Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
question-answering
transformers
{}
aodiniz/bert_uncased_L-4_H-768_A-12_squad2
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
aodiniz/bert_uncased_L-4_H-768_A-12_squad2_covid-qna
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616_squad2
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
aodiniz/bert_uncased_L-6_H-128_A-2_cord19-200616_squad2_covid-qna
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
aodiniz/bert_uncased_L-6_H-128_A-2_squad2
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
aodiniz/bert_uncased_L-6_H-128_A-2_squad2_covid-qna
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Building a HuggingFace Transformer NLP Model ## Running this Repo
{}
aogara/slai_transformer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
aorona/dickens
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
aoryabinin/aoryabinin_gpt_ai_dungeon_ru
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-new-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "model-index": [{"name": "my-new-model", "results": []}]}
aozorahime/my-new-model
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
apeguero/wav2vec2-large-xls-r-300m-tr-colab-3
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
apeguero/wav2vec2-large-xls-r-300m-tr-colab2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
aphuongle95/xlnet_effect_partial_new
null
[ "transformers", "pytorch", "xlnet", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Aladdin Bot
{"tags": ["conversational"]}
aplnestrella/Aladdin-Bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-to-image
transformers
## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png" width="200"> * [Technical Report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) * [Demo](https://huggingface.co/spaces/flax-community/dalle-mini) ### Model Description This is an attempt to replicate OpenAI's [DALL·E](https://openai.com/blog/dall-e/), a model capable of generating arbitrary images from a text prompt that describes the desired result. ![DALL·E mini demo screenshot](img/demo_screenshot.png) This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on [BART](https://arxiv.org/abs/1910.13461). The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a [VQGAN model](https://compvis.github.io/taming-transformers/). The model definition we use for the encoder can be downloaded from our [Github repo](https://github.com/borisdayma/dalle-mini). The encoder is represented by the class `CustomFlaxBartForConditionalGeneration`. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, [flax-community/vqgan_f16_16384](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our [github repo](https://github.com/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb). For your convenience, you can open it in Google Colaboratory: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb) If you just want to test the trained model and see what it comes up with, please visit [our demo](https://huggingface.co/spaces/flax-community/dalle-mini), available in 🤗 Spaces. ### Additional Details Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
{"language": ["en"], "pipeline_tag": "text-to-image", "inference": false}
apol/dalle-mini
null
[ "transformers", "jax", "bart", "text2text-generation", "text-to-image", "en", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
hello
{}
apoorvumang/kgt5-test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
This is a t5-small model trained from scratch on WikiKG90Mv2 dataset. Please see https://github.com/apoorvumang/kgt5/ for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/entity.csv and relation.csv). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. We achieve 0.22 validation MRR (the full leaderboard is here https://ogb.stanford.edu/docs/lsc/leaderboards/#wikikg90mv2) You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv ([email protected]) for clarifications/details. --------- ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("apoorvumang/kgt5-wikikg90mv2") model = AutoModelForSeq2SeqLM.from_pretrained("apoorvumang/kgt5-wikikg90mv2") ``` ``` import torch def getScores(ids, scores, pad_token_id): """get sequence scores from model.generate output""" scores = torch.stack(scores, dim=1) log_probs = torch.log_softmax(scores, dim=2) # remove start token ids = ids[:,1:] # gather needed probs x = ids.unsqueeze(-1).expand(log_probs.shape) needed_logits = torch.gather(log_probs, 2, x) final_logits = needed_logits[:, :, 0] padded_mask = (ids == pad_token_id) final_logits[padded_mask] = 0 final_scores = final_logits.sum(dim=-1) return final_scores.cpu().detach().numpy() def topkSample(input, model, tokenizer, num_samples=5, num_beams=1, max_output_length=30): tokenized = tokenizer(input, return_tensors="pt") out = model.generate(**tokenized, do_sample=True, num_return_sequences = num_samples, num_beams = num_beams, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, output_scores = True, return_dict_in_generate=True, max_length=max_output_length,) out_tokens = out.sequences out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) out_scores = getScores(out_tokens, out.scores, tokenizer.pad_token_id) pair_list = [(x[0], x[1]) for x in zip(out_str, out_scores)] sorted_pair_list = sorted(pair_list, key=lambda x:x[1], reverse=True) return sorted_pair_list def greedyPredict(input, model, tokenizer): input_ids = tokenizer([input], return_tensors="pt").input_ids out_tokens = model.generate(input_ids) out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) return out_str[0] ``` ``` # an example from validation set that the model predicts correctly # you can try your own examples here. what's your noble title? input = "Sophie Valdemarsdottir| noble title" out = topkSample(input, model, tokenizer, num_samples=5) out ``` You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here https://storage.googleapis.com/kgt5-wikikg90mv2/ent_alias_list.pickle) (relation file: https://storage.googleapis.com/kgt5-wikikg90mv2/rel_alias_list.pickle) The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times). ``` # download valid.txt. you can also try same url with test.txt. however test does not contain the correct tails !wget https://storage.googleapis.com/kgt5-wikikg90mv2/valid.txt ``` ``` fname = 'valid.txt' valid_lines = [] f = open(fname) for line in f: valid_lines.append(line.rstrip()) f.close() print(valid_lines[0]) ``` ``` from tqdm.auto import tqdm # try unfiltered hits@k. this is approximation since model can sample same seq multiple times # you should run this on gpu if you want to evaluate on all points with 300 samples each k = 1 count_at_k = 0 max_predictions = k max_points = 1000 for line in tqdm(valid_lines[:max_points]): input, target = line.split('\t') model_output = topkSample(input, model, tokenizer, num_samples=max_predictions) prediction_strings = [x[0] for x in model_output] if target in prediction_strings: count_at_k += 1 print('Hits at {0} unfiltered: {1}'.format(k, count_at_k/max_points)) ```
{"license": "mit", "widget": [{"text": "Apoorv Umang Saxena| family name", "example_title": "Family name prediction"}, {"text": "Apoorv Saxena| country", "example_title": "Country prediction"}, {"text": "World War 2| followed by", "example_title": "followed by"}]}
apoorvumang/kgt5-wikikg90mv2
null
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
1
{}
app-test-user/test-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
appleternity/bert-base-uncased-finetuned-coda19
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
appleternity/scibert-uncased-finetuned-coda19
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
aqj213/t5-base-customised-1k-tokens-pisa-state-only-finetuned
null
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
aqj213/t5-base-pisa-state-only-finetuned
null
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
aqj213/t5-small-pisa-state-only-finetuned
null
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
aqj213/t5-v1_1-large-last-1-step-pisa-state-only-finetuned
null
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
aqj213/t5-v1_1-large-pisa-state-only-finetuned
null
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# DialoGPT-medium-simpsons This is a version of [DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) fine-tuned on The Simpsons scripts.
{"tags": ["conversational"]}
arampacha/DialoGPT-medium-simpsons
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
zero-shot-image-classification
transformers
{}
arampacha/clip-rsicd-v5
null
[ "transformers", "pytorch", "jax", "clip", "zero-shot-image-classification", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Chech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays # Note: this models is trained ignoring accents on letters as below def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('[äá]'), 'a', batch['sentence']) batch["sentence"] = re.sub(re.compile('[öó]'), 'o', batch['sentence']) batch["sentence"] = re.sub(re.compile('[èé]'), 'e', batch['sentence']) batch["sentence"] = re.sub(re.compile("[ïí]"), 'i', batch['sentence']) batch["sentence"] = re.sub(re.compile("[üů]"), 'u', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.56 ## Training The Common Voice `train`, `validation`. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
{"language": "cs", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "metrics": "wer", "dataset": "common_voice", "model-index": [{"name": "Czech XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cs", "type": "common_voice", "args": "cs"}, "metrics": [{"type": "wer", "value": 24.56, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-large-xlsr-czech
