pipeline_tag
stringclasses 48
values | library_name
stringclasses 198
values | text
stringlengths 1
900k
| metadata
stringlengths 2
438k
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
text-generation | transformers | # Lovelace Medium Alpha1
550M parameter Transformer-XL style model trained on 100B tokens of The Pile!
This model was originally trained for the "Direct Prefrence Heads" paper, but will also be used as the basis for much of my future research.
All code used to train and run these models is available here: https://github.com/Avelina9X/memory-transformer-pt4
## Model Architecture
| Name | Value |
| --- | --- |
| Total Parameters | 551M |
| Non-Embedding Parameters | 512M |
| Vocab Size | 50272 |
| \\(d_\text{vocab}\\) | 768 |
| \\(d_\text{model}\\) | 1536 |
| \\(n_\text{layers}\\) | 18 |
| FFN Activation | SwiGLU |
| \\(d_\text{ffn}\\) | 4096 |
| Attention Type | Full |
| Positon Embedding | Reversed RoPE with ABF |
| \\(n_\text{heads}\\) | 24 |
| \\(d_\text{key}\\) | 64 |
| Trained Context | 2048 |
| Trained Memory | 2048 |
| Max Inference Context | 4096 |
## Model Collection
| Model | Link |
| --- | --- |
| Pre-Trained Model | [lovelace-medium-alpha1](https://huggingface.co/Avelina/lovelace-medium-alpha1) |
| Fine-Tuned Model | lovelace-medium-alpha1-instruct |
| DPH Aligned Model | lovelace-medium-alpha1-instruct-hf |
| DPH Aligned Model (Multiple Heads) | lovelace-medium-alpha1-instruct-hf-multihead | | {"language": ["en"], "license": "bsd-3-clause", "library_name": "transformers", "datasets": ["EleutherAI/pile"]} | Avelina/lovelace-medium-alpha1 | null | [
"transformers",
"safetensors",
"lsw_transformer",
"text-generation",
"en",
"dataset:EleutherAI/pile",
"license:bsd-3-clause",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T12:43:00+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #lsw_transformer #text-generation #en #dataset-EleutherAI/pile #license-bsd-3-clause #autotrain_compatible #endpoints_compatible #region-us
| Lovelace Medium Alpha1
======================
550M parameter Transformer-XL style model trained on 100B tokens of The Pile!
This model was originally trained for the "Direct Prefrence Heads" paper, but will also be used as the basis for much of my future research.
All code used to train and run these models is available here: URL
Model Architecture
------------------
Model Collection
----------------
| [] | [
"TAGS\n#transformers #safetensors #lsw_transformer #text-generation #en #dataset-EleutherAI/pile #license-bsd-3-clause #autotrain_compatible #endpoints_compatible #region-us \n"
] |
summarization | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-multinews
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4152
- Rouge1: 14.6798
- Rouge2: 5.2044
- Rougel: 11.2346
- Rougelsum: 12.9794
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.8162 | 1.0 | 506 | 2.4807 | 14.5888 | 4.9839 | 11.0896 | 12.9 | 20.0 |
| 2.6122 | 2.0 | 1012 | 2.4371 | 14.9075 | 5.3211 | 11.2711 | 13.1998 | 20.0 |
| 2.518 | 3.0 | 1518 | 2.4141 | 14.8607 | 5.2903 | 11.332 | 13.1363 | 20.0 |
| 2.4585 | 4.0 | 2024 | 2.4246 | 14.7346 | 5.2263 | 11.2281 | 13.0277 | 20.0 |
| 2.4206 | 5.0 | 2530 | 2.4152 | 14.6798 | 5.2044 | 11.2346 | 12.9794 | 20.0 |
### Framework versions
- Transformers 4.40.1
- Pytorch 1.13.1+cu117
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "apache-2.0", "metrics": ["rouge"], "base_model": "facebook/bart-base", "pipeline_tag": "summarization", "model-index": [{"name": "bart-base-finetuned-multinews", "results": []}]} | Vexemous/bart-base-finetuned-multinews | null | [
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"summarization",
"base_model:facebook/bart-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T12:43:15+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #bart #text2text-generation #summarization #base_model-facebook/bart-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bart-base-finetuned-multinews
=============================
This model is a fine-tuned version of facebook/bart-base on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 2.4152
* Rouge1: 14.6798
* Rouge2: 5.2044
* Rougel: 11.2346
* Rougelsum: 12.9794
* Gen Len: 20.0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.1
* Pytorch 1.13.1+cu117
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 1.13.1+cu117\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #bart #text2text-generation #summarization #base_model-facebook/bart-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 1.13.1+cu117\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BV_symbols_model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9177
- Accuracy: 0.8697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.6848 | 0.9892 | 69 | 1.4784 | 0.7017 |
| 1.1065 | 1.9928 | 139 | 1.0834 | 0.8167 |
| 0.9403 | 2.9677 | 207 | 0.9177 | 0.8697 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "BV_symbols_model", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train[:30%]", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.8697214734950584, "name": "Accuracy"}]}]}]} | diegozambrana/BV_symbols_model | null | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T12:44:40+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| BV\_symbols\_model
==================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9177
* Accuracy: 0.8697
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.2.dev0 | {"library_name": "peft", "base_model": "openlm-research/open_llama_3b_v2"} | yiyic/llama3b-text-ent-lora-clf-epoch-3 | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:openlm-research/open_llama_3b_v2",
"region:us"
] | null | 2024-04-26T12:44:46+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-openlm-research/open_llama_3b_v2 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.7.2.dev0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.2.dev0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-openlm-research/open_llama_3b_v2 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.2.dev0"
] |
null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V0424HMA19
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0672
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4874 | 0.09 | 10 | 0.1448 |
| 0.1419 | 0.18 | 20 | 0.1072 |
| 0.1008 | 0.27 | 30 | 0.0774 |
| 0.0902 | 0.36 | 40 | 0.0720 |
| 0.0783 | 0.45 | 50 | 0.0760 |
| 0.0854 | 0.54 | 60 | 0.0870 |
| 0.09 | 0.63 | 70 | 0.0816 |
| 0.0853 | 0.73 | 80 | 0.0755 |
| 0.0815 | 0.82 | 90 | 0.0723 |
| 0.083 | 0.91 | 100 | 0.0683 |
| 0.0817 | 1.0 | 110 | 0.0645 |
| 0.0536 | 1.09 | 120 | 0.0760 |
| 0.0673 | 1.18 | 130 | 0.0727 |
| 0.0618 | 1.27 | 140 | 0.0666 |
| 0.06 | 1.36 | 150 | 0.0729 |
| 0.07 | 1.45 | 160 | 0.0656 |
| 0.0597 | 1.54 | 170 | 0.0744 |
| 0.0663 | 1.63 | 180 | 0.0637 |
| 0.0578 | 1.72 | 190 | 0.0623 |
| 0.0653 | 1.81 | 200 | 0.0632 |
| 0.0595 | 1.9 | 210 | 0.0694 |
| 0.0528 | 1.99 | 220 | 0.0606 |
| 0.0396 | 2.08 | 230 | 0.0618 |
| 0.0348 | 2.18 | 240 | 0.0713 |
| 0.0349 | 2.27 | 250 | 0.0672 |
| 0.0335 | 2.36 | 260 | 0.0655 |
| 0.0352 | 2.45 | 270 | 0.0655 |
| 0.0318 | 2.54 | 280 | 0.0679 |
| 0.0301 | 2.63 | 290 | 0.0691 |
| 0.0313 | 2.72 | 300 | 0.0681 |
| 0.0332 | 2.81 | 310 | 0.0674 |
| 0.0326 | 2.9 | 320 | 0.0673 |
| 0.0343 | 2.99 | 330 | 0.0672 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/phi-2", "model-index": [{"name": "V0424HMA19", "results": []}]} | Litzy619/V0424HMA19 | null | [
"safetensors",
"generated_from_trainer",
"base_model:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-04-26T12:44:48+00:00 | [] | [] | TAGS
#safetensors #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us
| V0424HMA19
==========
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0672
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 16
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine\_with\_restarts
* lr\_scheduler\_warmup\_steps: 60
* num\_epochs: 3
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.36.0.dev0
* Pytorch 2.1.2+cu121
* Datasets 2.14.6
* Tokenizers 0.14.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 60\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1"
] | [
"TAGS\n#safetensors #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 60\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1"
] |
null | null |
# UVMap-ID: A Controllable and Personalized UV Map Generative Model
[Paper](https://arxiv.org/abs/2404.14568) | {"license": "apache-2.0"} | Jichaozhang/UVMap-ID | null | [
"arxiv:2404.14568",
"license:apache-2.0",
"region:us"
] | null | 2024-04-26T12:45:30+00:00 | [
"2404.14568"
] | [] | TAGS
#arxiv-2404.14568 #license-apache-2.0 #region-us
|
# UVMap-ID: A Controllable and Personalized UV Map Generative Model
Paper | [
"# UVMap-ID: A Controllable and Personalized UV Map Generative Model\nPaper"
] | [
"TAGS\n#arxiv-2404.14568 #license-apache-2.0 #region-us \n",
"# UVMap-ID: A Controllable and Personalized UV Map Generative Model\nPaper"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_14_1024_cross_entropy
This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-14m", "model-index": [{"name": "virus_pythia_14_1024_cross_entropy", "results": []}]} | Hack90/virus_pythia_14_1024_cross_entropy | null | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-14m",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T12:45:39+00:00 | [] | [] | TAGS
#transformers #safetensors #gpt_neox #text-generation #generated_from_trainer #base_model-EleutherAI/pythia-14m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# virus_pythia_14_1024_cross_entropy
This model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| [
"# virus_pythia_14_1024_cross_entropy\n\nThis model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 80\n- eval_batch_size: 80\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 10\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #safetensors #gpt_neox #text-generation #generated_from_trainer #base_model-EleutherAI/pythia-14m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# virus_pythia_14_1024_cross_entropy\n\nThis model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 80\n- eval_batch_size: 80\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 10\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-2
This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-1b", "model-index": [{"name": "robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-2", "results": []}]} | AlignmentResearch/robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-2 | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-1b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T12:46:27+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-2
This model is a fine-tuned version of EleutherAI/pythia-1b on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-1b on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-2\n\nThis model is a fine-tuned version of EleutherAI/pythia-1b on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 2\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
text-generation | transformers | 
LostMagic-RP_8B Version 0.42624
Uncensored, Creative, Immersive, Role Play AI
Settings:
```
Prompt Format Chat or Chat Instruct (Silly Tavern Default):
System Message Here
User: input
Bot:
```
Parameters:
```json
{"max_context_length", 8192},
{"max_length", 120},
{"rep_pen", 1.03},
{"rep_pen_slope", 0.70},
{"rep_pen_range", 320},
{"temperature", 1.25},
{"tfs", 1.0},
{"top_a", 0},
{"top_k", 0},
{"top_p", 1.0},
{"min_p", 0.1},
{"typical", 1.0},
{"presence_penalty", 0},
{"mirostat", 0},
{"mirostat_tau", 5},
{"mirostat_eta", 0.1},
``` | {"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers", "tags": ["roleplay", "uncensored", "lewd", "mature", "not-for-all-audiences", "Llama 3", "8b"], "pipeline_tag": "text-generation"} | Dunjeon/lostmagic-RP-GGUF | null | [
"transformers",
"roleplay",
"uncensored",
"lewd",
"mature",
"not-for-all-audiences",
"Llama 3",
"8b",
"text-generation",
"en",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T12:46:47+00:00 | [] | [
"en"
] | TAGS
#transformers #roleplay #uncensored #lewd #mature #not-for-all-audiences #Llama 3 #8b #text-generation #en #license-cc-by-nc-4.0 #endpoints_compatible #region-us
| !image/png
LostMagic-RP_8B Version 0.42624
Uncensored, Creative, Immersive, Role Play AI
Settings:
Parameters:
| [] | [
"TAGS\n#transformers #roleplay #uncensored #lewd #mature #not-for-all-audiences #Llama 3 #8b #text-generation #en #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-410m_mz-131f_PasswordMatch
This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-410m", "model-index": [{"name": "robust_llm_pythia-410m_mz-131f_PasswordMatch", "results": []}]} | AlignmentResearch/robust_llm_pythia-410m_mz-131f_PasswordMatch | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-410m",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T12:49:02+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-410m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# robust_llm_pythia-410m_mz-131f_PasswordMatch
This model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# robust_llm_pythia-410m_mz-131f_PasswordMatch\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-410m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# robust_llm_pythia-410m_mz-131f_PasswordMatch\n\nThis model is a fine-tuned version of EleutherAI/pythia-410m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-70m_mz-131f_IMDB
This model is a fine-tuned version of [EleutherAI/pythia-70m](https://huggingface.co/EleutherAI/pythia-70m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-70m", "model-index": [{"name": "robust_llm_pythia-70m_mz-131f_IMDB", "results": []}]} | AlignmentResearch/robust_llm_pythia-70m_mz-131f_IMDB | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-70m",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T12:49:36+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-70m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# robust_llm_pythia-70m_mz-131f_IMDB
This model is a fine-tuned version of EleutherAI/pythia-70m on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# robust_llm_pythia-70m_mz-131f_IMDB\n\nThis model is a fine-tuned version of EleutherAI/pythia-70m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-70m #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# robust_llm_pythia-70m_mz-131f_IMDB\n\nThis model is a fine-tuned version of EleutherAI/pythia-70m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V0424HMA20
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8142 | 0.09 | 10 | 0.3516 |
| 0.1881 | 0.18 | 20 | 0.1201 |
| 0.1155 | 0.27 | 30 | 0.0873 |
| 0.0936 | 0.36 | 40 | 0.0807 |
| 0.0868 | 0.45 | 50 | 0.0851 |
| 0.0884 | 0.54 | 60 | 0.0797 |
| 0.0825 | 0.63 | 70 | 0.0671 |
| 0.0726 | 0.73 | 80 | 0.0749 |
| 0.0803 | 0.82 | 90 | 0.0740 |
| 0.0796 | 0.91 | 100 | 0.0675 |
| 0.0722 | 1.0 | 110 | 0.0688 |
| 0.0639 | 1.09 | 120 | 0.0634 |
| 0.0642 | 1.18 | 130 | 0.0750 |
| 0.0638 | 1.27 | 140 | 0.0678 |
| 0.0628 | 1.36 | 150 | 0.0673 |
| 0.0645 | 1.45 | 160 | 0.0682 |
| 0.0575 | 1.54 | 170 | 0.0695 |
| 0.0635 | 1.63 | 180 | 0.0652 |
| 0.0534 | 1.72 | 190 | 0.0661 |
| 0.0682 | 1.81 | 200 | 0.0620 |
| 0.0551 | 1.9 | 210 | 0.0655 |
| 0.0539 | 1.99 | 220 | 0.0631 |
| 0.0342 | 2.08 | 230 | 0.0705 |
| 0.0331 | 2.18 | 240 | 0.0829 |
| 0.0313 | 2.27 | 250 | 0.0669 |
| 0.0286 | 2.36 | 260 | 0.0698 |
| 0.0324 | 2.45 | 270 | 0.0721 |
| 0.0288 | 2.54 | 280 | 0.0713 |
| 0.0294 | 2.63 | 290 | 0.0700 |
| 0.0322 | 2.72 | 300 | 0.0682 |
| 0.0313 | 2.81 | 310 | 0.0675 |
| 0.029 | 2.9 | 320 | 0.0676 |
| 0.0359 | 2.99 | 330 | 0.0675 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "microsoft/phi-2", "model-index": [{"name": "V0424HMA20", "results": []}]} | Litzy619/V0424HMA20 | null | [
"safetensors",
"generated_from_trainer",
"base_model:microsoft/phi-2",
"license:mit",
"region:us"
] | null | 2024-04-26T12:50:12+00:00 | [] | [] | TAGS
#safetensors #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us
| V0424HMA20
==========
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0675
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 16
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine\_with\_restarts
* lr\_scheduler\_warmup\_steps: 60
* num\_epochs: 3
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.36.0.dev0
* Pytorch 2.1.2+cu121
* Datasets 2.14.6
* Tokenizers 0.14.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 60\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1"
] | [
"TAGS\n#safetensors #generated_from_trainer #base_model-microsoft/phi-2 #license-mit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 60\n* num\\_epochs: 3\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.14.1"
] |
text-generation | transformers | The tnayaj-8B model is an innovative open-source language model specifically engineered for the biomedical domain. Crafted by Jayant AI Labs, this model harnesses state-of-the-art methodologies to achieve unparalleled performance across various biomedical tasks.
🏥 Specialization in medicine: tnayaj-8B caters to the intricate linguistic and informational demands of the medical and life sciences realms. Its refinement stems from extensive training on a comprehensive biomedical dataset, enabling precise and articulate text generation within the domain.
🎓 Exceptional Performance: Boasting a staggering 8 billion parameters 🧠 Advanced Training Methodologies: tnayaj-8B builds upon the foundational prowess of the Meta-Llama-3-8B-Instruct .It integrates the DPO dataset and a tailored array of medical instruction data for refinement. Central to its training regimen are meticulously curated components, including:
---
license: apache-2.0
--- | {"license": "apache-2.0"} | Jayant9928/tnayajv2.0 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T12:51:16+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| The tnayaj-8B model is an innovative open-source language model specifically engineered for the biomedical domain. Crafted by Jayant AI Labs, this model harnesses state-of-the-art methodologies to achieve unparalleled performance across various biomedical tasks.
Specialization in medicine: tnayaj-8B caters to the intricate linguistic and informational demands of the medical and life sciences realms. Its refinement stems from extensive training on a comprehensive biomedical dataset, enabling precise and articulate text generation within the domain.
Exceptional Performance: Boasting a staggering 8 billion parameters Advanced Training Methodologies: tnayaj-8B builds upon the foundational prowess of the Meta-Llama-3-8B-Instruct .It integrates the DPO dataset and a tailored array of medical instruction data for refinement. Central to its training regimen are meticulously curated components, including:
---
license: apache-2.0
--- | [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/meta-llama-Meta-Llama-3-8B-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "meta-llama/Meta-Llama-3-8B"} | PrunaAI/meta-llama-Meta-Llama-3-8B-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pruna-ai",
"base_model:meta-llama/Meta-Llama-3-8B",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-26T12:54:46+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #pruna-ai #base_model-meta-llama/Meta-Llama-3-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #base_model-meta-llama/Meta-Llama-3-8B #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo meta-llama/Meta-Llama-3-8B installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model meta-llama/Meta-Llama-3-8B before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# virus_pythia_14_1024_headless
This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-14m", "model-index": [{"name": "virus_pythia_14_1024_headless", "results": []}]} | Hack90/virus_pythia_14_1024_headless | null | [
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"generated_from_trainer",
"base_model:EleutherAI/pythia-14m",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T12:57:23+00:00 | [] | [] | TAGS
#transformers #safetensors #gpt_neox #text-generation #generated_from_trainer #base_model-EleutherAI/pythia-14m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# virus_pythia_14_1024_headless
This model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| [
"# virus_pythia_14_1024_headless\n\nThis model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 40\n- eval_batch_size: 40\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 10\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #safetensors #gpt_neox #text-generation #generated_from_trainer #base_model-EleutherAI/pythia-14m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# virus_pythia_14_1024_headless\n\nThis model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 40\n- eval_batch_size: 40\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 10\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-alzheimers
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8319
- Accuracy: 0.5953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.0035 | 0.9778 | 22 | 0.9198 | 0.5594 |
| 0.9062 | 2.0 | 45 | 0.8479 | 0.6094 |
| 0.8726 | 2.9333 | 66 | 0.8319 | 0.5953 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/swin-tiny-patch4-window7-224", "model-index": [{"name": "swin-tiny-patch4-window7-224-finetuned-alzheimers", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.5953125, "name": "Accuracy"}]}]}]} | rhlc/swin-tiny-patch4-window7-224-finetuned-alzheimers | null | [
"transformers",
"tensorboard",
"safetensors",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T12:57:28+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| swin-tiny-patch4-window7-224-finetuned-alzheimers
=================================================
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8319
* Accuracy: 0.5953
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 256
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | transformers | ## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/maywell/miqu-evil-dpo
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/miqu-evil-dpo-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q2_K.gguf) | Q2_K | 25.6 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.IQ3_XS.gguf) | IQ3_XS | 28.4 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.IQ3_S.gguf) | IQ3_S | 30.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q3_K_S.gguf) | Q3_K_S | 30.0 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.IQ3_M.gguf) | IQ3_M | 31.0 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q3_K_M.gguf) | Q3_K_M | 33.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q3_K_L.gguf) | Q3_K_L | 36.2 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.IQ4_XS.gguf) | IQ4_XS | 37.3 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q4_K_S.gguf) | Q4_K_S | 39.3 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q4_K_M.gguf) | Q4_K_M | 41.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q5_K_S.gguf) | Q5_K_S | 47.6 | |
| [GGUF](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q5_K_M.gguf) | Q5_K_M | 48.9 | |
| [PART 1](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q6_K.gguf.part2of2) | Q6_K | 56.7 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miqu-evil-dpo-GGUF/resolve/main/miqu-evil-dpo.Q8_0.gguf.part2of2) | Q8_0 | 73.4 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "other", "library_name": "transformers", "tags": ["not-for-all-audiences"], "base_model": "maywell/miqu-evil-dpo", "license_link": "LICENSE", "license_name": "miqu-license", "quantized_by": "mradermacher"} | mradermacher/miqu-evil-dpo-GGUF | null | [
"transformers",
"gguf",
"not-for-all-audiences",
"en",
"base_model:maywell/miqu-evil-dpo",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T12:57:37+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #not-for-all-audiences #en #base_model-maywell/miqu-evil-dpo #license-other #endpoints_compatible #region-us
| About
-----
static quants of URL
weighted/imatrix quants are available at URL
Usage
-----
If you are unsure how to use GGUF files, refer to one of TheBloke's
READMEs for
more details, including on how to concatenate multi-part files.
Provided Quants
---------------
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
!URL
And here are Artefact2's thoughts on the matter:
URL
FAQ / Model Request
-------------------
See URL for some answers to
questions you might have and/or if you want some other model quantized.
