Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10", "results": []}]}
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-10
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2", "results": []}]}
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-2
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4", "results": []}]}
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-4
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6", "results": []}]}
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-6
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8 This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8", "results": []}]}
anas-awadalla/spanbert-base-cased-few-shot-k-64-finetuned-squad-seed-8
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anas-awadalla/spanbert-base-cased-few-shot-k-87599-finetuned-squad-seed-42
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anasaqsme/anasdistil
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
anasaqsme/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anaustinbeing/cords-model
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
# XLM-RoBERTa large for QA on Vietnamese languages (also support various languages) ## Overview - Language model: xlm-roberta-large - Fine-tune: [deepset/xlm-roberta-large-squad2](https://huggingface.co/deepset/xlm-roberta-large-squad2) - Language: Vietnamese - Downstream-task: Extractive QA - Dataset: [mailong25/bert-vietnamese-question-answering](https://github.com/mailong25/bert-vietnamese-question-answering/tree/master/dataset) - Training data: train-v2.0.json (SQuAD 2.0 format) - Eval data: dev-v2.0.json (SQuAD 2.0 format) - Infrastructure: 1x Tesla P100 (Google Colab) ## Performance Evaluated on dev-v2.0.json ``` exact: 136 / 141 f1: 0.9692671394799054 ``` Evaluated on Vietnamese XQuAD: [xquad.vi.json](https://github.com/deepmind/xquad/blob/master/xquad.vi.json) ``` exact: 604 / 1190 f1: 0.7224454217571596 ``` ## Author An Pham (ancs21.ps [at] gmail.com) ## License MIT
{"language": "vi", "license": "mit", "tags": ["vi", "xlm-roberta"], "metrics": ["f1", "em"], "widget": [{"text": "To\u00e0 nh\u00e0 n\u00e0o cao nh\u1ea5t Vi\u1ec7t Nam?", "context": "Landmark 81 l\u00e0 m\u1ed9t to\u00e0 nh\u00e0 ch\u1ecdc tr\u1eddi trong t\u1ed5 h\u1ee3p d\u1ef1 \u00e1n Vinhomes T\u00e2n C\u1ea3ng, m\u1ed9t d\u1ef1 \u00e1n c\u00f3 t\u1ed5ng m\u1ee9c \u0111\u1ea7u t\u01b0 40.000 t\u1ef7 \u0111\u1ed3ng, do C\u00f4ng ty C\u1ed5 ph\u1ea7n \u0110\u1ea7u t\u01b0 x\u00e2y d\u1ef1ng T\u00e2n Li\u00ean Ph\u00e1t thu\u1ed9c Vingroup l\u00e0m ch\u1ee7 \u0111\u1ea7u t\u01b0. To\u00e0 th\u00e1p cao 81 t\u1ea7ng, hi\u1ec7n t\u1ea1i l\u00e0 to\u00e0 nh\u00e0 cao nh\u1ea5t Vi\u1ec7t Nam v\u00e0 l\u00e0 to\u00e0 nh\u00e0 cao nh\u1ea5t \u0110\u00f4ng Nam \u00c1 t\u1eeb th\u00e1ng 3 n\u0103m 2018."}]}
ancs21/xlm-roberta-large-vi-qa
null
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "vi", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andebraa/Wind_sentiment_NorBert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0620 - Precision: 0.9406 - Recall: 0.9463 - F1: 0.9434 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5855 | 1.0 | 878 | 0.0848 | 0.8965 | 0.8980 | 0.8973 | 0.9760 | | 0.058 | 2.0 | 1756 | 0.0607 | 0.9357 | 0.9379 | 0.9368 | 0.9840 | | 0.0282 | 3.0 | 2634 | 0.0604 | 0.9354 | 0.9420 | 0.9387 | 0.9852 | | 0.0148 | 4.0 | 3512 | 0.0606 | 0.9386 | 0.9485 | 0.9435 | 0.9861 | | 0.0101 | 5.0 | 4390 | 0.0620 | 0.9406 | 0.9463 | 0.9434 | 0.9861 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-base-cased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9860628716077}}]}]}
andi611/bert-base-cased-ner-conll2003
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 2.1258 - Precision: 0.0269 - Recall: 0.1379 - F1: 0.0451 - Accuracy: 0.1988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 4 | 2.1296 | 0.0270 | 0.1389 | 0.0452 | 0.1942 | | No log | 2.0 | 8 | 2.1258 | 0.0269 | 0.1379 | 0.0451 | 0.1988 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-base-uncased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.19881805328292054}}]}]}
andi611/bert-base-uncased-ner-conll2003
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-ner This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9465 - Recall: 0.9568 - F1: 0.9517 - Accuracy: 0.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1702 | 1.0 | 878 | 0.0578 | 0.9202 | 0.9347 | 0.9274 | 0.9836 | | 0.0392 | 2.0 | 1756 | 0.0601 | 0.9306 | 0.9448 | 0.9377 | 0.9851 | | 0.0157 | 3.0 | 2634 | 0.0517 | 0.9405 | 0.9544 | 0.9474 | 0.9875 | | 0.0057 | 4.0 | 3512 | 0.0591 | 0.9465 | 0.9568 | 0.9517 | 0.9877 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-large-uncased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9877039414110284}}]}]}
