Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
listlengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
audio-classification | transformers | # Model Card for wav2vec2-base-superb-sv
# Model Details
## Model Description
- **Developed by:** Shu-wen Yang et al.
- **Shared by:** Anton Lozhkov
- **Model type:** Wav2Vec2 with an XVector head
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Related Models:**
- **Parent Model:** wav2vec2-large-lv60
- **Resources for more information:**
- [GitHub Repo](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/sv_voxceleb1)
- [Associated Paper](https://arxiv.org/abs/2105.010517)
# Uses
## Direct Use
This is a ported version of
[S3PRL's Wav2Vec2 for the SUPERB Speaker Verification task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/sv_voxceleb1).
The base model is [wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
See the [superb dataset card](https://huggingface.co/datasets/superb)
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
See the [superb dataset card](https://huggingface.co/datasets/superb)
### Factors
### Metrics
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed
# Citation
**BibTeX:**
```
@misc{https://doi.org/10.48550/arxiv.2006.11477,
doi = {10.48550/ARXIV.2006.11477},
url = {https://arxiv.org/abs/2006.11477},
author = {Baevski, Alexei and Zhou, Henry and Mohamed, Abdelrahman and Auli, Michael},
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
title = {wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations},
publisher = {arXiv},
@misc{https://doi.org/10.48550/arxiv.2105.01051,
doi = {10.48550/ARXIV.2105.01051},
url = {https://arxiv.org/abs/2105.01051},
author = {Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y. and Liu, Andy T. and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and Huang, Tzu-Hsien and Tseng, Wei-Cheng and Lee, Ko-tik and Liu, Da-Rong and Huang, Zili and Dong, Shuyan and Li, Shang-Wen and Watanabe, Shinji and Mohamed, Abdelrahman and Lee, Hung-yi},
keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
title = {SUPERB: Speech processing Universal PERformance Benchmark},
publisher = {arXiv},
year = {2021},
}
```
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
Anton Lozhkov in collaboration with Ezi Ozoani and the Hugging Face team
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoProcessor, AutoModelForAudioXVector
processor = AutoProcessor.from_pretrained("anton-l/wav2vec2-base-superb-sv")
model = AutoModelForAudioXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv")
```
</details>
| {"language": "en", "license": "apache-2.0", "tags": ["speech", "audio", "wav2vec2", "audio-classification"], "datasets": ["superb"]} | anton-l/wav2vec2-base-superb-sv | null | [
"transformers",
"pytorch",
"wav2vec2",
"audio-xvector",
"speech",
"audio",
"audio-classification",
"en",
"dataset:superb",
"arxiv:2105.01051",
"arxiv:1910.09700",
"arxiv:2006.11477",
"license:apache-2.0",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Chuvash
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Chuvash test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/cv.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-chuvash")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/cv/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/cv/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 40.01 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
The script used for training can be found [here](github.com)
| {"language": "cv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Chuvash XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cv", "type": "common_voice", "args": "cv"}, "metrics": [{"type": "wer", "value": 40.01, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-chuvash | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"cv",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Estonian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Estonian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "et", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Estonian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/et.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-estonian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/et/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/et/clips/"
def clean_sentence(sent):
sent = sent.lower()
# normalize apostrophes
sent = sent.replace("’", "'")
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 30.74 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
The script used for training can be found [here](github.com)
| {"language": "et", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Estonian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice et", "type": "common_voice", "args": "et"}, "metrics": [{"type": "wer", "value": 30.74, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-estonian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"et",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Hungarian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Hungarian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/hu.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-hungarian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/hu/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/hu/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 42.26 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "hu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Hungarian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hu", "type": "common_voice", "args": "hu"}, "metrics": [{"type": "wer", "value": 42.26, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-hungarian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"hu",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Kyrgyz
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Kyrgyz using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ky", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Kyrgyz test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ky.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-kyrgyz")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ky/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/ky/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 31.88 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "ky", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Kyrgyz XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ky", "type": "common_voice", "args": "ky"}, "metrics": [{"type": "wer", "value": 31.88, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-kyrgyz | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ky",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Latvian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Latvian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Latvian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lv.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-latvian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lv/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/lv/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 26.89 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "lv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Latvian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice lv", "type": "common_voice", "args": "lv"}, "metrics": [{"type": "wer", "value": 26.89, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-latvian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"lv",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Lithuanian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Lithuanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Lithuanian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/lt.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-lithuanian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/lt/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/lt/clips/"
def clean_sentence(sent):
sent = sent.lower()
# normalize apostrophes
sent = sent.replace("’", "'")
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 49.00 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "lt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Lithuanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice lt", "type": "common_voice", "args": "lt"}, "metrics": [{"type": "wer", "value": 49.0, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-lithuanian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"lt",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Mongolian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Mongolian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "mn", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Mongolian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/mn.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-mongolian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/mn/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/mn/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 38.53 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "mn", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Mongolian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice mn", "type": "common_voice", "args": "mn"}, "metrics": [{"type": "wer", "value": 38.53, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-mongolian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"mn",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Romanian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ro", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Romanian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ro.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-romanian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ro/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/ro/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 24.84 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "ro", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Romanian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ro", "type": "common_voice", "args": "ro"}, "metrics": [{"type": "wer", "value": 24.84, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-romanian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ro",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Russian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Russian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ru", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Russian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/ru.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-russian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/ru/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/ru/clips/"
def clean_sentence(sent):
sent = sent.lower()
# these letters are considered equivalent in written Russian
sent = sent.replace('ё', 'е')
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
# free up some memory
del model
del processor
del cv_test
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 17.39 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "ru", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Russian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ru", "type": "common_voice", "args": "ru"}, "metrics": [{"type": "wer", "value": 17.39, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-russian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ru",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Sakha
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sah", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Sakha test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sah.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-sakha")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sah/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/sah/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 32.23 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "sah", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Sakha XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 32.23, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-sakha | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"sah",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Slovenian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Slovenian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sl", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Slovenian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/sl.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-slovenian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/sl/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/sl/clips/"
def clean_sentence(sent):
sent = sent.lower()
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 36.04 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "sl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Slovenian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sl", "type": "common_voice", "args": "sl"}, "metrics": [{"type": "wer", "value": 36.04, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-slovenian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"sl",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Tatar
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tatar using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Tatar test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/tt.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-tatar")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/tt/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/tt/clips/"
def clean_sentence(sent):
sent = sent.lower()
# 'ё' is equivalent to 'е'
sent = sent.replace('ё', 'е')
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 26.76 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "tt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Tatar XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice tt", "type": "common_voice", "args": "tt"}, "metrics": [{"type": "wer", "value": 26.76, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-tatar | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"tt",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
# Wav2Vec2-Large-XLSR-53-Ukrainian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "uk", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Ukrainian test data of Common Voice.
