https://huggingface.co/spaces/badayvedat/LLaVA)] [[Replicate](https://replicate.com/yorickvp/llava-13b)] [[AutoGen](https://github.com/microsoft/autogen/blob/main/notebook/agentchat_lmm_llava.ipynb)] [[BakLLaVA](https://github.com/SkunkworksAI/BakLLaVA)] **Improved Baselines with Visual Instruction Tuning** [[Paper](https://arxiv.org/abs/2310.03744)] [[HF](https://huggingface.co/papers/2310.03744)] <br> [Haotian Liu](https://hliu.cc), [Chunyuan Li](https://chunyuan.li/), [Yuheng Li](https://yuheng-li.github.io/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) **Visual Instruction Tuning** (NeurIPS 2023, **Oral**) [[Paper](https://arxiv.org/abs/2304.08485)] [[HF](https://huggingface.co/papers/2304.08485)] <br> [Haotian Liu*](https://hliu.cc), [Chunyuan Li*](https://chunyuan.li/), [Qingyang Wu](https://scholar.google.ca/citations?user=HDiw-TsAAAAJ&hl=en/), [Yong Jae Lee](https://pages.cs.wisc.edu/~yongjaelee/) (*Equal Contribution) <!--p align="center"> <a href="https://llava.hliu.cc/"><img src="images/llava_logo.png" width="50%"></a> <br> Generated by <a href="https://gligen.github.io/">GLIGEN</a> via "a cute lava llama with glasses" and box prompt </p--> ## Release - [1/30] 🔥 LLaVA-NeXT (LLaVA-1.6) is out! With additional scaling to LLaVA-1.5, LLaVA-NeXT-34B outperforms Gemini Pro on some benchmarks. It can now process 4x more pixels and perform more tasks/applications than before. Check out the [blog post](https://llava-vl.github.io/blog/2024-01-30-llava-next/), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). Training/eval data and scripts coming soon. - [11/10] [LLaVA-Plus](https://llava-vl.github.io/llava-plus/) is released: Learning to Use Tools for Creating Multimodal Agents, with LLaVA-Plus (LLaVA that Plug and Learn to Use Skills). [[Project Page](https://llava-vl.github.io/llava-plus/)] [[Demo](https://llavaplus.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Plus-Codebase)] [[Paper](https://arxiv.org/abs/2311.05437)] - [11/2] [LLaVA-Interactive](https://llava-vl.github.io/llava-interactive/) is released: Experience the future of human-AI multimodal interaction with an all-in-one demo for Image Chat, Segmentation, Generation and Editing. [[Project Page](https://llava-vl.github.io/llava-interactive/)] [[Demo](https://llavainteractive.ngrok.io/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Interactive-Demo)] [[Paper](https://arxiv.org/abs/2311.00571)] - [10/26] 🔥 LLaVA-1.5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement ([ckpts](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md#llava-v15), [script](https://github.com/haotian-liu/LLaVA#train)). We also provide a [doc](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md) on how to finetune LLaVA-1.5 on your own dataset with LoRA. - [10/12] Check out the Korean LLaVA (Ko-LLaVA), created by ETRI, who has generously supported our research! [[🤗 Demo](https://huggingface.co/spaces/etri-vilab/Ko-LLaVA)] - [10/5] 🔥 LLaVA-1.5 is out! Achieving SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods like Qwen-VL-Chat that use billion-scale data. Check out the [technical report](https://arxiv.org/abs/2310.03744), and explore the [demo](https://llava.hliu.cc/)! Models are available in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)! - [9/26] LLaVA is improved with reinforcement learning from human feedback (RLHF) to improve fact grounding and reduce hallucination. Check out the new SFT and RLHF checkpoints at project [[LLavA-RLHF]](https://llava-rlhf.github.io/) - [9/22] [LLaVA](https://arxiv.org/abs/2304.08485) is accepted by NeurIPS 2023 as **oral presentation**, and [LLaVA-Med](https://arxiv.org/abs/2306.00890) is accepted by NeurIPS 2023 Datasets and Benchmarks Track as **spotlight presentation**. <details> <summary>More</summary> - [11/6] Support **Intel** dGPU and CPU platforms. [More details here.](https://github.com/haotian-liu/LLaVA/tree/intel/docs/intel) - [10/12] LLaVA is now supported in [llama.cpp](https://github.com/ggerganov/llama.cpp/pull/3436) with 4-bit / 5-bit quantization support! - [10/11] The training data and scripts of LLaVA-1.5 are released [here](https://github.com/haotian-liu/LLaVA#train), and evaluation scripts are released [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md)! - [10/10] [Roboflow Deep Dive](https://blog.roboflow.com/first-impressions-with-llava-1-5/): First Impressions with LLaVA-1.5. - [9/20] We summarize our empirical study of training 33B and 65B LLaVA models in a [note](https://arxiv.org/abs/2309.09958). Further, if you are interested in the comprehensive review, evolution and trend of multimodal foundation models, please check out our recent survey paper [``Multimodal Foundation Models: From Specialists to General-Purpose Assistants''.](https://arxiv.org/abs/2309.10020) <p align="center"> <img src="https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings/blob/main/images/mfm_evolution.jpeg?raw=true" width=50%/> </p> - [7/19] 🔥 We release a major upgrade, including support for LLaMA-2, LoRA training, 4-/8-bit inference, higher resolution (336x336), and a lot more. We release [LLaVA Bench](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md) for benchmarking open-ended visual chat with results from Bard and Bing-Chat. We also support and verify training with RTX 3090 and RTX A6000. Check out [LLaVA-from-LLaMA-2](https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_from_LLaMA2.md), and our [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md)! - [6/26] [CVPR 2023 Tutorial](https://vlp-tutorial.github.io/) on **Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4**! Please check out [[Slides](https://datarelease.blob.core.windows.net/tutorial/vision_foundation_models_2023/slides/Chunyuan_cvpr2023_tutorial_lmm.pdf)] [[Notes](https://arxiv.org/abs/2306.14895)] [[YouTube](https://youtu.be/mkI7EPD1vp8)] [[Bilibli](https://www.bilibili.com/video/BV1Ng4y1T7v3/)]. - [6/11] We released the preview for the most requested feature: DeepSpeed and LoRA support! Please see documentations [here](./docs/LoRA.md). - [6/1] We released **LLaVA-Med: Large Language and Vision Assistant for Biomedicine**, a step towards building biomedical domain large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2306.00890) and [page](https://github.com/microsoft/LLaVA-Med). - [5/6] We are releasing [LLaVA-Lighting-MPT-7B-preview](https://huggingface.co/liuhaotian/LLaVA-Lightning-MPT-7B-preview), based on MPT-7B-Chat! See [here](#LLaVA-MPT-7b) for more details. - [5/2] 🔥 We are releasing LLaVA-Lighting! Train a lite, multimodal GPT-4 with just $40 in 3 hours! See [here](#train-llava-lightning) for more details. - [4/27] Thanks to the community effort, LLaVA-13B with 4-bit quantization allows you to run on a GPU with as few as 12GB VRAM! Try it out [here](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/llava). - [4/17] 🔥 We released **LLaVA: Large Language and Vision Assistant**. We propose visual instruction tuning, towards building large language and vision models with GPT-4 level capabilities. Checkout the [paper](https://arxiv.org/abs/2304.08485) and [demo](https://llava.hliu.cc/). </details> <!-- <a href="https://llava.hliu.cc/"><img src="assets/demo.gif" width="70%"></a> --> [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE) **Usage and License Notices**: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the [OpenAI Terms of Use](https://openai.com/policies/terms-of-use) for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. [Llama community license](https://ai.meta.com/llama/license/) for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations. ## Contents - [Install](#install) - [LLaVA Weights](#llava-weights) - [Demo](#Demo) - [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) - [Dataset](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md) - [Train](#train) - [Evaluation](#evaluation) ## Install If you are not using Linux, do *NOT* proceed, see instructions for [macOS](https://github.com/haotian-liu/LLaVA/blob/main/docs/macOS.md) and [Windows](https://github.com/haotian-liu/LLaVA/blob/main/docs/Windows.md). 1. Clone this repository and navigate to LLaVA folder ```bash git clone https://github.com/haotian-liu/LLaVA.git cd LLaVA ``` 2. Install Package ```Shell conda create -n llava python=3.10 -y conda activate llava pip install --upgrade pip # enable PEP 660 support pip install -e . ``` 3. Install additional packages for training cases ``` pip install -e ".[train]" pip install flash-attn --no-build-isolation ``` ### Upgrade to latest code base ```Shell git pull pip install -e . # if you see some import errors when you upgrade, please try running the command below (without #) # pip install flash-attn --no-build-isolation --no-cache-dir ``` ### Quick Start With HuggingFace <details> <summary>Example Code</summary> ```Python from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path from llava.eval.run_llava import eval_model model_path = "liuhaotian/llava-v1.5-7b" tokenizer, model, image_processor, context_len = load_pretrained_model( model_path=model_path, model_base=None, model_name=get_model_name_from_path(model_path) ) ``` Check out the details wth the `load_pretrained_model` function in `llava/model/builder.py`. You can also use the `eval_model` function in `llava/eval/run_llava.py` to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository. ``` python model_path = "liuhaotian/llava-v1.5-7b" prompt = "What are the things I should be cautious about when I visit here?" image_file = "https://llava-vl.github.io/static/images/view.jpg" args = type('Args', (), { "model_path": model_path, "model_base": None, "model_name": get_model_name_from_path(model_path), "query": prompt, "conv_mode": None, "image_file": image_file, "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() eval_model(args) ``` </details> ## LLaVA Weights Please check out our [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md) for all public LLaVA checkpoints, and the instructions of how to use the weights. ## Demo ### Gradio Web UI To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server *ONCE*. ```mermaid flowchart BT %% Declare Nodes gws("Gradio (UI Server)") c("Controller (API Server):<br/>PORT: 10000") mw7b("Model Worker:<br/>llava-v1.5-7b<br/>PORT: 40000") mw13b("Model Worker:<br/>llava-v1.5-13b<br/>PORT: 40001") sglw13b("SGLang Backend:<br/>llava-v1.6-34b<br/>http://localhost:30000") lsglw13b("SGLang Worker:<br/>llava-v1.6-34b<br/>PORT: 40002") %% Declare Styles classDef data fill:#3af,stroke:#48a,stroke-width:2px,color:#444 classDef success fill:#8f8,stroke:#0a0,stroke-width:2px,color:#444 classDef failure fill:#f88,stroke:#f00,stroke-width:2px,color:#444 %% Assign Styles class id,od data; class cimg,cs_s,scsim_s success; class ncimg,cs_f,scsim_f failure; subgraph Demo Connections direction BT c<-->gws mw7b<-->c mw13b<-->c lsglw13b<-->c sglw13b<-->lsglw13b end ``` #### Launch a controller ```Shell python -m llava.serve.controller --host 0.0.0.0 --port 10000 ``` #### Launch a gradio web server. ```Shell python -m llava.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload ``` You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker. #### Launch a SGLang worker This is the recommended way to serve LLaVA model with high throughput, and you need to install SGLang first. Note that currently `4-bit` quantization is not supported yet on SGLang-LLaVA, and if you have limited GPU VRAM, please check out model worker with [quantization](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#launch-a-model-worker-4-bit-8-bit-inference-quantized). ```Shell pip install "sglang[all]" ``` You'll first launch a SGLang backend worker which will execute the models on GPUs. Remember the `--port` you've set and you'll use that later. ```Shell # Single GPU CUDA_VISIBLE_DEVICES=0 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-7b --tokenizer-path llava-hf/llava-1.5-7b-hf --port 30000 # Multiple GPUs with tensor parallel CUDA_VISIBLE_DEVICES=0,1 python3 -m sglang.launch_server --model-path liuhaotian/llava-v1.5-13b --tokenizer-path llava-hf/llava-1.5-13b-hf --port 30000 --tp 2 ``` Tokenizers (temporary): `llava-hf/llava-1.5-7b-hf`, `llava-hf/llava-1.5-13b-hf`, `liuhaotian/llava-v1.6-34b-tokenizer`. You'll then launch a LLaVA-SGLang worker that will communicate between LLaVA controller and SGLang backend to route the requests. Set `--sgl-endpoint` to `http://127.0.0.1:port` where `port` is the one you just set (default: 30000). ```Shell python -m llava.serve.sglang_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --sgl-endpoint http://127.0.0.1:30000 ``` #### Launch a model worker This is the actual *worker* that performs the inference on the GPU. Each worker is responsible for a single model specified in `--model-path`. ```Shell python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b ``` Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list. You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the `--controller` the same, and modify the `--port` and `--worker` to a different port number for each worker. ```Shell python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2> ``` If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the `--device` flag: `--device mps`. #### Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB) If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with `CUDA_VISIBLE_DEVICES`. Below is an example of running with the first two GPUs. ```Shell CUDA_VISIBLE_DEVICES=0,1 python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b ``` #### Launch a model worker (4-bit, 8-bit inference, quantized) You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append `--load-4bit` or `--load-8bit` to the **model worker** command that you are executing. Below is an example of running with 4-bit quantization. ```Shell python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1.5-13b --load-4bit ``` #### Launch a model worker (LoRA weights, unmerged) You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have `lora-merge` in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B). To load unmerged LoRA weights, you simply need to pass an additional argument `--model-base`, which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the [model zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). ```Shell python -m llava.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path liuhaotian/llava-v1-0719-336px-lora-vicuna-13b-v1.3 --model-base lmsys/vicuna-13b-v1.3 ``` ### CLI Inference Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU. ```Shell python -m llava.serve.cli \ --model-path liuhaotian/llava-v1.5-7b \ --image-file "https://llava-vl.github.io/static/images/view.jpg" \ --load-4bit ``` <img src="images/demo_cli.gif" width="70%"> ## Train *Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of [this](https://github.com/haotian-liu/LLaVA/tree/v1.0.1) version for now. We'll add them in a separate doc later.* LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a *frozen pretrained* vision encoder to a *frozen LLM*; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions. LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`. ### Hyperparameters We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below. 1. Pretraining | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | | --- | ---: | ---: | ---: | ---: | ---: | | LLaVA-v1.5-13B | 256 | 1e-3 | 1 | 2048 | 0 | 2. Finetuning | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | | --- | ---: | ---: | ---: | ---: | ---: | | LLaVA-v1.5-13B | 128 | 2e-5 | 1 | 2048 | 0 | ### Download Vicuna checkpoints (automatically) Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed. ### Pretrain (feature alignment) Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain). Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B. Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/pretrain.sh). - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. <details> <summary>Pretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)</summary> We provide training script with DeepSpeed [here](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain_xformers.sh). Tips: - If you are using V100 which is not supported by FlashAttention, you can use the [memory-efficient attention](https://arxiv.org/abs/2112.05682) implemented in [xFormers](https://github.com/facebookresearch/xformers). Install xformers and replace `llava/train/train_mem.py` above with [llava/train/train_xformers.py](llava/train/train_xformers.py). </details> ### Visual Instruction Tuning 1. Prepare data Please download the annotation of the final mixture our instruction tuning data [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), and download the images from constituting datasets: - COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip) - GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip) - OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing), **we save all files as `.jpg`** - TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) - VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip) After downloading all of them, organize the data as follows in `./playground/data`, ``` ├── coco │ └── train2017 ├── gqa │ └── images ├── ocr_vqa │ └── images ├── textvqa │ └── train_images └── vg ├── VG_100K └── VG_100K_2 ``` 2. Start training! You may download our pretrained projectors in [Model Zoo](https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md). It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected. Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G). Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune.sh). If you are do not have enough GPU memory: - Use LoRA: [`finetune_lora.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/v1_5/finetune_lora.sh). We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure `per_device_train_batch_size*gradient_accumulation_steps` is the same as the provided script for best reproducibility. - Replace `zero3.json` with `zero3_offload.json` which offloads some parameters to CPU RAM. This slows down the training speed. If you are interested in finetuning LLaVA model to your own task/data, please check out [`Finetune_Custom_Data.md`](https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md)。 New options to note: - `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. - `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. - `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination. - `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome. ## Evaluation In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs. See [Evaluation.md](https://github.com/haotian-liu/LLaVA/blob/main/docs/Evaluation.md). ### GPT-assisted Evaluation Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details. 1. Generate LLaVA responses ```Shell python model_vqa.py \ --model-path ./checkpoints/LLaVA-13B-v0 \ --question-file \ playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \ --image-folder \ /path/to/coco2014_val \ --answers-file \ /path/to/answer-file-our.jsonl ``` 2. Evaluate the generated responses. In our case, [`answer-file-ref.jsonl`](./playground/data/coco2014_val_qa_eval/qa90_gpt4_answer.jsonl) is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided. ```Shell OPENAI_API_KEY="sk-***********************************" python llava/eval/eval_gpt_review_visual.py \ --question playground/data/coco2014_val_qa_eval/qa90_questions.jsonl \ --context llava/eval/table/caps_boxes_coco2014_val_80.jsonl \ --answer-list \ /path/to/answer-file-ref.jsonl \ /path/to/answer-file-our.jsonl \ --rule llava/eval/table/rule.json \ --output /path/to/review.json ``` 3. Summarize the evaluation results ```Shell python summarize_gpt_review.py ``` ## Citation If you find LLaVA useful for your research and applications, please cite using this BibTeX: ```bibtex @misc{liu2024llavanext, title={LLaVA-NeXT: Improved reasoning, OCR, and world knowledge}, url={https://llava-vl.github.io/blog/2024-01-30-llava-next/}, author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Li, Bo and Zhang, Yuanhan and Shen, Sheng and Lee, Yong Jae}, month={January}, year={2024} } @misc{liu2023improvedllava, title={Improved Baselines with Visual Instruction Tuning}, author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae}, publisher={arXiv:2310.03744}, year={2023}, } @misc{liu2023llava, title={Visual Instruction Tuning}, author={Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae}, publisher={NeurIPS}, year={2023}, } ``` ## Acknowledgement - [Vicuna](https://github.com/lm-sys/FastChat): the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities! ## Related Projects - [Instruction Tuning with GPT-4](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) - [LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day](https://github.com/microsoft/LLaVA-Med) - [Otter: In-Context Multi-Modal Instruction Tuning](https://github.com/Luodian/Otter) For future project ideas, please check out: - [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once) - [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything) to detect, segment, and generate anything by marrying [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO) and [Segment-Anything](https://github.com/facebookresearch/segment-anything).
{}
multitensor/llava_mistral_cpu
null
[ "safetensors", "arxiv:2310.03744", "arxiv:2304.08485", "arxiv:2311.05437", "arxiv:2311.00571", "arxiv:2306.00890", "arxiv:2309.09958", "arxiv:2309.10020", "arxiv:2306.14895", "arxiv:2112.05682", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:44:38+00:00
[ "2310.03744", "2304.08485", "2311.05437", "2311.00571", "2306.00890", "2309.09958", "2309.10020", "2306.14895", "2112.05682" ]
[]
TAGS #safetensors #arxiv-2310.03744 #arxiv-2304.08485 #arxiv-2311.05437 #arxiv-2311.00571 #arxiv-2306.00890 #arxiv-2309.09958 #arxiv-2309.10020 #arxiv-2306.14895 #arxiv-2112.05682 #endpoints_compatible #region-us
LLaVA: Large Language and Vision Assistant ========================================== *Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.* [LLaVA-NeXT Blog] [Project Page] [Demo] [Data] [Model Zoo] Community Contributions: [URL] [Colab] [Space] [Replicate] [AutoGen] [BakLLaVA] Improved Baselines with Visual Instruction Tuning [Paper] [HF] Haotian Liu, Chunyuan Li, Yuheng Li, Yong Jae Lee Visual Instruction Tuning (NeurIPS 2023, Oral) [Paper] [HF] Haotian Liu\*, Chunyuan Li\*, Qingyang Wu, Yong Jae Lee (\*Equal Contribution) Release ------- * [1/30] LLaVA-NeXT (LLaVA-1.6) is out! With additional scaling to LLaVA-1.5, LLaVA-NeXT-34B outperforms Gemini Pro on some benchmarks. It can now process 4x more pixels and perform more tasks/applications than before. Check out the blog post, and explore the demo! Models are available in Model Zoo. Training/eval data and scripts coming soon. * [11/10] LLaVA-Plus is released: Learning to Use Tools for Creating Multimodal Agents, with LLaVA-Plus (LLaVA that Plug and Learn to Use Skills). [Project Page] [Demo] [Code] [Paper] * [11/2] LLaVA-Interactive is released: Experience the future of human-AI multimodal interaction with an all-in-one demo for Image Chat, Segmentation, Generation and Editing. [Project Page] [Demo] [Code] [Paper] * [10/26] LLaVA-1.5 with LoRA achieves comparable performance as full-model finetuning, with a reduced GPU RAM requirement (ckpts, script). We also provide a doc on how to finetune LLaVA-1.5 on your own dataset with LoRA. * [10/12] Check out the Korean LLaVA (Ko-LLaVA), created by ETRI, who has generously supported our research! [ Demo] * [10/5] LLaVA-1.5 is out! Achieving SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods like Qwen-VL-Chat that use billion-scale data. Check out the technical report, and explore the demo! Models are available in Model Zoo. The training data and scripts of LLaVA-1.5 are released here, and evaluation scripts are released here! * [9/26] LLaVA is improved with reinforcement learning from human feedback (RLHF) to improve fact grounding and reduce hallucination. Check out the new SFT and RLHF checkpoints at project [[LLavA-RLHF]](URL * [9/22] LLaVA is accepted by NeurIPS 2023 as oral presentation, and LLaVA-Med is accepted by NeurIPS 2023 Datasets and Benchmarks Track as spotlight presentation. More * [11/6] Support Intel dGPU and CPU platforms. More details here. * [10/12] LLaVA is now supported in URL with 4-bit / 5-bit quantization support! * [10/11] The training data and scripts of LLaVA-1.5 are released here, and evaluation scripts are released here! * [10/10] Roboflow Deep Dive: First Impressions with LLaVA-1.5. * [9/20] We summarize our empirical study of training 33B and 65B LLaVA models in a note. Further, if you are interested in the comprehensive review, evolution and trend of multimodal foundation models, please check out our recent survey paper ''Multimodal Foundation Models: From Specialists to General-Purpose Assistants''. ![](URL width=50%/> </p> <ul> <li>[7/19] We release a major upgrade, including support for LLaMA-2, LoRA training, 4-/8-bit inference, higher resolution (336x336), and a lot more. We release LLaVA Bench for benchmarking open-ended visual chat with results from Bard and Bing-Chat. We also support and verify training with RTX 3090 and RTX A6000. Check out LLaVA-from-LLaMA-2, and our model zoo!</li> <li>[6/26] CVPR 2023 Tutorial on Large Multimodal Models: Towards Building and Surpassing Multimodal GPT-4! Please check out [Slides] [Notes] [YouTube] [Bilibli].</li> <li>[6/11] We released the preview for the most requested feature: DeepSpeed and LoRA support! Please see documentations here.</li> <li>[6/1] We released LLaVA-Med: Large Language and Vision Assistant for Biomedicine, a step towards building biomedical domain large language and vision models with GPT-4 level capabilities. Checkout the paper and page.</li> <li>[5/6] We are releasing LLaVA-Lighting-MPT-7B-preview, based on MPT-7B-Chat! See here for more details.</li> <li>[5/2] We are releasing LLaVA-Lighting! Train a lite, multimodal GPT-4 with just $40 in 3 hours! See here for more details.</li> <li>[4/27] Thanks to the community effort, LLaVA-13B with 4-bit quantization allows you to run on a GPU with as few as 12GB VRAM! Try it out here.</li> <li>[4/17] We released LLaVA: Large Language and Vision Assistant. We propose visual instruction tuning, towards building large language and vision models with GPT-4 level capabilities. Checkout the paper and demo.</li> </ul> </details> <p>![Code License](URL Usage and License Notices: This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses, including but not limited to the OpenAI Terms of Use for the dataset and the specific licenses for base language models for checkpoints trained using the dataset (e.g. Llama community license for LLaMA-2 and Vicuna-v1.5). This project does not impose any additional constraints beyond those stipulated in the original licenses. Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.</p> <h2>Contents</h2> <ul> <li>Install</li> <li>LLaVA Weights</li> <li>Demo</li> <li>Model Zoo</li> <li>Dataset</li> <li>Train</li> <li>Evaluation</li> </ul> <h2>Install</h2> <p>If you are not using Linux, do <em>NOT</em> proceed, see instructions for macOS and Windows.</p> <ol> <li> <p>Clone this repository and navigate to LLaVA folder</p> </li> <li> <p>Install Package</p> </li> <li> <p>Install additional packages for training cases</p> </li> </ol> <h3>Upgrade to latest code base</h3> <h3>Quick Start With HuggingFace</h3> <details> <summary>Example Code</summary> <p>Check out the details wth the 'load_pretrained_model' function in 'llava/model/URL'.</p> <p>You can also use the 'eval_model' function in 'llava/eval/run_llava.py' to get the output easily. By doing so, you can use this code on Colab directly after downloading this repository.</p> </details> <h2>LLaVA Weights</h2> <p>Please check out our Model Zoo for all public LLaVA checkpoints, and the instructions of how to use the weights.</p> <h2>Demo</h2> <h3>Gradio Web UI</h3> <p>To launch a Gradio demo locally, please run the following commands one by one. If you plan to launch multiple model workers to compare between different checkpoints, you only need to launch the controller and the web server <em>ONCE</em>.</p> <h4>Launch a controller</h4> <h4>Launch a gradio web server.</h4> <p>You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.</p> <h4>Launch a SGLang worker</h4> <p>This is the recommended way to serve LLaVA model with high throughput, and you need to install SGLang first. Note that currently '4-bit' quantization is not supported yet on SGLang-LLaVA, and if you have limited GPU VRAM, please check out model worker with quantization.</p> <p>You'll first launch a SGLang backend worker which will execute the models on GPUs. Remember the '--port' you've set and you'll use that later.</p> <p>Tokenizers (temporary): 'llava-hf/llava-1.5-7b-hf', 'llava-hf/llava-1.5-13b-hf', 'liuhaotian/llava-v1.6-34b-tokenizer'.</p> <p>You'll then launch a LLaVA-SGLang worker that will communicate between LLaVA controller and SGLang backend to route the requests. Set '--sgl-endpoint' to 'http://127.0.0.1:port' where 'port' is the one you just set (default: 30000).</p> <h4>Launch a model worker</h4> <p>This is the actual <em>worker</em> that performs the inference on the GPU. Each worker is responsible for a single model specified in '--model-path'.</p> <p>Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.</p> <p>You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the '--controller' the same, and modify the '--port' and '--worker' to a different port number for each worker.</p> <p>If you are using an Apple device with an M1 or M2 chip, you can specify the mps device by using the '--device' flag: '--device mps'.