Thanks
------
I thank my company, nethype GmbH, for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
| [] | [
"TAGS\n#transformers #gguf #not-for-all-audiences #en #base_model-maywell/miqu-evil-dpo #license-other #endpoints_compatible #region-us \n"
] |
reinforcement-learning | sample-factory |
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r magixn/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
| {"library_name": "sample-factory", "tags": ["deep-reinforcement-learning", "reinforcement-learning", "sample-factory"], "model-index": [{"name": "APPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "doom_health_gathering_supreme", "type": "doom_health_gathering_supreme"}, "metrics": [{"type": "mean_reward", "value": "10.94 +/- 5.32", "name": "mean_reward", "verified": false}]}]}]} | magixn/rl_course_vizdoom_health_gathering_supreme | null | [
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | null | 2024-04-26T12:57:47+00:00 | [] | [] | TAGS
#sample-factory #tensorboard #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
A(n) APPO model trained on the doom_health_gathering_supreme environment.
This model was trained using Sample-Factory 2.0: URL
Documentation for how to use Sample-Factory can be found at URL
## Downloading the model
After installing Sample-Factory, download the model with:
## Using the model
To run the model after download, use the 'enjoy' script corresponding to this environment:
You can also upload models to the Hugging Face Hub using the same script with the '--push_to_hub' flag.
See URL for more details
## Training with this model
To continue training with this model, use the 'train' script corresponding to this environment:
Note, you may have to adjust '--train_for_env_steps' to a suitably high number as the experiment will resume at the number of steps it concluded at.
| [
"## Downloading the model\n\nAfter installing Sample-Factory, download the model with:",
"## Using the model\n\nTo run the model after download, use the 'enjoy' script corresponding to this environment:\n\n\n\nYou can also upload models to the Hugging Face Hub using the same script with the '--push_to_hub' flag.\nSee URL for more details",
"## Training with this model\n\nTo continue training with this model, use the 'train' script corresponding to this environment:\n\n\nNote, you may have to adjust '--train_for_env_steps' to a suitably high number as the experiment will resume at the number of steps it concluded at."
] | [
"TAGS\n#sample-factory #tensorboard #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"## Downloading the model\n\nAfter installing Sample-Factory, download the model with:",
"## Using the model\n\nTo run the model after download, use the 'enjoy' script corresponding to this environment:\n\n\n\nYou can also upload models to the Hugging Face Hub using the same script with the '--push_to_hub' flag.\nSee URL for more details",
"## Training with this model\n\nTo continue training with this model, use the 'train' script corresponding to this environment:\n\n\nNote, you may have to adjust '--train_for_env_steps' to a suitably high number as the experiment will resume at the number of steps it concluded at."
] |
reinforcement-learning | null |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-Pixelcopter-PLE-v0", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Pixelcopter-PLE-v0", "type": "Pixelcopter-PLE-v0"}, "metrics": [{"type": "mean_reward", "value": "44.80 +/- 27.15", "name": "mean_reward", "verified": false}]}]}]} | hossniper/Reinforce-Pixelcopter-PLE-v0 | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | null | 2024-04-26T12:57:58+00:00 | [] | [] | TAGS
#Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing Pixelcopter-PLE-v0
This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] |
null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0 | {"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.2"} | ddd20/mistral_7b_legal_version | null | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"region:us"
] | null | 2024-04-26T12:59:20+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.10.0 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.2 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.10.0"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | nrbhole/invoices-donut-model-v2 | null | [
"transformers",
"safetensors",
"vision-encoder-decoder",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:00:08+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #vision-encoder-decoder #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-14m_mz-131f_IMDB
This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-14m", "model-index": [{"name": "robust_llm_pythia-14m_mz-131f_IMDB", "results": []}]} | AlignmentResearch/robust_llm_pythia-14m_mz-131f_IMDB | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-14m",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:00:43+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-14m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# robust_llm_pythia-14m_mz-131f_IMDB
This model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# robust_llm_pythia-14m_mz-131f_IMDB\n\nThis model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-14m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# robust_llm_pythia-14m_mz-131f_IMDB\n\nThis model is a fine-tuned version of EleutherAI/pythia-14m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | tom-brady/6-254 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:01:08+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | tom-brady/6-212 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:01:21+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | tom-brady/6-220 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:01:45+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | tom-brady/6-211 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:01:46+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-msn-small-finetuned-alzheimers
This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0160
- Accuracy: 0.9969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.2996 | 0.9778 | 22 | 0.3897 | 0.8438 |
| 0.3703 | 2.0 | 45 | 0.3595 | 0.8594 |
| 0.3087 | 2.9778 | 67 | 0.3777 | 0.8625 |
| 0.486 | 4.0 | 90 | 0.4530 | 0.8187 |
| 0.3307 | 4.9778 | 112 | 0.4560 | 0.8234 |
| 0.306 | 6.0 | 135 | 0.3471 | 0.8672 |
| 0.3005 | 6.9778 | 157 | 0.3025 | 0.8859 |
| 0.319 | 8.0 | 180 | 0.2451 | 0.8984 |
| 0.3489 | 8.9778 | 202 | 0.1814 | 0.9281 |
| 0.3251 | 10.0 | 225 | 0.2451 | 0.9156 |
| 0.3034 | 10.9778 | 247 | 0.1566 | 0.9406 |
| 0.2746 | 12.0 | 270 | 0.2493 | 0.8922 |
| 0.2369 | 12.9778 | 292 | 0.1622 | 0.9375 |
| 0.2231 | 14.0 | 315 | 0.1781 | 0.9359 |
| 0.2281 | 14.9778 | 337 | 0.1268 | 0.9531 |
| 0.2001 | 16.0 | 360 | 0.2431 | 0.9141 |
| 0.183 | 16.9778 | 382 | 0.1017 | 0.9625 |
| 0.1891 | 18.0 | 405 | 0.1802 | 0.9391 |
| 0.1862 | 18.9778 | 427 | 0.0869 | 0.9766 |
| 0.1935 | 20.0 | 450 | 0.1079 | 0.9688 |
| 0.1797 | 20.9778 | 472 | 0.1250 | 0.9563 |
| 0.1605 | 22.0 | 495 | 0.0655 | 0.9719 |
| 0.1848 | 22.9778 | 517 | 0.0806 | 0.9766 |
| 0.1498 | 24.0 | 540 | 0.1116 | 0.9578 |
| 0.1394 | 24.9778 | 562 | 0.0807 | 0.9672 |
| 0.1584 | 26.0 | 585 | 0.0525 | 0.9797 |
| 0.1302 | 26.9778 | 607 | 0.0513 | 0.9828 |
| 0.1356 | 28.0 | 630 | 0.0420 | 0.9875 |
| 0.1101 | 28.9778 | 652 | 0.0354 | 0.9875 |
| 0.1227 | 30.0 | 675 | 0.0583 | 0.9766 |
| 0.1158 | 30.9778 | 697 | 0.0253 | 0.9906 |
| 0.117 | 32.0 | 720 | 0.0231 | 0.9906 |
| 0.1022 | 32.9778 | 742 | 0.0726 | 0.9797 |
| 0.1221 | 34.0 | 765 | 0.0160 | 0.9969 |
| 0.0956 | 34.9778 | 787 | 0.0482 | 0.9844 |
| 0.0856 | 36.0 | 810 | 0.0256 | 0.9875 |
| 0.0996 | 36.9778 | 832 | 0.0211 | 0.9906 |
| 0.0848 | 38.0 | 855 | 0.0446 | 0.9797 |
| 0.1001 | 38.9778 | 877 | 0.0274 | 0.9875 |
| 0.0976 | 40.0 | 900 | 0.0225 | 0.9922 |
| 0.0864 | 40.9778 | 922 | 0.0207 | 0.9922 |
| 0.0865 | 42.0 | 945 | 0.0193 | 0.9969 |
| 0.0773 | 42.9778 | 967 | 0.0203 | 0.9922 |
| 0.075 | 44.0 | 990 | 0.0131 | 0.9969 |
| 0.0761 | 44.9778 | 1012 | 0.0129 | 0.9938 |
| 0.0624 | 46.0 | 1035 | 0.0114 | 0.9969 |
| 0.0557 | 46.9778 | 1057 | 0.0102 | 0.9953 |
| 0.0708 | 48.0 | 1080 | 0.0116 | 0.9953 |
| 0.0667 | 48.8889 | 1100 | 0.0131 | 0.9953 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "facebook/vit-msn-small", "model-index": [{"name": "vit-msn-small-finetuned-alzheimers", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.996875, "name": "Accuracy"}]}]}]} | rhlc/vit-msn-small-finetuned-alzheimers | null | [
"transformers",
"tensorboard",
"safetensors",
"vit_msn",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/vit-msn-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:04:20+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit_msn #image-classification #generated_from_trainer #dataset-imagefolder #base_model-facebook/vit-msn-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| vit-msn-small-finetuned-alzheimers
==================================
This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0160
* Accuracy: 0.9969
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 256
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 50
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit_msn #image-classification #generated_from_trainer #dataset-imagefolder #base_model-facebook/vit-msn-small #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | vaatsav06/Llama3_medqa1 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:06:33+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
automatic-speech-recognition | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Mihaj/wav2vec2-large-uralic-voxpopuli-v2-karelian-CodeSwitching_with_pitch_and_tempo_aug | null | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:07:28+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | presencesw/vistral_test | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:08:15+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["trl", "sft"]} | Shure-Dev/llava-vima | null | [
"transformers",
"safetensors",
"llava",
"pretraining",
"trl",
"sft",
"arxiv:1910.09700",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-04-26T13:08:41+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llava #pretraining #trl #sft #arxiv-1910.09700 #endpoints_compatible #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llava #pretraining #trl #sft #arxiv-1910.09700 #endpoints_compatible #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
sentence-similarity | sentence-transformers |
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 1401 with parameters:
```
{'batch_size': 256, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`__main__.MultipleNegativesRankingLoss_with_logging`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: LlamaModel
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "mteb"], "pipeline_tag": "sentence-similarity", "model-index": [{"name": "sentence_croissant_alpha_v0.3", "results": [{"task": {"type": "Clustering"}, "dataset": {"name": "MTEB AlloProfClusteringP2P", "type": "lyon-nlp/alloprof", "config": "default", "split": "test", "revision": "392ba3f5bcc8c51f578786c1fc3dae648662cb9b"}, "metrics": [{"type": "v_measure", "value": 56.72912207023513}, {"type": "v_measures", "value": [0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886, 0.5320130285438164, 0.5262623550285312, 0.5801017400160106, 0.5959165699319396, 0.5834996150492608, 0.5569839493118243, 0.6099665491090271, 0.5780727185697752, 0.4988023041518384, 0.6112933773114886]}, {"type": "v_measure", "value": 37.62128894914382}, {"type": "v_measures", "value": [0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827, 0.35401974034534334, 0.3980248155652733, 0.4010417412014714, 0.3771452994293956, 0.3279249606358475, 0.45943544754326515, 0.40148836454988795, 0.36775719216316904, 0.3211924643714899, 0.35409886910923827]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AlloprofReranking", "type": "lyon-nlp/mteb-fr-reranking-alloprof-s2p", "config": "default", "split": "test", "revision": "e40c8a63ce02da43200eccb5b0846fcaa888f562"}, "metrics": [{"type": "map", "value": 68.30621526032894}, {"type": "mrr", "value": 69.67719384817829}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB AlloprofRetrieval", "type": "lyon-nlp/alloprof", "config": "default", "split": "test", "revision": "fcf295ea64c750f41fadbaa37b9b861558e1bfbd"}, "metrics": [{"type": "map_at_1", "value": 32.254}, {"type": "map_at_10", "value": 43.834}, {"type": "map_at_100", "value": 44.728}, {"type": "map_at_1000", "value": 44.769999999999996}, {"type": "map_at_20", "value": 44.361}, {"type": "map_at_3", "value": 40.753}, {"type": "map_at_5", "value": 42.486000000000004}, {"type": "mrr_at_1", "value": 32.254}, {"type": "mrr_at_10", "value": 43.834}, {"type": "mrr_at_100", "value": 44.728}, {"type": "mrr_at_1000", "value": 44.769999999999996}, {"type": "mrr_at_20", "value": 44.361}, {"type": "mrr_at_3", "value": 40.753}, {"type": "mrr_at_5", "value": 42.486000000000004}, {"type": "ndcg_at_1", "value": 32.254}, {"type": "ndcg_at_10", "value": 49.845}, {"type": "ndcg_at_100", "value": 54.37800000000001}, {"type": "ndcg_at_1000", "value": 55.498000000000005}, {"type": "ndcg_at_20", "value": 51.772}, {"type": "ndcg_at_3", "value": 43.486000000000004}, {"type": "ndcg_at_5", "value": 46.594}, {"type": "precision_at_1", "value": 32.254}, {"type": "precision_at_10", "value": 6.891}, {"type": "precision_at_100", "value": 0.905}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_20", "value": 3.8280000000000003}, {"type": "precision_at_3", "value": 17.127}, {"type": "precision_at_5", "value": 11.779}, {"type": "recall_at_1", "value": 32.254}, {"type": "recall_at_10", "value": 68.91199999999999}, {"type": "recall_at_100", "value": 90.501}, {"type": "recall_at_1000", "value": 99.309}, {"type": "recall_at_20", "value": 76.554}, {"type": "recall_at_3", "value": 51.382000000000005}, {"type": "recall_at_5", "value": 58.894999999999996}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (fr)", "type": "mteb/amazon_reviews_multi", "config": "fr", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 35.106}, {"type": "f1", "value": 34.825583560299656}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB BSARDRetrieval", "type": "maastrichtlawtech/bsard", "config": "default", "split": "test", "revision": "5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59"}, "metrics": [{"type": "map_at_1", "value": 0.0}, {"type": "map_at_10", "value": 0.15}, {"type": "map_at_100", "value": 0.19499999999999998}, {"type": "map_at_1000", "value": 0.243}, {"type": "map_at_20", "value": 0.18}, {"type": "map_at_3", "value": 0.15}, {"type": "map_at_5", "value": 0.15}, {"type": "mrr_at_1", "value": 0.0}, {"type": "mrr_at_10", "value": 0.15}, {"type": "mrr_at_100", "value": 0.19499999999999998}, {"type": "mrr_at_1000", "value": 0.243}, {"type": "mrr_at_20", "value": 0.18}, {"type": "mrr_at_3", "value": 0.15}, {"type": "mrr_at_5", "value": 0.15}, {"type": "ndcg_at_1", "value": 0.0}, {"type": "ndcg_at_10", "value": 0.22499999999999998}, {"type": "ndcg_at_100", "value": 0.545}, {"type": "ndcg_at_1000", "value": 2.622}, {"type": "ndcg_at_20", "value": 0.338}, {"type": "ndcg_at_3", "value": 0.22499999999999998}, {"type": "ndcg_at_5", "value": 0.22499999999999998}, {"type": "precision_at_1", "value": 0.0}, {"type": "precision_at_10", "value": 0.045}, {"type": "precision_at_100", "value": 0.023}, {"type": "precision_at_1000", "value": 0.02}, {"type": "precision_at_20", "value": 0.045}, {"type": "precision_at_3", "value": 0.15}, {"type": "precision_at_5", "value": 0.09}, {"type": "recall_at_1", "value": 0.0}, {"type": "recall_at_10", "value": 0.44999999999999996}, {"type": "recall_at_100", "value": 2.252}, {"type": "recall_at_1000", "value": 20.27}, {"type": "recall_at_20", "value": 0.901}, {"type": "recall_at_3", "value": 0.44999999999999996}, {"type": "recall_at_5", "value": 0.44999999999999996}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FQuADRetrieval", "type": "manu/fquad2_test", "config": "default", "split": "test", "revision": "5384ce827bbc2156d46e6fcba83d75f8e6e1b4a6"}, "metrics": [{"type": "map_at_1", "value": 53.0}, {"type": "map_at_10", "value": 65.393}, {"type": "map_at_100", "value": 65.791}, {"type": "map_at_1000", "value": 65.79899999999999}, {"type": "map_at_20", "value": 65.644}, {"type": "map_at_3", "value": 62.74999999999999}, {"type": "map_at_5", "value": 64.075}, {"type": "mrr_at_1", "value": 53.0}, {"type": "mrr_at_10", "value": 65.393}, {"type": "mrr_at_100", "value": 65.791}, {"type": "mrr_at_1000", "value": 65.79899999999999}, {"type": "mrr_at_20", "value": 65.644}, {"type": "mrr_at_3", "value": 62.74999999999999}, {"type": "mrr_at_5", "value": 64.075}, {"type": "ndcg_at_1", "value": 53.0}, {"type": "ndcg_at_10", "value": 71.38600000000001}, {"type": "ndcg_at_100", "value": 73.275}, {"type": "ndcg_at_1000", "value": 73.42}, {"type": "ndcg_at_20", "value": 72.28099999999999}, {"type": "ndcg_at_3", "value": 65.839}, {"type": "ndcg_at_5", "value": 68.217}, {"type": "precision_at_1", "value": 53.0}, {"type": "precision_at_10", "value": 9.025}, {"type": "precision_at_100", "value": 0.9900000000000001}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_20", "value": 4.688}, {"type": "precision_at_3", "value": 24.917}, {"type": "precision_at_5", "value": 16.1}, {"type": "recall_at_1", "value": 53.0}, {"type": "recall_at_10", "value": 90.25}, {"type": "recall_at_100", "value": 99.0}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_20", "value": 93.75}, {"type": "recall_at_3", "value": 74.75}, {"type": "recall_at_5", "value": 80.5}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB HALClusteringS2S", "type": "lyon-nlp/clustering-hal-s2s", "config": "default", "split": "test", "revision": "e06ebbbb123f8144bef1a5d18796f3dec9ae2915"}, "metrics": [{"type": "v_measure", "value": 25.756762769106768}, {"type": "v_measures", "value": [0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097, 0.27992488796059395, 0.2764506771771727, 0.3243693580623437, 0.2779803803468105, 0.23611069524035522, 0.20081340028652678, 0.20920466845471178, 0.24107059599883462, 0.2301770805728178, 0.2995745328105097]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MLSUMClusteringP2P", "type": "mlsum", "config": "fr", "split": "test", "revision": "b5d54f8f3b61ae17845046286940f03c6bc79bc7"}, "metrics": [{"type": "v_measure", "value": 41.82320155017088}, {"type": "v_measures", "value": [0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863, 0.4222470060684208, 0.4358887035247771, 0.4288044607351393, 0.4278211144128014, 0.3701492929109167, 0.42700292743096274, 0.4396567571802029, 0.41889525107583575, 0.4178682135997126, 0.39398642807831863]}, {"type": "v_measure", "value": 41.83097630331037}, {"type": "v_measures", "value": [0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202, 0.40556802081735377, 0.43455329357006206, 0.43325754900068963, 0.417432483055725, 0.37833136631959036, 0.43947993212701897, 0.4446524983622663, 0.4197600281286437, 0.4123873856320672, 0.3976750733176202]}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (fr)", "type": "mteb/mtop_domain", "config": "fr", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 88.52489821484498}, {"type": "f1", "value": 88.39995340840026}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (fr)", "type": "mteb/mtop_intent", "config": "fr", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 65.92546194801128}, {"type": "f1", "value": 46.53109996877417}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MasakhaNEWSClassification (fra)", "type": "masakhane/masakhanews", "config": "fra", "split": "test", "revision": "8ccc72e69e65f40c70e117d8b3c08306bb788b60"}, "metrics": [{"type": "accuracy", "value": 75.1658767772512}, {"type": "f1", "value": 71.02734472473519}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MasakhaNEWSClusteringP2P (fra)", "type": "masakhane/masakhanews", "config": "fra", "split": "test", "revision": "8ccc72e69e65f40c70e117d8b3c08306bb788b60"}, "metrics": [{"type": "v_measure", "value": 42.63310602457368}, {"type": "v_measures", "value": [1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835, 1.0, 0.06369976992079955, 0.5883538895545949, 0.18727949529930651, 0.2923221464539835]}, {"type": "v_measure", "value": 36.39726683344252}, {"type": "v_measures", "value": [1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356, 1.0, 0.08178119837705045, 0.23052387187167908, 0.4044733130065427, 0.10308495841685356]}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (fr)", "type": "mteb/amazon_massive_intent", "config": "fr", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 66.48285137861467}, {"type": "f1", "value": 64.74690799351637}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (fr)", "type": "mteb/amazon_massive_scenario", "config": "fr", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 71.47276395427033}, {"type": "f1", "value": 71.9261164692627}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MintakaRetrieval (fr)", "type": "jinaai/mintakaqa", "config": "fr", "split": "test", "revision": "efa78cc2f74bbcd21eff2261f9e13aebe40b814e"}, "metrics": [{"type": "map_at_1", "value": 16.134}, {"type": "map_at_10", "value": 26.040000000000003}, {"type": "map_at_100", "value": 27.233}, {"type": "map_at_1000", "value": 27.315}, {"type": "map_at_20", "value": 26.741999999999997}, {"type": "map_at_3", "value": 23.219}, {"type": "map_at_5", "value": 24.962999999999997}, {"type": "mrr_at_1", "value": 16.134}, {"type": "mrr_at_10", "value": 26.040000000000003}, {"type": "mrr_at_100", "value": 27.233}, {"type": "mrr_at_1000", "value": 27.315}, {"type": "mrr_at_20", "value": 26.741999999999997}, {"type": "mrr_at_3", "value": 23.219}, {"type": "mrr_at_5", "value": 24.962999999999997}, {"type": "ndcg_at_1", "value": 16.134}, {"type": "ndcg_at_10", "value": 31.255}, {"type": "ndcg_at_100", "value": 37.462}, {"type": "ndcg_at_1000", "value": 39.85}, {"type": "ndcg_at_20", "value": 33.853}, {"type": "ndcg_at_3", "value": 25.513}, {"type": "ndcg_at_5", "value": 28.653000000000002}, {"type": "precision_at_1", "value": 16.134}, {"type": "precision_at_10", "value": 4.779}, {"type": "precision_at_100", "value": 0.777}, {"type": "precision_at_1000", "value": 0.097}, {"type": "precision_at_20", "value": 2.907}, {"type": "precision_at_3", "value": 10.715}, {"type": "precision_at_5", "value": 7.951999999999999}, {"type": "recall_at_1", "value": 16.134}, {"type": "recall_at_10", "value": 47.789}, {"type": "recall_at_100", "value": 