andi611/bert-large-uncased-ner-conll2003
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-ner-conll2003 This model is a fine-tuned version of [bert-large-uncased-whole-word-masking](https://huggingface.co/bert-large-uncased-whole-word-masking) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9527 - Recall: 0.9569 - F1: 0.9548 - Accuracy: 0.9887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4071 | 1.0 | 877 | 0.0584 | 0.9306 | 0.9418 | 0.9362 | 0.9851 | | 0.0482 | 2.0 | 1754 | 0.0594 | 0.9362 | 0.9491 | 0.9426 | 0.9863 | | 0.0217 | 3.0 | 2631 | 0.0550 | 0.9479 | 0.9584 | 0.9531 | 0.9885 | | 0.0103 | 4.0 | 3508 | 0.0592 | 0.9527 | 0.9569 | 0.9548 | 0.9887 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-ner-conll2003", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9886888970085945}}]}]}
andi611/bert-large-uncased-whole-word-masking-ner-conll2003
null
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "en", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "conll2003"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "conll2003"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003"}}]}]}
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pistherea-conll2003-with-neg-with-repeat
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:conll2003", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "conll2003"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "conll2003"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003"}}]}]}
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-Pwhatisthe-conll2003-with-neg-with-repeat
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:conll2003", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the conll2003 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "conll2003"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "args": "conll2003"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003"}}]}]}
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-conll2003-with-neg-with-repeat
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:conll2003", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the mit_movie datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "mit_movie"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_movie", "type": "mit_movie"}}]}]}
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_movie", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "mit_restaurant"], "model_index": [{"name": "bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_restaurant", "type": "mit_restaurant"}}]}]}
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-mit-restaurant-with-neg-with-repeat
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_restaurant", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-agnews This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.1652 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1916 | 1.0 | 3375 | 0.1741 | 0.9412 | | 0.123 | 2.0 | 6750 | 0.1631 | 0.9483 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["ag_news"], "metrics": ["accuracy"], "model_index": [{"name": "distilbert-base-uncased-agnews", "results": [{"dataset": {"name": "ag_news", "type": "ag_news", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9473684210526315}}]}]}
andi611/distilbert-base-uncased-ner-agnews
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:ag_news", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0664 - Precision: 0.9332 - Recall: 0.9423 - F1: 0.9377 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2042 | 1.0 | 878 | 0.0636 | 0.9230 | 0.9253 | 0.9241 | 0.9822 | | 0.0428 | 2.0 | 1756 | 0.0577 | 0.9286 | 0.9370 | 0.9328 | 0.9841 | | 0.0199 | 3.0 | 2634 | 0.0606 | 0.9364 | 0.9401 | 0.9383 | 0.9851 | | 0.0121 | 4.0 | 3512 | 0.0641 | 0.9339 | 0.9380 | 0.9360 | 0.9847 | | 0.0079 | 5.0 | 4390 | 0.0664 | 0.9332 | 0.9423 | 0.9377 | 0.9852 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.985193893275295}}]}]}
andi611/distilbert-base-uncased-ner-conll2003