</p> <h4>Launch a model worker (Multiple GPUs, when GPU VRAM <= 24GB)</h4> <p>If the VRAM of your GPU is less than 24GB (e.g., RTX 3090, RTX 4090, etc.), you may try running it with multiple GPUs. Our latest code base will automatically try to use multiple GPUs if you have more than one GPU. You can specify which GPUs to use with 'CUDA_VISIBLE_DEVICES'. Below is an example of running with the first two GPUs.</p> <h4>Launch a model worker (4-bit, 8-bit inference, quantized)</h4> <p>You can launch the model worker with quantized bits (4-bit, 8-bit), which allows you to run the inference with reduced GPU memory footprint, potentially allowing you to run on a GPU with as few as 12GB VRAM. Note that inference with quantized bits may not be as accurate as the full-precision model. Simply append '--load-4bit' or '--load-8bit' to the model worker command that you are executing. Below is an example of running with 4-bit quantization.</p> <h4>Launch a model worker (LoRA weights, unmerged)</h4> <p>You can launch the model worker with LoRA weights, without merging them with the base checkpoint, to save disk space. There will be additional loading time, while the inference speed is the same as the merged checkpoints. Unmerged LoRA checkpoints do not have 'lora-merge' in the model name, and are usually much smaller (less than 1GB) than the merged checkpoints (13G for 7B, and 25G for 13B).</p> <p>To load unmerged LoRA weights, you simply need to pass an additional argument '--model-base', which is the base LLM that is used to train the LoRA weights. You can check the base LLM of each LoRA weights in the model zoo.</p> <h3>CLI Inference</h3> <p>Chat about images using LLaVA without the need of Gradio interface. It also supports multiple GPUs, 4-bit and 8-bit quantized inference. With 4-bit quantization, for our LLaVA-1.5-7B, it uses less than 8GB VRAM on a single GPU.</p> <img src=) Train ----- *Below is the latest training configuration for LLaVA v1.5. For legacy models, please refer to README of this version for now. We'll add them in a separate doc later.* LLaVA training consists of two stages: (1) feature alignment stage: use our 558K subset of the LAION-CC-SBU dataset to connect a *frozen pretrained* vision encoder to a *frozen LLM*; (2) visual instruction tuning stage: use 150K GPT-generated multimodal instruction-following data, plus around 515K VQA data from academic-oriented tasks, to teach the model to follow multimodal instructions. LLaVA is trained on 8 A100 GPUs with 80GB memory. To train on fewer GPUs, you can reduce the 'per\_device\_train\_batch\_size' and increase the 'gradient\_accumulation\_steps' accordingly. Always keep the global batch size the same: 'per\_device\_train\_batch\_size' x 'gradient\_accumulation\_steps' x 'num\_gpus'. ### Hyperparameters We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below. 1. Pretraining 2. Finetuning ### Download Vicuna checkpoints (automatically) Our base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed. ### Pretrain (feature alignment) Please download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper here. Pretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B. Training script with DeepSpeed ZeRO-2: 'URL'. * '--mm\_projector\_type mlp2x\_gelu': the two-layer MLP vision-language connector. * '--vision\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px. Pretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G) We provide training script with DeepSpeed here. Tips: * If you are using V100 which is not supported by FlashAttention, you can use the memory-efficient attention implemented in xFormers. Install xformers and replace 'llava/train/train\_mem.py' above with llava/train/train\_xformers.py. ### Visual Instruction Tuning 1. Prepare data Please download the annotation of the final mixture our instruction tuning data llava\_v1\_5\_mix665k.json, and download the images from constituting datasets: * COCO: train2017 * GQA: images * OCR-VQA: download script, we save all files as '.jpg' * TextVQA: train\_val\_images * VisualGenome: part1, part2 After downloading all of them, organize the data as follows in './playground/data', 2. Start training! You may download our pretrained projectors in Model Zoo. It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected. Visual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G). Training script with DeepSpeed ZeRO-3: 'URL'. If you are do not have enough GPU memory: * Use LoRA: 'finetune\_lora.sh'. We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure 'per\_device\_train\_batch\_size\*gradient\_accumulation\_steps' is the same as the provided script for best reproducibility. * Replace 'URL' with 'zero3\_offload.json' which offloads some parameters to CPU RAM. This slows down the training speed. If you are interested in finetuning LLaVA model to your own task/data, please check out 'Finetune\_Custom\_Data.md'。 New options to note: * '--mm\_projector\_type mlp2x\_gelu': the two-layer MLP vision-language connector. * '--vision\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px. * '--image\_aspect\_ratio pad': this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination. * '--group\_by\_modality\_length True': this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome. Evaluation ---------- In LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs. See URL. ### GPT-assisted Evaluation Our GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details. 1. Generate LLaVA responses 2. Evaluate the generated responses. In our case, 'URL' is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided. 3. Summarize the evaluation results If you find LLaVA useful for your research and applications, please cite using this BibTeX: Acknowledgement --------------- * Vicuna: the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities! Related Projects ---------------- * Instruction Tuning with GPT-4 * LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day * Otter: In-Context Multi-Modal Instruction Tuning For future project ideas, please check out: * SEEM: Segment Everything Everywhere All at Once * Grounded-Segment-Anything to detect, segment, and generate anything by marrying Grounding DINO and Segment-Anything.
[ "### Hyperparameters\n\n\nWe use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.\n\n\n1. Pretraining\n\n\n\n2. Finetuning", "### Download Vicuna checkpoints (automatically)\n\n\nOur base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.", "### Pretrain (feature alignment)\n\n\nPlease download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper here.\n\n\nPretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.\n\n\nTraining script with DeepSpeed ZeRO-2: 'URL'.\n\n\n* '--mm\\_projector\\_type mlp2x\\_gelu': the two-layer MLP vision-language connector.\n* '--vision\\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px.\n\n\n\nPretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)\nWe provide training script with DeepSpeed here.\nTips:\n\n\n* If you are using V100 which is not supported by FlashAttention, you can use the memory-efficient attention implemented in xFormers. Install xformers and replace 'llava/train/train\\_mem.py' above with llava/train/train\\_xformers.py.", "### Visual Instruction Tuning\n\n\n1. Prepare data\n\n\nPlease download the annotation of the final mixture our instruction tuning data llava\\_v1\\_5\\_mix665k.json, and download the images from constituting datasets:\n\n\n* COCO: train2017\n* GQA: images\n* OCR-VQA: download script, we save all files as '.jpg'\n* TextVQA: train\\_val\\_images\n* VisualGenome: part1, part2\n\n\nAfter downloading all of them, organize the data as follows in './playground/data',\n\n\n2. Start training!\n\n\nYou may download our pretrained projectors in Model Zoo. It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.\n\n\nVisual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).\n\n\nTraining script with DeepSpeed ZeRO-3: 'URL'.\n\n\nIf you are do not have enough GPU memory:\n\n\n* Use LoRA: 'finetune\\_lora.sh'. We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure 'per\\_device\\_train\\_batch\\_size\\*gradient\\_accumulation\\_steps' is the same as the provided script for best reproducibility.\n* Replace 'URL' with 'zero3\\_offload.json' which offloads some parameters to CPU RAM. This slows down the training speed.\n\n\nIf you are interested in finetuning LLaVA model to your own task/data, please check out 'Finetune\\_Custom\\_Data.md'。\n\n\nNew options to note:\n\n\n* '--mm\\_projector\\_type mlp2x\\_gelu': the two-layer MLP vision-language connector.\n* '--vision\\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px.\n* '--image\\_aspect\\_ratio pad': this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.\n* '--group\\_by\\_modality\\_length True': this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.\n\n\nEvaluation\n----------\n\n\nIn LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.\n\n\nSee URL.", "### GPT-assisted Evaluation\n\n\nOur GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.\n\n\n1. Generate LLaVA responses\n2. Evaluate the generated responses. In our case, 'URL' is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.\n3. Summarize the evaluation results\n\n\nIf you find LLaVA useful for your research and applications, please cite using this BibTeX:\n\n\nAcknowledgement\n---------------\n\n\n* Vicuna: the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!\n\n\nRelated Projects\n----------------\n\n\n* Instruction Tuning with GPT-4\n* LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day\n* Otter: In-Context Multi-Modal Instruction Tuning\n\n\nFor future project ideas, please check out:\n\n\n* SEEM: Segment Everything Everywhere All at Once\n* Grounded-Segment-Anything to detect, segment, and generate anything by marrying Grounding DINO and Segment-Anything." ]
[ "TAGS\n#safetensors #arxiv-2310.03744 #arxiv-2304.08485 #arxiv-2311.05437 #arxiv-2311.00571 #arxiv-2306.00890 #arxiv-2309.09958 #arxiv-2309.10020 #arxiv-2306.14895 #arxiv-2112.05682 #endpoints_compatible #region-us \n", "### Hyperparameters\n\n\nWe use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.\n\n\n1. Pretraining\n\n\n\n2. Finetuning", "### Download Vicuna checkpoints (automatically)\n\n\nOur base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.", "### Pretrain (feature alignment)\n\n\nPlease download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper here.\n\n\nPretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.\n\n\nTraining script with DeepSpeed ZeRO-2: 'URL'.\n\n\n* '--mm\\_projector\\_type mlp2x\\_gelu': the two-layer MLP vision-language connector.\n* '--vision\\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px.\n\n\n\nPretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)\nWe provide training script with DeepSpeed here.\nTips:\n\n\n* If you are using V100 which is not supported by FlashAttention, you can use the memory-efficient attention implemented in xFormers. Install xformers and replace 'llava/train/train\\_mem.py' above with llava/train/train\\_xformers.py.", "### Visual Instruction Tuning\n\n\n1. Prepare data\n\n\nPlease download the annotation of the final mixture our instruction tuning data llava\\_v1\\_5\\_mix665k.json, and download the images from constituting datasets:\n\n\n* COCO: train2017\n* GQA: images\n* OCR-VQA: download script, we save all files as '.jpg'\n* TextVQA: train\\_val\\_images\n* VisualGenome: part1, part2\n\n\nAfter downloading all of them, organize the data as follows in './playground/data',\n\n\n2. Start training!\n\n\nYou may download our pretrained projectors in Model Zoo. It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.\n\n\nVisual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).\n\n\nTraining script with DeepSpeed ZeRO-3: 'URL'.\n\n\nIf you are do not have enough GPU memory:\n\n\n* Use LoRA: 'finetune\\_lora.sh'. We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure 'per\\_device\\_train\\_batch\\_size\\*gradient\\_accumulation\\_steps' is the same as the provided script for best reproducibility.\n* Replace 'URL' with 'zero3\\_offload.json' which offloads some parameters to CPU RAM. This slows down the training speed.\n\n\nIf you are interested in finetuning LLaVA model to your own task/data, please check out 'Finetune\\_Custom\\_Data.md'。\n\n\nNew options to note:\n\n\n* '--mm\\_projector\\_type mlp2x\\_gelu': the two-layer MLP vision-language connector.\n* '--vision\\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px.\n* '--image\\_aspect\\_ratio pad': this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.\n* '--group\\_by\\_modality\\_length True': this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.\n\n\nEvaluation\n----------\n\n\nIn LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.\n\n\nSee URL.", "### GPT-assisted Evaluation\n\n\nOur GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.\n\n\n1. Generate LLaVA responses\n2. Evaluate the generated responses. In our case, 'URL' is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.\n3. Summarize the evaluation results\n\n\nIf you find LLaVA useful for your research and applications, please cite using this BibTeX:\n\n\nAcknowledgement\n---------------\n\n\n* Vicuna: the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!\n\n\nRelated Projects\n----------------\n\n\n* Instruction Tuning with GPT-4\n* LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day\n* Otter: In-Context Multi-Modal Instruction Tuning\n\n\nFor future project ideas, please check out:\n\n\n* SEEM: Segment Everything Everywhere All at Once\n* Grounded-Segment-Anything to detect, segment, and generate anything by marrying Grounding DINO and Segment-Anything." ]
[ 113, 53, 47, 282, 724, 265 ]