77.682}, {"type": "recall_at_1000", "value": 96.929}, {"type": "recall_at_20", "value": 58.148999999999994}, {"type": "recall_at_3", "value": 32.146}, {"type": "recall_at_5", "value": 39.762}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB OpusparcusPC (fr)", "type": "GEM/opusparcus", "config": "fr", "split": "test", "revision": "9e9b1f8ef51616073f47f306f7f47dd91663f86a"}, "metrics": [{"type": "cos_sim_accuracy", "value": 84.40054495912807}, {"type": "cos_sim_ap", "value": 93.71617772707746}, {"type": "cos_sim_f1", "value": 89.00624099855978}, {"type": "cos_sim_precision", "value": 86.15241635687732}, {"type": "cos_sim_recall", "value": 92.05561072492551}, {"type": "dot_accuracy", "value": 82.35694822888283}, {"type": "dot_ap", "value": 92.22992449042768}, {"type": "dot_f1", "value": 87.84786641929499}, {"type": "dot_precision", "value": 82.4194952132289}, {"type": "dot_recall", "value": 94.04170804369414}, {"type": "euclidean_accuracy", "value": 82.90190735694823}, {"type": "euclidean_ap", "value": 93.27345126956494}, {"type": "euclidean_f1", "value": 87.82608695652175}, {"type": "euclidean_precision", "value": 85.51269990592662}, {"type": "euclidean_recall", "value": 90.26812313803376}, {"type": "manhattan_accuracy", "value": 82.9700272479564}, {"type": "manhattan_ap", "value": 93.34994137379041}, {"type": "manhattan_f1", "value": 87.776708373436}, {"type": "manhattan_precision", "value": 85.15406162464986}, {"type": "manhattan_recall", "value": 90.56603773584906}, {"type": "max_accuracy", "value": 84.40054495912807}, {"type": "max_ap", "value": 93.71617772707746}, {"type": "max_f1", "value": 89.00624099855978}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB PawsX (fr)", "type": "paws-x", "config": "fr", "split": "test", "revision": "8a04d940a42cd40658986fdd8e3da561533a3646"}, "metrics": [{"type": "cos_sim_accuracy", "value": 63.849999999999994}, {"type": "cos_sim_ap", "value": 65.42493744372587}, {"type": "cos_sim_f1", "value": 63.87434554973822}, {"type": "cos_sim_precision", "value": 52.69978401727862}, {"type": "cos_sim_recall", "value": 81.06312292358804}, {"type": "dot_accuracy", "value": 55.35}, {"type": "dot_ap", "value": 48.9364958676423}, {"type": "dot_f1", "value": 62.491349480968864}, {"type": "dot_precision", "value": 45.44539506794162}, {"type": "dot_recall", "value": 100.0}, {"type": "euclidean_accuracy", "value": 64.4}, {"type": "euclidean_ap", "value": 65.8622099022063}, {"type": "euclidean_f1", "value": 63.762044407205686}, {"type": "euclidean_precision", "value": 51.280323450134766}, {"type": "euclidean_recall", "value": 84.27464008859357}, {"type": "manhattan_accuracy", "value": 64.5}, {"type": "manhattan_ap", "value": 65.89565256625798}, {"type": "manhattan_f1", "value": 63.75364128173118}, {"type": "manhattan_precision", "value": 51.06666666666667}, {"type": "manhattan_recall", "value": 84.82834994462901}, {"type": "max_accuracy", "value": 64.5}, {"type": "max_ap", "value": 65.89565256625798}, {"type": "max_f1", "value": 63.87434554973822}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICKFr", "type": "Lajavaness/SICK-fr", "config": "default", "split": "test", "revision": "e077ab4cf4774a1e36d86d593b150422fafd8e8a"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.55191450239424}, {"type": "cos_sim_spearman", "value": 71.89209513298714}, {"type": "euclidean_pearson", "value": 74.18063891200164}, {"type": "euclidean_spearman", "value": 69.61463203410928}, {"type": "manhattan_pearson", "value": 74.26272426503743}, {"type": "manhattan_spearman", "value": 69.64261630235363}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (fr)", "type": "mteb/sts22-crosslingual-sts", "config": "fr", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.18370529169849}, {"type": "cos_sim_spearman", "value": 80.80074537316342}, {"type": "euclidean_pearson", "value": 72.62308682855334}, {"type": "euclidean_spearman", "value": 75.64665618431559}, {"type": "manhattan_pearson", "value": 72.75806349827452}, {"type": "manhattan_spearman", "value": 75.34151992740627}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmarkMultilingualSTS (fr)", "type": "PhilipMay/stsb_multi_mt", "config": "fr", "split": "test", "revision": "93d57ef91790589e3ce9c365164337a8a78b7632"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.29611168887834}, {"type": "cos_sim_spearman", "value": 80.23434765396613}, {"type": "euclidean_pearson", "value": 77.85740285296822}, {"type": "euclidean_spearman", "value": 78.42089083386267}, {"type": "manhattan_pearson", "value": 77.85850984492824}, {"type": "manhattan_spearman", "value": 78.42578976788568}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEvalFr", "type": "lyon-nlp/summarization-summeval-fr-p2p", "config": "default", "split": "test", "revision": "b385812de6a9577b6f4d0f88c6a6e35395a94054"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.143644380271375}, {"type": "cos_sim_spearman", "value": 32.45645175142292}, {"type": "dot_pearson", "value": 28.46685825407204}, {"type": "dot_spearman", "value": 29.164040487051512}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SyntecReranking", "type": "lyon-nlp/mteb-fr-reranking-syntec-s2p", "config": "default", "split": "test", "revision": "b205c5084a0934ce8af14338bf03feb19499c84d"}, "metrics": [{"type": "map", "value": 82.65}, {"type": "mrr", "value": 82.65}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SyntecRetrieval", "type": "lyon-nlp/mteb-fr-retrieval-syntec-s2p", "config": "default", "split": "test", "revision": "19661ccdca4dfc2d15122d776b61685f48c68ca9"}, "metrics": [{"type": "map_at_1", "value": 56.99999999999999}, {"type": "map_at_10", "value": 70.6}, {"type": "map_at_100", "value": 70.814}, {"type": "map_at_1000", "value": 70.814}, {"type": "map_at_20", "value": 70.733}, {"type": "map_at_3", "value": 67.833}, {"type": "map_at_5", "value": 70.18299999999999}, {"type": "mrr_at_1", "value": 56.99999999999999}, {"type": "mrr_at_10", "value": 70.6}, {"type": "mrr_at_100", "value": 70.814}, {"type": "mrr_at_1000", "value": 70.814}, {"type": "mrr_at_20", "value": 70.733}, {"type": "mrr_at_3", "value": 67.833}, {"type": "mrr_at_5", "value": 70.18299999999999}, {"type": "ndcg_at_1", "value": 56.99999999999999}, {"type": "ndcg_at_10", "value": 76.626}, {"type": "ndcg_at_100", "value": 77.69500000000001}, {"type": "ndcg_at_1000", "value": 77.69500000000001}, {"type": "ndcg_at_20", "value": 77.12400000000001}, {"type": "ndcg_at_3", "value": 71.464}, {"type": "ndcg_at_5", "value": 75.639}, {"type": "precision_at_1", "value": 56.99999999999999}, {"type": "precision_at_10", "value": 9.5}, {"type": "precision_at_100", "value": 1.0}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_20", "value": 4.8500000000000005}, {"type": "precision_at_3", "value": 27.333000000000002}, {"type": "precision_at_5", "value": 18.4}, {"type": "recall_at_1", "value": 56.99999999999999}, {"type": "recall_at_10", "value": 95.0}, {"type": "recall_at_100", "value": 100.0}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_20", "value": 97.0}, {"type": "recall_at_3", "value": 82.0}, {"type": "recall_at_5", "value": 92.0}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB XPQARetrieval (fr)", "type": "jinaai/xpqa", "config": "fr", "split": "test", "revision": "c99d599f0a6ab9b85b065da6f9d94f9cf731679f"}, "metrics": [{"type": "map_at_1", "value": 39.217}, {"type": "map_at_10", "value": 60.171}, {"type": "map_at_100", "value": 61.736999999999995}, {"type": "map_at_1000", "value": 61.787000000000006}, {"type": "map_at_20", "value": 61.211000000000006}, {"type": "map_at_3", "value": 53.43}, {"type": "map_at_5", "value": 57.638}, {"type": "mrr_at_1", "value": 62.617}, {"type": "mrr_at_10", "value": 69.32300000000001}, {"type": "mrr_at_100", "value": 69.95400000000001}, {"type": "mrr_at_1000", "value": 69.968}, {"type": "mrr_at_20", "value": 69.77799999999999}, {"type": "mrr_at_3", "value": 67.423}, {"type": "mrr_at_5", "value": 68.445}, {"type": "ndcg_at_1", "value": 62.617}, {"type": "ndcg_at_10", "value": 66.55499999999999}, {"type": "ndcg_at_100", "value": 71.521}, {"type": "ndcg_at_1000", "value": 72.32300000000001}, {"type": "ndcg_at_20", "value": 69.131}, {"type": "ndcg_at_3", "value": 60.88099999999999}, {"type": "ndcg_at_5", "value": 62.648}, {"type": "precision_at_1", "value": 62.617}, {"type": "precision_at_10", "value": 15.540999999999999}, {"type": "precision_at_100", "value": 1.9529999999999998}, {"type": "precision_at_1000", "value": 0.20600000000000002}, {"type": "precision_at_20", "value": 8.658000000000001}, {"type": "precision_at_3", "value": 36.805}, {"type": "precision_at_5", "value": 26.622}, {"type": "recall_at_1", "value": 39.217}, {"type": "recall_at_10", "value": 75.547}, {"type": "recall_at_100", "value": 94.226}, {"type": "recall_at_1000", "value": 99.433}, {"type": "recall_at_20", "value": 83.883}, {"type": "recall_at_3", "value": 57.867999999999995}, {"type": "recall_at_5", "value": 66.08800000000001}]}]}]} | manu/sentence_croissant_alpha_v0.3 | null | [
"sentence-transformers",
"safetensors",
"llama",
"feature-extraction",
"sentence-similarity",
"mteb",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:09:06+00:00 | [] | [] | TAGS
#sentence-transformers #safetensors #llama #feature-extraction #sentence-similarity #mteb #model-index #endpoints_compatible #region-us
|
# {MODEL_NAME}
This is a sentence-transformers model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL
## Training
The model was trained with the parameters:
DataLoader:
'URL.dataloader.DataLoader' of length 1401 with parameters:
Loss:
'__main__.MultipleNegativesRankingLoss_with_logging'
Parameters of the fit()-Method:
## Full Model Architecture
## Citing & Authors
| [
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1401 with parameters:\n\n\nLoss:\n\n'__main__.MultipleNegativesRankingLoss_with_logging' \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] | [
"TAGS\n#sentence-transformers #safetensors #llama #feature-extraction #sentence-similarity #mteb #model-index #endpoints_compatible #region-us \n",
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 1401 with parameters:\n\n\nLoss:\n\n'__main__.MultipleNegativesRankingLoss_with_logging' \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Likich/grok-finetune-qualcoding | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:10:13+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
reinforcement-learning | stable-baselines3 |
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.25 +/- 0.06", "name": "mean_reward", "verified": false}]}]}]} | ahGadji/a2c-PandaReachDense-v3 | null | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | null | 2024-04-26T13:10:50+00:00 | [] | [] | TAGS
#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# A2C Agent playing PandaReachDense-v3
This is a trained model of a A2C agent playing PandaReachDense-v3
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | vaatsav06/Llama3_medqa2 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:10:57+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | AndersGiovanni/social-llama-3-8b-instructions | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:11:12+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-dpo-full
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4929
- Rewards/chosen: 21.1860
- Rewards/rejected: 6.2518
- Rewards/accuracies: 0.7344
- Rewards/margins: 14.9342
- Logps/rejected: -256.4154
- Logps/chosen: -241.4075
- Logits/rejected: -2.7091
- Logits/chosen: -2.7366
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5187 | 0.21 | 100 | 0.5296 | 19.0644 | 9.0310 | 0.7227 | 10.0334 | -253.6362 | -243.5290 | -2.7384 | -2.7638 |
| 0.508 | 0.42 | 200 | 0.5006 | 20.6504 | 7.0237 | 0.7266 | 13.6267 | -255.6435 | -241.9431 | -2.7569 | -2.7826 |
| 0.4808 | 0.63 | 300 | 0.4966 | 20.8183 | 6.9540 | 0.7227 | 13.8643 | -255.7132 | -241.7751 | -2.7115 | -2.7378 |
| 0.4835 | 0.84 | 400 | 0.4917 | 21.2230 | 6.3692 | 0.7344 | 14.8539 | -256.2980 | -241.3705 | -2.7037 | -2.7315 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "alignment-handbook/zephyr-7b-sft-full", "model-index": [{"name": "zephyr-7b-dpo-full", "results": []}]} | RikkiXu/zephyr-7b-dpo-full | null | [
"transformers",
"tensorboard",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:alignment-handbook/zephyr-7b-sft-full",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:13:29+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #mistral #text-generation #alignment-handbook #trl #dpo #generated_from_trainer #conversational #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| zephyr-7b-dpo-full
==================
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback\_binarized dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4929
* Rewards/chosen: 21.1860
* Rewards/rejected: 6.2518
* Rewards/accuracies: 0.7344
* Rewards/margins: 14.9342
* Logps/rejected: -256.4154
* Logps/chosen: -241.4075
* Logits/rejected: -2.7091
* Logits/chosen: -2.7366
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-07
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 8
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 128
* total\_eval\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.38.2
* Pytorch 2.1.2+cu118
* Datasets 2.16.1
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-07\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #alignment-handbook #trl #dpo #generated_from_trainer #conversational #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-07\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.2\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.2"
] |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trocr-base-printed_license_plates_ocr
This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1550
- Cer: 0.037
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.3034 | 1.0 | 2000 | 0.2454 | 0.0472 |
| 0.1451 | 2.0 | 4000 | 0.1550 | 0.037 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.13.3
| {"tags": ["generated_from_trainer"], "model-index": [{"name": "trocr-base-printed_license_plates_ocr", "results": []}]} | artbreguez/trocr-base-printed_license_plates_ocr | null | [
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:14:14+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #vision-encoder-decoder #generated_from_trainer #endpoints_compatible #region-us
| trocr-base-printed\_license\_plates\_ocr
========================================
This model is a fine-tuned version of microsoft/trocr-base-printed on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1550
* Cer: 0.037
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.30.0
* Pytorch 2.2.2+cu121
* Datasets 2.19.0
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #vision-encoder-decoder #generated_from_trainer #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.30.0\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.13.3"
] |
text-generation | mlx |
# mlx-community/Qwen1.5-110B-4bit
This model was converted to MLX format from [`Qwen/Qwen1.5-110B`]() using mlx-lm version **0.12.0**.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-110B) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen1.5-110B-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"language": ["en"], "license": "other", "tags": ["pretrained", "mlx"], "license_name": "tongyi-qianwen", "license_link": "https://huggingface.co/Qwen/Qwen1.5-110B/blob/main/LICENSE", "pipeline_tag": "text-generation"} | mlx-community/Qwen1.5-110B-4bit | null | [
"mlx",
"safetensors",
"qwen2",
"pretrained",
"text-generation",
"conversational",
"en",
"license:other",
"region:us"
] | null | 2024-04-26T13:19:33+00:00 | [] | [
"en"
] | TAGS
#mlx #safetensors #qwen2 #pretrained #text-generation #conversational #en #license-other #region-us
|
# mlx-community/Qwen1.5-110B-4bit
This model was converted to MLX format from ['Qwen/Qwen1.5-110B']() using mlx-lm version 0.12.0.
Refer to the original model card for more details on the model.
## Use with mlx
| [
"# mlx-community/Qwen1.5-110B-4bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] | [
"TAGS\n#mlx #safetensors #qwen2 #pretrained #text-generation #conversational #en #license-other #region-us \n",
"# mlx-community/Qwen1.5-110B-4bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] |
text-generation | mlx |
# mlx-community/Qwen1.5-110B-8bit
This model was converted to MLX format from [`Qwen/Qwen1.5-110B`]() using mlx-lm version **0.12.0**.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-110B) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen1.5-110B-8bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"language": ["en"], "license": "other", "tags": ["pretrained", "mlx"], "license_name": "tongyi-qianwen", "license_link": "https://huggingface.co/Qwen/Qwen1.5-110B/blob/main/LICENSE", "pipeline_tag": "text-generation"} | mlx-community/Qwen1.5-110B-8bit | null | [
"mlx",
"safetensors",
"qwen2",
"pretrained",
"text-generation",
"conversational",
"en",
"license:other",
"region:us"
] | null | 2024-04-26T13:19:47+00:00 | [] | [
"en"
] | TAGS
#mlx #safetensors #qwen2 #pretrained #text-generation #conversational #en #license-other #region-us
|
# mlx-community/Qwen1.5-110B-8bit
This model was converted to MLX format from ['Qwen/Qwen1.5-110B']() using mlx-lm version 0.12.0.
Refer to the original model card for more details on the model.
## Use with mlx
| [
"# mlx-community/Qwen1.5-110B-8bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] | [
"TAGS\n#mlx #safetensors #qwen2 #pretrained #text-generation #conversational #en #license-other #region-us \n",
"# mlx-community/Qwen1.5-110B-8bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] |
reinforcement-learning | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "296.63 +/- 17.46", "name": "mean_reward", "verified": false}]}]}]} | AndrewBJ/ppo-LunarLander-v2 | null | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | null | 2024-04-26T13:21:18+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results-Meta-Llama-3-8B-tagllm-pos-1-reserved-unsloth
This model is a fine-tuned version of [unsloth/llama-3-8b-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7917
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9788 | 0.2 | 162 | 2.0304 |
| 1.7172 | 0.4 | 324 | 1.8871 |
| 1.9543 | 0.6 | 486 | 1.8420 |
| 2.2679 | 0.8 | 648 | 1.8056 |
| 1.6227 | 1.0 | 810 | 1.7917 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1
- Datasets 2.19.0
- Tokenizers 0.19.1 | {"license": "llama2", "library_name": "peft", "tags": ["trl", "sft", "unsloth", "generated_from_trainer"], "base_model": "unsloth/llama-3-8b-bnb-4bit", "model-index": [{"name": "results-Meta-Llama-3-8B-tagllm-pos-1-reserved-unsloth", "results": []}]} | AlienKevin/Meta-Llama-3-8B-tagllm-pos-1-reserved-unsloth | null | [
"peft",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:llama2",
"region:us"
] | null | 2024-04-26T13:21:43+00:00 | [] | [] | TAGS
#peft #safetensors #trl #sft #unsloth #generated_from_trainer #base_model-unsloth/llama-3-8b-bnb-4bit #license-llama2 #region-us
| results-Meta-Llama-3-8B-tagllm-pos-1-reserved-unsloth
=====================================================
This model is a fine-tuned version of unsloth/llama-3-8b-bnb-4bit on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.7917
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 12
* eval\_batch\_size: 12
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 10
* num\_epochs: 1
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.40.1
* Pytorch 2.2.1
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.1\n* Pytorch 2.2.1\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#peft #safetensors #trl #sft #unsloth #generated_from_trainer #base_model-unsloth/llama-3-8b-bnb-4bit #license-llama2 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 12\n* eval\\_batch\\_size: 12\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.40.1\n* Pytorch 2.2.1\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | mlx |
# mlx-community/Qwen1.5-110B-Chat-4bit
This model was converted to MLX format from [`Qwen/Qwen1.5-110B-Chat`]() using mlx-lm version **0.12.0**.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-110B-Chat) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen1.5-110B-Chat-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"language": ["en"], "license": "other", "tags": ["chat", "mlx"], "license_name": "tongyi-qianwen", "license_link": "https://huggingface.co/Qwen/Qwen1.5-110B-Chat/blob/main/LICENSE", "pipeline_tag": "text-generation"} | mlx-community/Qwen1.5-110B-Chat-4bit | null | [
"mlx",
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"en",
"license:other",
"region:us"
] | null | 2024-04-26T13:22:28+00:00 | [] | [
"en"
] | TAGS
#mlx #safetensors #qwen2 #chat #text-generation #conversational #en #license-other #region-us
|
# mlx-community/Qwen1.5-110B-Chat-4bit
This model was converted to MLX format from ['Qwen/Qwen1.5-110B-Chat']() using mlx-lm version 0.12.0.
Refer to the original model card for more details on the model.
## Use with mlx
| [
"# mlx-community/Qwen1.5-110B-Chat-4bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B-Chat']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] | [
"TAGS\n#mlx #safetensors #qwen2 #chat #text-generation #conversational #en #license-other #region-us \n",
"# mlx-community/Qwen1.5-110B-Chat-4bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B-Chat']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] |
text-generation | mlx |
# mlx-community/Qwen1.5-110B-Chat-8bit
This model was converted to MLX format from [`Qwen/Qwen1.5-110B-Chat`]() using mlx-lm version **0.12.0**.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-110B-Chat) for more details on the model.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen1.5-110B-Chat-8bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```
| {"language": ["en"], "license": "other", "tags": ["chat", "mlx"], "license_name": "tongyi-qianwen", "license_link": "https://huggingface.co/Qwen/Qwen1.5-110B-Chat/blob/main/LICENSE", "pipeline_tag": "text-generation"} | mlx-community/Qwen1.5-110B-Chat-8bit | null | [
"mlx",
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"en",
"license:other",
"region:us"
] | null | 2024-04-26T13:22:53+00:00 | [] | [
"en"
] | TAGS
#mlx #safetensors #qwen2 #chat #text-generation #conversational #en #license-other #region-us
|
# mlx-community/Qwen1.5-110B-Chat-8bit
This model was converted to MLX format from ['Qwen/Qwen1.5-110B-Chat']() using mlx-lm version 0.12.0.
Refer to the original model card for more details on the model.