```python
import torch
import torchaudio
import urllib.request
import tarfile
import pandas as pd
from tqdm.auto import tqdm
from datasets import load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# Download the raw data instead of using HF datasets to save disk space
data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/uk.tar.gz"
filestream = urllib.request.urlopen(data_url)
data_file = tarfile.open(fileobj=filestream, mode="r|gz")
data_file.extractall()
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian")
model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian")
model.to("cuda")
cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/uk/test.tsv", sep='\t')
clips_path = "cv-corpus-6.1-2020-12-11/uk/clips/"
def clean_sentence(sent):
sent = sent.lower()
# normalize apostrophes
sent = sent.replace("’", "'")
# replace non-alpha characters with space
sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent)
# remove repeated spaces
sent = " ".join(sent.split())
return sent
targets = []
preds = []
for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]):
row["sentence"] = clean_sentence(row["sentence"])
speech_array, sampling_rate = torchaudio.load(clips_path + row["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
row["speech"] = resampler(speech_array).squeeze().numpy()
inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
targets.append(row["sentence"])
preds.append(processor.batch_decode(pred_ids)[0])
print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets)))
```
**Test Result**: 32.29 %
## Training
The Common Voice `train` and `validation` datasets were used for training.
| {"language": "uk", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Ukrainian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "common_voice", "args": "uk"}, "metrics": [{"type": "wer", "value": 32.29, "name": "Test WER"}]}]}]} | anton-l/wav2vec2-large-xlsr-53-ukrainian | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"uk",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
audio-classification | transformers | {} | anton-l/wav2vec2-random-tiny-classifier | null | [
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null |
This is a standalone Turkish Wav2Vec2 tokenizer config intended for use with `run_speech_recognition_ctc_streaming.py` | {"license": "cc0-1.0"} | anton-l/wav2vec2-tokenizer-turkish | null | [
"license:cc0-1.0",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5806
- Wer: 0.3998
- Cer: 0.1053
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.5369 | 17.0 | 500 | 0.6021 | 0.6366 | 0.1727 |
| 0.3542 | 34.0 | 1000 | 0.5265 | 0.4906 | 0.1278 |
| 0.1866 | 51.0 | 1500 | 0.5805 | 0.4768 | 0.1261 |
| 0.1674 | 68.01 | 2000 | 0.5336 | 0.4518 | 0.1186 |
| 0.19 | 86.0 | 2500 | 0.5676 | 0.4427 | 0.1151 |
| 0.0815 | 103.0 | 3000 | 0.5510 | 0.4268 | 0.1125 |
| 0.0545 | 120.0 | 3500 | 0.5608 | 0.4175 | 0.1099 |
| 0.0299 | 137.01 | 4000 | 0.5875 | 0.4222 | 0.1124 |
| 0.0267 | 155.0 | 4500 | 0.5882 | 0.4026 | 0.1063 |
| 0.025 | 172.0 | 5000 | 0.5806 | 0.3998 | 0.1053 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft", "results": []}]} | anton-l/wav2vec2-xls-r-common_voice-tr-ft-100sh | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft-stream
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3519
- Wer: 0.2927
- Cer: 0.0694
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.6768 | 9.01 | 500 | 0.4220 | 0.5143 | 0.1235 |
| 0.3801 | 19.01 | 1000 | 0.3303 | 0.4403 | 0.1055 |
| 0.3616 | 29.0 | 1500 | 0.3540 | 0.3716 | 0.0878 |
| 0.2334 | 39.0 | 2000 | 0.3666 | 0.3671 | 0.0842 |
| 0.3141 | 49.0 | 2500 | 0.3407 | 0.3373 | 0.0819 |
| 0.1926 | 58.01 | 3000 | 0.3886 | 0.3520 | 0.0867 |
| 0.1372 | 68.01 | 3500 | 0.3415 | 0.3189 | 0.0743 |
| 0.091 | 78.0 | 4000 | 0.3750 | 0.3164 | 0.0757 |
| 0.0893 | 88.0 | 4500 | 0.3559 | 0.2968 | 0.0712 |
| 0.095 | 98.0 | 5000 | 0.3519 | 0.2927 | 0.0694 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft-stream", "results": []}]} | anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-common_voice-tr-ft-500sh
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5794
- Wer: 0.4009
- Cer: 0.1032
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.5288 | 17.0 | 500 | 0.5099 | 0.5426 | 0.1432 |
| 0.2967 | 34.0 | 1000 | 0.5421 | 0.4746 | 0.1256 |
| 0.2447 | 51.0 | 1500 | 0.5347 | 0.4831 | 0.1267 |
| 0.122 | 68.01 | 2000 | 0.5854 | 0.4479 | 0.1161 |
| 0.1035 | 86.0 | 2500 | 0.5597 | 0.4457 | 0.1166 |
| 0.081 | 103.0 | 3000 | 0.5748 | 0.4250 | 0.1144 |
| 0.0849 | 120.0 | 3500 | 0.5598 | 0.4337 | 0.1145 |
| 0.0542 | 137.01 | 4000 | 0.5687 | 0.4223 | 0.1097 |
| 0.0318 | 155.0 | 4500 | 0.5904 | 0.4057 | 0.1052 |
| 0.0106 | 172.0 | 5000 | 0.5794 | 0.4009 | 0.1032 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2
- Datasets 1.18.2
- Tokenizers 0.10.3
| {"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft-500sh", "results": []}]} | anton-l/wav2vec2-xls-r-common_voice-tr-ft | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"common_voice",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {"license": "cc"} | antonf/testhf | null | [
"license:cc",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers |
# Italian Bert Base Uncased on Squad-it
## Model description
This model is the uncased base version of the italian BERT (which you may find at `dbmdz/bert-base-italian-uncased`) trained on the question answering task.