[ "TAGS\n#safetensors #arxiv-2310.03744 #arxiv-2304.08485 #arxiv-2311.05437 #arxiv-2311.00571 #arxiv-2306.00890 #arxiv-2309.09958 #arxiv-2309.10020 #arxiv-2306.14895 #arxiv-2112.05682 #endpoints_compatible #region-us \n### Hyperparameters\n\n\nWe use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below.\n\n\n1. Pretraining\n\n\n\n2. Finetuning### Download Vicuna checkpoints (automatically)\n\n\nOur base model Vicuna v1.5, which is an instruction-tuned chatbot, will be downloaded automatically when you run our provided training scripts. No action is needed.### Pretrain (feature alignment)\n\n\nPlease download the 558K subset of the LAION-CC-SBU dataset with BLIP captions we use in the paper here.\n\n\nPretrain takes around 5.5 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 3.5 hours for LLaVA-v1.5-7B.\n\n\nTraining script with DeepSpeed ZeRO-2: 'URL'.\n\n\n* '--mm\\_projector\\_type mlp2x\\_gelu': the two-layer MLP vision-language connector.\n* '--vision\\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px.\n\n\n\nPretrain takes around 20 hours for LLaVA-7B on 8x V100 (32G)\nWe provide training script with DeepSpeed here.\nTips:\n\n\n* If you are using V100 which is not supported by FlashAttention, you can use the memory-efficient attention implemented in xFormers. Install xformers and replace 'llava/train/train\\_mem.py' above with llava/train/train\\_xformers.py.### Visual Instruction Tuning\n\n\n1. Prepare data\n\n\nPlease download the annotation of the final mixture our instruction tuning data llava\\_v1\\_5\\_mix665k.json, and download the images from constituting datasets:\n\n\n* COCO: train2017\n* GQA: images\n* OCR-VQA: download script, we save all files as '.jpg'\n* TextVQA: train\\_val\\_images\n* VisualGenome: part1, part2\n\n\nAfter downloading all of them, organize the data as follows in './playground/data',\n\n\n2. Start training!\n\n\nYou may download our pretrained projectors in Model Zoo. It is not recommended to use legacy projectors, as they may be trained with a different version of the codebase, and if any option is off, the model will not function/train as we expected.\n\n\nVisual instruction tuning takes around 20 hours for LLaVA-v1.5-13B on 8x A100 (80G), due to the increased resolution to 336px. It takes around 10 hours for LLaVA-v1.5-7B on 8x A100 (40G).\n\n\nTraining script with DeepSpeed ZeRO-3: 'URL'.\n\n\nIf you are do not have enough GPU memory:\n\n\n* Use LoRA: 'finetune\\_lora.sh'. We are able to fit 13B training in 8-A100-40G/8-A6000, and 7B training in 8-RTX3090. Make sure 'per\\_device\\_train\\_batch\\_size\\*gradient\\_accumulation\\_steps' is the same as the provided script for best reproducibility.\n* Replace 'URL' with 'zero3\\_offload.json' which offloads some parameters to CPU RAM. This slows down the training speed.\n\n\nIf you are interested in finetuning LLaVA model to your own task/data, please check out 'Finetune\\_Custom\\_Data.md'。\n\n\nNew options to note:\n\n\n* '--mm\\_projector\\_type mlp2x\\_gelu': the two-layer MLP vision-language connector.\n* '--vision\\_tower openai/clip-vit-large-patch14-336': CLIP ViT-L/14 336px.\n* '--image\\_aspect\\_ratio pad': this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination.\n* '--group\\_by\\_modality\\_length True': this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). It makes the training sampler only sample a single modality (either image or language) during training, which we observe to speed up training by ~25%, and does not affect the final outcome.\n\n\nEvaluation\n----------\n\n\nIn LLaVA-1.5, we evaluate models on a diverse set of 12 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs.\n\n\nSee URL.### GPT-assisted Evaluation\n\n\nOur GPT-assisted evaluation pipeline for multimodal modeling is provided for a comprehensive understanding of the capabilities of vision-language models. Please see our paper for more details.\n\n\n1. Generate LLaVA responses\n2. Evaluate the generated responses. In our case, 'URL' is the response generated by text-only GPT-4 (0314), with the context captions/boxes provided.\n3. Summarize the evaluation results\n\n\nIf you find LLaVA useful for your research and applications, please cite using this BibTeX:\n\n\nAcknowledgement\n---------------\n\n\n* Vicuna: the codebase we built upon, and our base model Vicuna-13B that has the amazing language capabilities!\n\n\nRelated Projects\n----------------\n\n\n* Instruction Tuning with GPT-4\n* LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day\n* Otter: In-Context Multi-Modal Instruction Tuning\n\n\nFor future project ideas, please check out:\n\n\n* SEEM: Segment Everything Everywhere All at Once\n* Grounded-Segment-Anything to detect, segment, and generate anything by marrying Grounding DINO and Segment-Anything." ]
null
mlx
# mlx-community/dolphin-2.9-llama3-8b-1m-8bit This model was converted to MLX format from [`cognitivecomputations/dolphin-2.9-llama3-8b-1m`]() using mlx-lm version **0.10.0**. Refer to the [original model card](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b-1m) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/dolphin-2.9-llama3-8b-1m-8bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"license": "other", "tags": ["generated_from_trainer", "axolotl", "mlx"], "datasets": ["cognitivecomputations/Dolphin-2.9", "teknium/OpenHermes-2.5", "m-a-p/CodeFeedback-Filtered-Instruction", "cognitivecomputations/dolphin-coder", "cognitivecomputations/samantha-data", "HuggingFaceH4/ultrachat_200k", "microsoft/orca-math-word-problems-200k", "abacusai/SystemChat-1.1", "Locutusque/function-calling-chatml", "internlm/Agent-FLAN"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "out", "results": []}]}
mlx-community/dolphin-2.9-llama3-8b-1m-8bit
null
[ "mlx", "safetensors", "llama", "generated_from_trainer", "axolotl", "dataset:cognitivecomputations/Dolphin-2.9", "dataset:teknium/OpenHermes-2.5", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:cognitivecomputations/dolphin-coder", "dataset:cognitivecomputations/samantha-data", "dataset:HuggingFaceH4/ultrachat_200k", "dataset:microsoft/orca-math-word-problems-200k", "dataset:abacusai/SystemChat-1.1", "dataset:Locutusque/function-calling-chatml", "dataset:internlm/Agent-FLAN", "base_model:meta-llama/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2024-04-30T22:45:14+00:00
[]
[]
TAGS #mlx #safetensors #llama #generated_from_trainer #axolotl #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us
# mlx-community/dolphin-2.9-llama3-8b-1m-8bit This model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/dolphin-2.9-llama3-8b-1m-8bit\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #llama #generated_from_trainer #axolotl #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n", "# mlx-community/dolphin-2.9-llama3-8b-1m-8bit\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 193, 85, 6 ]
[ "TAGS\n#mlx #safetensors #llama #generated_from_trainer #axolotl #dataset-cognitivecomputations/Dolphin-2.9 #dataset-teknium/OpenHermes-2.5 #dataset-m-a-p/CodeFeedback-Filtered-Instruction #dataset-cognitivecomputations/dolphin-coder #dataset-cognitivecomputations/samantha-data #dataset-HuggingFaceH4/ultrachat_200k #dataset-microsoft/orca-math-word-problems-200k #dataset-abacusai/SystemChat-1.1 #dataset-Locutusque/function-calling-chatml #dataset-internlm/Agent-FLAN #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n# mlx-community/dolphin-2.9-llama3-8b-1m-8bit\nThis model was converted to MLX format from ['cognitivecomputations/dolphin-2.9-llama3-8b-1m']() using mlx-lm version 0.10.0.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CodeQwen1.5-7B-Chat - bnb 4bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # CodeQwen1.5-7B-Chat ## Introduction CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. * Strong code generation capabilities and competitve performance across a series of benchmarks; * Supporting long context understanding and generation with the context length of 64K tokens; * Supporting 92 coding languages * Excellent performance in text-to-SQL, bug fix, etc. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/codeqwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details CodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/CodeQwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/CodeQwen1.5-7B-Chat") prompt = "Write a quicksort algorithm in python." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_CodeQwen1.5-7B-Chat-4bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-30T22:45:32+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models CodeQwen1.5-7B-Chat - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # CodeQwen1.5-7B-Chat ## Introduction CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. * Strong code generation capabilities and competitve performance across a series of benchmarks; * Supporting long context understanding and generation with the context length of 64K tokens; * Supporting 92 coding languages * Excellent performance in text-to-SQL, bug fix, etc. For more details, please refer to our blog post and GitHub repo. ## Model Details CodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# CodeQwen1.5-7B-Chat", "## Introduction\n\nCodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. \n\n* Strong code generation capabilities and competitve performance across a series of benchmarks;\n* Supporting long context understanding and generation with the context length of 64K tokens;\n* Supporting 92 coding languages\n* Excellent performance in text-to-SQL, bug fix, etc.\n\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nCodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# CodeQwen1.5-7B-Chat", "## Introduction\n\nCodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. \n\n* Strong code generation capabilities and competitve performance across a series of benchmarks;\n* Supporting long context understanding and generation with the context length of 64K tokens;\n* Supporting 92 coding languages\n* Excellent performance in text-to-SQL, bug fix, etc.\n\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nCodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 12, 119, 60, 44, 37, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# CodeQwen1.5-7B-Chat## Introduction\n\nCodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. \n\n* Strong code generation capabilities and competitve performance across a series of benchmarks;\n* Supporting long context understanding and generation with the context length of 64K tokens;\n* Supporting 92 coding languages\n* Excellent performance in text-to-SQL, bug fix, etc.\n\n\nFor more details, please refer to our blog post and GitHub repo.## Model Details\nCodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mT5.test.tedtalks.simple This model is a fine-tuned version of [samzirbo/mT5.pretrained.en-es.16K](https://huggingface.co/samzirbo/mT5.pretrained.en-es.16K) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.4559 - eval_bleu: 23.0583 - eval_meteor: 0.5191 - eval_chrF++: 46.831 - eval_runtime: 59.5279 - eval_samples_per_second: 33.598 - eval_steps_per_second: 0.538 - epoch: 0.4360 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "base_model": "samzirbo/mT5.pretrained.en-es.16K", "model-index": [{"name": "mT5.test.tedtalks.simple", "results": []}]}
samzirbo/mT5.test.tedtalks.simple
null
[ "transformers", "safetensors", "mt5", "text2text-generation", "generated_from_trainer", "base_model:samzirbo/mT5.pretrained.en-es.16K", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T22:46:18+00:00
[]
[]
TAGS #transformers #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-samzirbo/mT5.pretrained.en-es.16K #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# URL This model is a fine-tuned version of samzirbo/URL-es.16K on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 2.4559 - eval_bleu: 23.0583 - eval_meteor: 0.5191 - eval_chrF++: 46.831 - eval_runtime: 59.5279 - eval_samples_per_second: 33.598 - eval_steps_per_second: 0.538 - epoch: 0.4360 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# URL\n\nThis model is a fine-tuned version of samzirbo/URL-es.16K on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 2.4559\n- eval_bleu: 23.0583\n- eval_meteor: 0.5191\n- eval_chrF++: 46.831\n- eval_runtime: 59.5279\n- eval_samples_per_second: 33.598\n- eval_steps_per_second: 0.538\n- epoch: 0.4360\n- step: 4000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 100\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-samzirbo/mT5.pretrained.en-es.16K #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# URL\n\nThis model is a fine-tuned version of samzirbo/URL-es.16K on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 2.4559\n- eval_bleu: 23.0583\n- eval_meteor: 0.5191\n- eval_chrF++: 46.831\n- eval_runtime: 59.5279\n- eval_samples_per_second: 33.598\n- eval_steps_per_second: 0.538\n- epoch: 0.4360\n- step: 4000", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 100\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 65, 139, 7, 9, 9, 4, 108, 44 ]
[ "TAGS\n#transformers #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-samzirbo/mT5.pretrained.en-es.16K #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# URL\n\nThis model is a fine-tuned version of samzirbo/URL-es.16K on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 2.4559\n- eval_bleu: 23.0583\n- eval_meteor: 0.5191\n- eval_chrF++: 46.831\n- eval_runtime: 59.5279\n- eval_samples_per_second: 33.598\n- eval_steps_per_second: 0.538\n- epoch: 0.4360\n- step: 4000## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 64\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 100\n- num_epochs: 3### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
null
null
## FRANKENWEIGHTS dunh dunh dunh... You wouldn't think something like this might work, but it does. I took the text encoder from my "Storytime" model and then blindly pasted it over the text encoder stuff in the SD 1.5 model and now we have ![FrankenWeights](/FrankenWeights.safetensors) It's ALIVE!!!: ![](Examples/FrankenPosition.PNG) Also included here is a somewhat "refined" version of the "Superposition" ComfyUI workflow called ![Frankenposition](Frankenposition.json) This includes the extra awesomesauce done by ByteDance with their work on ![Hyper-SD](https://huggingface.co/ByteDance/Hyper-SD/blob/main/README.md) and their ![Lora](https://huggingface.co/ByteDance/Hyper-SD/blob/main/Hyper-SD15-8steps-CFG-lora.safetensors) for SD1.5 models, which allows you to greatly reduce the steps required to produce an image -- ![](Examples/StarryWarry2.PNG) Frakenweights in this context responds best to "normal" CFG ranges (5-8), especially with the Lora linked above. I generally like to make things that will take a huge range of CFG values, but in this case everything hums along together so well for my purposes that I'm not gonna mess with a good thing. We hack stuff and just try things in these parts, and it just so happens that the combo of FrankenWeights, that Lora, and the "Superposition" bits make a truly Frank-en Stein with enough ummph to bring all your wild ideas to life: ![](Examples/Starrywarry_00263_.png) ![](Examples/Starrywarry_00020_.png) ![](Examples/Starrywarry_00062_.png) ![](Examples/Starrywarry_00166_.png) ![](Examples/Starrywarry_00226_.png) (all of the above come from the same prompts and settings) So, get your grubby little hands (I'm sure space aliens consider us to be "grubby" and "little") on FrankenWeights today. I have intentionally left this as a 32 bit model, because more often than not the "burn" in an image can be stretched like tasty taffy back into reasonable colors using various image editing things like Photoshop. 32 bits per pixel gives a _huge_ range of latitude for adjusting colors in such programs. I imagine most colorists would be in heaven if there was some video codec that could work at 32 bits. So, welcome to, uh, "heaven" and go to town on even your burnt images because there's all sorts of latitude with 32 bits.