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-ner-mit-restaurant This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the mit_restaurant dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Precision: 0.7874 - Recall: 0.8104 - F1: 0.7988 - Accuracy: 0.9119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 431 | 0.4575 | 0.6220 | 0.6856 | 0.6523 | 0.8650 | | 1.1705 | 2.0 | 862 | 0.3183 | 0.7747 | 0.7953 | 0.7848 | 0.9071 | | 0.3254 | 3.0 | 1293 | 0.3163 | 0.7668 | 0.8021 | 0.7841 | 0.9058 | | 0.2287 | 4.0 | 1724 | 0.3097 | 0.7874 | 0.8104 | 0.7988 | 0.9119 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mit_restaurant"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-ner-mit-restaurant", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_restaurant", "type": "mit_restaurant"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9118988661540467}}]}]}
andi611/distilbert-base-uncased-ner-mit-restaurant
null
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "en", "dataset:mit_restaurant", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-boolq This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the boolq dataset. It achieves the following results on the evaluation set: - Loss: 1.2071 - Accuracy: 0.7315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6506 | 1.0 | 531 | 0.6075 | 0.6681 | | 0.575 | 2.0 | 1062 | 0.5816 | 0.6978 | | 0.4397 | 3.0 | 1593 | 0.6137 | 0.7253 | | 0.2524 | 4.0 | 2124 | 0.8124 | 0.7466 | | 0.126 | 5.0 | 2655 | 1.1437 | 0.7370 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["boolq"], "metrics": ["accuracy"], "model_index": [{"name": "distilbert-base-uncased-boolq", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "boolq", "type": "boolq", "args": "default"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.7314984709480122}}]}]}
andi611/distilbert-base-uncased-qa-boolq
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:boolq", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa-with-ner This model is a fine-tuned version of [andi611/distilbert-base-uncased-qa](https://huggingface.co/andi611/distilbert-base-uncased-qa) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-qa-with-ner", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/distilbert-base-uncased-qa-with-ner
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-qa This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model_index": [{"name": "distilbert-base-uncased-qa", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "squad", "type": "squad", "args": "plain_text"}}]}]}
andi611/distilbert-base-uncased-squad
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the squad_v2 and the mit_restaurant datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"language": ["en"], "tags": ["generated_from_trainer"], "datasets": ["squad_v2", "mit_restaurant"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "squad_v2", "type": "squad_v2"}}, {"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "mit_restaurant", "type": "mit_restaurant"}}]}]}
andi611/distilbert-base-uncased-squad2-with-ner-mit-restaurant-with-neg-with-repeat
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_restaurant", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg-with-multi", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner-with-neg", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/distilbert-base-uncased-squad2-with-ner-with-neg
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "distilbert-base-uncased-squad2-with-ner", "results": [{"task": {"name": "Question Answering", "type": "question-answering"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/distilbert-base-uncased-squad2-with-ner
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0814 - eval_precision: 0.9101 - eval_recall: 0.9336 - eval_f1: 0.9217 - eval_accuracy: 0.9799 - eval_runtime: 10.2964 - eval_samples_per_second: 315.646 - eval_steps_per_second: 39.529 - epoch: 1.14 - step: 500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "model_index": [{"name": "roberta-base-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}}]}]}
andi611/roberta-base-ner-conll2003
null
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
andikarachman/DialoGPT-small-sheldon
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.8885 - Mae: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1089 | 1.0 | 235 | 0.9027 | 0.4756 | | 0.9674 | 2.0 | 470 | 0.8885 | 0.4390 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
anditya/xlm-roberta-base-finetuned-marc-en
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andreas800/hgf_models
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0423 - Train Accuracy: 0.9869 - Validation Loss: 0.0303 - Validation Accuracy: 0.9913 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 43750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0423 | 0.9869 | 0.0303 | 0.9913 | 0 | ### Framework versions - Transformers 4.15.0.dev0 - TensorFlow 2.6.2 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola", "results": []}]}
