|
import os |
|
import logging |
|
import datasets |
|
import xml.etree.ElementTree as ET |
|
from PIL import Image |
|
from collections import defaultdict |
|
|
|
_CITATION = """ |
|
PASCAL_VOC |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
PASCAL_VOC |
|
""" |
|
|
|
_URLS = { |
|
"voc2007": "voc2007.tar.gz", |
|
"voc2012": "voc2012.tar.gz", |
|
} |
|
|
|
|
|
CLASS_INFOS = [ |
|
|
|
( 'aeroplane' , 0 , 0 , ( 128, 0, 0) ), |
|
( 'bicycle' , 1 , 1 , ( 0, 128, 0) ), |
|
( 'bird' , 2 , 2 , ( 128, 128, 0) ), |
|
( 'boat' , 3 , 3 , ( 0, 0, 128) ), |
|
( 'bottle' , 4 , 4 , ( 128, 0, 128) ), |
|
( 'bus' , 5 , 5 , ( 0, 128, 128) ), |
|
( 'car' , 6 , 6 , ( 128, 128, 128) ), |
|
( 'cat' , 7 , 7 , ( 64, 0, 0) ), |
|
( 'chair' , 8 , 8 , ( 192, 0, 0) ), |
|
( 'cow' , 9 , 9 , ( 64, 128, 0) ), |
|
( 'diningtable' , 10 , 10 , ( 192, 128, 0) ), |
|
( 'dog' , 11 , 11 , ( 64, 0, 128) ), |
|
( 'horse' , 12 , 12 , ( 192, 0, 128) ), |
|
( 'motorbike' , 13 , 13 , ( 64, 128, 128) ), |
|
( 'person' , 14 , 14 , ( 192, 128, 128) ), |
|
( 'pottedplant' , 15 , 15 , ( 0, 64, 0) ), |
|
( 'sheep' , 16 , 16 , ( 128, 64, 0) ), |
|
( 'sofa' , 17 , 17 , ( 0, 192, 0) ), |
|
( 'train' , 18 , 18 , ( 128, 192, 0) ), |
|
( 'tvmonitor' , 19 , 19 , ( 0, 64, 128) ), |
|
( 'background' , 20 , 20 , ( 0, 0, 0) ), |
|
( 'borderingregion' , 255, 21 , ( 224, 224, 192) ), |
|
] |
|
|
|
ACTION_INFOS = [ |
|
|
|
( 'phoning' , 0 ), |
|
( 'playinginstrument' , 1 ), |
|
( 'reading' , 2 ), |
|
( 'ridingbike' , 3 ), |
|
( 'ridinghorse' , 4 ), |
|
( 'running' , 5 ), |
|
( 'takingphoto' , 6 ), |
|
( 'usingcomputer' , 7 ), |
|
( 'walking' , 8 ), |
|
( 'jumping' , 9 ), |
|
( 'other' , 10 ), |
|
] |
|
|
|
LAYOUT_INFOS = [ |
|
|
|
( 'Frontal' , 0 ), |
|
( 'Left' , 1 ), |
|
( 'Rear' , 2 ), |
|
( 'Right' , 3 ), |
|
( 'Unspecified' , 4 ), |
|
] |
|
|
|
|
|
|
|
CLASS_NAMES = [CLASS_INFO[0] for CLASS_INFO in CLASS_INFOS] |
|
ACTION_NAMES = [ACTION_INFO[0] for ACTION_INFO in ACTION_INFOS] |
|
LAYOUT_NAMES = [LAYOUT_INFO[0] for LAYOUT_INFO in LAYOUT_INFOS] |
|
|
|
CLASS_DICT = {CLASS_INFO[0]: CLASS_INFO[2] for CLASS_INFO in CLASS_INFOS} |
|
ACTION_DICT = {ACTION_INFO[0]: ACTION_INFO[1] for ACTION_INFO in ACTION_INFOS} |
|
LAYOUT_DICT = {LAYOUT_INFO[0]: LAYOUT_INFO[1] for LAYOUT_INFO in LAYOUT_INFOS} |
|
|
|
|
|
|
|
action_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"image": datasets.features.Image(), |
|
"height": datasets.Value("int32"), |
|
"width": datasets.Value("int32"), |
|
"classes": datasets.features.Sequence(datasets.Value("int32")), |
|
"objects": datasets.features.Sequence( |
|
{ |
|
"bboxes": datasets.Sequence(datasets.Value("float32")), |
|
"classes": datasets.features.ClassLabel(names=ACTION_NAMES), |
|
"difficult": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
layout_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"image": datasets.features.Image(), |
|
"height": datasets.Value("int32"), |
|
"width": datasets.Value("int32"), |
|
"classes": datasets.features.Sequence(datasets.Value("int32")), |
|
"objects": datasets.features.Sequence( |
|
{ |
|
"bboxes": datasets.Sequence(datasets.Value("float32")), |
|
"classes": datasets.features.ClassLabel(names=LAYOUT_NAMES), |
|
"difficult": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
main_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"image": datasets.features.Image(), |
|
"height": datasets.Value("int32"), |
|
"width": datasets.Value("int32"), |
|
"classes": datasets.features.Sequence(datasets.Value("int32")), |
|
"objects": datasets.features.Sequence( |
|
{ |
|
"bboxes": datasets.Sequence(datasets.Value("float32")), |
|
"classes": datasets.features.ClassLabel(names=CLASS_NAMES), |
|
"difficult": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
segmentation_features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"image": datasets.features.Image(), |
|
"height": datasets.Value("int32"), |
|
"width": datasets.Value("int32"), |