## Use with mlx
| [
"# mlx-community/Qwen1.5-110B-Chat-8bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B-Chat']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] | [
"TAGS\n#mlx #safetensors #qwen2 #chat #text-generation #conversational #en #license-other #region-us \n",
"# mlx-community/Qwen1.5-110B-Chat-8bit\nThis model was converted to MLX format from ['Qwen/Qwen1.5-110B-Chat']() using mlx-lm version 0.12.0.\nRefer to the original model card for more details on the model.",
"## Use with mlx"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-instruct-v0.2-bnb-4bit1024
This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8431 | 0.02 | 25 | 1.4131 |
| 0.8021 | 0.04 | 50 | 0.7911 |
| 0.7972 | 0.05 | 75 | 0.7886 |
| 0.7886 | 0.07 | 100 | 0.7780 |
| 0.7762 | 0.09 | 125 | 0.7546 |
| 0.7338 | 0.11 | 150 | 0.7332 |
| 0.707 | 0.12 | 175 | 0.7399 |
| 0.7252 | 0.14 | 200 | 0.7303 |
| 0.7513 | 0.16 | 225 | 0.7384 |
| 0.7275 | 0.18 | 250 | 0.7380 |
| 0.7283 | 0.19 | 275 | 0.7285 |
| 0.7132 | 0.21 | 300 | 0.7452 |
| 0.7273 | 0.23 | 325 | 0.7370 |
| 0.7353 | 0.25 | 350 | 0.7388 |
| 0.7457 | 0.27 | 375 | 0.7292 |
| 0.7404 | 0.28 | 400 | 0.7315 |
| 0.7312 | 0.3 | 425 | 0.7341 |
| 0.7285 | 0.32 | 450 | 0.7277 |
| 0.7331 | 0.34 | 475 | 0.7318 |
| 0.7179 | 0.35 | 500 | 0.7401 |
| 0.7432 | 0.37 | 525 | 0.7399 |
| 0.7305 | 0.39 | 550 | 0.7463 |
| 0.723 | 0.41 | 575 | 0.7448 |
| 0.7303 | 0.42 | 600 | 0.7339 |
| 0.7213 | 0.44 | 625 | 0.7320 |
| 0.7236 | 0.46 | 650 | 0.7378 |
| 0.7263 | 0.48 | 675 | 0.7451 |
| 0.7462 | 0.5 | 700 | 0.7238 |
| 0.7287 | 0.51 | 725 | 0.7274 |
| 0.7364 | 0.53 | 750 | 0.7369 |
| 0.7276 | 0.55 | 775 | 0.7282 |
| 0.7268 | 0.57 | 800 | 0.7431 |
| 0.7382 | 0.58 | 825 | 0.7376 |
| 0.7185 | 0.6 | 850 | 0.7402 |
| 0.7153 | 0.62 | 875 | 0.7362 |
| 0.7314 | 0.64 | 900 | 0.7395 |
| 0.7465 | 0.65 | 925 | 0.7378 |
| 0.7228 | 0.67 | 950 | 0.7333 |
| 0.7336 | 0.69 | 975 | 0.7337 |
| 0.72 | 0.71 | 1000 | 0.7313 |
| 0.7258 | 0.73 | 1025 | 0.7379 |
| 0.7312 | 0.74 | 1050 | 0.7342 |
| 0.7268 | 0.76 | 1075 | 0.7350 |
| 0.7137 | 0.78 | 1100 | 0.7401 |
| 0.7277 | 0.8 | 1125 | 0.7277 |
| 0.7314 | 0.81 | 1150 | 0.7388 |
| 0.7106 | 0.83 | 1175 | 0.7371 |
| 0.7226 | 0.85 | 1200 | 0.7326 |
| 0.7262 | 0.87 | 1225 | 0.7328 |
| 0.7356 | 0.88 | 1250 | 0.7408 |
| 0.7245 | 0.9 | 1275 | 0.7365 |
| 0.7221 | 0.92 | 1300 | 0.7404 |
| 0.7194 | 0.94 | 1325 | 0.7418 |
| 0.7209 | 0.96 | 1350 | 0.7380 |
| 0.7205 | 0.97 | 1375 | 0.7279 |
| 0.6788 | 0.99 | 1400 | 0.6953 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.1 | {"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "unsloth", "unsloth", "unsloth", "generated_from_trainer"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "model-index": [{"name": "mistral-7b-instruct-v0.2-bnb-4bit1024", "results": []}]} | 12yuens2/hotpotqa-unsloth-mistral-7b-4bit-1024 | null | [
"peft",
"safetensors",
"trl",
"sft",
"unsloth",
"generated_from_trainer",
"base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"license:apache-2.0",
"region:us"
] | null | 2024-04-26T13:26:20+00:00 | [] | [] | TAGS
#peft #safetensors #trl #sft #unsloth #generated_from_trainer #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #region-us
| mistral-7b-instruct-v0.2-bnb-4bit1024
=====================================
This model is a fine-tuned version of unsloth/mistral-7b-instruct-v0.2-bnb-4bit on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6953
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 64
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.05
* num\_epochs: 1
### Training results
### Framework versions
* PEFT 0.9.0
* Transformers 4.38.2
* Pytorch 2.2.1
* Datasets 2.18.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.9.0\n* Transformers 4.38.2\n* Pytorch 2.2.1\n* Datasets 2.18.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#peft #safetensors #trl #sft #unsloth #generated_from_trainer #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.9.0\n* Transformers 4.38.2\n* Pytorch 2.2.1\n* Datasets 2.18.0\n* Tokenizers 0.15.1"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_eli5_clm-model
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the eli5_category dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0890
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.0259 | 1.0 | 957 | 0.0873 |
| 0.0102 | 2.0 | 1914 | 0.0855 |
| 0.0026 | 3.0 | 2871 | 0.0890 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["eli5_category"], "base_model": "google-bert/bert-base-uncased", "model-index": [{"name": "my_awesome_eli5_clm-model", "results": []}]} | mikaya-vu/my_awesome_eli5_clm-model | null | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:eli5_category",
"base_model:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:26:41+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-eli5_category #base_model-google-bert/bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| my\_awesome\_eli5\_clm-model
============================
This model is a fine-tuned version of google-bert/bert-base-uncased on the eli5\_category dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0890
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
### Training results
### Framework versions
* Transformers 4.41.0.dev0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-eli5_category #base_model-google-bert/bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.41.0.dev0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | diffusers | # Marigold Normals (LCM) Model Card
This model belongs to the family of diffusion-based Marigold models for solving various computer vision tasks.
The Marigold Normals model focuses on the surface normals task.
It takes an input image and computes surface normals in each pixel.
The LCM stands for Latent Consistency Models, which is a technique for making the diffusion model fast.
The Marigold Normals model is trained from Stable Diffusion with synthetic data, and the LCM model is further fine-tuned from it.
Thanks to the rich visual knowledge stored in Stable Diffusion, Marigold models possess deep scene understanding and excel at solving computer vision tasks.
Read more about Marigold in our paper titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation".
[](https://marigoldmonodepth.github.io)
[](https://github.com/prs-eth/Marigold)
[](https://arxiv.org/abs/2312.02145)
[](https://huggingface.co/spaces/toshas/marigold)
Developed by:
[Bingxin Ke](http://www.kebingxin.com/),
[Anton Obukhov](https://www.obukhov.ai/),
[Shengyu Huang](https://shengyuh.github.io/),
[Nando Metzger](https://nandometzger.github.io/),
[Rodrigo Caye Daudt](https://rcdaudt.github.io/),
[Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ&hl=en)

## 🎓 Citation
```bibtex
@InProceedings{ke2023repurposing,
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
```
## 🎫 License
This work is licensed under the Apache License, Version 2.0 (as defined in the [LICENSE](LICENSE.txt)).
By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE.txt).
[](https://www.apache.org/licenses/LICENSE-2.0)
| {"language": ["en"], "license": "apache-2.0", "tags": ["monocular normals estimation", "single image normals estimation", "normals", "in-the-wild", "zero-shot", "LCM"], "pipeline_tag": "normals-estimation"} | prs-eth/marigold-normals-lcm-v0-1 | null | [
"diffusers",
"safetensors",
"monocular normals estimation",
"single image normals estimation",
"normals",
"in-the-wild",
"zero-shot",
"LCM",
"normals-estimation",
"en",
"arxiv:2312.02145",
"license:apache-2.0",
"diffusers:MarigoldPipeline",
"region:us"
] | null | 2024-04-26T13:27:15+00:00 | [
"2312.02145"
] | [
"en"
] | TAGS
#diffusers #safetensors #monocular normals estimation #single image normals estimation #normals #in-the-wild #zero-shot #LCM #normals-estimation #en #arxiv-2312.02145 #license-apache-2.0 #diffusers-MarigoldPipeline #region-us
| # Marigold Normals (LCM) Model Card
This model belongs to the family of diffusion-based Marigold models for solving various computer vision tasks.
The Marigold Normals model focuses on the surface normals task.
It takes an input image and computes surface normals in each pixel.
The LCM stands for Latent Consistency Models, which is a technique for making the diffusion model fast.
The Marigold Normals model is trained from Stable Diffusion with synthetic data, and the LCM model is further fine-tuned from it.
Thanks to the rich visual knowledge stored in Stable Diffusion, Marigold models possess deep scene understanding and excel at solving computer vision tasks.
Read more about Marigold in our paper titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation".

.
By downloading and using the code and model you agree to the terms in the LICENSE.
 Model Card\n\nThis model belongs to the family of diffusion-based Marigold models for solving various computer vision tasks.\nThe Marigold Normals model focuses on the surface normals task.\nIt takes an input image and computes surface normals in each pixel.\nThe LCM stands for Latent Consistency Models, which is a technique for making the diffusion model fast.\nThe Marigold Normals model is trained from Stable Diffusion with synthetic data, and the LCM model is further fine-tuned from it.\nThanks to the rich visual knowledge stored in Stable Diffusion, Marigold models possess deep scene understanding and excel at solving computer vision tasks.\nRead more about Marigold in our paper titled \"Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation\".\n\n\n.\n\nBy downloading and using the code and model you agree to the terms in the LICENSE.\n\n Model Card\n\nThis model belongs to the family of diffusion-based Marigold models for solving various computer vision tasks.\nThe Marigold Normals model focuses on the surface normals task.\nIt takes an input image and computes surface normals in each pixel.\nThe LCM stands for Latent Consistency Models, which is a technique for making the diffusion model fast.\nThe Marigold Normals model is trained from Stable Diffusion with synthetic data, and the LCM model is further fine-tuned from it.\nThanks to the rich visual knowledge stored in Stable Diffusion, Marigold models possess deep scene understanding and excel at solving computer vision tasks.\nRead more about Marigold in our paper titled \"Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation\".\n\n\n.\n\nBy downloading and using the code and model you agree to the terms in the LICENSE.\n\n on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | {"license": "llama2", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["generator"], "base_model": "codellama/CodeLlama-7b-hf", "model-index": [{"name": "code-llama-7b-text-to-sql", "results": []}]} | oukwuaba/code-llama-7b-text-to-sql | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:codellama/CodeLlama-7b-hf",
"license:llama2",
"region:us"
] | null | 2024-04-26T13:28:44+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us
|
# code-llama-7b-text-to-sql
This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2 | [
"# code-llama-7b-text-to-sql\n\nThis model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 3\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 6\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3",
"### Training results",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-generator #base_model-codellama/CodeLlama-7b-hf #license-llama2 #region-us \n",
"# code-llama-7b-text-to-sql\n\nThis model is a fine-tuned version of codellama/CodeLlama-7b-hf on the generator dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 3\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 6\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3",
"### Training results",
"### Framework versions\n\n- PEFT 0.7.2.dev0\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.2"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers"} | MD1998/chating_beginners_v1 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:30:33+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | null | Just a simple modal using Yolov8 for Image Classification task on the dataset IP102 with 20 classes extracted based on image amount. | {"license": "apache-2.0"} | Khieminem/ip102-yolov8-imgcls | null | [
"onnx",
"license:apache-2.0",
"region:us"
] | null | 2024-04-26T13:30:40+00:00 | [] | [] | TAGS
#onnx #license-apache-2.0 #region-us
| Just a simple modal using Yolov8 for Image Classification task on the dataset IP102 with 20 classes extracted based on image amount. | [] | [
"TAGS\n#onnx #license-apache-2.0 #region-us \n"
] |
text-generation | transformers | # finetune chinese Meta Llama3 Instruct 8b with Llama-Factory
```
“top.model_name": "LLaMA3-8B-Chat",
"top.finetuning_type": "lora",
"top.adapter_path": [],
"top.quantization_bit": "none",
"top.template": "llama3",
"top.rope_scaling": "none",
top.booster": "none",
"train.training_stage": "Supervised Fine-Tuning",
"train.dataset_dir": "data",
"train.dataset": [
"alpaca_zh",
"alpaca_gpt4_zh",
"guanaco",
"oaast_sft_zh",
"wikipedia_zh"
],
top.model_name": "LLaMA3-8B-Chat",
"top.finetuning_type": "lora",
"top.adapter_path": [],
"top.quantization_bit": "none",
"top.template": "llama3",
"top.rope_scaling": "none",
"top.booster": "none",
"train.training_stage": "Supervised Fine-Tuning",
"train.dataset_dir": "data",
"train.dataset": [
"alpaca_zh",
"alpaca_gpt4_zh",
"guanaco",
"nsfc_zh",
"oaast_sft_zh",
"wikipedia_zh"
],
``` | {"license": "apache-2.0"} | pooka74/LLaMA3-8B-Chat-Chinese | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:32:01+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # finetune chinese Meta Llama3 Instruct 8b with Llama-Factory
| [
"# finetune chinese Meta Llama3 Instruct 8b with Llama-Factory"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #conversational #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# finetune chinese Meta Llama3 Instruct 8b with Llama-Factory"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-31m_mz-131f_IMDB
This model is a fine-tuned version of [EleutherAI/pythia-31m](https://huggingface.co/EleutherAI/pythia-31m) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-31m", "model-index": [{"name": "robust_llm_pythia-31m_mz-131f_IMDB", "results": []}]} | AlignmentResearch/robust_llm_pythia-31m_mz-131f_IMDB | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-31m",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:33:36+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-31m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# robust_llm_pythia-31m_mz-131f_IMDB
This model is a fine-tuned version of EleutherAI/pythia-31m on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# robust_llm_pythia-31m_mz-131f_IMDB\n\nThis model is a fine-tuned version of EleutherAI/pythia-31m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-31m #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# robust_llm_pythia-31m_mz-131f_IMDB\n\nThis model is a fine-tuned version of EleutherAI/pythia-31m on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 0\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-dmae-va-U5-100-3i
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5087
- Accuracy: 0.8667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.9 | 7 | 0.5069 | 0.8333 |
| 0.3296 | 1.94 | 15 | 0.5087 | 0.8667 |
| 0.2919 | 2.97 | 23 | 0.5190 | 0.8667 |
| 0.2572 | 4.0 | 31 | 0.6483 | 0.7667 |
| 0.2572 | 4.9 | 38 | 0.5785 | 0.8167 |
| 0.2229 | 5.94 | 46 | 0.5932 | 0.8333 |
| 0.1799 | 6.97 | 54 | 0.5272 | 0.85 |
| 0.1563 | 8.0 | 62 | 0.6124 | 0.85 |
| 0.1563 | 8.9 | 69 | 0.6798 | 0.8167 |
| 0.125 | 9.94 | 77 | 0.7356 | 0.7833 |
| 0.1343 | 10.97 | 85 | 0.5086 | 0.85 |
| 0.0906 | 12.0 | 93 | 0.7601 | 0.7667 |
| 0.103 | 12.9 | 100 | 0.8084 | 0.8 |
| 0.103 | 13.94 | 108 | 0.5612 | 0.85 |
| 0.1002 | 14.97 | 116 | 0.6454 | 0.8333 |
| 0.1107 | 16.0 | 124 | 0.7783 | 0.8 |
| 0.1036 | 16.9 | 131 | 0.7857 | 0.7833 |
| 0.1036 | 17.94 | 139 | 0.6504 | 0.8167 |
| 0.1248 | 18.97 | 147 | 0.6510 | 0.8167 |
| 0.1074 | 20.0 | 155 | 0.7813 | 0.7833 |
| 0.1038 | 20.9 | 162 | 0.6553 | 0.8 |
| 0.1052 | 21.94 | 170 | 0.6449 | 0.8333 |
| 0.1052 | 22.97 | 178 | 0.7444 | 0.8 |
| 0.0782 | 24.0 | 186 | 1.0751 | 0.6833 |
| 0.0952 | 24.9 | 193 | 0.6453 | 0.8333 |
| 0.0803 | 25.94 | 201 | 0.7794 | 0.8 |
| 0.0803 | 26.97 | 209 | 0.6160 | 0.8333 |
| 0.0947 | 28.0 | 217 | 0.6362 | 0.85 |
| 0.0702 | 28.9 | 224 | 0.7610 | 0.8167 |
| 0.0737 | 29.94 | 232 | 0.7924 | 0.8167 |
| 0.0644 | 30.97 | 240 | 0.9755 | 0.8 |
| 0.0644 | 32.0 | 248 | 0.8580 | 0.8333 |
| 0.0695 | 32.9 | 255 | 1.1410 | 0.7167 |
| 0.09 | 33.94 | 263 | 0.8442 | 0.8 |
| 0.0619 | 34.97 | 271 | 1.1689 | 0.7167 |
| 0.0619 | 36.0 | 279 | 0.7599 | 0.8333 |
| 0.0607 | 36.9 | 286 | 0.8498 | 0.8167 |
| 0.0509 | 37.94 | 294 | 0.8331 | 0.85 |
| 0.0666 | 38.97 | 302 | 0.8166 | 0.8167 |
| 0.0615 | 40.0 | 310 | 0.9394 | 0.7667 |
| 0.0615 | 40.9 | 317 | 0.8837 | 0.8 |
| 0.0503 | 41.94 | 325 | 0.8208 | 0.8333 |
| 0.0431 | 42.97 | 333 | 1.1271 | 0.75 |
| 0.0548 | 44.0 | 341 | 0.9044 | 0.7833 |
| 0.0548 | 44.9 | 348 | 0.9017 | 0.8 |
| 0.0414 | 45.94 | 356 | 1.1390 | 0.75 |
| 0.0609 | 46.97 | 364 | 0.8937 | 0.8 |
| 0.0556 | 48.0 | 372 | 0.8459 | 0.8 |
| 0.0556 | 48.9 | 379 | 1.0285 | 0.7667 |
| 0.0417 | 49.94 | 387 | 0.7379 | 0.85 |
| 0.0409 | 50.97 | 395 | 0.7817 | 0.8333 |
| 0.0206 | 52.0 | 403 | 0.7860 | 0.8167 |
| 0.0414 | 52.9 | 410 | 0.8414 | 0.8167 |
| 0.0414 | 53.94 | 418 | 0.8657 | 0.8 |
| 0.0329 | 54.97 | 426 | 0.8824 | 0.8 |
| 0.0394 | 56.0 | 434 | 0.7990 | 0.8333 |
| 0.0373 | 56.9 | 441 | 0.8101 | 0.8167 |
| 0.0373 | 57.94 | 449 | 0.8535 | 0.8 |
| 0.0418 | 58.97 | 457 | 0.9149 | 0.8167 |
| 0.0365 | 60.0 | 465 | 0.9278 | 0.8 |
| 0.0367 | 60.9 | 472 | 0.9064 | 0.8 |
| 0.0355 | 61.94 | 480 | 0.9610 | 0.7833 |
| 0.0355 | 62.97 | 488 | 0.9174 | 0.8167 |
| 0.0492 | 64.0 | 496 | 0.9877 | 0.7667 |
| 0.0326 | 64.9 | 503 | 1.0192 | 0.7833 |
| 0.0233 | 65.94 | 511 | 0.9588 | 0.8 |
| 0.0233 | 66.97 | 519 | 0.9829 | 0.7833 |
| 0.0251 | 68.0 | 527 | 1.0540 | 0.7667 |
| 0.0283 | 68.9 | 534 | 1.0556 | 0.7667 |
| 0.0307 | 69.94 | 542 | 1.0036 | 0.7833 |
| 0.0319 | 70.97 | 550 | 0.9294 | 0.8 |
| 0.0319 | 72.0 | 558 | 1.0077 | 0.8 |
| 0.0246 | 72.9 | 565 | 1.0298 | 0.7833 |
| 0.0205 | 73.94 | 573 | 1.0041 | 0.7833 |
| 0.0345 | 74.97 | 581 | 0.9182 | 0.7833 |
| 0.0345 | 76.0 | 589 | 0.9054 | 0.8333 |
| 0.0181 | 76.9 | 596 | 0.9338 | 0.8333 |
| 0.0287 | 77.94 | 604 | 0.9678 | 0.7833 |
| 0.0268 | 78.97 | 612 | 0.9841 | 0.7833 |
| 0.0293 | 80.0 | 620 | 1.0380 | 0.7667 |
| 0.0293 | 80.9 | 627 | 1.0837 | 0.7833 |
| 0.0222 | 81.94 | 635 | 1.0132 | 0.7667 |
| 0.033 | 82.97 | 643 | 0.9785 | 0.8 |
| 0.0227 | 84.0 | 651 | 0.9848 | 0.8 |
| 0.0227 | 84.9 | 658 | 0.9780 | 0.8 |
| 0.0295 | 85.94 | 666 | 0.9613 | 0.8167 |
| 0.0291 | 86.97 | 674 | 0.9753 | 0.8167 |
| 0.031 | 88.0 | 682 | 0.9831 | 0.8 |
| 0.031 | 88.9 | 689 | 0.9820 | 0.8 |
| 0.0233 | 89.94 | 697 | 0.9793 | 0.8 |
| 0.0195 | 90.32 | 700 | 0.9788 | 0.8 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
| {"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "vit-base-patch16-224-dmae-va-U5-100-3i", "results": []}]} | Augusto777/vit-base-patch16-224-dmae-va-U5-100-3i | null | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:34:06+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| vit-base-patch16-224-dmae-va-U5-100-3i
======================================
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5087
* Accuracy: 0.8667
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.05
* num\_epochs: 100
### Training results
### Framework versions
* Transformers 4.36.2
* Pytorch 2.1.2+cu118
* Datasets 2.16.1
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 100",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 100",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] |
sentence-similarity | sentence-transformers |
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 31889 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
```
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 3188,
"evaluator": "utils.ToponymResolutionEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"} | dguzh/geo-all-MiniLM-L6-v2 | null | [
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:35:46+00:00 | [] | [] | TAGS
#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
|
# {MODEL_NAME}
This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL
## Training
The model was trained with the parameters:
DataLoader:
'URL.dataloader.DataLoader' of length 31889 with parameters:
Loss:
'sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss' with parameters:
Parameters of the fit()-Method:
## Full Model Architecture
## Citing & Authors
| [
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 31889 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] | [
"TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n",
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 31889 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b1-finetuned-cityscapes-1024-1024-straighter-only-test
This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b1-finetuned-cityscapes-1024-1024) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0319
- Mean Iou: 0.9378
- Mean Accuracy: 0.9615
- Overall Accuracy: 0.9895
- Accuracy Default: 1e-06
- Accuracy Pipe: 0.8987
- Accuracy Floor: 0.9897
- Accuracy Background: 0.9959
- Iou Default: 1e-06
- Iou Pipe: 0.8434
- Iou Floor: 0.9813
- Iou Background: 0.9889