{"license": "creativeml-openrail-m"}
aplewe/FrankenWeights
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2024-04-30T22:47:11+00:00
[]
[]
TAGS #license-creativeml-openrail-m #region-us
## FRANKENWEIGHTS dunh dunh dunh... You wouldn't think something like this might work, but it does. I took the text encoder from my "Storytime" model and then blindly pasted it over the text encoder stuff in the SD 1.5 model and now we have !FrankenWeights It's ALIVE!!!: ![](Examples/FrankenPosition.PNG) Also included here is a somewhat "refined" version of the "Superposition" ComfyUI workflow called !Frankenposition This includes the extra awesomesauce done by ByteDance with their work on !Hyper-SD and their !Lora for SD1.5 models, which allows you to greatly reduce the steps required to produce an image -- ![](Examples/StarryWarry2.PNG) Frakenweights in this context responds best to "normal" CFG ranges (5-8), especially with the Lora linked above. I generally like to make things that will take a huge range of CFG values, but in this case everything hums along together so well for my purposes that I'm not gonna mess with a good thing. We hack stuff and just try things in these parts, and it just so happens that the combo of FrankenWeights, that Lora, and the "Superposition" bits make a truly Frank-en Stein with enough ummph to bring all your wild ideas to life: ![](Examples/Starrywarry_00263_.png) ![](Examples/Starrywarry_00020_.png) ![](Examples/Starrywarry_00062_.png) ![](Examples/Starrywarry_00166_.png) ![](Examples/Starrywarry_00226_.png) (all of the above come from the same prompts and settings) So, get your grubby little hands (I'm sure space aliens consider us to be "grubby" and "little") on FrankenWeights today. I have intentionally left this as a 32 bit model, because more often than not the "burn" in an image can be stretched like tasty taffy back into reasonable colors using various image editing things like Photoshop. 32 bits per pixel gives a _huge_ range of latitude for adjusting colors in such programs. I imagine most colorists would be in heaven if there was some video codec that could work at 32 bits. So, welcome to, uh, "heaven" and go to town on even your burnt images because there's all sorts of latitude with 32 bits.
[ "## FRANKENWEIGHTS\n\ndunh dunh dunh...\n\nYou wouldn't think something like this might work, but it does. I took the text encoder from my \"Storytime\" model\nand then blindly pasted it over the text encoder stuff in the SD 1.5 model and now we have !FrankenWeights\nIt's ALIVE!!!:\n\n![](Examples/FrankenPosition.PNG)\n\n\n\nAlso included here is a somewhat \"refined\" version of the \"Superposition\" ComfyUI workflow called !Frankenposition This includes\nthe extra awesomesauce done by ByteDance with their work on !Hyper-SD and their \n!Lora for SD1.5 models, which allows you to greatly reduce the steps required to produce an image --\n\n![](Examples/StarryWarry2.PNG)\n\nFrakenweights in this context responds best to \"normal\" CFG ranges (5-8), especially with the Lora linked above. I generally\nlike to make things that will take a huge range of CFG values, but in this case everything hums along together so well\nfor my purposes that I'm not gonna mess with a good thing. We hack stuff and just try things in these parts, and it \njust so happens that the combo of FrankenWeights, that Lora, and the \"Superposition\" bits make a truly Frank-en Stein \nwith enough ummph to bring all your wild ideas to life:\n\n![](Examples/Starrywarry_00263_.png)\n\n![](Examples/Starrywarry_00020_.png)\n\n![](Examples/Starrywarry_00062_.png)\n\n![](Examples/Starrywarry_00166_.png)\n\n![](Examples/Starrywarry_00226_.png)\n\n\n\n(all of the above come from the same prompts and settings)\n\nSo, get your grubby little hands (I'm sure space aliens consider us to be \"grubby\" and \"little\") on FrankenWeights today.\nI have intentionally left this as a 32 bit model, because more often than not the \"burn\" in an image can be stretched\nlike tasty taffy back into reasonable colors using various image editing things like Photoshop. 32 bits per pixel gives\na _huge_ range of latitude for adjusting colors in such programs. I imagine most colorists would be in heaven if there\nwas some video codec that could work at 32 bits. So, welcome to, uh, \"heaven\" and go to town on even your burnt images\nbecause there's all sorts of latitude with 32 bits." ]
[ "TAGS\n#license-creativeml-openrail-m #region-us \n", "## FRANKENWEIGHTS\n\ndunh dunh dunh...\n\nYou wouldn't think something like this might work, but it does. I took the text encoder from my \"Storytime\" model\nand then blindly pasted it over the text encoder stuff in the SD 1.5 model and now we have !FrankenWeights\nIt's ALIVE!!!:\n\n![](Examples/FrankenPosition.PNG)\n\n\n\nAlso included here is a somewhat \"refined\" version of the \"Superposition\" ComfyUI workflow called !Frankenposition This includes\nthe extra awesomesauce done by ByteDance with their work on !Hyper-SD and their \n!Lora for SD1.5 models, which allows you to greatly reduce the steps required to produce an image --\n\n![](Examples/StarryWarry2.PNG)\n\nFrakenweights in this context responds best to \"normal\" CFG ranges (5-8), especially with the Lora linked above. I generally\nlike to make things that will take a huge range of CFG values, but in this case everything hums along together so well\nfor my purposes that I'm not gonna mess with a good thing. We hack stuff and just try things in these parts, and it \njust so happens that the combo of FrankenWeights, that Lora, and the \"Superposition\" bits make a truly Frank-en Stein \nwith enough ummph to bring all your wild ideas to life:\n\n![](Examples/Starrywarry_00263_.png)\n\n![](Examples/Starrywarry_00020_.png)\n\n![](Examples/Starrywarry_00062_.png)\n\n![](Examples/Starrywarry_00166_.png)\n\n![](Examples/Starrywarry_00226_.png)\n\n\n\n(all of the above come from the same prompts and settings)\n\nSo, get your grubby little hands (I'm sure space aliens consider us to be \"grubby\" and \"little\") on FrankenWeights today.\nI have intentionally left this as a 32 bit model, because more often than not the \"burn\" in an image can be stretched\nlike tasty taffy back into reasonable colors using various image editing things like Photoshop. 32 bits per pixel gives\na _huge_ range of latitude for adjusting colors in such programs. I imagine most colorists would be in heaven if there\nwas some video codec that could work at 32 bits. So, welcome to, uh, \"heaven\" and go to town on even your burnt images\nbecause there's all sorts of latitude with 32 bits." ]
[ 15, 571 ]
[ "TAGS\n#license-creativeml-openrail-m #region-us \n## FRANKENWEIGHTS\n\ndunh dunh dunh...\n\nYou wouldn't think something like this might work, but it does. I took the text encoder from my \"Storytime\" model\nand then blindly pasted it over the text encoder stuff in the SD 1.5 model and now we have !FrankenWeights\nIt's ALIVE!!!:\n\n![](Examples/FrankenPosition.PNG)\n\n\n\nAlso included here is a somewhat \"refined\" version of the \"Superposition\" ComfyUI workflow called !Frankenposition This includes\nthe extra awesomesauce done by ByteDance with their work on !Hyper-SD and their \n!Lora for SD1.5 models, which allows you to greatly reduce the steps required to produce an image --\n\n![](Examples/StarryWarry2.PNG)\n\nFrakenweights in this context responds best to \"normal\" CFG ranges (5-8), especially with the Lora linked above. I generally\nlike to make things that will take a huge range of CFG values, but in this case everything hums along together so well\nfor my purposes that I'm not gonna mess with a good thing. We hack stuff and just try things in these parts, and it \njust so happens that the combo of FrankenWeights, that Lora, and the \"Superposition\" bits make a truly Frank-en Stein \nwith enough ummph to bring all your wild ideas to life:\n\n![](Examples/Starrywarry_00263_.png)\n\n![](Examples/Starrywarry_00020_.png)\n\n![](Examples/Starrywarry_00062_.png)\n\n![](Examples/Starrywarry_00166_.png)\n\n![](Examples/Starrywarry_00226_.png)\n\n\n\n(all of the above come from the same prompts and settings)\n\nSo, get your grubby little hands (I'm sure space aliens consider us to be \"grubby\" and \"little\") on FrankenWeights today.\nI have intentionally left this as a 32 bit model, because more often than not the \"burn\" in an image can be stretched\nlike tasty taffy back into reasonable colors using various image editing things like Photoshop. 32 bits per pixel gives\na _huge_ range of latitude for adjusting colors in such programs. I imagine most colorists would be in heaven if there\nwas some video codec that could work at 32 bits. So, welcome to, uh, \"heaven\" and go to town on even your burnt images\nbecause there's all sorts of latitude with 32 bits." ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi10_LoRA <Gallery /> ## Model description These are embracellm/sushi10_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tuna Sushi Burrito to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi10_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Tuna Sushi Burrito ", "widget": []}
embracellm/sushi10_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-30T22:47:24+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi10_LoRA <Gallery /> ## Model description These are embracellm/sushi10_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tuna Sushi Burrito to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi10_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi10_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tuna Sushi Burrito to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi10_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi10_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tuna Sushi Burrito to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 24, 84, 21, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi10_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi10_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Tuna Sushi Burrito to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
reinforcement-learning
ml-agents
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dhajnes/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids"]}
dhajnes/ppo-Pyramids
null
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
null
2024-04-30T22:49:22+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #Pyramids #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Pyramids #region-us
# ppo Agent playing Pyramids This is a trained model of a ppo agent playing Pyramids using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: dhajnes/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing Pyramids\n This is a trained model of a ppo agent playing Pyramids\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: dhajnes/ppo-Pyramids\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #Pyramids #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Pyramids #region-us \n", "# ppo Agent playing Pyramids\n This is a trained model of a ppo agent playing Pyramids\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: dhajnes/ppo-Pyramids\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 35, 199 ]
[ "TAGS\n#ml-agents #tensorboard #onnx #Pyramids #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Pyramids #region-us \n# ppo Agent playing Pyramids\n This is a trained model of a ppo agent playing Pyramids\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: dhajnes/ppo-Pyramids\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
HenryCai1129/adapter-llama-adapterhappy2sad-1k-search-3iter-50-0.0006
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:50:14+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4134 - Accuracy: 0.8333 ## Model description 55 dişleri tam croplandı More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 100 - eval_batch_size: 100 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.6667 | 1 | 0.8100 | 0.5444 | | No log | 2.0 | 3 | 0.7775 | 0.5333 | | No log | 2.6667 | 4 | 0.8855 | 0.4778 | | No log | 4.0 | 6 | 0.6365 | 0.6889 | | No log | 4.6667 | 7 | 0.6099 | 0.7 | | No log | 6.0 | 9 | 0.5443 | 0.7667 | | 0.7372 | 6.6667 | 10 | 0.5721 | 0.7222 | | 0.7372 | 8.0 | 12 | 0.8054 | 0.5556 | | 0.7372 | 8.6667 | 13 | 0.6216 | 0.6444 | | 0.7372 | 10.0 | 15 | 0.4596 | 0.8111 | | 0.7372 | 10.6667 | 16 | 0.4567 | 0.7778 | | 0.7372 | 12.0 | 18 | 0.4290 | 0.7889 | | 0.7372 | 12.6667 | 19 | 0.4848 | 0.7667 | | 0.6173 | 14.0 | 21 | 0.4288 | 0.7889 | | 0.6173 | 14.6667 | 22 | 0.4281 | 0.7889 | | 0.6173 | 16.0 | 24 | 0.4205 | 0.7667 | | 0.6173 | 16.6667 | 25 | 0.4196 | 0.8 | | 0.6173 | 18.0 | 27 | 0.4110 | 0.7889 | | 0.6173 | 18.6667 | 28 | 0.4012 | 0.8 | | 0.554 | 20.0 | 30 | 0.4673 | 0.7556 | | 0.554 | 20.6667 | 31 | 0.4388 | 0.7556 | | 0.554 | 22.0 | 33 | 0.5693 | 0.7889 | | 0.554 | 22.6667 | 34 | 0.6131 | 0.7222 | | 0.554 | 24.0 | 36 | 0.4064 | 0.7889 | | 0.554 | 24.6667 | 37 | 0.4220 | 0.7778 | | 0.554 | 26.0 | 39 | 0.4368 | 0.8111 | | 0.5254 | 26.6667 | 40 | 0.5164 | 0.7778 | | 0.5254 | 28.0 | 42 | 0.4945 | 0.7778 | | 0.5254 | 28.6667 | 43 | 0.4292 | 0.7889 | | 0.5254 | 30.0 | 45 | 0.4292 | 0.7889 | | 0.5254 | 30.6667 | 46 | 0.5601 | 0.7556 | | 0.5254 | 32.0 | 48 | 0.5608 | 0.7444 | | 0.5254 | 32.6667 | 49 | 0.4134 | 0.8333 | | 0.4745 | 34.0 | 51 | 0.4186 | 0.7889 | | 0.4745 | 34.6667 | 52 | 0.4224 | 0.8111 | | 0.4745 | 36.0 | 54 | 0.4263 | 0.8111 | | 0.4745 | 36.6667 | 55 | 0.4354 | 0.8 | | 0.4745 | 38.0 | 57 | 0.4275 | 0.8111 | | 0.4745 | 38.6667 | 58 | 0.4467 | 0.8 | | 0.4425 | 40.0 | 60 | 0.4258 | 0.8222 | | 0.4425 | 40.6667 | 61 | 0.4194 | 0.8222 | | 0.4425 | 42.0 | 63 | 0.4258 | 0.8222 | | 0.4425 | 42.6667 | 64 | 0.4206 | 0.7889 | | 0.4425 | 44.0 | 66 | 0.4352 | 0.8 | | 0.4425 | 44.6667 | 67 | 0.4285 | 0.8 | | 0.4425 | 46.0 | 69 | 0.4520 | 0.7889 | | 0.4537 | 46.6667 | 70 | 0.4706 | 0.7889 | | 0.4537 | 48.0 | 72 | 0.4700 | 0.7889 | | 0.4537 | 48.6667 | 73 | 0.4504 | 0.8 | | 0.4537 | 50.0 | 75 | 0.4446 | 0.8 | | 0.4537 | 50.6667 | 76 | 0.4488 | 0.8111 | | 0.4537 | 52.0 | 78 | 0.4405 | 0.8111 | | 0.4537 | 52.6667 | 79 | 0.4307 | 0.8 | | 0.3978 | 54.0 | 81 | 0.4557 | 0.7889 | | 0.3978 | 54.6667 | 82 | 0.4571 | 0.7889 | | 0.3978 | 56.0 | 84 | 0.4404 | 0.8 | | 0.3978 | 56.6667 | 85 | 0.4422 | 0.8111 | | 0.3978 | 58.0 | 87 | 0.4525 | 0.8 | | 0.3978 | 58.6667 | 88 | 0.4557 | 0.8 | | 0.3853 | 60.0 | 90 | 0.4624 | 0.7889 | | 0.3853 | 60.6667 | 91 | 0.4570 | 0.8 | | 0.3853 | 62.0 | 93 | 0.4533 | 0.8 | | 0.3853 | 62.6667 | 94 | 0.4520 | 0.7889 | | 0.3853 | 64.0 | 96 | 0.4500 | 0.7889 | | 0.3853 | 64.6667 | 97 | 0.4505 | 0.7889 | | 0.3853 | 66.0 | 99 | 0.4514 | 0.7889 | | 0.3917 | 66.6667 | 100 | 0.4517 | 0.7889 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-base-patch16-224", "model-index": [{"name": "beit-base-patch16-224-finetuned-eurosat", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8333333333333334, "name": "Accuracy"}]}]}]}