#### How to use
```python
from transformers import pipeline
nlp = pipeline('question-answering', model='antoniocappiello/bert-base-italian-uncased-squad-it')
# nlp(context="D'Annunzio nacque nel 1863", question="Quando nacque D'Annunzio?")
# {'score': 0.9990354180335999, 'start': 22, 'end': 25, 'answer': '1863'}
```
## Training data
It has been trained on the question answering task using [SQuAD-it](http://sag.art.uniroma2.it/demo-software/squadit/), derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.
## Training procedure
```bash
python ./examples/run_squad.py \
--model_type bert \
--model_name_or_path dbmdz/bert-base-italian-uncased \
--do_train \
--do_eval \
--train_file ./squad_it_uncased/train-v1.1.json \
--predict_file ./squad_it_uncased/dev-v1.1.json \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir ./models/bert-base-italian-uncased-squad-it/ \
--per_gpu_eval_batch_size=3 \
--per_gpu_train_batch_size=3 \
--do_lower_case \
```
## Eval Results
| Metric | # Value |
| ------ | --------- |
| **EM** | **63.8** |
| **F1** | **75.30** |
## Comparison
| Model | EM | F1 score |
| -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- |
| [DrQA-it trained on SQuAD-it](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 |
| This one | **63.8** | **75.30** | | {"language": "it", "widget": [{"text": "Quando nacque D'Annunzio?", "context": "D'Annunzio nacque nel 1863"}]} | antoniocappiello/bert-base-italian-uncased-squad-it | null | [
"transformers",
"pytorch",
"question-answering",
"it",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | antonivlev/my-model | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers |
# Question answering model for Estonian
This is a question answering model based on XLM-Roberta base model. It is fine-tuned subsequentially on:
1. English SQuAD v1.1
2. SQuAD v1.1 translated into Estonian
3. Small native Estonian dataset (800 samples)
The model has retained good multilingual properties and can be used for extractive QA tasks in all languages included in XLM-Roberta. The performance is best in the fine-tuning languages of Estonian and English.
| Tested on | F1 | EM |
| ----------- | --- | --- |
| EstQA test set | 82.4 | 75.3 |
| SQuAD v1.1 dev set | 86.9 | 77.9 |
The Estonian dataset used for fine-tuning and validating results is available in https://huggingface.co/datasets/anukaver/EstQA/ (version 1.0) | {"tags": ["question-answering"], "datasets": ["squad", "anukaver/EstQA"]} | anukaver/xlm-roberta-est-qa | null | [
"transformers",
"pytorch",
"xlm-roberta",
"question-answering",
"dataset:squad",
"dataset:anukaver/EstQA",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
null | null | {} | anukr95/Hindi | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | anurag0077/distilbert-base-uncased-finetuned-squad | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | anurag0077/distilbert-base-uncased-finetuned-squad2 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | anurag0077/distilbert-base-uncased-finetuned-squad3 | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-as
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9068
- Wer: 0.6679
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 240
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 5.7027 | 21.05 | 400 | 3.4157 | 1.0 |
| 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 |
| 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 |
| 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 |
| 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 |
| 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 |
| 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 |
| 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 |
| 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 |
| 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 |
| 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-as"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে"
```
### Eval results on Common Voice 7 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 67 | 56.995 |
| {"language": ["as"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-as", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "as"}, "metrics": [{"type": "wer", "value": 56.995, "name": "Test WER"}, {"type": "cer", "value": 20.39, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-as | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"robust-speech-event",
"as",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Bulgarian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2473
- Wer: 0.3002
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1589 | 3.48 | 400 | 3.0830 | 1.0 |
| 2.8921 | 6.96 | 800 | 2.6605 | 0.9982 |
| 1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 |
| 1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 |
| 1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 |
| 0.999 | 20.87 | 2400 | 0.3541 | 0.4343 |
| 0.945 | 24.35 | 2800 | 0.3266 | 0.4132 |
| 0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 |
| 0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 |
| 0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 |
| 0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 |
| 0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 |
| 0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 |
| 0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "и надутият му ката блоонкурем взе да се събира"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 30.07 | 21.195 |
| {"language": ["bg"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Bulgarian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bg"}, "metrics": [{"type": "wer", "value": 21.195, "name": "Test WER"}, {"type": "cer", "value": 4.786, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 32.667, "name": "Test WER"}, {"type": "cer", "value": 12.452, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 31.03, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-bg | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"bg",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Hausa
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6094
- Wer: 0.5234
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 13
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9599 | 6.56 | 400 | 2.8650 | 1.0 |
| 2.7357 | 13.11 | 800 | 2.7377 | 0.9951 |
| 1.3012 | 19.67 | 1200 | 0.6686 | 0.7111 |
| 1.0454 | 26.23 | 1600 | 0.5686 | 0.6137 |
| 0.9069 | 32.79 | 2000 | 0.5576 | 0.5815 |
| 0.82 | 39.34 | 2400 | 0.5502 | 0.5591 |
| 0.7413 | 45.9 | 2800 | 0.5970 | 0.5586 |
| 0.6872 | 52.46 | 3200 | 0.5817 | 0.5428 |
| 0.634 | 59.02 | 3600 | 0.5636 | 0.5314 |
| 0.6022 | 65.57 | 4000 | 0.5780 | 0.5229 |
| 0.5705 | 72.13 | 4400 | 0.6036 | 0.5323 |
| 0.5408 | 78.69 | 4800 | 0.6119 | 0.5336 |
| 0.5225 | 85.25 | 5200 | 0.6105 | 0.5270 |
| 0.5265 | 91.8 | 5600 | 0.6034 | 0.5231 |
| 0.5154 | 98.36 | 6000 | 0.6094 | 0.5234 |
### Framework versions
- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "kakin hade ya ke da kyautar"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 47.821 | 36.295 | | {"language": ["ha"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Hausa", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ha"}, "metrics": [{"type": "wer", "value": 36.295, "name": "Test WER"}, {"type": "cer", "value": 11.073, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"ha",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4156
- Wer: 0.7181
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.7703 | 2.72 | 400 | 2.2274 | 0.9259 |
| 0.6515 | 5.44 | 800 | 1.5812 | 0.7581 |
| 0.339 | 8.16 | 1200 | 2.0590 | 0.7825 |
| 0.2262 | 10.88 | 1600 | 2.0324 | 0.7603 |
| 0.1665 | 13.6 | 2000 | 2.1396 | 0.7481 |
| 0.1311 | 16.33 | 2400 | 2.2090 | 0.7379 |
| 0.1079 | 19.05 | 2800 | 2.3907 | 0.7612 |
| 0.0927 | 21.77 | 3200 | 2.5294 | 0.7478 |
| 0.0748 | 24.49 | 3600 | 2.5024 | 0.7452 |
| 0.0644 | 27.21 | 4000 | 2.4715 | 0.7307 |
| 0.0569 | 29.93 | 4400 | 2.4156 | 0.7181 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi", "results": []}]} | anuragshas/wav2vec2-large-xls-r-300m-hi | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-mr
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5479
- Wer: 0.5740
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.7378 | 18.18 | 400 | 3.5047 | 1.0 |
| 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 |
| 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 |
| 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 |
| 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 |
| 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 |
| 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 |
| 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 |
| 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 |
| 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 |
| 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "या पानास लेखाचे स्वरूप यायला हावे"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 49.177 | 32.811 |
| {"language": ["mr"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-mr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mr"}, "metrics": [{"type": "wer", "value": 32.811, "name": "Test WER"}, {"type": "cer", "value": 7.692, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-mr | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"mr",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-or
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6618
- Wer: 0.5166
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 240
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.0493 | 23.53 | 400 | 2.9728 | 1.0 |
| 0.5306 | 47.06 | 800 | 1.2895 | 0.6138 |
| 0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 |
| 0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 |
| 0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 |
| 0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 |