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) and sample of [M-AILABS Ukrainian Corpus](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "uk", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays and normalize charecters def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(re.compile("['`]"), '’', batch['sentence']) batch["sentence"] = re.sub(re.compile(chars_to_ignore_regex), '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('i'), 'і', batch['sentence']) batch["sentence"] = re.sub(re.compile('o'), 'о', batch['sentence']) batch["sentence"] = re.sub(re.compile('a'), 'а', batch['sentence']) batch["sentence"] = re.sub(re.compile('ы'), 'и', batch['sentence']) batch["sentence"] = re.sub(re.compile("–"), '', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 29.89 ## Training The Common Voice `train`, `validation` and the M-AILABS Ukrainian corpus. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
{"language": "uk", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "metrics": "wer", "dataset": "common_voice", "model-index": [{"name": "Ukrainian XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "common_voice", "args": "uk"}, "metrics": [{"type": "wer", "value": 29.89, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-large-xlsr-ukrainian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "uk", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: **0.4521** - Wer: **0.5141** - Cer: **0.1100** - Wer+LM: **0.2756** - Cer+LM: **0.0866** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: tristage - lr_scheduler_ratios: [0.1, 0.4, 0.5] - training_steps: 1400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 6.1298 | 19.87 | 100 | 3.1204 | 1.0 | 1.0 | | 2.7269 | 39.87 | 200 | 0.6200 | 0.7592 | 0.1755 | | 1.4643 | 59.87 | 300 | 0.4796 | 0.5921 | 0.1277 | | 1.1242 | 79.87 | 400 | 0.4637 | 0.5359 | 0.1145 | | 0.9592 | 99.87 | 500 | 0.4521 | 0.5141 | 0.1100 | | 0.8704 | 119.87 | 600 | 0.4736 | 0.4914 | 0.1045 | | 0.7908 | 139.87 | 700 | 0.5394 | 0.5250 | 0.1124 | | 0.7049 | 159.87 | 800 | 0.4822 | 0.4754 | 0.0985 | | 0.6299 | 179.87 | 900 | 0.4890 | 0.4809 | 0.1028 | | 0.5832 | 199.87 | 1000 | 0.5233 | 0.4813 | 0.1028 | | 0.5145 | 219.87 | 1100 | 0.5350 | 0.4781 | 0.0994 | | 0.4604 | 239.87 | 1200 | 0.5223 | 0.4715 | 0.0984 | | 0.4226 | 259.87 | 1300 | 0.5167 | 0.4625 | 0.0953 | | 0.3946 | 279.87 | 1400 | 0.5248 | 0.4614 | 0.0950 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 0.2755659640905542, "name": "WER LM"}, {"type": "cer", "value": 0.08659585230146687, "name": "CER LM"}]}]}]}
arampacha/wav2vec2-xls-r-1b-hy-cv
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_4/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1693 - Wer: 0.2373 - Cer: 0.0429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.255 | 7.24 | 500 | 0.2978 | 0.4294 | 0.0758 | | 1.0058 | 14.49 | 1000 | 0.1883 | 0.2838 | 0.0483 | | 0.9371 | 21.73 | 1500 | 0.1813 | 0.2627 | 0.0457 | | 0.8999 | 28.98 | 2000 | 0.1693 | 0.2373 | 0.0429 | | 0.8814 | 36.23 | 2500 | 0.1760 | 0.2420 | 0.0435 | | 0.8364 | 43.47 | 3000 | 0.1765 | 0.2416 | 0.0419 | | 0.8019 | 50.72 | 3500 | 0.1758 | 0.2311 | 0.0398 | | 0.7665 | 57.96 | 4000 | 0.1745 | 0.2240 | 0.0399 | | 0.7376 | 65.22 | 4500 | 0.1717 | 0.2190 | 0.0385 | | 0.716 | 72.46 | 5000 | 0.1700 | 0.2147 | 0.0382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hy", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 10.811865729898516, "name": "WER LM"}, {"type": "cer", "value": 2.2205361659079412, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hy"}, "metrics": [{"type": "wer", "value": 18.219363037089988, "name": "Test WER"}, {"type": "cer", "value": 7.075988867335752, "name": "Test CER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-hy
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hy", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["ka"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-ka", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ka", "type": "mozilla-foundation/common_voice_8_0", "args": "ka"}, "metrics": [{"type": "wer", "value": 7.39778066580026, "name": "WER LM"}, {"type": "cer", "value": 1.1882089427096434, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ka"}, "metrics": [{"type": "wer", "value": 22.61, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ka"}, "metrics": [{"type": "wer", "value": 21.58, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-ka