BilalMuftuoglu/beit-base-patch16-224-finetuned-eurosat
null
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:55:24+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
beit-base-patch16-224-finetuned-eurosat ======================================= This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.4134 * Accuracy: 0.8333 Model description ----------------- 55 dişleri tam croplandı More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 100 * eval\_batch\_size: 100 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 400 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 100\n* eval\\_batch\\_size: 100\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 400\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 100\n* eval\\_batch\\_size: 100\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 400\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 70, 142, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 100\n* eval\\_batch\\_size: 100\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 400\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 100### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) CodeQwen1.5-7B-Chat - bnb 8bits - Model creator: https://huggingface.co/Qwen/ - Original model: https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/ Original model description: --- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - chat --- # CodeQwen1.5-7B-Chat ## Introduction CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. * Strong code generation capabilities and competitve performance across a series of benchmarks; * Supporting long context understanding and generation with the context length of 64K tokens; * Supporting 92 coding languages * Excellent performance in text-to-SQL, bug fix, etc. For more details, please refer to our [blog post](https://qwenlm.github.io/blog/codeqwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details CodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/CodeQwen1.5-7B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/CodeQwen1.5-7B-Chat") prompt = "Write a quicksort algorithm in python." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`. ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
{}
RichardErkhov/Qwen_-_CodeQwen1.5-7B-Chat-8bits
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-04-30T22:57:47+00:00
[]
[]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models CodeQwen1.5-7B-Chat - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- license: other license_name: tongyi-qianwen license_link: >- URL language: - en pipeline_tag: text-generation tags: - chat --- # CodeQwen1.5-7B-Chat ## Introduction CodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. * Strong code generation capabilities and competitve performance across a series of benchmarks; * Supporting long context understanding and generation with the context length of 64K tokens; * Supporting 92 coding languages * Excellent performance in text-to-SQL, bug fix, etc. For more details, please refer to our blog post and GitHub repo. ## Model Details CodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error: ## Quickstart Here provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents. ## Tips * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'. If you find our work helpful, feel free to give us a cite.
[ "# CodeQwen1.5-7B-Chat", "## Introduction\n\nCodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. \n\n* Strong code generation capabilities and competitve performance across a series of benchmarks;\n* Supporting long context understanding and generation with the context length of 64K tokens;\n* Supporting 92 coding languages\n* Excellent performance in text-to-SQL, bug fix, etc.\n\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nCodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# CodeQwen1.5-7B-Chat", "## Introduction\n\nCodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. \n\n* Strong code generation capabilities and competitve performance across a series of benchmarks;\n* Supporting long context understanding and generation with the context length of 64K tokens;\n* Supporting 92 coding languages\n* Excellent performance in text-to-SQL, bug fix, etc.\n\n\nFor more details, please refer to our blog post and GitHub repo.", "## Model Details\nCodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference.", "## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:", "## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.", "## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
[ 42, 12, 119, 60, 44, 37, 51 ]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# CodeQwen1.5-7B-Chat## Introduction\n\nCodeQwen1.5 is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes. \n\n* Strong code generation capabilities and competitve performance across a series of benchmarks;\n* Supporting long context understanding and generation with the context length of 64K tokens;\n* Supporting 92 coding languages\n* Excellent performance in text-to-SQL, bug fix, etc.\n\n\nFor more details, please refer to our blog post and GitHub repo.## Model Details\nCodeQwen1.5 is based on Qwen1.5, a language model series including decoder language models of different model sizes. It is trained on 3 trillion tokens of data of codes, and it includes group query attention (GQA) for efficient inference.## Requirements\nThe code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install 'transformers>=4.37.0', or you might encounter the following error:## Quickstart\n\nHere provides a code snippet with 'apply_chat_template' to show you how to load the tokenizer and model and how to generate contents.## Tips\n\n* If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in 'generation_config.json'.\n\n\nIf you find our work helpful, feel free to give us a cite." ]
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/abacusai/Llama-3-Giraffe-70B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.IQ3_XS.gguf) | IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.IQ3_M.gguf) | IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-Giraffe-70B-GGUF/resolve/main/Llama-3-Giraffe-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "llama3", "library_name": "transformers", "tags": ["meta", "llama-3"], "base_model": "abacusai/Llama-3-Giraffe-70B", "quantized_by": "mradermacher"}
mradermacher/Llama-3-Giraffe-70B-GGUF
null
[ "transformers", "gguf", "meta", "llama-3", "en", "base_model:abacusai/Llama-3-Giraffe-70B", "license:llama3", "endpoints_compatible", "region:us" ]
null
2024-04-30T22:58:07+00:00
[]
[ "en" ]
TAGS #transformers #gguf #meta #llama-3 #en #base_model-abacusai/Llama-3-Giraffe-70B #license-llama3 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants are available at URL Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #meta #llama-3 #en #base_model-abacusai/Llama-3-Giraffe-70B #license-llama3 #endpoints_compatible #region-us \n" ]
[ 51 ]
[ "TAGS\n#transformers #gguf #meta #llama-3 #en #base_model-abacusai/Llama-3-Giraffe-70B #license-llama3 #endpoints_compatible #region-us \n" ]
summarization
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BioNLP-tech-decoder-eLife This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.3739167643078955e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.2
{"tags": ["summarization", "generated_from_trainer"], "model-index": [{"name": "BioNLP-tech-decoder-eLife", "results": []}]}
dtorber/BioNLP-tech-decoder-eLife
null
[ "transformers", "safetensors", "led", "text2text-generation", "summarization", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:02:09+00:00
[]
[]
TAGS #transformers #safetensors #led #text2text-generation #summarization #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
# BioNLP-tech-decoder-eLife This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.3739167643078955e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 1.13.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.2
[ "# BioNLP-tech-decoder-eLife\n\nThis model was trained from scratch on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.3739167643078955e-06\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- distributed_type: multi-GPU\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #led #text2text-generation #summarization #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "# BioNLP-tech-decoder-eLife\n\nThis model was trained from scratch on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.3739167643078955e-06\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- distributed_type: multi-GPU\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.2" ]
[ 39, 24, 7, 9, 9, 4, 122, 5, 44 ]
[ "TAGS\n#transformers #safetensors #led #text2text-generation #summarization #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n# BioNLP-tech-decoder-eLife\n\nThis model was trained from scratch on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.3739167643078955e-06\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- distributed_type: multi-GPU\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 1.13.1+cu117\n- Datasets 2.16.1\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
lunarsylph/mooncell_v41
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:03:36+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Llama 3 70B Instruct Storywriter Llama 3 70B Instruct, further finetuned on a dataset consisting of books in the fiction genre. This was just an experiment, but it turned out well enough that I'm sharing it. The finetuning has caused a significant shift in the model's writing style, and seems to have made it more creative. There may be a slight decrease in overall intelligence. Because this was trained on Instruct, you can use the normal Instruct chat formatting. It may also work well in raw completion mode. ## Training details Trained on 4 4090s using [qlora-pipe](https://github.com/tdrussell/qlora-pipe). Dataset consists of about 800 books in the fiction genre, totaling 570 MB of raw text. Rank 64 QLoRA trained at 8192 sequence length. ### Evaluation metrics <img src="https://i.imgur.com/sCMjix4.png" width="800" /> ## Why no 8B? I tried multiple times to train this on Llama 3 8B Instruct, using a variety of hyperparameters. It never worked well. The model took a huge hit to intelligence every time, to the point of being unusable. 70B fared much better. I don't know why, maybe 8B is just too small for this type of technique, and loses too much of the instruction-tuned smarts.
{}
tdrussell/Llama-3-70B-Instruct-Storywriter
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:04:41+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Llama 3 70B Instruct Storywriter Llama 3 70B Instruct, further finetuned on a dataset consisting of books in the fiction genre. This was just an experiment, but it turned out well enough that I'm sharing it. The finetuning has caused a significant shift in the model's writing style, and seems to have made it more creative. There may be a slight decrease in overall intelligence. Because this was trained on Instruct, you can use the normal Instruct chat formatting. It may also work well in raw completion mode. ## Training details Trained on 4 4090s using qlora-pipe. Dataset consists of about 800 books in the fiction genre, totaling 570 MB of raw text. Rank 64 QLoRA trained at 8192 sequence length. ### Evaluation metrics <img src="https://i.URL width="800" /> ## Why no 8B? I tried multiple times to train this on Llama 3 8B Instruct, using a variety of hyperparameters. It never worked well. The model took a huge hit to intelligence every time, to the point of being unusable. 70B fared much better. I don't know why, maybe 8B is just too small for this type of technique, and loses too much of the instruction-tuned smarts.