andreiliphdpr/bert-base-multilingual-uncased-finetuned-cola
null
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # andreiliphdpr/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0015 - Train Accuracy: 0.9995 - Validation Loss: 0.0570 - Validation Accuracy: 0.9915 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 43750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0399 | 0.9870 | 0.0281 | 0.9908 | 0 | | 0.0182 | 0.9944 | 0.0326 | 0.9901 | 1 | | 0.0089 | 0.9971 | 0.0396 | 0.9912 | 2 | | 0.0040 | 0.9987 | 0.0486 | 0.9918 | 3 | | 0.0015 | 0.9995 | 0.0570 | 0.9915 | 4 | ### Framework versions - Transformers 4.15.0.dev0 - TensorFlow 2.6.2 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "andreiliphdpr/distilbert-base-uncased-finetuned-cola", "results": []}]}
andreiliphdpr/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of BillSum ([paper](https://arxiv.org/abs/1910.00523), [datasets](https://huggingface.co/datasets/billsum)). It should be used in conjunction with [google/pegasus-billsum](https://huggingface.co/google/pegasus-billsum). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Pegasus, generator_path="google/pegasus-billsum", scorer_path="andrejmiscic/simcls-scorer-billsum") document = "This is a legal document." summary = summarizer(document) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. We believe the discrepancies of Rouge-L scores between the original Pegasus work and our evaluation are due to the computation of the metric. Namely, we use a summary level Rouge-L score. | System | Rouge-1 | Rouge-2 | Rouge-L\* | |-----------------|----------------------:|----------------------:|----------------------:| | Pegasus | 57.31 | 40.19 | 45.82 | | **Our results** | --- | --- | --- | | Origin | 56.24, [55.74, 56.74] | 37.46, [36.89, 38.03] | 50.71, [50.19, 51.22] | | Min | 44.37, [43.85, 44.89] | 25.75, [25.30, 26.22] | 38.68, [38.18, 39.16] | | Max | 62.88, [62.42, 63.33] | 43.96, [43.39, 44.54] | 57.50, [57.01, 58.00] | | Random | 54.93, [54.43, 55.43] | 35.42, [34.85, 35.97] | 49.19, [48.68, 49.70] | | **SimCLS** | 57.49, [57.01, 58.00] | 38.54, [37.98, 39.10] | 51.91, [51.39, 52.43] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
{"language": ["en"], "tags": ["simcls"], "datasets": ["billsum"]}
andrejmiscic/simcls-scorer-billsum
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "simcls", "en", "dataset:billsum", "arxiv:2106.01890", "arxiv:1910.00523", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of CNN/DailyMail ([paper](https://arxiv.org/abs/1602.06023), [datasets](https://huggingface.co/datasets/cnn_dailymail)). It should be used in conjunction with [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Bart, generator_path="facebook/bart-large-cnn", scorer_path="andrejmiscic/simcls-scorer-cnndm") article = "This is a news article." summary = summarizer(article) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. | System | Rouge-1 | Rouge-2 | Rouge-L | |------------------|----------------------:|----------------------:|----------------------:| | BART | 44.16 | 21.28 | 40.90 | | **SimCLS paper** | --- | --- | --- | | Origin | 44.39 | 21.21 | 41.28 | | Min | 33.17 | 11.67 | 30.77 | | Max | 54.36 | 28.73 | 50.77 | | Random | 43.98 | 20.06 | 40.94 | | **SimCLS** | 46.67 | 22.15 | 43.54 | | **Our results** | --- | --- | --- | | Origin | 44.41, [44.18, 44.63] | 21.05, [20.80, 21.29] | 41.53, [41.30, 41.75] | | Min | 33.43, [33.25, 33.62] | 10.97, [10.82, 11.12] | 30.57, [30.40, 30.74] | | Max | 53.87, [53.67, 54.08] | 29.72, [29.47, 29.98] | 51.13, [50.92, 51.34] | | Random | 43.94, [43.73, 44.16] | 20.09, [19.86, 20.31] | 41.06, [40.85, 41.27] | | **SimCLS** | 46.53, [46.32, 46.75] | 22.14, [21.91, 22.37] | 43.56, [43.34, 43.78] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
{"language": ["en"], "tags": ["simcls"], "datasets": ["cnn_dailymail"]}
andrejmiscic/simcls-scorer-cnndm