| 0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 |
| 0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 |
| 0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 |
| 0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-or"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର"
```
### Eval results on Common Voice 7 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 51.92 | 47.186 |
| {"language": ["or"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-or", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "or"}, "metrics": [{"type": "wer", "value": 47.186, "name": "Test WER"}, {"type": "cer", "value": 11.82, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-or | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"robust-speech-event",
"hf-asr-leaderboard",
"or",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Punjabi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2548
- Wer: 0.5677
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 120
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.4804 | 16.65 | 400 | 1.8461 | 1.0 |
| 0.474 | 33.33 | 800 | 1.1018 | 0.6624 |
| 0.1389 | 49.98 | 1200 | 1.1918 | 0.6103 |
| 0.0919 | 66.65 | 1600 | 1.1889 | 0.6058 |
| 0.0657 | 83.33 | 2000 | 1.2266 | 0.5931 |
| 0.0479 | 99.98 | 2400 | 1.2512 | 0.5902 |
| 0.0355 | 116.65 | 2800 | 1.2548 | 0.5677 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ"
```
### Eval results on Common Voice 7 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 51.968 | 45.611 |
| {"language": ["pa"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 45.611, "name": "Test WER"}, {"type": "cer", "value": 15.584, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-pa-in | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"pa",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-ur-cv8
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1443
- Wer: 0.5677
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 3.6269 | 15.98 | 400 | 3.3246 | 1.0 |
| 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 |
| 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 |
| 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 |
| 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 |
| 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 |
| 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 |
| 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 |
| 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 |
| 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 |
| 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 |
| 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ur --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "اب نے ٹ پیس ان لیتے ہیں"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 52.146 | 42.376 | | {"language": ["ur"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ur-cv8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 42.376, "name": "Test WER"}, {"type": "cer", "value": 18.18, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"ur",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-ur
This model is a fine-tuned version of [anuragshas/wav2vec2-large-xls-r-300m-ur](https://huggingface.co/anuragshas/wav2vec2-large-xls-r-300m-ur) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0508
- Wer: 0.7328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 240
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.0719 | 66.67 | 400 | 1.8510 | 0.7432 |
| 0.0284 | 133.33 | 800 | 2.0088 | 0.7415 |
| 0.014 | 200.0 | 1200 | 2.0508 | 0.7328 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ur", "results": []}]} | anuragshas/wav2vec2-large-xls-r-300m-ur | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Dhivehi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "dv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Dhivehi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "dv", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\،\.\؟\–\'\’]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 55.68 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "dv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Dhivehi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice dv", "type": "common_voice", "args": "dv"}, "metrics": [{"type": "wer", "value": 55.68, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-dv | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"dv",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Sorbian, Upper
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sorbian, Upper using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Sorbian, Upper test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hsb", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 65.05 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "hsb", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Sorbian, Upper", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hsb", "type": "common_voice", "args": "hsb"}, "metrics": [{"type": "wer", "value": 65.05, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-hsb | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"hsb",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Interlingua
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ia", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Interlingua test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ia", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia")
model.to("cuda")
chars_to_ignore_regex = '[\.\,\!\?\-\"\:\;\'\“\”]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 22.08 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "ia", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Interlingua", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ia", "type": "common_voice", "args": "ia"}, "metrics": [{"type": "wer", "value": 22.08, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-ia | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ia",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Odia
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Odia test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "or", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 57.10 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Odia", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 57.1, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-odia | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"or",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Romansh Sursilv
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilv using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Romansh Sursilv test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "rm-sursilv", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 25.78 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "rm-sursilv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Sursilv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-sursilv", "type": "common_voice", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 25.78, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-rm-sursilv | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Romansh Vallader
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Vallader using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "rm-vallader", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Romansh Vallader test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "rm-vallader", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 32.89 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "rm-vallader", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Vallader", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-vallader", "type": "common_voice", "args": "rm-vallader"}, "metrics": [{"type": "wer", "value": 32.89, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-rm-vallader | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Sakha
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sah", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Sakha test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "sah", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 38.04 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "sah", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Sakha", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 38.04, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-sah | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"sah",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Telugu
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Telugu using the [OpenSLR SLR66](http://openslr.org/66/) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import pandas as pd
# Evaluation notebook contains the procedure to download the data
df = pd.read_csv("/content/te/test.tsv", sep="\t")
df["path"] = "/content/te/clips/" + df["path"]
test_dataset = Dataset.from_pandas(df)
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
```python
import torch
import torchaudio
from datasets import Dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from sklearn.model_selection import train_test_split
import pandas as pd
# Evaluation notebook contains the procedure to download the data
df = pd.read_csv("/content/te/test.tsv", sep="\t")
df["path"] = "/content/te/clips/" + df["path"]
test_dataset = Dataset.from_pandas(df)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def normalizer(text):
# Use your custom normalizer
text = text.replace("\\n","\n")
text = ' '.join(text.split())
text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE)
text = re.sub(r'''%'''," శాతం ", text)
text = re.sub(r'''(/|-|_)'''," ", text)
text = re.sub("ై","ై", text)
text = text.strip()
return text
def speech_file_to_array_fn(batch):
batch["sentence"] = normalizer(batch["sentence"])
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " "
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 44.98%
## Training
70% of the OpenSLR Telugu dataset was used for training.
Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv)
Test Split of annotations is [here](https://www.dropbox.com/s/qw1uy63oj4qdiu4/test.tsv)
Training Data Preparation notebook can be found [here](https://colab.research.google.com/drive/1_VR1QtY9qoiabyXBdJcOI29-xIKGdIzU?usp=sharing)
Training notebook can be found[here](https://colab.research.google.com/drive/14N-j4m0Ng_oktPEBN5wiUhDDbyrKYt8I?usp=sharing)
Evaluation notebook is [here](https://colab.research.google.com/drive/1SLEvbTWBwecIRTNqpQ0fFTqmr1-7MnSI?usp=sharing) | {"language": "te", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Telugu", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR te", "type": "openslr", "args": "te"}, "metrics": [{"type": "wer", "value": 44.98, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-telugu | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"te",
"dataset:openslr",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Vietnamese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 66.78 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "vi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Vietnamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice vi", "type": "common_voice", "args": "vi"}, "metrics": [{"type": "wer", "value": 66.78, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-53-vietnamese | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"vi",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Assamese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "as", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Assamese test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "as", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\”\\়\\।]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 69.63 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "as", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Assamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice as", "type": "common_voice", "args": "as"}, "metrics": [{"type": "wer", "value": 69.63, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-large-xlsr-as | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"as",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6780
- Wer: 0.3670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.514 | 2.07 | 400 | 1.4589 | 0.8531 |
| 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 |
| 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 |
| 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 |
| 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 |
| 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 |
| 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 |
| 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 |
| 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 |
| 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 |
| 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 |
| 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 |
| 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 |
| 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 |
| 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 |
| 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 |
| 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 |
| 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 |
| 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 |
| 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 |
| 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 |
| 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 |
| 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 |
| 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
| {"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]} | anuragshas/wav2vec2-xls-r-1b-hi-cv8 | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"hi",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-1B - Hindi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6921
- Wer: 0.3547
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 |
| 1.324 | 4.15 | 800 | 0.9311 | 0.7142 |
| 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 |
| 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 |
| 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 |
| 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 |
| 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 |
| 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 |
| 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 |
| 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 |
| 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 |
| 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 |
| 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 |
| 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 |
| 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 |
| 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 |
| 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 |
| 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 |
| 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 |
| 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 |
| 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 |
| 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 |
| 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 |
| 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "तुम्हारे पास तीन महीने बचे हैं"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 26.209 | 15.899 |
| {"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-1B - Hindi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 15.899, "name": "Test WER"}, {"type": "cer", "value": 5.83, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-xls-r-1b-hi-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"hi",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-1b-hi-cv7
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5878
- Wer: 0.3419
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.9859 | 2.72 | 400 | 1.1663 | 0.7948 |
| 1.2969 | 5.44 | 800 | 0.7725 | 0.6562 |
| 1.1954 | 8.16 | 1200 | 0.5940 | 0.4904 |
| 1.164 | 10.88 | 1600 | 0.5338 | 0.4316 |
| 1.1464 | 13.6 | 2000 | 0.5432 | 0.4226 |
| 1.1553 | 16.33 | 2400 | 0.5471 | 0.4260 |
| 1.0985 | 19.05 | 2800 | 0.5290 | 0.4076 |
| 1.0421 | 21.77 | 3200 | 0.5672 | 0.4181 |
| 0.9831 | 24.49 | 3600 | 0.5741 | 0.4141 |
| 0.9827 | 27.21 | 4000 | 0.5754 | 0.4179 |
| 0.9669 | 29.93 | 4400 | 0.5310 | 0.3889 |
| 0.9496 | 32.65 | 4800 | 0.5649 | 0.4062 |
| 0.9112 | 35.37 | 5200 | 0.5738 | 0.3926 |
| 0.8838 | 38.1 | 5600 | 0.5232 | 0.3768 |
| 0.8666 | 40.81 | 6000 | 0.5510 | 0.3852 |
| 0.8366 | 43.54 | 6400 | 0.5436 | 0.3837 |
| 0.7957 | 46.26 | 6800 | 0.5337 | 0.3775 |
| 0.7834 | 48.98 | 7200 | 0.5611 | 0.3844 |
| 0.7685 | 51.7 | 7600 | 0.5710 | 0.4008 |
| 0.7431 | 54.42 | 8000 | 0.5636 | 0.3726 |
| 0.7353 | 57.14 | 8400 | 0.5937 | 0.3836 |
| 0.7001 | 59.86 | 8800 | 0.5815 | 0.3858 |