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.1747 - Wer: 0.2107 - Cer: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.3719 | 4.35 | 500 | 0.3389 | 0.4236 | 0.0833 | | 1.1361 | 8.7 | 1000 | 0.2309 | 0.3162 | 0.0630 | | 1.0517 | 13.04 | 1500 | 0.2166 | 0.3056 | 0.0597 | | 1.0118 | 17.39 | 2000 | 0.2141 | 0.2784 | 0.0557 | | 0.9922 | 21.74 | 2500 | 0.2231 | 0.2941 | 0.0594 | | 0.9929 | 26.09 | 3000 | 0.2171 | 0.2892 | 0.0587 | | 0.9485 | 30.43 | 3500 | 0.2236 | 0.2956 | 0.0599 | | 0.9573 | 34.78 | 4000 | 0.2314 | 0.3043 | 0.0616 | | 0.9195 | 39.13 | 4500 | 0.2169 | 0.2812 | 0.0580 | | 0.8915 | 43.48 | 5000 | 0.2109 | 0.2780 | 0.0560 | | 0.8449 | 47.83 | 5500 | 0.2050 | 0.2534 | 0.0514 | | 0.8028 | 52.17 | 6000 | 0.2032 | 0.2456 | 0.0492 | | 0.7881 | 56.52 | 6500 | 0.1890 | 0.2380 | 0.0469 | | 0.7423 | 60.87 | 7000 | 0.1816 | 0.2245 | 0.0442 | | 0.7248 | 65.22 | 7500 | 0.1789 | 0.2165 | 0.0422 | | 0.6993 | 69.57 | 8000 | 0.1747 | 0.2107 | 0.0408 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "mozilla-foundation/common_voice_8_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 12.246920571994902, "name": "WER LM"}, {"type": "cer", "value": 2.513653497966816, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 46.56, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 35.98, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-uk-cv
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1752 - Cer: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 | | 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 | | 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 | | 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 | | 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 | | 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 | | 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 | | 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 | | 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 | | 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 | | 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 | | 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 | | 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 | | 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 | | 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 | | 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 | | 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 | | 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 | | 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 | | 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 | | 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 | | 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 | | 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 | | 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "mozilla-foundation/common_voice_8_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 10.406342913776015, "name": "WER LM"}, {"type": "cer", "value": 2.0387492208601703, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 40.57, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 28.95, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-uk
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: 0.5891 - Wer: 0.6569 **Note**: If you aim for best performance use [this model](https://huggingface.co/arampacha/wav2vec2-xls-r-300m-hy). It is trained using noizy student procedure and achieves considerably better results. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.167 | 16.67 | 100 | 3.5599 | 1.0 | | 3.2645 | 33.33 | 200 | 3.1771 | 1.0 | | 3.1509 | 50.0 | 300 | 3.1321 | 1.0 | | 3.0757 | 66.67 | 400 | 2.8594 | 1.0 | | 2.5274 | 83.33 | 500 | 1.5286 | 0.9797 | | 1.6826 | 100.0 | 600 | 0.8058 | 0.7974 | | 1.2868 | 116.67 | 700 | 0.6713 | 0.7279 | | 1.1262 | 133.33 | 800 | 0.6308 | 0.7034 | | 1.0408 | 150.0 | 900 | 0.6056 | 0.6745 | | 0.9617 | 166.67 | 1000 | 0.5891 | 0.6569 | | 0.9196 | 183.33 | 1100 | 0.5913 | 0.6432 | | 0.8853 | 200.0 | 1200 | 0.5924 | 0.6347 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hy-AM"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
arampacha/wav2vec2-xls-r-300m-hy-cv
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_3/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 - Wer: 0.3333 - Cer: 0.0602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.1471 | 7.02 | 400 | 3.1599 | 1.0 | 1.0 | | 1.8691 | 14.04 | 800 | 0.7674 | 0.7361 | 0.1686 | | 1.3227 | 21.05 | 1200 | 0.3849 | 0.5336 | 0.1007 | | 1.163 | 28.07 | 1600 | 0.3015 | 0.4559 | 0.0823 | | 1.0768 | 35.09 | 2000 | 0.2721 | 0.4032 | 0.0728 | | 1.0224 | 42.11 | 2400 | 0.2586 | 0.3825 | 0.0691 | | 0.9817 | 49.12 | 2800 | 0.2458 | 0.3653 | 0.0653 | | 0.941 | 56.14 | 3200 | 0.2306 | 0.3388 | 0.0605 | | 0.9235 | 63.16 | 3600 | 0.2315 | 0.3380 | 0.0615 | | 0.9141 | 70.18 | 4000 | 0.2293 | 0.3333 | 0.0602 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-hy", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 13.192818110850899, "name": "WER LM"}, {"type": "cer", "value": 2.787051087506323, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hy"}, "metrics": [{"type": "wer", "value": 22.246048764990867, "name": "Test WER"}, {"type": "cer", "value": 7.59406739840239, "name": "Test CER"}]}]}]}