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "simcls", "en", "dataset:cnn_dailymail", "arxiv:2106.01890", "arxiv:1602.06023", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# SimCLS SimCLS is a framework for abstractive summarization presented in [SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization](https://arxiv.org/abs/2106.01890). It is a two-stage approach consisting of a *generator* and a *scorer*. In the first stage, a large pre-trained model for abstractive summarization (the *generator*) is used to generate candidate summaries, whereas, in the second stage, the *scorer* assigns a score to each candidate given the source document. The final summary is the highest-scoring candidate. This model is the *scorer* trained for summarization of XSum ([paper](https://arxiv.org/abs/1808.08745), [datasets](https://huggingface.co/datasets/xsum)). It should be used in conjunction with [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum). See [our Github repository](https://github.com/andrejmiscic/simcls-pytorch) for details on training, evaluation, and usage. ## Usage ```bash git clone https://github.com/andrejmiscic/simcls-pytorch.git cd simcls-pytorch pip3 install torch torchvision torchaudio transformers sentencepiece ``` ```python from src.model import SimCLS, GeneratorType summarizer = SimCLS(generator_type=GeneratorType.Pegasus, generator_path="google/pegasus-xsum", scorer_path="andrejmiscic/simcls-scorer-xsum") article = "This is a news article." summary = summarizer(article) print(summary) ``` ### Results All of our results are reported together with 95% confidence intervals computed using 10000 iterations of bootstrap. See [SimCLS paper](https://arxiv.org/abs/2106.01890) for a description of baselines. | System | Rouge-1 | Rouge-2 | Rouge-L | |------------------|----------------------:|----------------------:|----------------------:| | Pegasus | 47.21 | 24.56 | 39.25 | | **SimCLS paper** | --- | --- | --- | | Origin | 47.10 | 24.53 | 39.23 | | Min | 40.97 | 19.18 | 33.68 | | Max | 52.45 | 28.28 | 43.36 | | Random | 46.72 | 23.64 | 38.55 | | **SimCLS** | 47.61 | 24.57 | 39.44 | | **Our results** | --- | --- | --- | | Origin | 47.16, [46.85, 47.48] | 24.59, [24.25, 24.92] | 39.30, [38.96, 39.62] | | Min | 41.06, [40.76, 41.34] | 18.30, [18.03, 18.56] | 32.70, [32.42, 32.97] | | Max | 51.83, [51.53, 52.14] | 28.92, [28.57, 29.26] | 44.02, [43.69, 44.36] | | Random | 46.47, [46.17, 46.78] | 23.45, [23.13, 23.77] | 38.28, [37.96, 38.60] | | **SimCLS** | 47.17, [46.87, 47.46] | 23.90, [23.59, 24.23] | 38.96, [38.64, 39.29] | ### Citation of the original work ```bibtex @inproceedings{liu-liu-2021-simcls, title = "{S}im{CLS}: A Simple Framework for Contrastive Learning of Abstractive Summarization", author = "Liu, Yixin and Liu, Pengfei", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-short.135", doi = "10.18653/v1/2021.acl-short.135", pages = "1065--1072", } ```
{"language": ["en"], "tags": ["simcls"], "datasets": ["xsum"]}
andrejmiscic/simcls-scorer-xsum
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "simcls", "en", "dataset:xsum", "arxiv:2106.01890", "arxiv:1808.08745", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
{"language": false, "license": "cc-by-4.0", "tags": ["translation"], "widget": [{"text": "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."}]}
andrek/LAT2NOB
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andrepreira/nomeacao_classificacao_word2vec_cbow
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.2 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-cased-finetuned-squad", "results": []}]}
andresestevez/bert-base-cased-finetuned-squad
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
andresestevez/bert-finetuned-squad-accelerate
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
andrewlitv/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "afl-3.0"}
andrewresh/newandrewreshmodel
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andrex/bot-rick
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
andreylobach/ru_conversational_cased_L-12_H-768_A-12_pt
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andreymoisv/test-ru-gpt3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andreymoisv/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andriopa/blueBERT-base-finetuned
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
andrliu/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
anduush/DialoGPT-small-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Medical History Model based on ruGPT2 by @sberbank-ai A simple model for helping medical staff to complete patient's medical histories. Model used pretrained [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2)
{"language": ["ru"], "license": "mit", "tags": ["PyTorch", "Transformers"]}
anechaev/ru_med_gpt3sm_based_on_gpt2
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "PyTorch", "Transformers", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 583416409 - CO2 Emissions (in grams): 72.26141764997115 ## Validation Metrics - Loss: 1.4701834917068481 - Rouge1: 47.7785 - Rouge2: 24.8518 - RougeL: 40.2231 - RougeLsum: 43.9487 - Gen Len: 18.8029 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/anegi/autonlp-dialogue-summariztion-583416409 ```