| 0.6799 | 62.58 | 9200 | 0.5862 | 0.3696 |
| 0.6459 | 65.31 | 9600 | 0.6181 | 0.3762 |
| 0.6121 | 68.03 | 10000 | 0.5637 | 0.3590 |
| 0.5942 | 70.75 | 10400 | 0.6374 | 0.3882 |
| 0.5769 | 73.47 | 10800 | 0.6015 | 0.3640 |
| 0.5689 | 76.19 | 11200 | 0.5669 | 0.3508 |
| 0.5461 | 78.91 | 11600 | 0.5967 | 0.3621 |
| 0.5286 | 81.63 | 12000 | 0.5840 | 0.3605 |
| 0.5057 | 84.35 | 12400 | 0.5848 | 0.3489 |
| 0.482 | 87.07 | 12800 | 0.5860 | 0.3488 |
| 0.4655 | 89.79 | 13200 | 0.5780 | 0.3453 |
| 0.4523 | 92.52 | 13600 | 0.6150 | 0.3532 |
| 0.4422 | 95.24 | 14000 | 0.5930 | 0.3452 |
| 0.4436 | 97.96 | 14400 | 0.5867 | 0.3428 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi --dataset mozilla-foundation/common_voice_7_0 --config hi --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-1b-hi"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "hi", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "तुम्हारे पास तीन महीने बचे हैं"
```
### Eval results on Common Voice 7 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 28.942 | 18.504 | | {"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xls-r-1b-hi-cv7", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 18.504, "name": "Test WER"}, {"type": "cer", "value": 6.655, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-xls-r-1b-hi | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_7_0",
"robust-speech-event",
"hi",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Latvian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1660
- Wer: 0.1705
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.489 | 2.56 | 400 | 3.3590 | 1.0 |
| 2.9903 | 5.13 | 800 | 2.9704 | 1.0001 |
| 1.6712 | 7.69 | 1200 | 0.6179 | 0.6566 |
| 1.2635 | 10.26 | 1600 | 0.3176 | 0.4531 |
| 1.0819 | 12.82 | 2000 | 0.2517 | 0.3508 |
| 1.0136 | 15.38 | 2400 | 0.2257 | 0.3124 |
| 0.9625 | 17.95 | 2800 | 0.1975 | 0.2311 |
| 0.901 | 20.51 | 3200 | 0.1986 | 0.2097 |
| 0.8842 | 23.08 | 3600 | 0.1904 | 0.2039 |
| 0.8542 | 25.64 | 4000 | 0.1847 | 0.1981 |
| 0.8244 | 28.21 | 4400 | 0.1805 | 0.1847 |
| 0.7689 | 30.77 | 4800 | 0.1736 | 0.1832 |
| 0.7825 | 33.33 | 5200 | 0.1698 | 0.1821 |
| 0.7817 | 35.9 | 5600 | 0.1758 | 0.1803 |
| 0.7488 | 38.46 | 6000 | 0.1663 | 0.1760 |
| 0.7171 | 41.03 | 6400 | 0.1636 | 0.1721 |
| 0.7222 | 43.59 | 6800 | 0.1663 | 0.1729 |
| 0.7156 | 46.15 | 7200 | 0.1633 | 0.1715 |
| 0.7121 | 48.72 | 7600 | 0.1666 | 0.1718 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "domāju ka viņam viss labi"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 16.997 | 9.633 |
| {"language": ["lv"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Latvian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "lv"}, "metrics": [{"type": "wer", "value": 9.633, "name": "Test WER"}, {"type": "cer", "value": 2.614, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "lv"}, "metrics": [{"type": "wer", "value": 36.11, "name": "Test WER"}, {"type": "cer", "value": 14.244, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "lv"}, "metrics": [{"type": "wer", "value": 44.12, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"lv",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6693
- Wer: 0.5921
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 500.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 4.9504 | 18.18 | 400 | 4.6730 | 1.0 |
| 3.3766 | 36.36 | 800 | 3.3464 | 1.0 |
| 3.1128 | 54.55 | 1200 | 3.0177 | 0.9980 |
| 1.7966 | 72.73 | 1600 | 0.8733 | 0.8039 |
| 1.4085 | 90.91 | 2000 | 0.5555 | 0.6458 |
| 1.1731 | 109.09 | 2400 | 0.4930 | 0.6438 |
| 1.0271 | 127.27 | 2800 | 0.4780 | 0.6093 |
| 0.9045 | 145.45 | 3200 | 0.4647 | 0.6578 |
| 0.807 | 163.64 | 3600 | 0.4505 | 0.5925 |
| 0.741 | 181.82 | 4000 | 0.4746 | 0.6025 |
| 0.6706 | 200.0 | 4400 | 0.5004 | 0.5844 |
| 0.6186 | 218.18 | 4800 | 0.4984 | 0.5997 |
| 0.5508 | 236.36 | 5200 | 0.5298 | 0.5636 |
| 0.5123 | 254.55 | 5600 | 0.5410 | 0.5110 |
| 0.4623 | 272.73 | 6000 | 0.5591 | 0.5383 |
| 0.4281 | 290.91 | 6400 | 0.5775 | 0.5600 |
| 0.4045 | 309.09 | 6800 | 0.5924 | 0.5580 |
| 0.3651 | 327.27 | 7200 | 0.5671 | 0.5684 |
| 0.343 | 345.45 | 7600 | 0.6083 | 0.5945 |
| 0.3085 | 363.64 | 8000 | 0.6243 | 0.5728 |
| 0.2941 | 381.82 | 8400 | 0.6245 | 0.5580 |
| 0.2735 | 400.0 | 8800 | 0.6458 | 0.5804 |
| 0.262 | 418.18 | 9200 | 0.6566 | 0.5824 |
| 0.2578 | 436.36 | 9600 | 0.6558 | 0.5965 |
| 0.2388 | 454.55 | 10000 | 0.6598 | 0.5993 |
| 0.2328 | 472.73 | 10400 | 0.6700 | 0.6041 |
| 0.2286 | 490.91 | 10800 | 0.6684 | 0.5957 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
| {"language": ["mr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]} | anuragshas/wav2vec2-xls-r-300m-mr-cv8-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"mr",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Maltese
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1895
- Wer: 0.1984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.4219 | 3.6 | 400 | 3.3127 | 1.0 |
| 3.0399 | 7.21 | 800 | 3.0330 | 1.0 |
| 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 |
| 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 |
| 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 |
| 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 |
| 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 |
| 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 |
| 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 |
| 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 |
| 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 |
| 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 |
| 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 |
| 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 |
| 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 |
| 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "għadu jilagħbu ċirku tant bilfondi"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 19.853 | 15.967 | | {"language": ["mt"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Maltese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mt"}, "metrics": [{"type": "wer", "value": 15.967, "name": "Test WER"}, {"type": "cer", "value": 3.657, "name": "Test CER"}]}]}]} | anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"robust-speech-event",
"hf-asr-leaderboard",
"mt",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6864
- Wer: 0.6707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 200.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.3322 | 14.81 | 400 | 3.7450 | 1.0 |
| 3.2662 | 29.63 | 800 | 3.2571 | 0.9996 |
| 1.6408 | 44.44 | 1200 | 0.9098 | 0.8162 |
| 1.2289 | 59.26 | 1600 | 0.6757 | 0.7099 |
| 1.0551 | 74.07 | 2000 | 0.6417 | 0.7044 |
| 0.966 | 88.89 | 2400 | 0.6365 | 0.6789 |
| 0.8713 | 103.7 | 2800 | 0.6617 | 0.6954 |
| 0.8055 | 118.52 | 3200 | 0.6371 | 0.6762 |
| 0.7489 | 133.33 | 3600 | 0.6798 | 0.6911 |
| 0.7073 | 148.15 | 4000 | 0.6567 | 0.6731 |