arampacha/wav2vec2-xls-r-300m-hy
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
arampacha/wav2vec2-xls-r-300m-ka
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
{}
aravind-812/roberta-train-json
null
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
arawat/pegasus-custom-xsum
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arch-raven/ahsg
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
archifarmer/9film
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#HourAI bot based on DialoGPT
{"tags": ["conversational"]}
archmagos/HourAI
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Mini-Me
{"tags": ["conversational"]}
ardatasc/miniMe-version1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ardatasc/myself
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/mbart-large-cc25-finetuned-en-to-ro-fp16False
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/mbart-large-cc25-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/opus-mt-en-ro-finetuned-en-to-ro-epoch.175-fp16False-batch16
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/opus-mt-en-ro-finetuned-en-to-ro-epoch.25-fp16False-batch4
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/opus-mt-en-ro-finetuned-en-to-ro-epoch.25-fp16False-batch8
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/opus-mt-en-ro-finetuned-en-to-ro-epoch.5-fp16False-batch8
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/opus-mt-en-ro-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/opus-mt-en-ro-finetuned-en-to-ro_fp16False_batch8
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro-batch8
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20-input_64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4335 - Bleu: 8.6652 - Gen Len: 18.2596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6351 | 1.0 | 7629 | 1.4335 | 8.6652 | 18.2596 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-dataset_20-input_64", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 8.6652, "name": "Bleu"}]}]}]}
aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Bleu: 7.3293 - Gen Len: 18.2556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6029 | 1.0 | 7629 | 1.4052 | 7.3293 | 18.2556 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-dataset_20", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.3293, "name": "Bleu"}]}]}]}
aretw0/t5-small-finetuned-en-to-ro-dataset_20
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-epoch.04375 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4137 - Bleu: 7.3292 - Gen Len: 18.2541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.04375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6211 | 0.04 | 1669 | 1.4137 | 7.3292 | 18.2541 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-epoch.04375", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.3292, "name": "Bleu"}]}]}]}
aretw0/t5-small-finetuned-en-to-ro-epoch.04375
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro-epoch.175
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro-fp16False-batch16-epoch.021875
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro-fp16False-batch16-epoch.175
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro-fp16False-batch8
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro-fp16False
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aretw0/t5-small-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arev/translationtest
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
hello
{}
argv947059/example-based-ner-bert
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ari9dam/tablerow2text-prt-openweb
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# citizenlab/distilbert-base-multilingual-cased-toxicity This is multilingual Distil-Bert model sequence classifier trained based on [JIGSAW Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) dataset. ## How to use it ```python from transformers import pipeline model_path = "citizenlab/distilbert-base-multilingual-cased-toxicity" toxicity_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) toxicity_classifier("this is a lovely message") > [{'label': 'not_toxic', 'score': 0.9954179525375366}] toxicity_classifier("you are an idiot and you and your family should go back to your country") > [{'label': 'toxic', 'score': 0.9948776960372925}] ``` ## Evaluation ### Accuracy ``` Accuracy Score = 0.9425 F1 Score (Micro) = 0.9450549450549449 F1 Score (Macro) = 0.8491432341169309 ```