{"language": "en", "tags": "autonlp", "datasets": ["anegi/autonlp-data-dialogue-summariztion"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 72.26141764997115}
anegi/autonlp-dialogue-summariztion-583416409
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autonlp", "en", "dataset:anegi/autonlp-data-dialogue-summariztion", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 412010597 - CO2 Emissions (in grams): 10.411685187181709 ## Validation Metrics - Loss: 0.12585781514644623 - Accuracy: 0.9475446428571429 - Precision: 0.9454660748256183 - Recall: 0.964424320827943 - AUC: 0.990229573862156 - F1: 0.9548511047070125 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anel/autonlp-cml-412010597 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anel/autonlp-cml-412010597", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anel/autonlp-cml-412010597", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["anel/autonlp-data-cml"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 10.411685187181709}
anel/autonlp-cml-412010597
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:anel/autonlp-data-cml", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 432211280 - CO2 Emissions (in grams): 8.898145050355591 ## Validation Metrics - Loss: 0.12489336729049683 - Accuracy: 0.9520089285714286 - Precision: 0.9436443331246086 - Recall: 0.9747736093143596 - AUC: 0.9910066767410616 - F1: 0.958956411072224 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/anelnurkayeva/autonlp-covid-432211280 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anelnurkayeva/autonlp-covid-432211280", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["anelnurkayeva/autonlp-data-covid"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 8.898145050355591}
anelnurkayeva/autonlp-covid-432211280
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:anelnurkayeva/autonlp-data-covid", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# BERT for Patents BERT for Patents is a model trained by Google on 100M+ patents (not just US patents). It is based on BERT<sub>LARGE</sub>. If you want to learn more about the model, check out the [blog post](https://cloud.google.com/blog/products/ai-machine-learning/how-ai-improves-patent-analysis), [white paper](https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf) and [GitHub page](https://github.com/google/patents-public-data/blob/master/models/BERT%20for%20Patents.md) containing the original TensorFlow checkpoint. --- ### Projects using this model (or variants of it): - [Patents4IPPC](https://github.com/ec-jrc/Patents4IPPC) (carried out by [Pi School](https://picampus-school.com/) and commissioned by the [Joint Research Centre (JRC)](https://ec.europa.eu/jrc/en) of the European Commission)
{"language": ["en"], "license": "apache-2.0", "tags": ["masked-lm", "pytorch"], "metrics": ["perplexity"], "pipeline-tag": "fill-mask", "mask-token": "[MASK]", "widget": [{"text": "The present [MASK] provides a torque sensor that is small and highly rigid and for which high production efficiency is possible."}, {"text": "The present invention relates to [MASK] accessories and pertains particularly to a brake light unit for bicycles."}, {"text": "The present invention discloses a space-bound-free [MASK] and its coordinate determining circuit for determining a coordinate of a stylus pen."}, {"text": "The illuminated [MASK] includes a substantially translucent canopy supported by a plurality of ribs pivotally swingable towards and away from a shaft."}]}
anferico/bert-for-patents
null
[ "transformers", "pytorch", "tf", "safetensors", "fill-mask", "masked-lm", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Monke Messenger DialoGPT Model
{"tags": ["conversational"]}
ange/DialoGPT-medium-Monke
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
angelo/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
angggapradiktas/model_1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
angiquer/twitterko-cha-electra-base-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
angiquer/twitterko-cha-electra-base-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
angiquer/twitterko-electra-base-discriminator-large
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
angiquer/twitterko-electra-base-discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