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Default | Accuracy Pipe | Accuracy Floor | Accuracy Background | Iou Default | Iou Pipe | Iou Floor | Iou Background |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:-------------:|:--------------:|:-------------------:|:-----------:|:--------:|:---------:|:--------------:|
| 0.3904 | 1.0 | 36 | 0.1465 | 0.8037 | 0.8484 | 0.9645 | 1e-06 | 0.5855 | 0.9696 | 0.9900 | 1e-06 | 0.5120 | 0.9355 | 0.9635 |
| 0.1244 | 2.0 | 72 | 0.0891 | 0.8640 | 0.9024 | 0.9766 | 1e-06 | 0.7371 | 0.9764 | 0.9938 | 1e-06 | 0.6565 | 0.9592 | 0.9762 |
| 0.0818 | 3.0 | 108 | 0.0669 | 0.8868 | 0.9178 | 0.9804 | 1e-06 | 0.7826 | 0.9745 | 0.9965 | 1e-06 | 0.7154 | 0.9657 | 0.9793 |
| 0.061 | 4.0 | 144 | 0.0525 | 0.9072 | 0.9407 | 0.9839 | 1e-06 | 0.8472 | 0.9801 | 0.9949 | 1e-06 | 0.7675 | 0.9711 | 0.9830 |
| 0.051 | 5.0 | 180 | 0.0470 | 0.9118 | 0.9444 | 0.9849 | 1e-06 | 0.8585 | 0.9790 | 0.9958 | 1e-06 | 0.7789 | 0.9722 | 0.9845 |
| 0.0461 | 6.0 | 216 | 0.0424 | 0.9191 | 0.9510 | 0.9861 | 1e-06 | 0.8736 | 0.9851 | 0.9944 | 1e-06 | 0.7959 | 0.9762 | 0.9851 |
| 0.0388 | 7.0 | 252 | 0.0401 | 0.9184 | 0.9443 | 0.9862 | 1e-06 | 0.8508 | 0.9862 | 0.9960 | 1e-06 | 0.7932 | 0.9769 | 0.9853 |
| 0.0348 | 8.0 | 288 | 0.0372 | 0.9244 | 0.9565 | 0.9870 | 1e-06 | 0.8894 | 0.9859 | 0.9943 | 1e-06 | 0.8104 | 0.9763 | 0.9865 |
| 0.0324 | 9.0 | 324 | 0.0362 | 0.9237 | 0.9486 | 0.9870 | 1e-06 | 0.8656 | 0.9833 | 0.9969 | 1e-06 | 0.8076 | 0.9773 | 0.9861 |
| 0.031 | 10.0 | 360 | 0.0349 | 0.9239 | 0.9520 | 0.9872 | 1e-06 | 0.8737 | 0.9870 | 0.9954 | 1e-06 | 0.8067 | 0.9788 | 0.9863 |
| 0.0287 | 11.0 | 396 | 0.0333 | 0.9285 | 0.9531 | 0.9877 | 1e-06 | 0.8720 | 0.9930 | 0.9944 | 1e-06 | 0.8209 | 0.9778 | 0.9868 |
| 0.0268 | 12.0 | 432 | 0.0332 | 0.9283 | 0.9522 | 0.9879 | 1e-06 | 0.8737 | 0.9865 | 0.9966 | 1e-06 | 0.8191 | 0.9787 | 0.9872 |
| 0.025 | 13.0 | 468 | 0.0311 | 0.9317 | 0.9622 | 0.9883 | 1e-06 | 0.9042 | 0.9877 | 0.9945 | 1e-06 | 0.8281 | 0.9794 | 0.9877 |
| 0.0247 | 14.0 | 504 | 0.0310 | 0.9308 | 0.9535 | 0.9884 | 1e-06 | 0.8742 | 0.9904 | 0.9959 | 1e-06 | 0.8247 | 0.9801 | 0.9876 |
| 0.0236 | 15.0 | 540 | 0.0307 | 0.9322 | 0.9538 | 0.9886 | 1e-06 | 0.8755 | 0.9897 | 0.9963 | 1e-06 | 0.8292 | 0.9793 | 0.9880 |
| 0.0223 | 16.0 | 576 | 0.0301 | 0.9346 | 0.9633 | 0.9888 | 1e-06 | 0.9083 | 0.9861 | 0.9955 | 1e-06 | 0.8360 | 0.9791 | 0.9886 |
| 0.0208 | 17.0 | 612 | 0.0308 | 0.9326 | 0.9578 | 0.9887 | 1e-06 | 0.8876 | 0.9907 | 0.9953 | 1e-06 | 0.8300 | 0.9797 | 0.9882 |
| 0.0198 | 18.0 | 648 | 0.0295 | 0.9339 | 0.9589 | 0.9888 | 1e-06 | 0.8897 | 0.9921 | 0.9949 | 1e-06 | 0.8335 | 0.9799 | 0.9882 |
| 0.0194 | 19.0 | 684 | 0.0311 | 0.9315 | 0.9524 | 0.9886 | 1e-06 | 0.8712 | 0.9894 | 0.9967 | 1e-06 | 0.8265 | 0.9802 | 0.9878 |
| 0.0188 | 20.0 | 720 | 0.0299 | 0.9332 | 0.9558 | 0.9888 | 1e-06 | 0.8807 | 0.9906 | 0.9959 | 1e-06 | 0.8318 | 0.9796 | 0.9882 |
| 0.0187 | 21.0 | 756 | 0.0298 | 0.9344 | 0.9567 | 0.9890 | 1e-06 | 0.8833 | 0.9905 | 0.9961 | 1e-06 | 0.8339 | 0.9810 | 0.9883 |
| 0.0179 | 22.0 | 792 | 0.0304 | 0.9334 | 0.9566 | 0.9889 | 1e-06 | 0.8834 | 0.9904 | 0.9959 | 1e-06 | 0.8317 | 0.9804 | 0.9882 |
| 0.0174 | 23.0 | 828 | 0.0301 | 0.9350 | 0.9603 | 0.9890 | 1e-06 | 0.8960 | 0.9895 | 0.9955 | 1e-06 | 0.8364 | 0.9803 | 0.9884 |
| 0.017 | 24.0 | 864 | 0.0294 | 0.9352 | 0.9589 | 0.9890 | 1e-06 | 0.8925 | 0.9877 | 0.9963 | 1e-06 | 0.8371 | 0.9802 | 0.9883 |
| 0.0172 | 25.0 | 900 | 0.0322 | 0.9334 | 0.9555 | 0.9888 | 1e-06 | 0.8796 | 0.9908 | 0.9960 | 1e-06 | 0.8320 | 0.9799 | 0.9882 |
| 0.0165 | 26.0 | 936 | 0.0312 | 0.9331 | 0.9556 | 0.9888 | 1e-06 | 0.8813 | 0.9891 | 0.9964 | 1e-06 | 0.8318 | 0.9792 | 0.9884 |
| 0.0162 | 27.0 | 972 | 0.0296 | 0.9350 | 0.9589 | 0.9891 | 1e-06 | 0.8911 | 0.9899 | 0.9959 | 1e-06 | 0.8360 | 0.9806 | 0.9885 |
| 0.0155 | 28.0 | 1008 | 0.0314 | 0.9359 | 0.9578 | 0.9892 | 1e-06 | 0.8880 | 0.9890 | 0.9965 | 1e-06 | 0.8384 | 0.9808 | 0.9884 |
| 0.0154 | 29.0 | 1044 | 0.0291 | 0.9379 | 0.9637 | 0.9894 | 1e-06 | 0.9061 | 0.9898 | 0.9952 | 1e-06 | 0.8438 | 0.9812 | 0.9887 |
| 0.0151 | 30.0 | 1080 | 0.0289 | 0.9372 | 0.9620 | 0.9893 | 1e-06 | 0.8994 | 0.9912 | 0.9952 | 1e-06 | 0.8419 | 0.9810 | 0.9887 |
| 0.0152 | 31.0 | 1116 | 0.0310 | 0.9365 | 0.9573 | 0.9893 | 1e-06 | 0.8865 | 0.9884 | 0.9969 | 1e-06 | 0.8397 | 0.9815 | 0.9884 |
| 0.0143 | 32.0 | 1152 | 0.0307 | 0.9376 | 0.9614 | 0.9894 | 1e-06 | 0.8983 | 0.9904 | 0.9956 | 1e-06 | 0.8433 | 0.9809 | 0.9887 |
| 0.0138 | 33.0 | 1188 | 0.0295 | 0.9385 | 0.9623 | 0.9896 | 1e-06 | 0.9004 | 0.9910 | 0.9955 | 1e-06 | 0.8451 | 0.9814 | 0.9889 |
| 0.0149 | 34.0 | 1224 | 0.0308 | 0.9380 | 0.9617 | 0.9894 | 1e-06 | 0.9007 | 0.9883 | 0.9961 | 1e-06 | 0.8444 | 0.9809 | 0.9886 |
| 0.0138 | 35.0 | 1260 | 0.0304 | 0.9376 | 0.9616 | 0.9894 | 1e-06 | 0.8993 | 0.9899 | 0.9958 | 1e-06 | 0.8431 | 0.9809 | 0.9888 |
| 0.0138 | 36.0 | 1296 | 0.0299 | 0.9379 | 0.9598 | 0.9895 | 1e-06 | 0.8932 | 0.9901 | 0.9962 | 1e-06 | 0.8433 | 0.9816 | 0.9887 |
| 0.0139 | 37.0 | 1332 | 0.0298 | 0.9378 | 0.9615 | 0.9895 | 1e-06 | 0.8983 | 0.9903 | 0.9958 | 1e-06 | 0.8435 | 0.9812 | 0.9889 |
| 0.0133 | 38.0 | 1368 | 0.0293 | 0.9393 | 0.9624 | 0.9897 | 1e-06 | 0.9008 | 0.9906 | 0.9958 | 1e-06 | 0.8467 | 0.9823 | 0.9889 |
| 0.0131 | 39.0 | 1404 | 0.0318 | 0.9368 | 0.9592 | 0.9893 | 1e-06 | 0.8922 | 0.9893 | 0.9963 | 1e-06 | 0.8406 | 0.9814 | 0.9884 |
| 0.0129 | 40.0 | 1440 | 0.0303 | 0.9382 | 0.9627 | 0.9895 | 1e-06 | 0.9034 | 0.9890 | 0.9958 | 1e-06 | 0.8447 | 0.9813 | 0.9887 |
| 0.0126 | 41.0 | 1476 | 0.0304 | 0.9392 | 0.9631 | 0.9896 | 1e-06 | 0.9037 | 0.9901 | 0.9956 | 1e-06 | 0.8471 | 0.9818 | 0.9887 |
| 0.0126 | 42.0 | 1512 | 0.0311 | 0.9378 | 0.9595 | 0.9895 | 1e-06 | 0.8929 | 0.9892 | 0.9965 | 1e-06 | 0.8432 | 0.9817 | 0.9887 |
| 0.0125 | 43.0 | 1548 | 0.0314 | 0.9383 | 0.9611 | 0.9895 | 1e-06 | 0.8974 | 0.9899 | 0.9960 | 1e-06 | 0.8453 | 0.9809 | 0.9888 |
| 0.0129 | 44.0 | 1584 | 0.0319 | 0.9374 | 0.9585 | 0.9895 | 1e-06 | 0.8886 | 0.9904 | 0.9964 | 1e-06 | 0.8420 | 0.9816 | 0.9887 |
| 0.0127 | 45.0 | 1620 | 0.0313 | 0.9380 | 0.9594 | 0.9895 | 1e-06 | 0.8920 | 0.9900 | 0.9964 | 1e-06 | 0.8436 | 0.9816 | 0.9887 |
| 0.0127 | 46.0 | 1656 | 0.0321 | 0.9379 | 0.9626 | 0.9895 | 1e-06 | 0.9029 | 0.9893 | 0.9957 | 1e-06 | 0.8444 | 0.9805 | 0.9890 |
| 0.0121 | 47.0 | 1692 | 0.0321 | 0.9377 | 0.9599 | 0.9895 | 1e-06 | 0.8930 | 0.9907 | 0.9960 | 1e-06 | 0.8430 | 0.9813 | 0.9888 |
| 0.0115 | 48.0 | 1728 | 0.0305 | 0.9390 | 0.9633 | 0.9897 | 1e-06 | 0.9043 | 0.9900 | 0.9957 | 1e-06 | 0.8463 | 0.9817 | 0.9890 |
| 0.0118 | 49.0 | 1764 | 0.0319 | 0.9378 | 0.9615 | 0.9895 | 1e-06 | 0.8987 | 0.9897 | 0.9959 | 1e-06 | 0.8434 | 0.9813 | 0.9889 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.15.0
| {"license": "other", "tags": ["generated_from_trainer"], "base_model": "nvidia/segformer-b1-finetuned-cityscapes-1024-1024", "model-index": [{"name": "segformer-b1-finetuned-cityscapes-1024-1024-straighter-only-test", "results": []}]} | selvaa/segformer-b1-finetuned-cityscapes-1024-1024-straighter-only-test | null | [
"transformers",
"tensorboard",
"safetensors",
"segformer",
"generated_from_trainer",
"base_model:nvidia/segformer-b1-finetuned-cityscapes-1024-1024",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:40:44+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #segformer #generated_from_trainer #base_model-nvidia/segformer-b1-finetuned-cityscapes-1024-1024 #license-other #endpoints_compatible #region-us
| segformer-b1-finetuned-cityscapes-1024-1024-straighter-only-test
================================================================
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-cityscapes-1024-1024 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0319
* Mean Iou: 0.9378
* Mean Accuracy: 0.9615
* Overall Accuracy: 0.9895
* Accuracy Default: 1e-06
* Accuracy Pipe: 0.8987
* Accuracy Floor: 0.9897
* Accuracy Background: 0.9959
* Iou Default: 1e-06
* Iou Pipe: 0.8434
* Iou Floor: 0.9813
* Iou Background: 0.9889
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 3
* eval\_batch\_size: 3
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 60
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.0.1
* Datasets 2.15.0
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.0.1\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #tensorboard #safetensors #segformer #generated_from_trainer #base_model-nvidia/segformer-b1-finetuned-cityscapes-1024-1024 #license-other #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 3\n* eval\\_batch\\_size: 3\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 60\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.0.1\n* Datasets 2.15.0\n* Tokenizers 0.15.0"
] |
reinforcement-learning | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "262.29 +/- 23.03", "name": "mean_reward", "verified": false}]}]}]} | mosterdslop/ppo-LunarLander-v2 | null | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | null | 2024-04-26T13:41:28+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-8b-sft-qlora-re
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | {"license": "other", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "llama3-8b-sft-qlora-re", "results": []}]} | xahilmalik/llama3-8b-sft-qlora-re | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"license:other",
"region:us"
] | null | 2024-04-26T13:41:30+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us
|
# llama3-8b-sft-qlora-re
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2 | [
"# llama3-8b-sft-qlora-re\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 100",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-meta-llama/Meta-Llama-3-8B #license-other #region-us \n",
"# llama3-8b-sft-qlora-re\n\nThis model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 100",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
sentence-similarity | sentence-transformers |
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 31889 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters:
```
{'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 3188,
"evaluator": "utils.ToponymResolutionEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information --> | {"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"} | dguzh/geo-all-distilroberta-v1 | null | [
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:42:11+00:00 | [] | [] | TAGS
#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #endpoints_compatible #region-us
|
# {MODEL_NAME}
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
Then you can use the model like this:
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL
## Training
The model was trained with the parameters:
DataLoader:
'URL.dataloader.DataLoader' of length 31889 with parameters:
Loss:
'sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss' with parameters:
Parameters of the fit()-Method:
## Full Model Architecture
## Citing & Authors
| [
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 31889 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] | [
"TAGS\n#sentence-transformers #pytorch #roberta #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n",
"# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.",
"## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:",
"## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL",
"## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 31889 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss' with parameters:\n \n\nParameters of the fit()-Method:",
"## Full Model Architecture",
"## Citing & Authors"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dsfdsf2/distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8581
- Validation Loss: 3.6729
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.8581 | 3.6729 | 0 |
### Framework versions
- Transformers 4.40.1
- TensorFlow 2.16.1
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "distilgpt2", "model-index": [{"name": "dsfdsf2/distilgpt2-finetuned-wikitext2", "results": []}]} | dsfdsf2/distilgpt2-finetuned-wikitext2 | null | [
"transformers",
"tf",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"base_model:distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:45:07+00:00 | [] | [] | TAGS
#transformers #tf #tensorboard #gpt2 #text-generation #generated_from_keras_callback #base_model-distilgpt2 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| dsfdsf2/distilgpt2-finetuned-wikitext2
======================================
This model is a fine-tuned version of distilgpt2 on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 3.8581
* Validation Loss: 3.6729
* Epoch: 0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 2e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.40.1
* TensorFlow 2.16.1
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.16.1\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tf #tensorboard #gpt2 #text-generation #generated_from_keras_callback #base_model-distilgpt2 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.16.1\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | transformers | ## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
weighted/imatrix quants of https://huggingface.co/chargoddard/llama3-42b-v0
<!-- provided-files -->
static quants are available at https://huggingface.co/mradermacher/llama3-42b-v0-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ1_S.gguf) | i1-IQ1_S | 9.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ1_M.gguf) | i1-IQ1_M | 10.6 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 12.0 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 13.2 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ2_S.gguf) | i1-IQ2_S | 13.9 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ2_M.gguf) | i1-IQ2_M | 15.0 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q2_K.gguf) | i1-Q2_K | 16.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 17.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 18.2 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 19.1 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ3_S.gguf) | i1-IQ3_S | 19.1 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ3_M.gguf) | i1-IQ3_M | 19.7 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 21.1 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 22.9 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 23.4 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q4_0.gguf) | i1-Q4_0 | 24.8 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 24.8 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 26.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 29.9 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 30.7 | |
| [GGUF](https://huggingface.co/mradermacher/llama3-42b-v0-i1-GGUF/resolve/main/llama3-42b-v0.i1-Q6_K.gguf) | i1-Q6_K | 35.5 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "llama3", "library_name": "transformers", "tags": ["axolotl", "mergekit", "llama"], "datasets": ["JeanKaddour/minipile"], "base_model": "chargoddard/llama3-42b-v0", "quantized_by": "mradermacher"} | mradermacher/llama3-42b-v0-i1-GGUF | null | [
"transformers",
"gguf",
"axolotl",
"mergekit",
"llama",
"en",
"dataset:JeanKaddour/minipile",
"base_model:chargoddard/llama3-42b-v0",
"license:llama3",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:46:07+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #axolotl #mergekit #llama #en #dataset-JeanKaddour/minipile #base_model-chargoddard/llama3-42b-v0 #license-llama3 #endpoints_compatible #region-us
| About
-----
weighted/imatrix quants of URL
static quants are available at URL
Usage
-----
If you are unsure how to use GGUF files, refer to one of TheBloke's
READMEs for
more details, including on how to concatenate multi-part files.
Provided Quants
---------------
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
!URL
And here are Artefact2's thoughts on the matter:
URL
FAQ / Model Request
-------------------
See URL for some answers to
questions you might have and/or if you want some other model quantized.
Thanks
------
I thank my company, nethype GmbH, for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
| [] | [
"TAGS\n#transformers #gguf #axolotl #mergekit #llama #en #dataset-JeanKaddour/minipile #base_model-chargoddard/llama3-42b-v0 #license-llama3 #endpoints_compatible #region-us \n"
] |
null | transformers |
# itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF
This model was converted to GGUF format from [`yam-peleg/Hebrew-Mistral-7B`](https://huggingface.co/yam-peleg/Hebrew-Mistral-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/yam-peleg/Hebrew-Mistral-7B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF --model hebrew-mistral-7b.Q5_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF --model hebrew-mistral-7b.Q5_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m hebrew-mistral-7b.Q5_K_M.gguf -n 128
```
| {"language": ["en", "he"], "license": "apache-2.0", "library_name": "transformers", "tags": ["llama-cpp", "gguf-my-repo"]} | itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF | null | [
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"en",
"he",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:46:49+00:00 | [] | [
"en",
"he"
] | TAGS
#transformers #gguf #llama-cpp #gguf-my-repo #en #he #license-apache-2.0 #endpoints_compatible #region-us
|
# itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF
This model was converted to GGUF format from 'yam-peleg/Hebrew-Mistral-7B' using URL via the URL's GGUF-my-repo space.
Refer to the original model card for more details on the model.
## Use with URL
Install URL through brew.
Invoke the URL server or the CLI.
CLI:
Server:
Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
| [
"# itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF\nThis model was converted to GGUF format from 'yam-peleg/Hebrew-Mistral-7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] | [
"TAGS\n#transformers #gguf #llama-cpp #gguf-my-repo #en #he #license-apache-2.0 #endpoints_compatible #region-us \n",
"# itayl/Hebrew-Mistral-7B-Q5_K_M-GGUF\nThis model was converted to GGUF format from 'yam-peleg/Hebrew-Mistral-7B' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Likich/llama3-finetune-qualcoding | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:47:16+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-generation | transformers |
# Uploaded model
- **Developed by:** richie-ghost
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | richie-ghost/llama-3b-unsloth-quantized_merged | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:48:53+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: richie-ghost
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: richie-ghost\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: richie-ghost\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
fill-mask | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# job_postings_mlm_model_450k
This model is a fine-tuned version of [giyoung-kwon-0902/job_postings_mlm_model_400k](https://huggingface.co/giyoung-kwon-0902/job_postings_mlm_model_400k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1113
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.153 | 1.0 | 17544 | 0.1361 |
| 0.1215 | 2.0 | 35088 | 0.1113 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "giyoung-kwon-0902/job_postings_mlm_model_400k", "model-index": [{"name": "job_postings_mlm_model_450k", "results": []}]} | giyoung-kwon-0902/job_postings_mlm_model_450k | null | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:giyoung-kwon-0902/job_postings_mlm_model_400k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:49:01+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #roberta #fill-mask #generated_from_trainer #base_model-giyoung-kwon-0902/job_postings_mlm_model_400k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| job\_postings\_mlm\_model\_450k
===============================
This model is a fine-tuned version of giyoung-kwon-0902/job\_postings\_mlm\_model\_400k on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1113
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.1
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #roberta #fill-mask #generated_from_trainer #base_model-giyoung-kwon-0902/job_postings_mlm_model_400k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | pesc101/Mistral-7B-Instruct-v0.2-lbl-2x | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:49:53+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers | ## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Zangs3011/llama3_8B_norobots
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/llama3_8B_norobots-GGUF/resolve/main/llama3_8B_norobots.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "library_name": "transformers", "tags": [], "base_model": "Zangs3011/llama3_8B_norobots", "quantized_by": "mradermacher"} | mradermacher/llama3_8B_norobots-GGUF | null | [
"transformers",
"gguf",
"en",
"base_model:Zangs3011/llama3_8B_norobots",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:54:10+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #en #base_model-Zangs3011/llama3_8B_norobots #endpoints_compatible #region-us
| About
-----
static quants of URL
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
Usage
-----
If you are unsure how to use GGUF files, refer to one of TheBloke's
READMEs for
more details, including on how to concatenate multi-part files.