{"language": ["en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af"], "datasets": ["jigsaw_toxicity_pred"], "metrics": ["F1 Accuracy"], "pipeline_type": "text-classification", "widget": [{"text": "this is a lovely message", "example_title": "Example 1", "multi_class": false}, {"text": "you are an idiot and you and your family should go back to your country", "example_title": "Example 2", "multi_class": false}]}
citizenlab/distilbert-base-multilingual-cased-toxicity
null
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af", "dataset:jigsaw_toxicity_pred", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7751 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.315 | 1.0 | 318 | 3.3087 | 0.74 | | 2.6371 | 2.0 | 636 | 1.8833 | 0.8381 | | 1.5388 | 3.0 | 954 | 1.1547 | 0.8929 | | 1.0076 | 4.0 | 1272 | 0.8590 | 0.9071 | | 0.79 | 5.0 | 1590 | 0.7751 | 0.9113 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9112903225806451, "name": "Accuracy"}]}]}]}
arianpasquali/distilbert-base-uncased-finetuned-clinc
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned This is multilingual XLM-Roberta model sequence classifier fine tunned and based on [Cardiff NLP Group](cardiffnlp/twitter-roberta-base-sentiment) sentiment classification model. ## How to use it ```python from transformers import pipeline model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned" sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) sentiment_classifier("this is a lovely message") > [{'label': 'Positive', 'score': 0.9918450713157654}] sentiment_classifier("you are an idiot and you and your family should go back to your country") > [{'label': 'Negative', 'score': 0.9849833846092224}] ``` ## Evaluation ``` precision recall f1-score support Negative 0.57 0.14 0.23 28 Neutral 0.78 0.94 0.86 132 Positive 0.89 0.80 0.85 51 accuracy 0.80 211 macro avg 0.75 0.63 0.64 211 weighted avg 0.78 0.80 0.77 211 ```
{"language": ["en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af"], "datasets": ["jigsaw_toxicity_pred"], "metrics": ["F1 Accuracy"], "pipeline_type": "text-classification", "widget": [{"text": "this is a lovely message", "example_title": "Example 1", "multi_class": false}, {"text": "you are an idiot and you and your family should go back to your country", "example_title": "Example 2", "multi_class": false}]}
citizenlab/twitter-xlm-roberta-base-sentiment-finetunned
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af", "dataset:jigsaw_toxicity_pred", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arie5555/distilbert-base-uncased-finetuned-mnli
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
arifbhrn/DialogGPT-small-Rickk
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
{"language": "Bengali", "license": "cc-by-sa-4.0", "tags": ["bn", "audio", "automatic-speech-recognition", "speech"], "datasets": ["OpenSLR"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Bengali by Arijit", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR", "type": "OpenSLR", "args": "ben"}, "metrics": [{"type": "wer", "value": 32.45, "name": "Test WER"}]}]}]}
arijitx/wav2vec2-large-xlsr-bengali
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "bn", "audio", "speech", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from [AI4Bharat IndicCorp](https://indicnlp.ai4bharat.org/corpora/) dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event. - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
{"language": ["bn"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event"], "datasets": ["openslr", "SLR53", "AI4Bharat/IndicCorp"], "metrics": ["wer", "cer"], "model-index": [{"name": "arijitx/wav2vec2-xls-r-300m-bengali", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Open SLR", "type": "openslr", "args": "SLR53"}, "metrics": [{"type": "wer", "value": 0.21726385291857586, "name": "Test WER"}, {"type": "cer", "value": 0.04725010353701041, "name": "Test CER"}, {"type": "wer", "value": 0.15322879016421437, "name": "Test WER with lm"}, {"type": "cer", "value": 0.03413696666806267, "name": "Test CER with lm"}]}]}]}
arijitx/wav2vec2-xls-r-300m-bengali
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event", "dataset:openslr", "dataset:SLR53", "dataset:AI4Bharat/IndicCorp", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
aripo99/dummy_model