angiquer/twitterko-electra-base-generator-large
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
angiquer/twitterko-electra-base-generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
angustay/helloworld
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
angxl/testing
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anhdungitvn/finbert
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
anhtunguyen98/xlm-base-vi-en
null
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
anhtunguyen98/xlm-base-vi
null
[ "transformers", "pytorch", "xlm-roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anilkumar-kanasani/normal-gpt2-after-preproc
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Turkish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from unicode_tr import unicode_tr test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "tr", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = str(unicode_tr(re.sub(chars_to_ignore_regex, "", batch["sentence"])).lower()) \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.46 % ## Training unicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish. Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments: --num_train_epochs="30" \\ --per_device_train_batch_size="32" \\ --evaluation_strategy="steps" \\ --activation_dropout="0.055" \\ --attention_dropout="0.094" \\ --feat_proj_dropout="0.04" \\ --hidden_dropout="0.047" \\ --layerdrop="0.041" \\ --learning_rate="2.34e-4" \\ --mask_time_prob="0.082" \\ --warmup_steps="250" \\ All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
{"language": "tr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "results": [{"task": {"name": "Speech Recognition", "type": "automatic-speech-recognition"}, "dataset": {"name": "Common Voice tr", "type": "common_voice", "args": "tr"}, "metrics": [{"name": "Test WER", "type": "wer", "value": 17.46}]}]}
aniltrkkn/wav2vec2-large-xlsr-53-turkish
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anily/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-BioclinicalBERT-ADR This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ade_corpus_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 171 | 0.9441 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["ade_corpus_v2"], "model-index": [{"name": "sagemaker-BioclinicalBERT-ADR", "results": []}]}
anindabitm/sagemaker-BioclinicalBERT-ADR
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:ade_corpus_v2", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2434 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9423 | 1.0 | 500 | 0.2434 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy"], "model-index": [{"name": "sagemaker-distilbert-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9165, "name": "Accuracy"}]}]}]}
anindabitm/sagemaker-distilbert-emotion
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-qnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3194 - Accuracy: 0.9112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3116 | 1.0 | 6547 | 0.2818 | 0.8849 | | 0.2467 | 2.0 | 13094 | 0.2532 | 0.9001 | | 0.1858 | 3.0 | 19641 | 0.3194 | 0.9112 | | 0.1449 | 4.0 | 26188 | 0.4338 | 0.9103 | | 0.0584 | 5.0 | 32735 | 0.5752 | 0.9052 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "qnli"}, "metrics": [{"type": "accuracy", "value": 0.9112209408749771, "name": "Accuracy"}]}]}]}
anirudh21/albert-base-v2-finetuned-qnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-rte This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2496 - Accuracy: 0.7581 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 249 | 0.5914 | 0.6751 | | No log | 2.0 | 498 | 0.5843 | 0.7184 | | 0.5873 | 3.0 | 747 | 0.6925 | 0.7220 | | 0.5873 | 4.0 | 996 | 1.1613 | 0.7545 | | 0.2149 | 5.0 | 1245 | 1.2496 | 0.7581 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.7581227436823105, "name": "Accuracy"}]}]}]}
anirudh21/albert-base-v2-finetuned-rte
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-wnli This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6878 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6878 | 0.5634 | | No log | 2.0 | 80 | 0.6919 | 0.5634 | | No log | 3.0 | 120 | 0.6877 | 0.5634 | | No log | 4.0 | 160 | 0.6984 | 0.4085 | | No log | 5.0 | 200 | 0.6957 | 0.5211 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
anirudh21/albert-base-v2-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
anirudh21/albert-large-v2-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
anirudh21/albert-large-v2-finetuned-mnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