Provided Quants
---------------
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
!URL
And here are Artefact2's thoughts on the matter:
URL
FAQ / Model Request
-------------------
See URL for some answers to
questions you might have and/or if you want some other model quantized.
Thanks
------
I thank my company, nethype GmbH, for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
| [] | [
"TAGS\n#transformers #gguf #en #base_model-Zangs3011/llama3_8B_norobots #endpoints_compatible #region-us \n"
] |
null | transformers | ## About
<!-- ### quantize_version: 1 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/aipib/sakana-dareties2
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/sakana-dareties2-GGUF/resolve/main/sakana-dareties2.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "library_name": "transformers", "tags": ["merge", "mergekit", "lazymergekit", "stabilityai/japanese-stablelm-base-gamma-7b", "augmxnt/shisa-gamma-7b-v1"], "base_model": "aipib/sakana-dareties2", "quantized_by": "mradermacher"} | mradermacher/sakana-dareties2-GGUF | null | [
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"stabilityai/japanese-stablelm-base-gamma-7b",
"augmxnt/shisa-gamma-7b-v1",
"en",
"base_model:aipib/sakana-dareties2",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:54:41+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #merge #mergekit #lazymergekit #stabilityai/japanese-stablelm-base-gamma-7b #augmxnt/shisa-gamma-7b-v1 #en #base_model-aipib/sakana-dareties2 #endpoints_compatible #region-us
| About
-----
static quants of URL
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
Usage
-----
If you are unsure how to use GGUF files, refer to one of TheBloke's
READMEs for
more details, including on how to concatenate multi-part files.
Provided Quants
---------------
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
!URL
And here are Artefact2's thoughts on the matter:
URL
FAQ / Model Request
-------------------
See URL for some answers to
questions you might have and/or if you want some other model quantized.
Thanks
------
I thank my company, nethype GmbH, for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
| [] | [
"TAGS\n#transformers #gguf #merge #mergekit #lazymergekit #stabilityai/japanese-stablelm-base-gamma-7b #augmxnt/shisa-gamma-7b-v1 #en #base_model-aipib/sakana-dareties2 #endpoints_compatible #region-us \n"
] |
null | null | Just an imatrix quant of https://huggingface.co/jeiku/Fett-uccine_Mini_3B_GGUF to use on non-flagship smartphones. | {} | BlueNipples/Fett-uccine_Mini_3B-q2k-imat_GGUF | null | [
"gguf",
"region:us"
] | null | 2024-04-26T13:54:52+00:00 | [] | [] | TAGS
#gguf #region-us
| Just an imatrix quant of URL to use on non-flagship smartphones. | [] | [
"TAGS\n#gguf #region-us \n"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat
This model is a fine-tuned version of [sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat](https://huggingface.co/sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1555
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1709 | 1.0 | 545 | 1.1553 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"tags": ["alignment-handbook", "trl", "sft", "generated_from_trainer", "trl", "sft", "alignment-handbook", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrachat_200k"], "base_model": "sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat", "model-index": [{"name": "sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat", "results": []}]} | sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat-200k | null | [
"transformers",
"tensorboard",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrachat_200k",
"base_model:sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T13:56:34+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #mistral #text-generation #alignment-handbook #trl #sft #generated_from_trainer #conversational #dataset-HuggingFaceH4/ultrachat_200k #base_model-sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat
================================================
This model is a fine-tuned version of sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat on the HuggingFaceH4/ultrachat\_200k dataset.
It achieves the following results on the evaluation set:
* Loss: 1.1555
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0001
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 8
* total\_train\_batch\_size: 256
* total\_eval\_batch\_size: 256
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 1
### Training results
### Framework versions
* Transformers 4.40.1
* Pytorch 2.2.2+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 256\n* total\\_eval\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #alignment-handbook #trl #sft #generated_from_trainer #conversational #dataset-HuggingFaceH4/ultrachat_200k #base_model-sanchit-gandhi/distil-zephyr-1.5b-ssft-ultrachat #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 256\n* total\\_eval\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.2+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Rimyy/TentativeGemma1epEv | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:57:43+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
# Uploaded model
- **Developed by:** sravaniayyagari
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b"} | sravaniayyagari/llama3_finetuned_1 | null | [
"transformers",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:58:01+00:00 | [] | [
"en"
] | TAGS
#transformers #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b #license-apache-2.0 #endpoints_compatible #region-us
|
# Uploaded model
- Developed by: sravaniayyagari
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: sravaniayyagari\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Uploaded model\n\n- Developed by: sravaniayyagari\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | FounderNest/mistral-7b-instruct-classifier-fit-assessment-finetuned-v3.4 | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:58:05+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RNAMamba-14M-Contrastive
This model is a fine-tuned version of [afg1/RNAMamba-14M](https://huggingface.co/afg1/RNAMamba-14M) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "afg1/RNAMamba-14M", "model-index": [{"name": "RNAMamba-14M-Contrastive", "results": []}]} | afg1/RNAMamba-14M-Contrastive | null | [
"transformers",
"safetensors",
"mamba",
"generated_from_trainer",
"base_model:afg1/RNAMamba-14M",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T13:58:27+00:00 | [] | [] | TAGS
#transformers #safetensors #mamba #generated_from_trainer #base_model-afg1/RNAMamba-14M #license-apache-2.0 #endpoints_compatible #region-us
|
# RNAMamba-14M-Contrastive
This model is a fine-tuned version of afg1/RNAMamba-14M on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# RNAMamba-14M-Contrastive\n\nThis model is a fine-tuned version of afg1/RNAMamba-14M on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu118\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #mamba #generated_from_trainer #base_model-afg1/RNAMamba-14M #license-apache-2.0 #endpoints_compatible #region-us \n",
"# RNAMamba-14M-Contrastive\n\nThis model is a fine-tuned version of afg1/RNAMamba-14M on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.2+cu118\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
text-generation | transformers |
# Uploaded model
- **Developed by:** richie-ghost
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | richie-ghost/llama-3b-unsloth-quantized_lora | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"region:us"
] | null | 2024-04-26T13:58:58+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us
|
# Uploaded model
- Developed by: richie-ghost
- License: apache-2.0
- Finetuned from model : unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/>
| [
"# Uploaded model\n\n- Developed by: richie-ghost\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n",
"# Uploaded model\n\n- Developed by: richie-ghost\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v2
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.1
- Pytorch 2.2.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1 | {"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v2", "results": []}]} | NassimB/mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v2 | null | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-04-26T14:01:24+00:00 | [] | [] | TAGS
#peft #safetensors #trl #sft #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
|
# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v2
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.1
- Pytorch 2.2.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1 | [
"# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v2\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 6\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.1\n- Pytorch 2.2.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.1"
] | [
"TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n",
"# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v2\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 16\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 6\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.1\n- Pytorch 2.2.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.1"
] |
text-generation | transformers | <!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
<img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
<!-- header end -->
[](https://twitter.com/PrunaAI)
[](https://github.com/PrunaAI)
[](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
[](https://discord.gg/CP4VSgck)
# Simply make AI models cheaper, smaller, faster, and greener!
- Give a thumbs up if you like this model!
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
- Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
## Results

**Frequently Asked Questions**
- ***How does the compression work?*** The model is compressed with awq.
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
- ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- ***What is the model format?*** We use safetensors.
- ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
- ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
- ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo cognitivecomputations/dolphin-2.9-llama3-8b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
```bash
pip install autoawq
```
2. Load & run the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized("PrunaAI/cognitivecomputations-dolphin-2.9-llama3-8b-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2.9-llama3-8b")
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
outputs = model.generate(input_ids, max_new_tokens=216)
tokenizer.decode(outputs[0])
```
## Configurations
The configuration info are in `smash_config.json`.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model cognitivecomputations/dolphin-2.9-llama3-8b before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
- Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). | {"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "cognitivecomputations/dolphin-2.9-llama3-8b"} | PrunaAI/cognitivecomputations-dolphin-2.9-llama3-8b-AWQ-4bit-smashed | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pruna-ai",
"conversational",
"base_model:cognitivecomputations/dolphin-2.9-llama3-8b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-26T14:04:34+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-cognitivecomputations/dolphin-2.9-llama3-8b #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
<div style="width: auto; margin-left: auto; margin-right: auto">
<a href="URL target="_blank" rel="noopener noreferrer">
<img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</a>
</div>
. We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
- *What is the model format?* We use safetensors.
- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.
- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.
- *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
- *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
## Setup
You can run the smashed model with these steps:
0. Check requirements from the original repo cognitivecomputations/dolphin-2.9-llama3-8b installed. In particular, check python, cuda, and transformers versions.
1. Make sure that you have installed quantization related packages.
2. Load & run the model.
## Configurations
The configuration info are in 'smash_config.json'.
## Credits & License
The license of the smashed model follows the license of the original model. Please check the license of the original model cognitivecomputations/dolphin-2.9-llama3-8b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.
## Want to compress other models?
- Contact us and tell us which model to compress next here.
- Request access to easily compress your own AI models here. | [
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo cognitivecomputations/dolphin-2.9-llama3-8b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model cognitivecomputations/dolphin-2.9-llama3-8b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-cognitivecomputations/dolphin-2.9-llama3-8b #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.",
"## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.",
"## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo cognitivecomputations/dolphin-2.9-llama3-8b installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.",
"## Configurations\n\nThe configuration info are in 'smash_config.json'.",
"## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model cognitivecomputations/dolphin-2.9-llama3-8b before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.",
"## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here."
] |
token-classification | transformers |
# SOTA Entity Recognition English Foundation Model by NuMind 🔥
This model provides the best embedding for the Entity Recognition task in English. It is an improved version of the model from our [**paper**](https://arxiv.org/abs/2402.15343).
**Checkout other models by NuMind:**
* SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
* SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
## About
[Roberta-base](https://huggingface.co/roberta-base) fine-tuned on the expanded version of [NuNER data](https://huggingface.co/datasets/numind/NuNER) using contrastive learning from [**NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data**](https://arxiv.org/abs/2402.15343).
**Metrics:**
Read more about evaluation protocol & datasets in our [NuNER data](https://huggingface.co/datasets/numind/NuNER) using contrastive learning from [**paper**](https://arxiv.org/abs/2402.15343).
Here is the aggregated performance of the models over several datasets:
k=X means that as training data, we took only X examples for each class, trained the model, and evaluated it on the full test set.
| Model | k=1 | k=4 | k=16 | k=64 |
|----------|----------|----------|----------|----------|
| RoBERTa-base | 24.5 | 44.7 | 58.1 | 65.4
| RoBERTa-base + NER-BERT pre-training | 32.3 | 50.9 | 61.9 | 67.6 |
| NuNER v0.1 | 34.3 | 54.6 | 64.0 | 68.7 |
| NuNER v1.0 | 39.4 | 59.6 | 67.8 | 71.5 |
| **NuNER v2.0** | **43.6** | **61.0** | **68.2** | **72.0** |
NuNER v1.0 has similar performance to 7B LLMs (70 times bigger than NuNER v1.0) created specifically for the NER task. Thus NuNER v2.0 should be even better than the 7b LLM.
| Model | k=8~16| k=64~128 |
|----------|----------|----------|
| UniversalNER (7B) | 57.89 ± 4.34 | 71.02 ± 1.53 |
| NuNER v1.0 (100M) | 58.75 ± 0.93 | 70.30 ± 0.35 |
## Usage
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
```python
import torch
import transformers
model = transformers.AutoModel.from_pretrained(
'numind/NuNER-v2.0'
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
'numind/NuNER-v2.0'
)
text = [
"NuMind is an AI company based in Paris and USA.",
"See other models from us on https://huggingface.co/numind"
]
encoded_input = tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
output = model(**encoded_input)
emb = output.last_hidden_state
```
## Citation
```
@misc{bogdanov2024nuner,
title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data},
author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
year={2024},
eprint={2402.15343},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` | {"language": ["en"], "license": "mit", "tags": ["token-classification", "entity-recognition", "foundation-model", "feature-extraction", "RoBERTa", "generic"], "datasets": ["numind/NuNER"], "pipeline_tag": "token-classification", "inference": false} | numind/NuNER-v2.0 | null | [
"transformers",
"safetensors",
"roberta",
"feature-extraction",
"token-classification",
"entity-recognition",
"foundation-model",
"RoBERTa",
"generic",
"en",
"dataset:numind/NuNER",
"arxiv:2402.15343",
"license:mit",
"region:us"
] | null | 2024-04-26T14:06:13+00:00 | [
"2402.15343"
] | [
"en"
] | TAGS
#transformers #safetensors #roberta #feature-extraction #token-classification #entity-recognition #foundation-model #RoBERTa #generic #en #dataset-numind/NuNER #arxiv-2402.15343 #license-mit #region-us
| SOTA Entity Recognition English Foundation Model by NuMind
==========================================================
This model provides the best embedding for the Entity Recognition task in English. It is an improved version of the model from our paper.
Checkout other models by NuMind:
* SOTA Multilingual Entity Recognition Foundation Model: link
* SOTA Sentiment Analysis Foundation Model: English, Multilingual
About
-----
Roberta-base fine-tuned on the expanded version of NuNER data using contrastive learning from NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data.
Metrics:
Read more about evaluation protocol & datasets in our NuNER data using contrastive learning from paper.
Here is the aggregated performance of the models over several datasets:
k=X means that as training data, we took only X examples for each class, trained the model, and evaluated it on the full test set.
NuNER v1.0 has similar performance to 7B LLMs (70 times bigger than NuNER v1.0) created specifically for the NER task. Thus NuNER v2.0 should be even better than the 7b LLM.
Model: UniversalNER (7B), k=8~16: 57.89 ± 4.34, k=64~128: 71.02 ± 1.53
Model: NuNER v1.0 (100M), k=8~16: 58.75 ± 0.93, k=64~128: 70.30 ± 0.35
Usage
-----
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
| [] | [
"TAGS\n#transformers #safetensors #roberta #feature-extraction #token-classification #entity-recognition #foundation-model #RoBERTa #generic #en #dataset-numind/NuNER #arxiv-2402.15343 #license-mit #region-us \n"
] |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GPT2WaP
This model is a [gpt2](https://huggingface.co/gpt2) model trained from scratch on the War and peace book.
It achieves the following results on the evaluation set:
- Loss: 9.0987
- Perplexity: 8943.6289
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Perplexity |
|:-------------:|:-------:|:----:|:---------------:|:----------:|
| 10.157 | 0.6897 | 10 | 9.2336 | 10235.7480 |
| 9.2581 | 1.3793 | 20 | 8.9452 | 7671.1870 |
| 8.8166 | 2.0690 | 30 | 9.4917 | 13248.7207 |
| 8.5094 | 2.7586 | 40 | 9.5417 | 13928.9434 |
| 8.0914 | 3.4483 | 50 | 9.5507 | 14054.4785 |
| 7.663 | 4.1379 | 60 | 9.4760 | 13043.2441 |
| 7.3275 | 4.8276 | 70 | 9.3510 | 11510.8203 |
| 6.9788 | 5.5172 | 80 | 9.0822 | 8797.7188 |
| 6.6639 | 6.2069 | 90 | 8.9803 | 7945.4014 |
| 6.3749 | 6.8966 | 100 | 8.6494 | 5706.8130 |
| 6.0702 | 7.5862 | 110 | 8.5696 | 5268.9268 |
| 5.9107 | 8.2759 | 120 | 8.3612 | 4277.6265 |
| 5.6724 | 8.9655 | 130 | 8.4294 | 4579.6484 |
| 5.5949 | 9.6552 | 140 | 8.4934 | 4882.4316 |
| 5.4904 | 10.3448 | 150 | 8.4683 | 4761.3862 |
| 5.3792 | 11.0345 | 160 | 8.4647 | 4744.5381 |
| 5.3091 | 11.7241 | 170 | 8.5767 | 5306.3535 |
| 5.233 | 12.4138 | 180 | 8.5257 | 5042.5068 |
| 5.2252 | 13.1034 | 190 | 8.5328 | 5078.8433 |
| 5.1445 | 13.7931 | 200 | 8.5871 | 5361.9390 |
| 5.0824 | 14.4828 | 210 | 8.5784 | 5315.4043 |
| 5.0272 | 15.1724 | 220 | 8.6434 | 5672.6934 |
| 4.979 | 15.8621 | 230 | 8.6836 | 5905.4277 |
| 4.924 | 16.5517 | 240 | 8.7112 | 6070.2261 |
| 4.9394 | 17.2414 | 250 | 8.7233 | 6144.3931 |
| 4.8663 | 17.9310 | 260 | 8.7411 | 6254.5234 |
| 4.8599 | 18.6207 | 270 | 8.7824 | 6518.7896 |
| 4.8572 | 19.3103 | 280 | 8.8338 | 6862.5586 |
| 4.8064 | 20.0 | 290 | 8.7774 | 6485.7441 |
| 4.746 | 20.6897 | 300 | 8.8458 | 6944.8892 |
| 4.7569 | 21.3793 | 310 | 8.8436 | 6930.1416 |
| 4.6954 | 22.0690 | 320 | 8.8618 | 7057.1084 |
| 4.7277 | 22.7586 | 330 | 8.8706 | 7119.4478 |
| 4.6432 | 23.4483 | 340 | 8.9084 | 7393.6138 |
| 4.6032 | 24.1379 | 350 | 8.9111 | 7413.5176 |
| 4.6198 | 24.8276 | 360 | 8.9526 | 7728.0210 |
| 4.5874 | 25.5172 | 370 | 8.9740 | 7895.1641 |
| 4.5455 | 26.2069 | 380 | 8.9365 | 7604.7129 |
| 4.5313 | 26.8966 | 390 | 8.9738 | 7893.2969 |
| 4.5297 | 27.5862 | 400 | 8.9659 | 7831.8110 |
| 4.5279 | 28.2759 | 410 | 8.9914 | 8034.0391 |
| 4.4974 | 28.9655 | 420 | 9.0293 | 8344.2529 |
| 4.4554 | 29.6552 | 430 | 9.0191 | 8259.1533 |
| 4.4651 | 30.3448 | 440 | 9.0236 | 8296.4531 |
| 4.4647 | 31.0345 | 450 | 9.0349 | 8391.1279 |
| 4.4668 | 31.7241 | 460 | 9.0530 | 8543.8340 |
| 4.4264 | 32.4138 | 470 | 9.0722 | 8709.4141 |
| 4.4008 | 33.1034 | 480 | 9.0876 | 8844.6104 |
| 4.3982 | 33.7931 | 490 | 9.0711 | 8700.4893 |
| 4.3846 | 34.4828 | 500 | 9.0894 | 8860.7441 |
| 4.3971 | 35.1724 | 510 | 9.0879 | 8847.6973 |
| 4.379 | 35.8621 | 520 | 9.0949 | 8909.6025 |
| 4.3696 | 36.5517 | 530 | 9.1097 | 9042.2295 |
| 4.3447 | 37.2414 | 540 | 9.1007 | 8961.6953 |
| 4.3796 | 37.9310 | 550 | 9.0869 | 8839.0781 |
| 4.364 | 38.6207 | 560 | 9.0987 | 8943.6289 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "gpt2", "model-index": [{"name": "GPT2WaP", "results": []}]} | Kasdeja23/GPT2WaP | null | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:gpt2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:06:14+00:00 | [] | [] | TAGS
#transformers #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| GPT2WaP
=======
This model is a gpt2 model trained from scratch on the War and peace book.
It achieves the following results on the evaluation set:
* Loss: 9.0987
* Perplexity: 8943.6289
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 2
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 512
* total\_eval\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 100
* num\_epochs: 40
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.1
* Pytorch 2.3.0+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 512\n* total\\_eval\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-gpt2 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 512\n* total\\_eval\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 100\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.3.0+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large urdu - huzaifa
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"language": ["ur"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_11_0"], "base_model": "openai/whisper-small", "model-index": [{"name": "Whisper large urdu - huzaifa", "results": []}]} | huzaifa1117/whisper-large-urdu-3 | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ur",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:07:49+00:00 | [] | [
"ur"
] | TAGS
#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ur #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us
|
# Whisper large urdu - huzaifa
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| [
"# Whisper large urdu - huzaifa\n\nThis model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 100\n- training_steps: 1000\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #ur #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n",
"# Whisper large urdu - huzaifa\n\nThis model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 100\n- training_steps: 1000\n- mixed_precision_training: Native AMP",
"### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v3
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.1
- Pytorch 2.2.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1 | {"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "mistralai/Mistral-7B-v0.1", "model-index": [{"name": "mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v3", "results": []}]} | NassimB/mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v3 | null | [
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"region:us"
] | null | 2024-04-26T14:08:32+00:00 | [] | [] | TAGS
#peft #safetensors #trl #sft #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us
|
# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v3
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.1
- Pytorch 2.2.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1 | [
"# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v3\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 6\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.1\n- Pytorch 2.2.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.1"
] | [
"TAGS\n#peft #safetensors #trl #sft #generated_from_trainer #base_model-mistralai/Mistral-7B-v0.1 #license-apache-2.0 #region-us \n",
"# mistral-7b-hf-platypus_vxxiii-chat-added_lamini_v3\n\nThis model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 8\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_steps: 6\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.37.1\n- Pytorch 2.2.0+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.1"
] |
text-generation | transformers |
# MixtureOfPhi3
<p align="center">
<img src="https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F11201acc-4089-416d-921b-cbd71fbf8ddb_1024x1024.jpeg" width="300" class="center"/>
</p>
**MixtureOfPhi3** is a Mixure of Experts (MoE) made with the following models using mergekit:
* [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)
* [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)
This has been created using [LazyMergekit-Phi3](https://colab.research.google.com/drive/1Upb8JOAS3-K-iemblew34p9h1H6wtCeU?usp=sharing)
This run is only for development purposes, since merging 2 identical models does not bring any performance benefits, but once specialized finetunes of Phi3 models will be available, it will be a starting point for creating MoE from them.