[ "# Llama 3 70B Instruct Storywriter\nLlama 3 70B Instruct, further finetuned on a dataset consisting of books in the fiction genre.\n\nThis was just an experiment, but it turned out well enough that I'm sharing it. The finetuning has caused a significant shift in the model's writing style, and seems to have made it more creative. There may be a slight decrease in overall intelligence.\n\nBecause this was trained on Instruct, you can use the normal Instruct chat formatting. It may also work well in raw completion mode.", "## Training details\nTrained on 4 4090s using qlora-pipe.\nDataset consists of about 800 books in the fiction genre, totaling 570 MB of raw text.\nRank 64 QLoRA trained at 8192 sequence length.", "### Evaluation metrics\n\n<img src=\"https://i.URL width=\"800\" />", "## Why no 8B?\nI tried multiple times to train this on Llama 3 8B Instruct, using a variety of hyperparameters. It never worked well. The model took a huge hit to intelligence every time, to the point of being unusable. 70B fared much better. I don't know why, maybe 8B is just too small for this type of technique, and loses too much of the instruction-tuned smarts." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Llama 3 70B Instruct Storywriter\nLlama 3 70B Instruct, further finetuned on a dataset consisting of books in the fiction genre.\n\nThis was just an experiment, but it turned out well enough that I'm sharing it. The finetuning has caused a significant shift in the model's writing style, and seems to have made it more creative. There may be a slight decrease in overall intelligence.\n\nBecause this was trained on Instruct, you can use the normal Instruct chat formatting. It may also work well in raw completion mode.", "## Training details\nTrained on 4 4090s using qlora-pipe.\nDataset consists of about 800 books in the fiction genre, totaling 570 MB of raw text.\nRank 64 QLoRA trained at 8192 sequence length.", "### Evaluation metrics\n\n<img src=\"https://i.URL width=\"800\" />", "## Why no 8B?\nI tried multiple times to train this on Llama 3 8B Instruct, using a variety of hyperparameters. It never worked well. The model took a huge hit to intelligence every time, to the point of being unusable. 70B fared much better. I don't know why, maybe 8B is just too small for this type of technique, and loses too much of the instruction-tuned smarts." ]
[ 37, 118, 49, 28, 96 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Llama 3 70B Instruct Storywriter\nLlama 3 70B Instruct, further finetuned on a dataset consisting of books in the fiction genre.\n\nThis was just an experiment, but it turned out well enough that I'm sharing it. The finetuning has caused a significant shift in the model's writing style, and seems to have made it more creative. There may be a slight decrease in overall intelligence.\n\nBecause this was trained on Instruct, you can use the normal Instruct chat formatting. It may also work well in raw completion mode.## Training details\nTrained on 4 4090s using qlora-pipe.\nDataset consists of about 800 books in the fiction genre, totaling 570 MB of raw text.\nRank 64 QLoRA trained at 8192 sequence length.### Evaluation metrics\n\n<img src=\"https://i.URL width=\"800\" />## Why no 8B?\nI tried multiple times to train this on Llama 3 8B Instruct, using a variety of hyperparameters. It never worked well. The model took a huge hit to intelligence every time, to the point of being unusable. 70B fared much better. I don't know why, maybe 8B is just too small for this type of technique, and loses too much of the instruction-tuned smarts." ]
image-text-to-text
xtuner
# mlx-community/llava-llama-3-8b-v1_1-8bit This model was converted to MLX format from [`xtuner/llava-llama-3-8b-v1_1-transformers`]() using mlx-vllm version **0.0.3**. Refer to the [original model card](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model mlx-community/llava-llama-3-8b-v1_1-8bit --max-tokens 100 --temp 0.0 ```
{"library_name": "xtuner", "tags": ["mlx"], "datasets": ["Lin-Chen/ShareGPT4V"], "pipeline_tag": "image-text-to-text"}
mlx-community/llava-llama-3-8b-v1_1-8bit
null
[ "xtuner", "safetensors", "llava", "mlx", "image-text-to-text", "dataset:Lin-Chen/ShareGPT4V", "region:us" ]
null
2024-04-30T23:06:53+00:00
[]
[]
TAGS #xtuner #safetensors #llava #mlx #image-text-to-text #dataset-Lin-Chen/ShareGPT4V #region-us
# mlx-community/llava-llama-3-8b-v1_1-8bit This model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3. Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/llava-llama-3-8b-v1_1-8bit\nThis model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#xtuner #safetensors #llava #mlx #image-text-to-text #dataset-Lin-Chen/ShareGPT4V #region-us \n", "# mlx-community/llava-llama-3-8b-v1_1-8bit\nThis model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 40, 87, 6 ]
[ "TAGS\n#xtuner #safetensors #llava #mlx #image-text-to-text #dataset-Lin-Chen/ShareGPT4V #region-us \n# mlx-community/llava-llama-3-8b-v1_1-8bit\nThis model was converted to MLX format from ['xtuner/llava-llama-3-8b-v1_1-transformers']() using mlx-vllm version 0.0.3.\nRefer to the original model card for more details on the model.## Use with mlx" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final_classifications This model is a fine-tuned version of [yhavinga/t5-small-24L-ccmatrix-multi](https://huggingface.co/yhavinga/t5-small-24L-ccmatrix-multi) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1005 - F1: {'f1': 0.9592760180995475} - Precision: {'precision': 0.954954954954955} - Recall: {'recall': 0.9636363636363636} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------------------------:|:---------------------------------:|:------------------------------:| | No log | 1.0 | 110 | 0.2362 | {'f1': 0.0} | {'precision': 0.0} | {'recall': 0.0} | | No log | 2.0 | 220 | 0.1164 | {'f1': 0.9502262443438914} | {'precision': 0.9459459459459459} | {'recall': 0.9545454545454546} | | No log | 3.0 | 330 | 0.0832 | {'f1': 0.9596412556053813} | {'precision': 0.9469026548672567} | {'recall': 0.9727272727272728} | | No log | 4.0 | 440 | 0.0918 | {'f1': 0.9549549549549549} | {'precision': 0.9464285714285714} | {'recall': 0.9636363636363636} | | 0.1554 | 5.0 | 550 | 0.0939 | {'f1': 0.9596412556053813} | {'precision': 0.9469026548672567} | {'recall': 0.9727272727272728} | | 0.1554 | 6.0 | 660 | 0.1005 | {'f1': 0.9592760180995475} | {'precision': 0.954954954954955} | {'recall': 0.9636363636363636} | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1", "precision", "recall"], "base_model": "yhavinga/t5-small-24L-ccmatrix-multi", "model-index": [{"name": "final_classifications", "results": []}]}
nizarh1999/final_classifications
null
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:yhavinga/t5-small-24L-ccmatrix-multi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:08:53+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-yhavinga/t5-small-24L-ccmatrix-multi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
final\_classifications ====================== This model is a fine-tuned version of yhavinga/t5-small-24L-ccmatrix-multi on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.1005 * F1: {'f1': 0.9592760180995475} * Precision: {'precision': 0.954954954954955} * Recall: {'recall': 0.9636363636363636} Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 6 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-yhavinga/t5-small-24L-ccmatrix-multi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 74, 101, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-yhavinga/t5-small-24L-ccmatrix-multi #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 6### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
# Uploaded model - **Developed by:** Arara10 - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-bnb-4bit"}
Arara10/wolf_coder_mistral_7b_bnb_4bit
null
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:09:49+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: Arara10 - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: Arara10\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: Arara10\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 78, 78 ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: Arara10\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
<h1 align='center' style='font-size: 36px; font-weight: bold;'>LlamaKatz</h1> <h3 align='center' style='font-size: 24px;'>Mixture of Llama Experts 3x8B</h3> <p align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/650c74479e898eb6d2017bfa/iMiFAKee8W6jILhnMX0-a.webp" width="60%" height="auto"/> </p>
{"language": ["en"], "license": "apache-2.0"}
deepapaikar/LlamaKatz-3x8B
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:10:06+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #conversational #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<h1 align='center' style='font-size: 36px; font-weight: bold;'>LlamaKatz</h1> <h3 align='center' style='font-size: 24px;'>Mixture of Llama Experts 3x8B</h3> <p align="center"> <img src="URL width="60%" height="auto"/> </p>
[]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 47 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi11_LoRA <Gallery /> ## Model description These are embracellm/sushi11_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Pacific Combo to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi11_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Pacific Combo ", "widget": []}
embracellm/sushi11_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-04-30T23:11:04+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi11_LoRA <Gallery /> ## Model description These are embracellm/sushi11_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Pacific Combo to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi11_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi11_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Pacific Combo to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi11_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi11_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Pacific Combo to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 24, 84, 18, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi11_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi11_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Pacific Combo to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
sentence-similarity
sentence-transformers
# savdar/snowflake-ft-camelids-l This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('savdar/snowflake-ft-camelids-l') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=savdar/snowflake-ft-camelids-l) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 20 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
savdar/snowflake-ft-camelids-l
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:14:43+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# savdar/snowflake-ft-camelids-l This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 20 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# savdar/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# savdar/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 28, 50, 30, 26, 72, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# savdar/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
HC-85/distilbert-lora-arxiv-multilabel-b16
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:17:44+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "apache-2.0", "library_name": "transformers"}
chihoonlee10/T3Q-LLM-MG-DPO-v1.0
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:18:34+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 55, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
sentence-similarity
sentence-transformers
# jjovalle99/snowflake-ft-camelids-l This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jjovalle99/snowflake-ft-camelids-l') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=jjovalle99/snowflake-ft-camelids-l) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 20 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
jjovalle99/snowflake-ft-camelids-l
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:21:40+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# jjovalle99/snowflake-ft-camelids-l This is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 20 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# jjovalle99/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# jjovalle99/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 28, 52, 30, 26, 72, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# jjovalle99/snowflake-ft-camelids-l\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 20 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
text-generation
null
## Exllama v2 Quantizations of Llama-3-8B-Instruct-Gradient-1048k Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.20">turboderp's ExLlamaV2 v0.0.20</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k ## Prompt format ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Available sizes | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2/tree/5_0) | 5.0 | 6.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2/tree/4_25) | 4.25 | 6.0 | 7.0 GB | 7.4 GB | 8.4 GB | 10.5 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2/tree/3_5) | 3.5 | 6.0 | 6.4 GB | 6.8 GB | 7.8 GB | 9.9 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2 Llama-3-8B-Instruct-Gradient-1048k-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download a specific branch, use the `--revision` parameter. For example, to download the 6.5 bpw branch: Linux: ```shell huggingface-cli download bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2 --revision 6_5 --local-dir Llama-3-8B-Instruct-Gradient-1048k-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell huggingface-cli download bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2 --revision 6_5 --local-dir Llama-3-8B-Instruct-Gradient-1048k-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation", "quantized_by": "bartowski"}
bartowski/Llama-3-8B-Instruct-Gradient-1048k-exl2
null
[ "meta", "llama-3", "text-generation", "en", "license:llama3", "region:us" ]
null
2024-04-30T23:22:18+00:00
[]
[ "en" ]
TAGS #meta #llama-3 #text-generation #en #license-llama3 #region-us
Exllama v2 Quantizations of Llama-3-8B-Instruct-Gradient-1048k -------------------------------------------------------------- Using <a href="URL ExLlamaV2 v0.0.20 for quantization. **The "main" branch only contains the URL, download one of the other branches for the model (see below)** Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions. Original model: URL Prompt format ------------- Available sizes --------------- Download instructions --------------------- With git: With huggingface hub (credit to TheBloke for instructions): To download a specific branch, use the '--revision' parameter. For example, to download the 6.5 bpw branch: Linux: Windows (which apparently doesn't like \_ in folders sometimes?): Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#meta #llama-3 #text-generation #en #license-llama3 #region-us \n" ]
[ 24 ]
[ "TAGS\n#meta #llama-3 #text-generation #en #license-llama3 #region-us \n" ]
text-to-image
diffusers
# Tamarin_XL API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/5331918901713451927.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "tamarinxl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/tamarinxl) Model link: [View model](https://modelslab.com/models/tamarinxl) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "tamarinxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/tamarinxl
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-30T23:22:39+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Tamarin_XL API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "tamarinxl" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "tamarinxl", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# Tamarin_XL API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"tamarinxl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"tamarinxl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Tamarin_XL API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"tamarinxl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"tamarinxl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 56, 13, 509 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n# Tamarin_XL API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"tamarinxl\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"tamarinxl\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-funsd-finetuned This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6391 - Precision: 0.8943 - Recall: 0.9121 - F1: 0.9031 - Accuracy: 0.8540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.3333 | 100 | 0.6387 | 0.7375 | 0.8306 | 0.7813 | 0.7786 | | No log | 2.6667 | 200 | 0.5473 | 0.8270 | 0.8718 | 0.8489 | 0.8184 | | No log | 4.0 | 300 | 0.5020 | 0.8514 | 0.8877 | 0.8692 | 0.8278 | | No log | 5.3333 | 400 | 0.5326 | 0.8610 | 0.9016 | 0.8809 | 0.8293 | | 0.5379 | 6.6667 | 500 | 0.5600 | 0.8656 | 0.8987 | 0.8818 | 0.8451 | | 0.5379 | 8.0 | 600 | 0.5903 | 0.8778 | 0.8917 | 0.8847 | 0.8357 | | 0.5379 | 9.3333 | 700 | 0.6079 | 0.8859 | 0.9026 | 0.8942 | 0.8470 | | 0.5379 | 10.6667 | 800 | 0.6449 | 0.8978 | 0.9076 | 0.9027 | 0.8458 | | 0.5379 | 12.0 | 900 | 0.6410 | 0.8934 | 0.9116 | 0.9024 | 0.8582 | | 0.1248 | 13.3333 | 1000 | 0.6391 | 0.8943 | 0.9121 | 0.9031 | 0.8540 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "microsoft/layoutlmv3-base", "model-index": [{"name": "layoutlmv3-funsd-finetuned", "results": []}]}
Negus/layoutlmv3-funsd-finetuned
null
[ "transformers", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlmv3-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:23:37+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #layoutlmv3 #token-classification #generated_from_trainer #base_model-microsoft/layoutlmv3-base #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us
layoutlmv3-funsd-finetuned ========================== This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6391 * Precision: 0.8943 * Recall: 0.9121 * F1: 0.9031 * Accuracy: 0.8540 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * training\_steps: 1000 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #layoutlmv3 #token-classification #generated_from_trainer #base_model-microsoft/layoutlmv3-base #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 66, 99, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #layoutlmv3 #token-classification #generated_from_trainer #base_model-microsoft/layoutlmv3-base #license-cc-by-nc-sa-4.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 1000### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-to-image
diffusers
# Booltning XL v1 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/16371720641714519636.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "booltning-xl-v1" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/booltning-xl-v1) Model link: [View model](https://modelslab.com/models/booltning-xl-v1) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "booltning-xl-v1", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/booltning-xl-v1
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-30T23:29:50+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Booltning XL v1 API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "booltning-xl-v1" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "booltning-xl-v1", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# Booltning XL v1 API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"booltning-xl-v1\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"booltning-xl-v1\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Booltning XL v1 API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"booltning-xl-v1\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"booltning-xl-v1\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 56, 14, 517 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n# Booltning XL v1 API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"booltning-xl-v1\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"booltning-xl-v1\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
terry69/llama2-poison-20p-full
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:29:54+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 44, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# from_mistral_7b4-1714514853051 Description of the model.