anirudh21/albert-large-v2-finetuned-mrpc
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
anirudh21/albert-large-v2-finetuned-qnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
anirudh21/albert-large-v2-finetuned-qqp
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-finetuned-rte This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6827 - Accuracy: 0.5487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 18 | 0.6954 | 0.5271 | | No log | 2.0 | 36 | 0.6860 | 0.5379 | | No log | 3.0 | 54 | 0.6827 | 0.5487 | | No log | 4.0 | 72 | 0.7179 | 0.5235 | | No log | 5.0 | 90 | 0.7504 | 0.5379 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-large-v2-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.5487364620938628, "name": "Accuracy"}]}]}]}
anirudh21/albert-large-v2-finetuned-rte
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
anirudh21/albert-large-v2-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2-finetuned-wnli This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6919 - Accuracy: 0.5352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 17 | 0.7292 | 0.4366 | | No log | 2.0 | 34 | 0.6919 | 0.5352 | | No log | 3.0 | 51 | 0.7084 | 0.4648 | | No log | 4.0 | 68 | 0.7152 | 0.5352 | | No log | 5.0 | 85 | 0.7343 | 0.5211 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-large-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5352112676056338, "name": "Accuracy"}]}]}]}
anirudh21/albert-large-v2-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xlarge-v2-finetuned-mnli
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xlarge-v2-finetuned-mrpc This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5563 - Accuracy: 0.7132 - F1: 0.8146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 63 | 0.6898 | 0.5221 | 0.6123 | | No log | 2.0 | 126 | 0.6298 | 0.6838 | 0.8122 | | No log | 3.0 | 189 | 0.6043 | 0.7010 | 0.8185 | | No log | 4.0 | 252 | 0.5834 | 0.7010 | 0.8146 | | No log | 5.0 | 315 | 0.5563 | 0.7132 | 0.8146 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "albert-xlarge-v2-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.7132352941176471, "name": "Accuracy"}, {"type": "f1", "value": 0.8145800316957211, "name": "F1"}]}]}]}
anirudh21/albert-xlarge-v2-finetuned-mrpc
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xlarge-v2-finetuned-wnli This model is a fine-tuned version of [albert-xlarge-v2](https://huggingface.co/albert-xlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6869 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 0.6906 | 0.5070 | | No log | 2.0 | 80 | 0.6869 | 0.5634 | | No log | 3.0 | 120 | 0.6905 | 0.5352 | | No log | 4.0 | 160 | 0.6960 | 0.4225 | | No log | 5.0 | 200 | 0.7011 | 0.3803 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-xlarge-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5633802816901409, "name": "Accuracy"}]}]}]}
anirudh21/albert-xlarge-v2-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xxlarge-v2-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xxlarge-v2-finetuned-mrpc
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xxlarge-v2-finetuned-qnli
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xxlarge-v2-finetuned-qqp
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xxlarge-v2-finetuned-rte
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
anirudh21/albert-xxlarge-v2-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-finetuned-wnli This model is a fine-tuned version of [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Accuracy: 0.5070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 13 | 0.8066 | 0.4366 | | No log | 2.0 | 26 | 0.6970 | 0.5070 | | No log | 3.0 | 39 | 0.7977 | 0.4507 | | No log | 4.0 | 52 | 0.7906 | 0.4930 | | No log | 5.0 | 65 | 0.8459 | 0.4366 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "albert-xxlarge-v2-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5070422535211268, "name": "Accuracy"}]}]}]}
anirudh21/albert-xxlarge-v2-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.9664 - Matthews Correlation: 0.5797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5017 | 1.0 | 535 | 0.5252 | 0.4841 | | 0.2903 | 2.0 | 1070 | 0.5550 | 0.4967 | | 0.1839 | 3.0 | 1605 | 0.7295 | 0.5634 | | 0.1132 | 4.0 | 2140 | 0.7762 | 0.5702 | | 0.08 | 5.0 | 2675 | 0.9664 | 0.5797 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "bert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5796941781913538, "name": "Matthews Correlation"}]}]}]}
anirudh21/bert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00