## ©️ Credits
* [mlabonne's phixtral](https://huggingface.co/mlabonne/phixtral-4x2_8) where I adapted the inference code to Phi3's architecture.
* [mergekit](https://github.com/cg123/mergekit) code which I tweaked to merge Phi3s
These have been merged using `cheap_embed` where each model is assigned a vector representation of words - such as experts for scientific work, reasoning, math etc.
Try your own in the link above !
## 🧩 Configuration
```yaml
base_model: microsoft/Phi-3-mini-128k-instruct
gate_mode: cheap_embed
dtype: float16
experts:
- source_model: microsoft/Phi-3-mini-128k-instruct
positive_prompts: ["research, logic, math, science"]
- source_model: microsoft/Phi-3-mini-128k-instruct
positive_prompts: ["creative, art"]
```
## 💻 Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = "paulilioaica/MixtureOfPhi3"
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
trust_remote_code=True,
)
prompt="How many continents are there?"
input = f"<|system|>\nYou are a helpful AI assistant.<|end|>\n<|user|>{prompt}\n<|assistant|>"
tokenized_input = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(tokenized_input, max_new_tokens=128, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(tokenizer.decode(outputs[0]))
``` | {"license": "apache-2.0", "tags": ["moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "phi3_mergekit", "microsoft/Phi-3-mini-128k-instruct"], "base_model": ["microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-128k-instruct"]} | paulilioaica/MixtureOfPhi3 | null | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"moe",
"frankenmoe",
"merge",
"mergekit",
"lazymergekit",
"phi3_mergekit",
"microsoft/Phi-3-mini-128k-instruct",
"conversational",
"custom_code",
"base_model:microsoft/Phi-3-mini-128k-instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:08:38+00:00 | [] | [] | TAGS
#transformers #safetensors #phi3 #text-generation #moe #frankenmoe #merge #mergekit #lazymergekit #phi3_mergekit #microsoft/Phi-3-mini-128k-instruct #conversational #custom_code #base_model-microsoft/Phi-3-mini-128k-instruct #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# MixtureOfPhi3
<p align="center">
<img src="URL width="300" class="center"/>
</p>
MixtureOfPhi3 is a Mixure of Experts (MoE) made with the following models using mergekit:
* Phi-3-mini-128k-instruct
* Phi-3-mini-128k-instruct
This has been created using LazyMergekit-Phi3
This run is only for development purposes, since merging 2 identical models does not bring any performance benefits, but once specialized finetunes of Phi3 models will be available, it will be a starting point for creating MoE from them.
## ©️ Credits
* mlabonne's phixtral where I adapted the inference code to Phi3's architecture.
* mergekit code which I tweaked to merge Phi3s
These have been merged using 'cheap_embed' where each model is assigned a vector representation of words - such as experts for scientific work, reasoning, math etc.
Try your own in the link above !
## Configuration
## Usage
| [
"# MixtureOfPhi3\n\n<p align=\"center\">\n<img src=\"URL width=\"300\" class=\"center\"/>\n</p>\n\n\nMixtureOfPhi3 is a Mixure of Experts (MoE) made with the following models using mergekit:\n* Phi-3-mini-128k-instruct\n* Phi-3-mini-128k-instruct\n\nThis has been created using LazyMergekit-Phi3\n\nThis run is only for development purposes, since merging 2 identical models does not bring any performance benefits, but once specialized finetunes of Phi3 models will be available, it will be a starting point for creating MoE from them.",
"## ©️ Credits\n* mlabonne's phixtral where I adapted the inference code to Phi3's architecture.\n* mergekit code which I tweaked to merge Phi3s\n\n\nThese have been merged using 'cheap_embed' where each model is assigned a vector representation of words - such as experts for scientific work, reasoning, math etc.\n\nTry your own in the link above !",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #safetensors #phi3 #text-generation #moe #frankenmoe #merge #mergekit #lazymergekit #phi3_mergekit #microsoft/Phi-3-mini-128k-instruct #conversational #custom_code #base_model-microsoft/Phi-3-mini-128k-instruct #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# MixtureOfPhi3\n\n<p align=\"center\">\n<img src=\"URL width=\"300\" class=\"center\"/>\n</p>\n\n\nMixtureOfPhi3 is a Mixure of Experts (MoE) made with the following models using mergekit:\n* Phi-3-mini-128k-instruct\n* Phi-3-mini-128k-instruct\n\nThis has been created using LazyMergekit-Phi3\n\nThis run is only for development purposes, since merging 2 identical models does not bring any performance benefits, but once specialized finetunes of Phi3 models will be available, it will be a starting point for creating MoE from them.",
"## ©️ Credits\n* mlabonne's phixtral where I adapted the inference code to Phi3's architecture.\n* mergekit code which I tweaked to merge Phi3s\n\n\nThese have been merged using 'cheap_embed' where each model is assigned a vector representation of words - such as experts for scientific work, reasoning, math etc.\n\nTry your own in the link above !",
"## Configuration",
"## Usage"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# esm2_t130_150M-lora-classifier_2024-04-26_10-08-51
This model is a fine-tuned version of [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4537
- Accuracy: 0.8984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008701568055793088
- train_batch_size: 28
- eval_batch_size: 28
- seed: 8893
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6764 | 1.0 | 55 | 0.6794 | 0.5820 |
| 0.5521 | 2.0 | 110 | 0.6192 | 0.6777 |
| 0.5409 | 3.0 | 165 | 0.5147 | 0.7383 |
| 0.5518 | 4.0 | 220 | 0.3518 | 0.8672 |
| 0.1386 | 5.0 | 275 | 0.3596 | 0.8574 |
| 0.303 | 6.0 | 330 | 0.4030 | 0.8359 |
| 0.1962 | 7.0 | 385 | 0.3143 | 0.8848 |
| 0.1501 | 8.0 | 440 | 0.3232 | 0.8652 |
| 0.2994 | 9.0 | 495 | 0.3014 | 0.8770 |
| 0.0914 | 10.0 | 550 | 0.2980 | 0.8887 |
| 0.2108 | 11.0 | 605 | 0.2854 | 0.8770 |
| 0.2896 | 12.0 | 660 | 0.3684 | 0.8691 |
| 0.0818 | 13.0 | 715 | 0.3349 | 0.8828 |
| 0.3152 | 14.0 | 770 | 0.3530 | 0.8848 |
| 0.0554 | 15.0 | 825 | 0.3371 | 0.8887 |
| 0.1928 | 16.0 | 880 | 0.3347 | 0.875 |
| 0.2658 | 17.0 | 935 | 0.3765 | 0.8867 |
| 0.4242 | 18.0 | 990 | 0.4166 | 0.8945 |
| 0.0964 | 19.0 | 1045 | 0.3400 | 0.8945 |
| 0.0375 | 20.0 | 1100 | 0.3581 | 0.9004 |
| 0.1781 | 21.0 | 1155 | 0.3816 | 0.8848 |
| 0.1563 | 22.0 | 1210 | 0.3940 | 0.8867 |
| 0.017 | 23.0 | 1265 | 0.4098 | 0.8926 |
| 0.1866 | 24.0 | 1320 | 0.4710 | 0.8770 |
| 0.0632 | 25.0 | 1375 | 0.4541 | 0.8828 |
| 0.1501 | 26.0 | 1430 | 0.4645 | 0.8828 |
| 0.109 | 27.0 | 1485 | 0.4434 | 0.8926 |
| 0.0353 | 28.0 | 1540 | 0.4264 | 0.8984 |
| 0.4502 | 29.0 | 1595 | 0.4479 | 0.8984 |
| 0.0341 | 30.0 | 1650 | 0.4537 | 0.8984 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.16.1
- Tokenizers 0.15.2 | {"license": "mit", "library_name": "peft", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/esm2_t30_150M_UR50D", "model-index": [{"name": "esm2_t130_150M-lora-classifier_2024-04-26_10-08-51", "results": []}]} | wcvz/esm2_t130_150M-lora-classifier_2024-04-26_10-08-51 | null | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:facebook/esm2_t30_150M_UR50D",
"license:mit",
"region:us"
] | null | 2024-04-26T14:08:51+00:00 | [] | [] | TAGS
#peft #safetensors #generated_from_trainer #base_model-facebook/esm2_t30_150M_UR50D #license-mit #region-us
| esm2\_t130\_150M-lora-classifier\_2024-04-26\_10-08-51
======================================================
This model is a fine-tuned version of facebook/esm2\_t30\_150M\_UR50D on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.4537
* Accuracy: 0.8984
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0008701568055793088
* train\_batch\_size: 28
* eval\_batch\_size: 28
* seed: 8893
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 30
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* PEFT 0.10.0
* Transformers 4.39.3
* Pytorch 2.2.1
* Datasets 2.16.1
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0008701568055793088\n* train\\_batch\\_size: 28\n* eval\\_batch\\_size: 28\n* seed: 8893\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.39.3\n* Pytorch 2.2.1\n* Datasets 2.16.1\n* Tokenizers 0.15.2"
] | [
"TAGS\n#peft #safetensors #generated_from_trainer #base_model-facebook/esm2_t30_150M_UR50D #license-mit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0008701568055793088\n* train\\_batch\\_size: 28\n* eval\\_batch\\_size: 28\n* seed: 8893\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.10.0\n* Transformers 4.39.3\n* Pytorch 2.2.1\n* Datasets 2.16.1\n* Tokenizers 0.15.2"
] |
reinforcement-learning | null |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "PixelCopter", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Pixelcopter-PLE-v0", "type": "Pixelcopter-PLE-v0"}, "metrics": [{"type": "mean_reward", "value": "30.00 +/- 28.77", "name": "mean_reward", "verified": false}]}]}]} | i-pj/PixelCopter | null | [
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | null | 2024-04-26T14:09:19+00:00 | [] | [] | TAGS
#Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing Pixelcopter-PLE-v0
This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llava-1.5-7b-hf-ft-mix-vsft
This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1 | {"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "llava-hf/llava-1.5-7b-hf", "model-index": [{"name": "llava-1.5-7b-hf-ft-mix-vsft", "results": []}]} | Praveen0309/llava-1.5-7b-hf-ft-mix-vsft | null | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:llava-hf/llava-1.5-7b-hf",
"region:us"
] | null | 2024-04-26T14:09:47+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-llava-hf/llava-1.5-7b-hf #region-us
|
# llava-1.5-7b-hf-ft-mix-vsft
This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1 | [
"# llava-1.5-7b-hf-ft-mix-vsft\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-llava-hf/llava-1.5-7b-hf #region-us \n",
"# llava-1.5-7b-hf-ft-mix-vsft\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1"
] |
text-classification | transformers |
# Model Trained Using AutoTrain
- Problem type: Text Classification
## Validation Metrics
loss: 0.03381425514817238
f1_macro: 0.9910410929202866
f1_micro: 0.9908675799086758
f1_weighted: 0.9908473335613555
precision_macro: 0.9909727371947719
precision_micro: 0.9908675799086758
precision_weighted: 0.9908883151237302
recall_macro: 0.9911698494022667
recall_micro: 0.9908675799086758
recall_weighted: 0.9908675799086758
accuracy: 0.9908675799086758
| {"tags": ["autotrain", "text-classification"], "datasets": ["autotrain-pmf0g-rj8fa/autotrain-data"], "widget": [{"text": "I love AutoTrain"}]} | borggAI/alpha-prompt-classification | null | [
"transformers",
"safetensors",
"distilbert",
"text-classification",
"autotrain",
"dataset:autotrain-pmf0g-rj8fa/autotrain-data",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:09:49+00:00 | [] | [] | TAGS
#transformers #safetensors #distilbert #text-classification #autotrain #dataset-autotrain-pmf0g-rj8fa/autotrain-data #autotrain_compatible #endpoints_compatible #region-us
|
# Model Trained Using AutoTrain
- Problem type: Text Classification
## Validation Metrics
loss: 0.03381425514817238
f1_macro: 0.9910410929202866
f1_micro: 0.9908675799086758
f1_weighted: 0.9908473335613555
precision_macro: 0.9909727371947719
precision_micro: 0.9908675799086758
precision_weighted: 0.9908883151237302
recall_macro: 0.9911698494022667
recall_micro: 0.9908675799086758
recall_weighted: 0.9908675799086758
accuracy: 0.9908675799086758
| [
"# Model Trained Using AutoTrain\n\n- Problem type: Text Classification",
"## Validation Metrics\nloss: 0.03381425514817238\n\nf1_macro: 0.9910410929202866\n\nf1_micro: 0.9908675799086758\n\nf1_weighted: 0.9908473335613555\n\nprecision_macro: 0.9909727371947719\n\nprecision_micro: 0.9908675799086758\n\nprecision_weighted: 0.9908883151237302\n\nrecall_macro: 0.9911698494022667\n\nrecall_micro: 0.9908675799086758\n\nrecall_weighted: 0.9908675799086758\n\naccuracy: 0.9908675799086758"
] | [
"TAGS\n#transformers #safetensors #distilbert #text-classification #autotrain #dataset-autotrain-pmf0g-rj8fa/autotrain-data #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Trained Using AutoTrain\n\n- Problem type: Text Classification",
"## Validation Metrics\nloss: 0.03381425514817238\n\nf1_macro: 0.9910410929202866\n\nf1_micro: 0.9908675799086758\n\nf1_weighted: 0.9908473335613555\n\nprecision_macro: 0.9909727371947719\n\nprecision_micro: 0.9908675799086758\n\nprecision_weighted: 0.9908883151237302\n\nrecall_macro: 0.9911698494022667\n\nrecall_micro: 0.9908675799086758\n\nrecall_weighted: 0.9908675799086758\n\naccuracy: 0.9908675799086758"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | FounderNest/Mistral-7B-Instruct-v0.2-AWQ-classifier-fit-assessment-finetuned-v3.4 | null | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:09:55+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-3
This model is a fine-tuned version of [EleutherAI/pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-1b", "model-index": [{"name": "robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-3", "results": []}]} | AlignmentResearch/robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-3 | null | [
"transformers",
"tensorboard",
"safetensors",
"gpt_neox",
"text-classification",
"generated_from_trainer",
"base_model:EleutherAI/pythia-1b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:11:19+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-3
This model is a fine-tuned version of EleutherAI/pythia-1b on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
| [
"# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-3\n\nThis model is a fine-tuned version of EleutherAI/pythia-1b on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 3\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# robust_llm_pythia-1b_mz-130_IMDB_n-its-10-seed-3\n\nThis model is a fine-tuned version of EleutherAI/pythia-1b on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 3\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1",
"### Training results",
"### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.2.1\n- Datasets 2.18.0\n- Tokenizers 0.15.2"
] |
text-to-image | diffusers |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - fatimaaa1/model2
<Gallery />
## Model description
These are fatimaaa1/model2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: fatimaaa1/model2/vae.
## Trigger words
You should use a bussiness card to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](fatimaaa1/model2/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | {"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a bussiness card", "widget": []} | fatimaaa1/model2 | null | [
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"dora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] | null | 2024-04-26T14:11:19+00:00 | [] | [] | TAGS
#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
|
# SDXL LoRA DreamBooth - fatimaaa1/model2
<Gallery />
## Model description
These are fatimaaa1/model2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using DreamBooth.
LoRA for the text encoder was enabled: False.
Special VAE used for training: fatimaaa1/model2/vae.
## Trigger words
You should use a bussiness card to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
## Intended uses & limitations
#### How to use
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | [
"# SDXL LoRA DreamBooth - fatimaaa1/model2\n\n<Gallery />",
"## Model description\n\nThese are fatimaaa1/model2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: fatimaaa1/model2/vae.",
"## Trigger words\n\nYou should use a bussiness card to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]",
"## Training details\n\n[TODO: describe the data used to train the model]"
] | [
"TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n",
"# SDXL LoRA DreamBooth - fatimaaa1/model2\n\n<Gallery />",
"## Model description\n\nThese are fatimaaa1/model2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: fatimaaa1/model2/vae.",
"## Trigger words\n\nYou should use a bussiness card to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]",
"## Training details\n\n[TODO: describe the data used to train the model]"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ayon128/code-mixed_Banglish_English_0 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:11:31+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
token-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# privacy-200k-masking
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0949
- eval_overall_precision: 0.9099
- eval_overall_recall: 0.9306
- eval_overall_f1: 0.9201
- eval_overall_accuracy: 0.9692
- eval_ACCOUNTNAME_f1: 0.9863
- eval_ACCOUNTNUMBER_f1: 0.9551
- eval_AGE_f1: 0.9454
- eval_AMOUNT_f1: 0.9481
- eval_BIC_f1: 0.9140
- eval_BITCOINADDRESS_f1: 0.9227
- eval_BUILDINGNUMBER_f1: 0.9056
- eval_CITY_f1: 0.9351
- eval_COMPANYNAME_f1: 0.9621
- eval_COUNTY_f1: 0.9756
- eval_CREDITCARDCVV_f1: 0.9201
- eval_CREDITCARDISSUER_f1: 0.9767
- eval_CREDITCARDNUMBER_f1: 0.8506
- eval_CURRENCY_f1: 0.7277
- eval_CURRENCYCODE_f1: 0.8398
- eval_CURRENCYNAME_f1: 0.1576
- eval_CURRENCYSYMBOL_f1: 0.9216
- eval_DATE_f1: 0.7988
- eval_DOB_f1: 0.6103
- eval_EMAIL_f1: 0.9862
- eval_ETHEREUMADDRESS_f1: 0.9624
- eval_EYECOLOR_f1: 0.9779
- eval_FIRSTNAME_f1: 0.9636
- eval_GENDER_f1: 0.9852
- eval_HEIGHT_f1: 0.9771
- eval_IBAN_f1: 0.9513
- eval_IP_f1: 0.0
- eval_IPV4_f1: 0.8240
- eval_IPV6_f1: 0.7389
- eval_JOBAREA_f1: 0.9713
- eval_JOBTITLE_f1: 0.9819
- eval_JOBTYPE_f1: 0.9743
- eval_LASTNAME_f1: 0.9439
- eval_LITECOINADDRESS_f1: 0.8069
- eval_MAC_f1: 0.9668
- eval_MASKEDNUMBER_f1: 0.8084
- eval_MIDDLENAME_f1: 0.9401
- eval_NEARBYGPSCOORDINATE_f1: 0.9963
- eval_ORDINALDIRECTION_f1: 0.9904
- eval_PASSWORD_f1: 0.9690
- eval_PHONEIMEI_f1: 0.9842
- eval_PHONENUMBER_f1: 0.9690
- eval_PIN_f1: 0.8584
- eval_PREFIX_f1: 0.9594
- eval_SECONDARYADDRESS_f1: 0.9880
- eval_SEX_f1: 0.9952
- eval_SSN_f1: 0.9813
- eval_STATE_f1: 0.9664
- eval_STREET_f1: 0.9607
- eval_TIME_f1: 0.9560
- eval_URL_f1: 0.9866
- eval_USERAGENT_f1: 0.9901
- eval_USERNAME_f1: 0.9743
- eval_VEHICLEVIN_f1: 0.9699
- eval_VEHICLEVRM_f1: 0.9725
- eval_ZIPCODE_f1: 0.9018
- eval_runtime: 3609.2787
- eval_samples_per_second: 17.394
- eval_steps_per_second: 8.697
- epoch: 1.0
- step: 73241
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 2
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilbert-base-multilingual-cased", "model-index": [{"name": "privacy-200k-masking", "results": []}]} | taro-pudding/privacy-200k-masking | null | [
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:11:34+00:00 | [] | [] | TAGS
#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-multilingual-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
|
# privacy-200k-masking
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0949
- eval_overall_precision: 0.9099
- eval_overall_recall: 0.9306
- eval_overall_f1: 0.9201
- eval_overall_accuracy: 0.9692
- eval_ACCOUNTNAME_f1: 0.9863
- eval_ACCOUNTNUMBER_f1: 0.9551
- eval_AGE_f1: 0.9454
- eval_AMOUNT_f1: 0.9481
- eval_BIC_f1: 0.9140
- eval_BITCOINADDRESS_f1: 0.9227
- eval_BUILDINGNUMBER_f1: 0.9056
- eval_CITY_f1: 0.9351