| 0.6609 | 162.96 | 4400 | 0.6742 | 0.6840 |
| 0.6435 | 177.78 | 4800 | 0.6862 | 0.6633 |
| 0.6282 | 192.59 | 5200 | 0.6865 | 0.6731 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
| {"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]} | anuragshas/wav2vec2-xls-r-300m-pa-IN-cv8-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"mozilla-foundation/common_voice_8_0",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Slovak
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3067
- Wer: 0.2678
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.175 | 2.41 | 400 | 4.6909 | 1.0 |
| 3.3785 | 4.82 | 800 | 3.3080 | 1.0 |
| 2.6964 | 7.23 | 1200 | 2.0651 | 1.1055 |
| 1.3008 | 9.64 | 1600 | 0.5845 | 0.6207 |
| 1.1185 | 12.05 | 2000 | 0.4195 | 0.4193 |
| 1.0252 | 14.46 | 2400 | 0.3824 | 0.3570 |
| 0.935 | 16.87 | 2800 | 0.3693 | 0.3462 |
| 0.8818 | 19.28 | 3200 | 0.3587 | 0.3318 |
| 0.8534 | 21.69 | 3600 | 0.3420 | 0.3180 |
| 0.8137 | 24.1 | 4000 | 0.3426 | 0.3130 |
| 0.7968 | 26.51 | 4400 | 0.3349 | 0.3102 |
| 0.7558 | 28.92 | 4800 | 0.3216 | 0.3019 |
| 0.7313 | 31.33 | 5200 | 0.3451 | 0.3060 |
| 0.7358 | 33.73 | 5600 | 0.3272 | 0.2967 |
| 0.718 | 36.14 | 6000 | 0.3315 | 0.2882 |
| 0.6991 | 38.55 | 6400 | 0.3299 | 0.2830 |
| 0.6529 | 40.96 | 6800 | 0.3140 | 0.2836 |
| 0.6225 | 43.37 | 7200 | 0.3128 | 0.2751 |
| 0.633 | 45.78 | 7600 | 0.3211 | 0.2774 |
| 0.5876 | 48.19 | 8000 | 0.3162 | 0.2764 |
| 0.588 | 50.6 | 8400 | 0.3082 | 0.2722 |
| 0.5915 | 53.01 | 8800 | 0.3120 | 0.2681 |
| 0.5798 | 55.42 | 9200 | 0.3133 | 0.2709 |
| 0.5736 | 57.83 | 9600 | 0.3086 | 0.2676 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => ""
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 26.707 | 18.609 | | {"language": ["sk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Slovak", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sk"}, "metrics": [{"type": "wer", "value": 18.609, "name": "Test WER"}, {"type": "cer", "value": 5.488, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sk"}, "metrics": [{"type": "wer", "value": 40.548, "name": "Test WER"}, {"type": "cer", "value": 17.733, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sk"}, "metrics": [{"type": "wer", "value": 44.1, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"sk",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# XLS-R-300M - Slovenian
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2578
- Wer: 0.2273
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1829 | 4.88 | 400 | 3.1228 | 1.0 |
| 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 |
| 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 |
| 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 |
| 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 |
| 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 |
| 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 |
| 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 |
| 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 |
| 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 |
| 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 |
| 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => "zmago je divje od letel s helikopterjem visoko vzrak"
```
### Eval results on Common Voice 8 "test" (WER):
| Without LM | With LM (run `./eval.py`) |
|---|---|
| 19.938 | 12.736 | | {"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Slovenian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 12.736, "name": "Test WER"}, {"type": "cer", "value": 3.605, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 45.587, "name": "Test WER"}, {"type": "cer", "value": 20.886, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 45.42, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"hf-asr-leaderboard",
"mozilla-foundation/common_voice_8_0",
"robust-speech-event",
"sl",
"dataset:mozilla-foundation/common_voice_8_0",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | {} | anuragshas/wav2vec2-xls-r-300m-ta-cv8 | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Punjabi
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Punjabi test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pa-IN", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\'\…]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 58.05 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa-IN", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 58.05, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-xlsr-53-pa-in | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-rm-vallader-with-lm
This model is a fine-tuned version of [anuragshas/wav2vec2-large-xlsr-53-rm-vallader](https://huggingface.co/anuragshas/wav2vec2-large-xlsr-53-rm-vallader) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4552
- Wer: 0.3206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.112
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2379 | 3.12 | 100 | 0.4041 | 0.3396 |
| 0.103 | 6.25 | 200 | 0.4400 | 0.3337 |
| 0.0664 | 9.38 | 300 | 0.4239 | 0.3315 |
| 0.0578 | 12.5 | 400 | 0.4303 | 0.3267 |
| 0.0446 | 15.62 | 500 | 0.4575 | 0.3274 |
| 0.041 | 18.75 | 600 | 0.4451 | 0.3223 |
| 0.0402 | 21.88 | 700 | 0.4507 | 0.3206 |
| 0.0374 | 25.0 | 800 | 0.4649 | 0.3208 |
| 0.0371 | 28.12 | 900 | 0.4552 | 0.3206 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xlsr-53-rm-vallader-with-lm", "results": []}]} | anuragshas/wav2vec2-xlsr-53-rm-vallader-with-lm | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
automatic-speech-recognition | transformers | # Wav2Vec2-Large-XLSR-53-Tamil
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Tamil test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ta", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 71.87 %
## Training
The Common Voice `train` and `validation` datasets were used for training. | {"language": "ta", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Tamil", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ta", "type": "common_voice", "args": "ta"}, "metrics": [{"type": "wer", "value": 71.87, "name": "Test WER"}]}]}]} | anuragshas/wav2vec2-xlsr-53-tamil | null | [
"transformers",
"pytorch",
"jax",
"wav2vec2",
"automatic-speech-recognition",
"audio",
"speech",
"xlsr-fine-tuning-week",
"ta",
"dataset:common_voice",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text2text-generation | transformers | {} | anusha/t5-base-finetuned-wikiSQL-sql-to-en | null | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text2text-generation | transformers | {} | anusha/t5-base-finetuned-wikiSQL-sql-to-en_1 | null | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text2text-generation | transformers | {} | anusha/t5-base-finetuned-wikiSQL-sql-to-en_15i | null | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | anushakamath/wav2vec2-xls-r-300m-hindi | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