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aristotletan/albert-base-v2-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-xsum This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the wsj_markets dataset. It achieves the following results on the evaluation set: - Loss: 0.8497 - Rouge1: 15.3934 - Rouge2: 7.0378 - Rougel: 13.9522 - Rougelsum: 14.3541 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.0964 | 1.0 | 1735 | 0.9365 | 18.703 | 12.7539 | 18.1293 | 18.5397 | 20.0 | | 0.95 | 2.0 | 3470 | 0.8871 | 19.5223 | 13.0938 | 18.9148 | 18.8363 | 20.0 | | 0.8687 | 3.0 | 5205 | 0.8587 | 15.0915 | 7.142 | 13.6693 | 14.5975 | 20.0 | | 0.7989 | 4.0 | 6940 | 0.8569 | 18.243 | 11.4495 | 17.4326 | 17.489 | 20.0 | | 0.7493 | 5.0 | 8675 | 0.8497 | 15.3934 | 7.0378 | 13.9522 | 14.3541 | 20.0 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.10.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["wsj_markets"], "metrics": ["rouge"], "model_index": [{"name": "bart-large-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "wsj_markets", "type": "wsj_markets", "args": "default"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 15.3934}}]}]}
aristotletan/bart-large-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:wsj_markets", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aristotletan/electra-base-discriminator-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sst2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the scim dataset. It achieves the following results on the evaluation set: - Loss: 0.4632 - Accuracy: 0.9111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 90 | 2.0273 | 0.6667 | | No log | 2.0 | 180 | 0.8802 | 0.8556 | | No log | 3.0 | 270 | 0.5908 | 0.8889 | | No log | 4.0 | 360 | 0.4632 | 0.9111 | | No log | 5.0 | 450 | 0.4294 | 0.9111 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["scim"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-finetuned-sst2", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "scim", "type": "scim", "args": "eod"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9111111111111111}}]}]}
aristotletan/roberta-base-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:scim", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
aristotletan/sc-distilbert
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
aristotletan/scim-distillbert
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
aristotletan/scim-distilroberta
null
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aristotletan/t5-base-finetuned-wsj
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aristotletan/t5-large-finetuned-wsj
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wsj_markets dataset. It achieves the following results on the evaluation set: - Loss: 1.1447 - Rouge1: 10.4492 - Rouge2: 3.9563 - Rougel: 9.3368 - Rougelsum: 9.9828 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.2742 | 1.0 | 868 | 1.3135 | 9.4644 | 2.618 | 8.4048 | 8.9764 | 19.0 | | 1.4607 | 2.0 | 1736 | 1.2134 | 9.6327 | 3.8535 | 9.0703 | 9.2466 | 19.0 | | 1.3579 | 3.0 | 2604 | 1.1684 | 10.1616 | 3.5498 | 9.2294 | 9.4507 | 19.0 | | 1.3314 | 4.0 | 3472 | 1.1514 | 10.0621 | 3.6907 | 9.1635 | 9.4955 | 19.0 | | 1.3084 | 5.0 | 4340 | 1.1447 | 10.4492 | 3.9563 | 9.3368 | 9.9828 | 19.0 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.10.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wsj_markets"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "wsj_markets", "type": "wsj_markets", "args": "default"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 10.4492}}]}]}
aristotletan/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wsj_markets", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15892673 ## Validation Metrics - Loss: 1.3661842346191406 - Rouge1: 50.8868 - Rouge2: 26.996 - RougeL: 42.9088 - RougeLsum: 46.6748 - Gen Len: 20.716 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/arjun3816/autonlp-pegas_large_samsum-15892673 ```
{"language": "unk", "tags": "autonlp", "datasets": ["arjun3816/autonlp-data-pegas_large_samsum"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
arjun3816/autonlp-pegas_large_samsum-15892673
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:arjun3816/autonlp-data-pegas_large_samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15492651 ## Validation Metrics - Loss: 1.4060134887695312 - Rouge1: 50.9953 - Rouge2: 35.9204 - RougeL: 43.5673 - RougeLsum: 46.445 - Gen Len: 58.0193 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/arjun3816/autonlp-sam_summarization1-15492651 ```
{"language": "unk", "tags": "autonlp", "datasets": ["arjun3816/autonlp-data-sam_summarization1"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
arjun3816/autonlp-sam_summarization1-15492651
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:arjun3816/autonlp-data-sam_summarization1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Noise2Recon > **Noise2Recon: A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising**\ > Arjun Desai, Batu Ozturkler, Christopher Sandino, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\ > https://arxiv.org/abs/2110.00075 This repository contains the artifacts for the Noise2Recon paper. To use our code and artifacts in your research, please use the [Meddlr](https://github.com/ad12/meddlr) package.