{"tags": ["fine-tuned", "abc123"], "languages": ["English"]}
brandonironbirdlabs/archive_from_mistral_7b4-1714514853051
null
[ "transformers", "safetensors", "mistral", "text-generation", "fine-tuned", "abc123", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:30:11+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #fine-tuned #abc123 #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# from_mistral_7b4-1714514853051 Description of the model.
[ "# from_mistral_7b4-1714514853051\nDescription of the model." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #fine-tuned #abc123 #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# from_mistral_7b4-1714514853051\nDescription of the model." ]
[ 45, 21 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #fine-tuned #abc123 #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# from_mistral_7b4-1714514853051\nDescription of the model." ]
text-to-image
diffusers
# Tamarin XL v1 API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/19047667551714519779.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "tamarin-xl-v1" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/tamarin-xl-v1) Model link: [View model](https://modelslab.com/models/tamarin-xl-v1) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "tamarin-xl-v1", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
stablediffusionapi/tamarin-xl-v1
null
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-04-30T23:32:20+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
# Tamarin XL v1 API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "tamarin-xl-v1" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "tamarin-xl-v1", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# Tamarin XL v1 API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"tamarin-xl-v1\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"tamarin-xl-v1\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n", "# Tamarin XL v1 API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"tamarin-xl-v1\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"tamarin-xl-v1\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 56, 14, 517 ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n# Tamarin XL v1 API Inference\n\n!generated from URL## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"tamarin-xl-v1\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"tamarin-xl-v1\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ddemilla/Mixtral-8x7B-Instruct-v0.1-coords-casing-8k-with-update4-2024-finetuned
null
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:32:21+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mixtral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mixtral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #mixtral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
adjohn1313/explainable-gpt-j-6B-pku-1500-epochs
null
[ "transformers", "safetensors", "gptj", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:34:06+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gptj #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gptj #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 39, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gptj #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Uploaded model - **Developed by:** PythonCreate - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
PythonCreate/lora_model_trained
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:34:11+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: PythonCreate - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: PythonCreate\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: PythonCreate\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 80 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: PythonCreate\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ritesh3Pillar/mistral7b-aapc
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:35:37+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-captioning-Vit-GPT2-Flickr8k This model is a fine-tuned version of [nlpconnect/vit-gpt2-image-captioning](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4624 - Rouge1: 38.4609 - Rouge2: 14.1268 - Rougel: 35.4304 - Rougelsum: 35.391 - Gen Len: 12.1355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.5495 | 0.06 | 500 | 0.4942 | 35.0812 | 11.7357 | 32.4228 | 32.4251 | 11.5738 | | 0.4945 | 0.12 | 1000 | 0.4903 | 35.4943 | 12.0207 | 32.8571 | 32.8486 | 11.8682 | | 0.4984 | 0.19 | 1500 | 0.4862 | 35.3652 | 11.9707 | 32.8296 | 32.8126 | 12.0544 | | 0.4783 | 0.25 | 2000 | 0.4808 | 36.1048 | 12.3597 | 33.4635 | 33.4504 | 11.3468 | | 0.4736 | 0.31 | 2500 | 0.4772 | 35.9342 | 12.343 | 33.519 | 33.495 | 11.1066 | | 0.4685 | 0.37 | 3000 | 0.4708 | 36.8985 | 13.0743 | 34.3294 | 34.2978 | 11.4739 | | 0.4687 | 0.43 | 3500 | 0.4704 | 36.1934 | 12.5721 | 33.4731 | 33.4671 | 11.9201 | | 0.4709 | 0.49 | 4000 | 0.4696 | 36.1822 | 12.8306 | 33.4001 | 33.3673 | 12.1733 | | 0.4575 | 0.56 | 4500 | 0.4675 | 37.4471 | 13.7553 | 34.5655 | 34.5384 | 12.6302 | | 0.4484 | 0.62 | 5000 | 0.4662 | 36.6786 | 13.0601 | 33.9348 | 33.8999 | 12.6007 | | 0.4507 | 0.68 | 5500 | 0.4656 | 36.506 | 12.7992 | 34.0665 | 34.0409 | 11.4316 | | 0.4445 | 0.74 | 6000 | 0.4628 | 37.0737 | 13.3324 | 34.416 | 34.3902 | 12.3211 | | 0.4557 | 0.8 | 6500 | 0.4594 | 37.3349 | 13.1633 | 34.4709 | 34.4503 | 12.2522 | | 0.4451 | 0.87 | 7000 | 0.4600 | 37.3384 | 13.5699 | 34.6726 | 34.6555 | 12.0494 | | 0.4381 | 0.93 | 7500 | 0.4588 | 37.6164 | 13.7855 | 34.8467 | 34.8084 | 12.1347 | | 0.4357 | 0.99 | 8000 | 0.4571 | 37.2047 | 13.4341 | 34.3383 | 34.3121 | 12.2670 | | 0.3869 | 1.05 | 8500 | 0.4612 | 37.684 | 13.6922 | 34.9914 | 34.9721 | 11.3216 | | 0.377 | 1.11 | 9000 | 0.4616 | 37.2615 | 13.2059 | 34.3375 | 34.3327 | 12.3221 | | 0.3736 | 1.17 | 9500 | 0.4607 | 37.2109 | 13.1387 | 34.3923 | 34.3638 | 11.8274 | | 0.3801 | 1.24 | 10000 | 0.4617 | 38.0033 | 13.7561 | 35.2434 | 35.2414 | 11.6079 | | 0.3816 | 1.3 | 10500 | 0.4599 | 37.3453 | 13.622 | 34.6495 | 34.639 | 12.2101 | | 0.377 | 1.36 | 11000 | 0.4619 | 37.2996 | 13.4583 | 34.3777 | 34.3525 | 12.3911 | | 0.3745 | 1.42 | 11500 | 0.4604 | 37.5448 | 13.3841 | 34.5785 | 34.5532 | 12.2747 | | 0.3785 | 1.48 | 12000 | 0.4568 | 38.0769 | 14.0089 | 35.0744 | 35.0605 | 12.3179 | | 0.3675 | 1.54 | 12500 | 0.4587 | 37.6284 | 13.8277 | 34.7837 | 34.7618 | 11.8732 | | 0.3731 | 1.61 | 13000 | 0.4554 | 38.433 | 14.1461 | 35.6757 | 35.6683 | 11.4294 | | 0.3731 | 1.67 | 13500 | 0.4548 | 37.9065 | 13.7526 | 34.9091 | 34.8919 | 12.1241 | | 0.371 | 1.73 | 14000 | 0.4542 | 38.4064 | 14.2136 | 35.4845 | 35.4671 | 12.1014 | | 0.3615 | 1.79 | 14500 | 0.4551 | 38.0695 | 14.1042 | 35.162 | 35.1427 | 12.1135 | | 0.3687 | 1.85 | 15000 | 0.4550 | 38.1978 | 14.1243 | 35.3107 | 35.2821 | 12.2255 | | 0.3711 | 1.92 | 15500 | 0.4532 | 37.661 | 13.603 | 34.7601 | 34.7467 | 12.1632 | | 0.3685 | 1.98 | 16000 | 0.4515 | 38.5727 | 14.5345 | 35.5855 | 35.5585 | 11.9162 | | 0.3333 | 2.04 | 16500 | 0.4626 | 38.4657 | 14.4726 | 35.6431 | 35.6119 | 11.9506 | | 0.3129 | 2.1 | 17000 | 0.4660 | 38.2002 | 14.0689 | 35.1851 | 35.1748 | 12.3313 | | 0.3155 | 2.16 | 17500 | 0.4674 | 37.8919 | 13.91 | 34.9167 | 34.9154 | 12.4853 | | 0.3134 | 2.22 | 18000 | 0.4644 | 38.1576 | 13.9371 | 35.0486 | 35.0252 | 11.9748 | | 0.3167 | 2.29 | 18500 | 0.4653 | 37.8516 | 13.9029 | 34.7959 | 34.7847 | 12.5273 | | 0.322 | 2.35 | 19000 | 0.4673 | 37.9883 | 14.0127 | 34.8667 | 34.841 | 12.4680 | | 0.312 | 2.41 | 19500 | 0.4641 | 38.4611 | 14.238 | 35.4465 | 35.417 | 11.9315 | | 0.3173 | 2.47 | 20000 | 0.4654 | 38.1477 | 13.9164 | 35.1148 | 35.0905 | 12.4845 | | 0.3081 | 2.53 | 20500 | 0.4640 | 38.7153 | 14.3282 | 35.7048 | 35.6923 | 11.8932 | | 0.3093 | 2.6 | 21000 | 0.4633 | 38.2932 | 14.0961 | 35.2736 | 35.2308 | 11.8932 | | 0.3154 | 2.66 | 21500 | 0.4637 | 38.0708 | 13.7374 | 35.0722 | 35.055 | 12.1310 | | 0.3096 | 2.72 | 22000 | 0.4630 | 38.3722 | 14.041 | 35.2847 | 35.2425 | 12.2591 | | 0.3101 | 2.78 | 22500 | 0.4627 | 38.6372 | 14.2961 | 35.5118 | 35.4819 | 12.2836 | | 0.309 | 2.84 | 23000 | 0.4620 | 38.3596 | 14.0396 | 35.3285 | 35.3 | 12.3281 | | 0.312 | 2.9 | 23500 | 0.4623 | 38.4268 | 14.0768 | 35.4015 | 35.3656 | 12.2208 | | 0.3135 | 2.97 | 24000 | 0.4624 | 38.4609 | 14.1268 | 35.4304 | 35.391 | 12.1355 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "base_model": "nlpconnect/vit-gpt2-image-captioning", "model-index": [{"name": "image-captioning-Vit-GPT2-Flickr8k", "results": []}]}
NourFakih/image-captioning-Vit-GPT2-Flickr8k
null
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "generated_from_trainer", "base_model:nlpconnect/vit-gpt2-image-captioning", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:35:53+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #base_model-nlpconnect/vit-gpt2-image-captioning #license-apache-2.0 #endpoints_compatible #region-us
image-captioning-Vit-GPT2-Flickr8k ================================== This model is a fine-tuned version of nlpconnect/vit-gpt2-image-captioning on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4624 * Rouge1: 38.4609 * Rouge2: 14.1268 * Rougel: 35.4304 * Rougelsum: 35.391 * Gen Len: 12.1355 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.1.2 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #base_model-nlpconnect/vit-gpt2-image-captioning #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ 64, 103, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #vision-encoder-decoder #generated_from_trainer #base_model-nlpconnect/vit-gpt2-image-captioning #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0### Training results### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.1.2\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2 This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-410m", "model-index": [{"name": "robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2", "results": []}]}
AlignmentResearch/robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2
null
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-410m", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-30T23:36:56+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-410m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2 This model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-410m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 70, 58, 7, 9, 9, 4, 93, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-410m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-410m_mz-135_WordLength_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_UR50D-finetuned-localization This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4863 - Accuracy: 0.9676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 105 | 0.9263 | 0.9281 | | No log | 2.0 | 210 | 0.5711 | 0.9640 | | No log | 3.0 | 315 | 0.4863 | 0.9676 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/esm2_t12_35M_UR50D", "model-index": [{"name": "esm2_t12_35M_UR50D-finetuned-localization", "results": []}]}
keanhean/esm2_t12_35M_UR50D-finetuned-localization
null
[ "transformers", "tensorboard", "safetensors", "esm", "text-classification", "generated_from_trainer", "base_model:facebook/esm2_t12_35M_UR50D", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-30T23:38:15+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #esm #text-classification #generated_from_trainer #base_model-facebook/esm2_t12_35M_UR50D #license-mit #autotrain_compatible #endpoints_compatible #region-us
esm2\_t12\_35M\_UR50D-finetuned-localization ============================================ This model is a fine-tuned version of facebook/esm2\_t12\_35M\_UR50D on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4863 * Accuracy: 0.9676 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #esm #text-classification #generated_from_trainer #base_model-facebook/esm2_t12_35M_UR50D #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 61, 101, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #esm #text-classification #generated_from_trainer #base_model-facebook/esm2_t12_35M_UR50D #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]