- eval_COMPANYNAME_f1: 0.9621
- eval_COUNTY_f1: 0.9756
- eval_CREDITCARDCVV_f1: 0.9201
- eval_CREDITCARDISSUER_f1: 0.9767
- eval_CREDITCARDNUMBER_f1: 0.8506
- eval_CURRENCY_f1: 0.7277
- eval_CURRENCYCODE_f1: 0.8398
- eval_CURRENCYNAME_f1: 0.1576
- eval_CURRENCYSYMBOL_f1: 0.9216
- eval_DATE_f1: 0.7988
- eval_DOB_f1: 0.6103
- eval_EMAIL_f1: 0.9862
- eval_ETHEREUMADDRESS_f1: 0.9624
- eval_EYECOLOR_f1: 0.9779
- eval_FIRSTNAME_f1: 0.9636
- eval_GENDER_f1: 0.9852
- eval_HEIGHT_f1: 0.9771
- eval_IBAN_f1: 0.9513
- eval_IP_f1: 0.0
- eval_IPV4_f1: 0.8240
- eval_IPV6_f1: 0.7389
- eval_JOBAREA_f1: 0.9713
- eval_JOBTITLE_f1: 0.9819
- eval_JOBTYPE_f1: 0.9743
- eval_LASTNAME_f1: 0.9439
- eval_LITECOINADDRESS_f1: 0.8069
- eval_MAC_f1: 0.9668
- eval_MASKEDNUMBER_f1: 0.8084
- eval_MIDDLENAME_f1: 0.9401
- eval_NEARBYGPSCOORDINATE_f1: 0.9963
- eval_ORDINALDIRECTION_f1: 0.9904
- eval_PASSWORD_f1: 0.9690
- eval_PHONEIMEI_f1: 0.9842
- eval_PHONENUMBER_f1: 0.9690
- eval_PIN_f1: 0.8584
- eval_PREFIX_f1: 0.9594
- eval_SECONDARYADDRESS_f1: 0.9880
- eval_SEX_f1: 0.9952
- eval_SSN_f1: 0.9813
- eval_STATE_f1: 0.9664
- eval_STREET_f1: 0.9607
- eval_TIME_f1: 0.9560
- eval_URL_f1: 0.9866
- eval_USERAGENT_f1: 0.9901
- eval_USERNAME_f1: 0.9743
- eval_VEHICLEVIN_f1: 0.9699
- eval_VEHICLEVRM_f1: 0.9725
- eval_ZIPCODE_f1: 0.9018
- eval_runtime: 3609.2787
- eval_samples_per_second: 17.394
- eval_steps_per_second: 8.697
- epoch: 1.0
- step: 73241
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 2
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| [
"# privacy-200k-masking\n\nThis model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0949\n- eval_overall_precision: 0.9099\n- eval_overall_recall: 0.9306\n- eval_overall_f1: 0.9201\n- eval_overall_accuracy: 0.9692\n- eval_ACCOUNTNAME_f1: 0.9863\n- eval_ACCOUNTNUMBER_f1: 0.9551\n- eval_AGE_f1: 0.9454\n- eval_AMOUNT_f1: 0.9481\n- eval_BIC_f1: 0.9140\n- eval_BITCOINADDRESS_f1: 0.9227\n- eval_BUILDINGNUMBER_f1: 0.9056\n- eval_CITY_f1: 0.9351\n- eval_COMPANYNAME_f1: 0.9621\n- eval_COUNTY_f1: 0.9756\n- eval_CREDITCARDCVV_f1: 0.9201\n- eval_CREDITCARDISSUER_f1: 0.9767\n- eval_CREDITCARDNUMBER_f1: 0.8506\n- eval_CURRENCY_f1: 0.7277\n- eval_CURRENCYCODE_f1: 0.8398\n- eval_CURRENCYNAME_f1: 0.1576\n- eval_CURRENCYSYMBOL_f1: 0.9216\n- eval_DATE_f1: 0.7988\n- eval_DOB_f1: 0.6103\n- eval_EMAIL_f1: 0.9862\n- eval_ETHEREUMADDRESS_f1: 0.9624\n- eval_EYECOLOR_f1: 0.9779\n- eval_FIRSTNAME_f1: 0.9636\n- eval_GENDER_f1: 0.9852\n- eval_HEIGHT_f1: 0.9771\n- eval_IBAN_f1: 0.9513\n- eval_IP_f1: 0.0\n- eval_IPV4_f1: 0.8240\n- eval_IPV6_f1: 0.7389\n- eval_JOBAREA_f1: 0.9713\n- eval_JOBTITLE_f1: 0.9819\n- eval_JOBTYPE_f1: 0.9743\n- eval_LASTNAME_f1: 0.9439\n- eval_LITECOINADDRESS_f1: 0.8069\n- eval_MAC_f1: 0.9668\n- eval_MASKEDNUMBER_f1: 0.8084\n- eval_MIDDLENAME_f1: 0.9401\n- eval_NEARBYGPSCOORDINATE_f1: 0.9963\n- eval_ORDINALDIRECTION_f1: 0.9904\n- eval_PASSWORD_f1: 0.9690\n- eval_PHONEIMEI_f1: 0.9842\n- eval_PHONENUMBER_f1: 0.9690\n- eval_PIN_f1: 0.8584\n- eval_PREFIX_f1: 0.9594\n- eval_SECONDARYADDRESS_f1: 0.9880\n- eval_SEX_f1: 0.9952\n- eval_SSN_f1: 0.9813\n- eval_STATE_f1: 0.9664\n- eval_STREET_f1: 0.9607\n- eval_TIME_f1: 0.9560\n- eval_URL_f1: 0.9866\n- eval_USERAGENT_f1: 0.9901\n- eval_USERNAME_f1: 0.9743\n- eval_VEHICLEVIN_f1: 0.9699\n- eval_VEHICLEVRM_f1: 0.9725\n- eval_ZIPCODE_f1: 0.9018\n- eval_runtime: 3609.2787\n- eval_samples_per_second: 17.394\n- eval_steps_per_second: 8.697\n- epoch: 1.0\n- step: 73241",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine_with_restarts\n- lr_scheduler_warmup_ratio: 0.2\n- num_epochs: 2",
"### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-multilingual-cased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# privacy-200k-masking\n\nThis model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.0949\n- eval_overall_precision: 0.9099\n- eval_overall_recall: 0.9306\n- eval_overall_f1: 0.9201\n- eval_overall_accuracy: 0.9692\n- eval_ACCOUNTNAME_f1: 0.9863\n- eval_ACCOUNTNUMBER_f1: 0.9551\n- eval_AGE_f1: 0.9454\n- eval_AMOUNT_f1: 0.9481\n- eval_BIC_f1: 0.9140\n- eval_BITCOINADDRESS_f1: 0.9227\n- eval_BUILDINGNUMBER_f1: 0.9056\n- eval_CITY_f1: 0.9351\n- eval_COMPANYNAME_f1: 0.9621\n- eval_COUNTY_f1: 0.9756\n- eval_CREDITCARDCVV_f1: 0.9201\n- eval_CREDITCARDISSUER_f1: 0.9767\n- eval_CREDITCARDNUMBER_f1: 0.8506\n- eval_CURRENCY_f1: 0.7277\n- eval_CURRENCYCODE_f1: 0.8398\n- eval_CURRENCYNAME_f1: 0.1576\n- eval_CURRENCYSYMBOL_f1: 0.9216\n- eval_DATE_f1: 0.7988\n- eval_DOB_f1: 0.6103\n- eval_EMAIL_f1: 0.9862\n- eval_ETHEREUMADDRESS_f1: 0.9624\n- eval_EYECOLOR_f1: 0.9779\n- eval_FIRSTNAME_f1: 0.9636\n- eval_GENDER_f1: 0.9852\n- eval_HEIGHT_f1: 0.9771\n- eval_IBAN_f1: 0.9513\n- eval_IP_f1: 0.0\n- eval_IPV4_f1: 0.8240\n- eval_IPV6_f1: 0.7389\n- eval_JOBAREA_f1: 0.9713\n- eval_JOBTITLE_f1: 0.9819\n- eval_JOBTYPE_f1: 0.9743\n- eval_LASTNAME_f1: 0.9439\n- eval_LITECOINADDRESS_f1: 0.8069\n- eval_MAC_f1: 0.9668\n- eval_MASKEDNUMBER_f1: 0.8084\n- eval_MIDDLENAME_f1: 0.9401\n- eval_NEARBYGPSCOORDINATE_f1: 0.9963\n- eval_ORDINALDIRECTION_f1: 0.9904\n- eval_PASSWORD_f1: 0.9690\n- eval_PHONEIMEI_f1: 0.9842\n- eval_PHONENUMBER_f1: 0.9690\n- eval_PIN_f1: 0.8584\n- eval_PREFIX_f1: 0.9594\n- eval_SECONDARYADDRESS_f1: 0.9880\n- eval_SEX_f1: 0.9952\n- eval_SSN_f1: 0.9813\n- eval_STATE_f1: 0.9664\n- eval_STREET_f1: 0.9607\n- eval_TIME_f1: 0.9560\n- eval_URL_f1: 0.9866\n- eval_USERAGENT_f1: 0.9901\n- eval_USERNAME_f1: 0.9743\n- eval_VEHICLEVIN_f1: 0.9699\n- eval_VEHICLEVRM_f1: 0.9725\n- eval_ZIPCODE_f1: 0.9018\n- eval_runtime: 3609.2787\n- eval_samples_per_second: 17.394\n- eval_steps_per_second: 8.697\n- epoch: 1.0\n- step: 73241",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 2\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine_with_restarts\n- lr_scheduler_warmup_ratio: 0.2\n- num_epochs: 2",
"### Framework versions\n\n- Transformers 4.40.0\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1"
] |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | savanladani/nividous-7b-sft-lora | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:12:42+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ayon128/code-mixed_Banglish_English_1 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:13:14+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speech_ocean_hubert_mdd
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2027
- Wer: 0.0517
- Cer: 0.0499
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 42.7069 | 0.9873 | 39 | 36.7247 | 0.9992 | 0.9977 |
| 16.2787 | 2.0 | 79 | 7.8315 | 1.0 | 1.0 |
| 6.7896 | 2.9873 | 118 | 4.5645 | 1.0 | 1.0 |
| 4.0104 | 4.0 | 158 | 3.8654 | 1.0 | 1.0 |
| 3.8037 | 4.9873 | 197 | 3.8060 | 1.0 | 1.0 |
| 3.7898 | 6.0 | 237 | 3.7695 | 1.0 | 1.0 |
| 3.7777 | 6.9873 | 276 | 3.7717 | 1.0 | 1.0 |
| 3.7442 | 8.0 | 316 | 3.7320 | 1.0 | 1.0 |
| 3.7286 | 8.9873 | 355 | 3.6978 | 1.0 | 1.0 |
| 3.6272 | 10.0 | 395 | 3.5089 | 1.0 | 1.0 |
| 3.0921 | 10.9873 | 434 | 2.6068 | 0.9992 | 0.9997 |
| 2.2556 | 12.0 | 474 | 1.6832 | 0.5880 | 0.6815 |
| 1.7791 | 12.9873 | 513 | 1.2117 | 0.3861 | 0.4433 |
| 1.2731 | 14.0 | 553 | 0.7338 | 0.1793 | 0.1505 |
| 0.9596 | 14.9873 | 592 | 0.4892 | 0.1220 | 0.1005 |
| 0.7152 | 16.0 | 632 | 0.3525 | 0.0892 | 0.0752 |
| 0.521 | 16.9873 | 671 | 0.2843 | 0.0704 | 0.0623 |
| 0.4791 | 18.0 | 711 | 0.2351 | 0.0607 | 0.0568 |
| 0.3992 | 18.9873 | 750 | 0.2120 | 0.0547 | 0.0523 |
| 0.4245 | 19.7468 | 780 | 0.2027 | 0.0517 | 0.0499 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "facebook/hubert-large-ll60k", "model-index": [{"name": "speech_ocean_hubert_mdd", "results": []}]} | nrshoudi/speech_ocean_hubert_mdd | null | [
"transformers",
"tensorboard",
"safetensors",
"hubert",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:facebook/hubert-large-ll60k",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:13:20+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #hubert #automatic-speech-recognition #generated_from_trainer #base_model-facebook/hubert-large-ll60k #license-apache-2.0 #endpoints_compatible #region-us
| speech\_ocean\_hubert\_mdd
==========================
This model is a fine-tuned version of facebook/hubert-large-ll60k on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2027
* Wer: 0.0517
* Cer: 0.0499
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0003
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 20
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.40.0
* Pytorch 2.2.1+cu121
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #hubert #automatic-speech-recognition #generated_from_trainer #base_model-facebook/hubert-large-ll60k #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 20\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.0\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ayon128/code-mixed_Banglish_English_2 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:14:20+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
visual-question-answering | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Entreprenerdly/blip2-opt-2.7b-fp16-sharded | null | [
"transformers",
"safetensors",
"blip-2",
"visual-question-answering",
"arxiv:1910.09700",
"endpoints_compatible",
"8-bit",
"region:us"
] | null | 2024-04-26T14:17:08+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #blip-2 #visual-question-answering #arxiv-1910.09700 #endpoints_compatible #8-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #blip-2 #visual-question-answering #arxiv-1910.09700 #endpoints_compatible #8-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
image-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-dmae-va-U5-100-iN
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6381
- Accuracy: 0.8667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.9 | 7 | 1.3812 | 0.45 |
| 1.3848 | 1.94 | 15 | 1.3606 | 0.5 |
| 1.3686 | 2.97 | 23 | 1.3075 | 0.5333 |
| 1.2965 | 4.0 | 31 | 1.2370 | 0.4667 |
| 1.2965 | 4.9 | 38 | 1.1168 | 0.5333 |
| 1.1753 | 5.94 | 46 | 1.0310 | 0.5667 |
| 1.0294 | 6.97 | 54 | 0.9316 | 0.6 |
| 0.902 | 8.0 | 62 | 0.8728 | 0.6833 |
| 0.902 | 8.9 | 69 | 0.8129 | 0.7667 |
| 0.7812 | 9.94 | 77 | 0.7006 | 0.8 |
| 0.6419 | 10.97 | 85 | 0.6381 | 0.8667 |
| 0.5109 | 12.0 | 93 | 0.6327 | 0.8167 |
| 0.3838 | 12.9 | 100 | 0.5442 | 0.8667 |
| 0.3838 | 13.94 | 108 | 0.6755 | 0.75 |
| 0.285 | 14.97 | 116 | 0.7756 | 0.7167 |
| 0.2672 | 16.0 | 124 | 0.8107 | 0.7167 |
| 0.2466 | 16.9 | 131 | 0.5219 | 0.8333 |
| 0.2466 | 17.94 | 139 | 0.7041 | 0.7833 |
| 0.2312 | 18.97 | 147 | 0.7879 | 0.75 |
| 0.1933 | 20.0 | 155 | 0.7090 | 0.8 |
| 0.1692 | 20.9 | 162 | 0.5395 | 0.8333 |
| 0.1578 | 21.94 | 170 | 0.6419 | 0.8167 |
| 0.1578 | 22.97 | 178 | 0.5736 | 0.8333 |
| 0.1321 | 24.0 | 186 | 0.7471 | 0.75 |
| 0.1114 | 24.9 | 193 | 0.6447 | 0.7667 |
| 0.1385 | 25.94 | 201 | 0.6158 | 0.8167 |
| 0.1385 | 26.97 | 209 | 0.6467 | 0.8 |
| 0.1136 | 28.0 | 217 | 0.6180 | 0.85 |
| 0.0997 | 28.9 | 224 | 0.8578 | 0.75 |
| 0.1064 | 29.94 | 232 | 0.6778 | 0.8167 |
| 0.0775 | 30.97 | 240 | 0.8124 | 0.8 |
| 0.0775 | 32.0 | 248 | 0.7783 | 0.8 |
| 0.0921 | 32.9 | 255 | 0.8320 | 0.7333 |
| 0.0919 | 33.94 | 263 | 0.8310 | 0.7833 |
| 0.0888 | 34.97 | 271 | 0.6576 | 0.85 |
| 0.0888 | 36.0 | 279 | 0.7044 | 0.8333 |
| 0.0693 | 36.9 | 286 | 0.7608 | 0.8167 |
| 0.061 | 37.94 | 294 | 0.7802 | 0.8 |
| 0.0699 | 38.97 | 302 | 0.7762 | 0.8167 |
| 0.0652 | 40.0 | 310 | 0.7579 | 0.8 |
| 0.0652 | 40.9 | 317 | 0.9985 | 0.75 |
| 0.0562 | 41.94 | 325 | 0.8027 | 0.8167 |
| 0.0534 | 42.97 | 333 | 0.9705 | 0.7833 |
| 0.0519 | 44.0 | 341 | 0.7301 | 0.8333 |
| 0.0519 | 44.9 | 348 | 0.8433 | 0.8 |
| 0.0529 | 45.94 | 356 | 0.8534 | 0.8 |
| 0.0772 | 46.97 | 364 | 0.8562 | 0.8 |
| 0.0644 | 48.0 | 372 | 0.8419 | 0.8 |
| 0.0644 | 48.9 | 379 | 1.1251 | 0.7667 |
| 0.0467 | 49.94 | 387 | 0.7537 | 0.8333 |
| 0.0576 | 50.97 | 395 | 0.7517 | 0.8333 |
| 0.0344 | 52.0 | 403 | 0.8343 | 0.8 |
| 0.0663 | 52.9 | 410 | 0.7636 | 0.8 |
| 0.0663 | 53.94 | 418 | 0.8253 | 0.8167 |
| 0.0353 | 54.97 | 426 | 0.9348 | 0.8 |
| 0.0524 | 56.0 | 434 | 0.8217 | 0.8167 |
| 0.0479 | 56.9 | 441 | 0.7586 | 0.8167 |
| 0.0479 | 57.94 | 449 | 0.8147 | 0.8 |
| 0.0595 | 58.97 | 457 | 1.0000 | 0.7833 |
| 0.0475 | 60.0 | 465 | 0.9291 | 0.7833 |
| 0.049 | 60.9 | 472 | 0.9588 | 0.7833 |
| 0.0398 | 61.94 | 480 | 0.9501 | 0.8 |
| 0.0398 | 62.97 | 488 | 0.9499 | 0.8 |
| 0.0496 | 64.0 | 496 | 0.9279 | 0.8 |
| 0.0354 | 64.9 | 503 | 0.9677 | 0.75 |
| 0.0325 | 65.94 | 511 | 0.8371 | 0.8333 |
| 0.0325 | 66.97 | 519 | 0.9683 | 0.8 |
| 0.0335 | 68.0 | 527 | 1.0455 | 0.7833 |
| 0.0375 | 68.9 | 534 | 0.9027 | 0.8167 |
| 0.0424 | 69.94 | 542 | 0.8043 | 0.85 |
| 0.0383 | 70.97 | 550 | 0.9035 | 0.7833 |
| 0.0383 | 72.0 | 558 | 0.9360 | 0.7833 |
| 0.0295 | 72.9 | 565 | 0.9841 | 0.7833 |
| 0.0307 | 73.94 | 573 | 0.9300 | 0.8 |
| 0.0376 | 74.97 | 581 | 0.9630 | 0.7833 |
| 0.0376 | 76.0 | 589 | 0.9777 | 0.7833 |
| 0.0259 | 76.9 | 596 | 0.9323 | 0.8 |
| 0.0345 | 77.94 | 604 | 0.9075 | 0.8 |
| 0.0346 | 78.97 | 612 | 0.8951 | 0.8 |
| 0.0319 | 80.0 | 620 | 0.9676 | 0.8 |
| 0.0319 | 80.9 | 627 | 0.9884 | 0.8 |
| 0.0226 | 81.94 | 635 | 0.9851 | 0.7833 |
| 0.033 | 82.97 | 643 | 0.9710 | 0.7833 |
| 0.0262 | 84.0 | 651 | 0.9851 | 0.7833 |
| 0.0262 | 84.9 | 658 | 0.9868 | 0.7833 |
| 0.0345 | 85.94 | 666 | 0.9702 | 0.7833 |
| 0.0299 | 86.97 | 674 | 0.9889 | 0.7833 |
| 0.0347 | 88.0 | 682 | 1.0003 | 0.7833 |
| 0.0347 | 88.9 | 689 | 0.9913 | 0.7833 |
| 0.0288 | 89.94 | 697 | 0.9859 | 0.7833 |
| 0.0198 | 90.32 | 700 | 0.9858 | 0.7833 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224", "model-index": [{"name": "vit-base-patch16-224-dmae-va-U5-100-iN", "results": []}]} | Augusto777/vit-base-patch16-224-dmae-va-U5-100-iN | null | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:18:03+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| vit-base-patch16-224-dmae-va-U5-100-iN
======================================
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6381
* Accuracy: 0.8667
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.05
* num\_epochs: 100
### Training results
### Framework versions
* Transformers 4.36.2
* Pytorch 2.1.2+cu118
* Datasets 2.16.1
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 100",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.05\n* num\\_epochs: 100",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] |
fill-mask | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# dsfdsf2/distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.1556
- Validation Loss: 1.8940
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.1556 | 1.8940 | 0 |
### Framework versions
- Transformers 4.40.1
- TensorFlow 2.16.1
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "distilroberta-base", "model-index": [{"name": "dsfdsf2/distilroberta-base-finetuned-wikitext2", "results": []}]} | dsfdsf2/distilroberta-base-finetuned-wikitext2 | null | [
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"base_model:distilroberta-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-26T14:18:20+00:00 | [] | [] | TAGS
#transformers #tf #roberta #fill-mask #generated_from_keras_callback #base_model-distilroberta-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| dsfdsf2/distilroberta-base-finetuned-wikitext2
==============================================
This model is a fine-tuned version of distilroberta-base on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 2.1556
* Validation Loss: 1.8940
* Epoch: 0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': 2e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: float32
### Training results
### Framework versions
* Transformers 4.40.1
* TensorFlow 2.16.1
* Datasets 2.19.0
* Tokenizers 0.19.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.16.1\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] | [
"TAGS\n#transformers #tf #roberta #fill-mask #generated_from_keras_callback #base_model-distilroberta-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': 2e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: float32",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.40.1\n* TensorFlow 2.16.1\n* Datasets 2.19.0\n* Tokenizers 0.19.1"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ayon128/code-mixed_Banglish_English_4 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:18:24+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
text2text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Ayon128/code-mixed_Banglish_English_3 | null | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-26T14:19:13+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] |
null | null |
# sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF
This model was converted to GGUF format from [`davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo`](https://huggingface.co/davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew.
```bash
brew install ggerganov/ggerganov/llama.cpp
```
Invoke the llama.cpp server or the CLI.
CLI:
```bash
llama-cli --hf-repo sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF --model tinyllama-1.1b-chat-v1.0-intel-dpo.Q4_K_M.gguf -p "The meaning to life and the universe is"
```
Server:
```bash
llama-server --hf-repo sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF --model tinyllama-1.1b-chat-v1.0-intel-dpo.Q4_K_M.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
```
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m tinyllama-1.1b-chat-v1.0-intel-dpo.Q4_K_M.gguf -n 128
```
| {"language": ["en"], "license": "apache-2.0", "tags": ["dpo", "llama-cpp", "gguf-my-repo"], "datasets": ["argilla/distilabel-intel-orca-dpo-pairs"], "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"} | sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF | null | [
"gguf",
"dpo",
"llama-cpp",
"gguf-my-repo",
"en",
"dataset:argilla/distilabel-intel-orca-dpo-pairs",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"region:us"
] | null | 2024-04-26T14:20:02+00:00 | [] | [
"en"
] | TAGS
#gguf #dpo #llama-cpp #gguf-my-repo #en #dataset-argilla/distilabel-intel-orca-dpo-pairs #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us
|
# sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF
This model was converted to GGUF format from 'davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo' using URL via the URL's GGUF-my-repo space.
Refer to the original model card for more details on the model.
## Use with URL
Install URL through brew.
Invoke the URL server or the CLI.
CLI:
Server:
Note: You can also use this checkpoint directly through the usage steps listed in the URL repo as well.
| [
"# sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] | [
"TAGS\n#gguf #dpo #llama-cpp #gguf-my-repo #en #dataset-argilla/distilabel-intel-orca-dpo-pairs #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us \n",
"# sbawa/TinyLlama-1.1B-Chat-v1.0-intel-dpo-Q4_K_M-GGUF\nThis model was converted to GGUF format from 'davanstrien/TinyLlama-1.1B-Chat-v1.0-intel-dpo' using URL via the URL's GGUF-my-repo space.\nRefer to the original model card for more details on the model.",
"## Use with URL\n\nInstall URL through brew.\n\n\nInvoke the URL server or the CLI.\n\nCLI:\n\n\n\nServer:\n\n\n\nNote: You can also use this checkpoint directly through the usage steps listed in the URL repo as well."
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.