{"language": "en", "license": "apache-2.0", "tags": ["mri", "reconstruction", "denoising"]}
arjundd/noise2recon-release
null
[ "mri", "reconstruction", "denoising", "en", "arxiv:2110.00075", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "apache-2.0"}
arjundd/skm-tea-models
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# VORTEX <div align="center"> <img src="https://drive.google.com/uc?export=view&id=1q0jAm6Kg5ZhRg3h0w0ZbtIgcRF3_-Vgb" alt="Vortex Schematic" width="700px" /> </div> > **VORTEX: Physics-Driven Data Augmentations for Consistency Training for Robust Accelerated MRI Reconstruction**\ > Arjun Desai, Beliz Gunel, Batu Ozturkler, Harris Beg, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\ > https://arxiv.org/abs/2111.02549 This repository contains the artifacts for the VORTEX paper. To use our code and artifacts in your research, please use the [Meddlr](https://github.com/ad12/meddlr) package.
{"language": "en", "license": "apache-2.0", "tags": ["mri", "reconstruction", "artifact correction"]}
arjundd/vortex-release
null
[ "mri", "reconstruction", "artifact correction", "en", "arxiv:2111.02549", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arjunsanchala/wav2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
arjunth2001/priv_ftc
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
arjunth2001/priv_qna
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
arjunth2001/priv_sum
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-sentiment-2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5882 - Accuracy: 0.7614 - F1: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-multilingual-cased-sentiment-2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "en"}, "metrics": [{"type": "accuracy", "value": 0.7614, "name": "Accuracy"}, {"type": "f1", "value": 0.7614, "name": "F1"}]}]}]}
arjuntheprogrammer/distilbert-base-multilingual-cased-sentiment-2
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arjunusha/zeena
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arjunv786/a-fancy-model-name
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arklemmer/fridayplay
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arkosark/t5-small-finetuned-xsum
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
arkothiwala/test-pegasus-finetuned-news
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
BERTweet-FA: A pre-trained language model for Persian (a.k.a Farsi) Tweets --- BERTweet-FA is a transformer-based model trained on 20665964 Persian tweets. The model has been trained on the data only for 1 epoch (322906 steps), and yet it has the ability to recognize the meaning of most of the conversational sentences used in Farsi. Note that the architecture of this model follows the original BERT [[Devlin et al.](https://arxiv.org/abs/1810.04805)]. How to use the Model --- ```python from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained('arm-on/BERTweet-FA') tokenizer = BertTokenizer.from_pretrained('arm-on/BERTweet-FA') fill_sentence = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_sentence('اینجا جمله مورد نظر خود را بنویسید و کلمه موردنظر را [MASK] کنید') ``` The Training Data --- The first version of the model was trained on the "[Large Scale Colloquial Persian Dataset](https://iasbs.ac.ir/~ansari/lscp/)" containing more than 20 million tweets in Farsi, gathered by Khojasteh et al., and published on 2020. Evaluation --- | Training Loss | Epoch | Step | |:-------------:|:-----:|:-----:| | 0.0036 | 1.0 | 322906 | Contributors --- - Arman Malekzadeh [[Github](https://github.com/arm-on)]
{"language": "fa", "license": "apache-2.0", "tags": ["BERTweet"], "widget": [{"text": "\u0627\u06cc\u0646 \u0628\u0648\u062f [MASK] \u0647\u0627\u06cc \u0645\u0627\u061f"}, {"text": "\u062f\u0627\u062f\u0627\u0686 \u062f\u0627\u0631\u06cc [MASK] \u0645\u06cc\u0632\u0646\u06cc"}, {"text": "\u0628\u0647 \u0639\u0644\u06cc [MASK] \u0645\u06cc\u06af\u0641\u062a\u0646 \u062c\u0627\u062f\u0648\u06af\u0631"}, {"text": "\u0622\u062e\u0647 \u0645\u062d\u0633\u0646 [MASK] \u0647\u0645 \u0634\u062f \u062e\u0648\u0627\u0646\u0646\u062f\u0647\u061f"}, {"text": "\u067e\u0633\u0631 \u0639\u062c\u0628 [MASK] \u0632\u062f"}], "model-index": [{"name": "BERTweet-FA", "results": []}]}
arm-on/BERTweet-FA
null
[ "transformers", "pytorch", "bert", "fill-mask", "BERTweet", "fa", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00