automatic-speech-recognition | transformers | {} | anushakamath/wav2vec2-xls-r-300m-punjabi-in | null | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | anushakamath/wav2vec2-xls-r-300m-punjabi | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
null | null | {} | anvaldesg/distilbert-base-uncased-finetuned-squad | null | [
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
text-generation | transformers |
# Chandler DialoGPT Model | {"tags": ["conversational"]} | anweasha/DialoGPT-small-Chandler | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-generation | transformers |
# Jake Peralta DialoGPT Model | {"tags": ["conversational"]} | anweasha/DialoGPT-small-Jake | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
text-classification | transformers | {} | any0019/text_style_classifier | null | [
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | {} | any0019/text_style_mlm_negative | null | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | {} | any0019/text_style_mlm_positive | null | [
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
translation | transformers |
## [google/t5-v1_1-small](google/t5-v1_1-small) model
### pretrained on [anzorq/kbd-ru-1.67M-temp](https://huggingface.co/datasets/anzorq/kbd-ru-1.67M-temp)
### fine-tuned on **17753** Russian-Kabardian word/sentence pairs
kbd text uses custom latin script for optimization reasons.
Translation input should start with '**ru->kbd:** '.
**Tokenizer**: T5 sentencepiece, char, cased. | {"language": ["ru", "kbd"], "tags": ["translation"], "datasets": ["anzorq/kbd-ru-1.67M-temp", "17753 Russian-Kabardian pairs of text"], "widget": [{"text": "ru->kbd: \u042f \u0438\u0434\u0443 \u0434\u043e\u043c\u043e\u0439.", "example_title": "\u042f \u0438\u0434\u0443 \u0434\u043e\u043c\u043e\u0439."}, {"text": "ru->kbd: \u0414\u0435\u0442\u0438 \u0438\u0433\u0440\u0430\u044e\u0442 \u0432\u043e \u0434\u0432\u043e\u0440\u0435.", "example_title": "\u0414\u0435\u0442\u0438 \u0438\u0433\u0440\u0430\u044e\u0442 \u0432\u043e \u0434\u0432\u043e\u0440\u0435."}, {"text": "ru->kbd: \u0421\u043a\u043e\u043b\u044c\u043a\u043e \u0442\u0435\u0431\u0435 \u043b\u0435\u0442?", "example_title": "\u0421\u043a\u043e\u043b\u044c\u043a\u043e \u0442\u0435\u0431\u0435 \u043b\u0435\u0442?"}]} | anzorq/t5-v1_1-small-ru_kbd-cased | null | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"translation",
"ru",
"kbd",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
fill-mask | transformers | # BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)
BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).
## Training the model
```bash
python run_language_modeling.py
--model_type bert
--model_name_or_path google/bert_uncased_L-10_H-512_A-8
--do_train
--train_data_file {cord19-200616-dataset}
--mlm
--mlm_probability 0.2
--line_by_line
--block_size 512
--per_device_train_batch_size 10
--learning_rate 3e-5
--num_train_epochs 2
--output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
| {} | aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"arxiv:1908.08962",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
question-answering | transformers |
# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0
BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), [fine-tuned for MLM](https://huggingface.co/aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616) on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.
## Training the model
```bash
python run_squad.py
--model_type bert
--model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616
--train_file 'train-v2.0.json'
--predict_file 'dev-v2.0.json'
--do_train
--do_eval
--do_lower_case
--version_2_with_negative
--max_seq_length 384
--per_gpu_train_batch_size 10
--learning_rate 3e-5
--num_train_epochs 2
--output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
| {"datasets": ["squad_v2"]} | aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"dataset:squad_v2",
"arxiv:1908.08962",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
question-answering | transformers | {} | aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-10_H-512_A-8_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-10_H-512_A-8_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | {} | aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-128_A-2_cord19-200616_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-128_A-2_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-128_A-2_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | # BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16)
BERT model with [2 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-2_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).
## Training the model
```bash
python run_language_modeling.py
--model_type bert
--model_name_or_path google/bert_uncased_L-2_H-512_A-8
--do_train
--train_data_file {cord19-200616-dataset}
--mlm
--mlm_probability 0.2
--line_by_line
--block_size 512
--per_device_train_batch_size 20
--learning_rate 3e-5
--num_train_epochs 2
--output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
| {} | aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"arxiv:1908.08962",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-512_A-8_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-2_H-512_A-8_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | # BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16)
BERT model with [4 Transformer layers and hidden embedding of size 256](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).
## Training the model
```bash
python run_language_modeling.py
--model_type bert
--model_name_or_path google/bert_uncased_L-4_H-256_A-4
--do_train
--train_data_file {cord19-200616-dataset}
--mlm
--mlm_probability 0.2
--line_by_line
--block_size 256
--per_device_train_batch_size 20
--learning_rate 3e-5
--num_train_epochs 2
--output_dir bert_uncased_L-4_H-256_A-4_cord19-200616
| {} | aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"arxiv:1908.08962",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-256_A-4_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-256_A-4_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | {} | aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-512_A-8_cord19-200616_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-512_A-8_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-512_A-8_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
fill-mask | transformers | {} | aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616_squad2 | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
|
question-answering | transformers | {} | aodiniz/bert_uncased_L-4_H-768_A-12_cord19-200616_squad2_covid-qna | null | [
"transformers",
"pytorch",
"jax",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
]
| null | 2022-03-02T23:29:05+00:00 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.