|
"classes": datasets.features.Sequence(datasets.Value("int32")), |
|
"class_gt_image": datasets.features.Image(), |
|
"object_gt_image": datasets.features.Image(), |
|
} |
|
) |
|
|
|
_DATASET_FEATURES = { |
|
"action": action_features, |
|
"layout": layout_features, |
|
"main": main_features, |
|
"segmentation": segmentation_features, |
|
} |
|
|
|
|
|
def get_main_classes(data_folder): |
|
class_infos = defaultdict(set) |
|
class_folder = os.path.join(data_folder, "ImageSets", "Main") |
|
for f in os.listdir(class_folder): |
|
if not f.endswith(".txt") or len(f.split("_")) != 2: |
|
continue |
|
lines = open(os.path.join(class_folder, f), "r").read().split("\n") |
|
name = f.split("_")[0] |
|
for line in lines: |
|
spans = line.strip().split(" ") |
|
spans = list(filter(lambda x: x.strip() != "", spans)) |
|
if len(spans) != 2 or int(spans[1]) != 1: |
|
continue |
|
class_infos[spans[0]].add(name) |
|
return class_infos |
|
|
|
|
|
def get_annotation(data_folder): |
|
anno_infos = dict() |
|
anno_folder = os.path.join(data_folder, "Annotations") |
|
for f in os.listdir(anno_folder): |
|
if not f.endswith(".xml"): |
|
continue |
|
anno_file = os.path.join(anno_folder, f) |
|
anno_tree = ET.parse(anno_file) |
|
objects = [] |
|
for obj in anno_tree.findall("./object"): |
|
info = { |
|
"class": obj.findall("./name")[0].text, |
|
"bbox": [ |
|
int(float(obj.findall("./bndbox/xmin")[0].text)), |
|
int(float(obj.findall("./bndbox/ymin")[0].text)), |
|
int(float(obj.findall("./bndbox/xmax")[0].text)), |
|
int(float(obj.findall("./bndbox/ymax")[0].text)), |
|
], |
|
} |
|
|
|
if obj.findall("./pose"): |
|
info["pose"] = obj.findall("./pose")[0].text |
|
if obj.findall("./truncated"): |
|
info["truncated"] = int(obj.findall("./truncated")[0].text) |
|
if obj.findall("./difficult"): |
|
info["difficult"] = int(obj.findall("./difficult")[0].text) |
|
else: |
|
info["difficult"] = 0 |
|
if obj.findall("./occluded"): |
|
info["occluded"] = int(obj.findall("./occluded")[0].text) |
|
|
|
if obj.findall("./actions"): |
|
info["action"] = [ |
|
action.tag |
|
for action in obj.findall("./actions/") |
|
if int(action.text) == 1 |
|
][0] |
|
|
|
objects.append(info) |
|
anno_info = { |
|
"image": anno_tree.findall("./filename")[0].text, |
|
"height": int(anno_tree.findall("./size/height")[0].text), |
|
"width": int(anno_tree.findall("./size/width")[0].text), |
|
"segmented": int(anno_tree.findall("./segmented")[0].text), |
|
"objects": objects, |
|
} |
|
stem, suffix = os.path.splitext(f) |
|
anno_infos[stem] = anno_info |
|
|
|
return anno_infos |
|
|
|
|
|
class PASCALConfig(datasets.BuilderConfig): |
|
def __init__(self, data_name, task_name, **kwargs): |
|
""" |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
assert data_name in ["voc2007", "voc2012"] and task_name in [ |
|
"action", |
|
"layout", |
|
"main", |
|
"segmentation", |
|
] |
|
assert not (data_name == "voc2007" and task_name == "action") |
|
self.data_name = data_name |
|
self.task_name = task_name |
|
|
|
|
|
class PASCALDataset(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
PASCALConfig( |
|
name="voc2007_layout", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2007 layout dataset", |
|
data_name="voc2007", |
|
task_name="layout", |
|
), |
|
PASCALConfig( |
|
name="voc2007_main", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2007 main dataset", |
|
data_name="voc2007", |
|
task_name="main", |
|
), |
|
PASCALConfig( |
|
name="voc2007_segmentation", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2007 segmentation dataset", |
|
data_name="voc2007", |
|
task_name="segmentation", |
|
), |
|
PASCALConfig( |
|
name="voc2012_action", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2012 action dataset", |
|
data_name="voc2012", |
|
task_name="action", |
|
), |
|
PASCALConfig( |
|
name="voc2012_layout", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2012 layout dataset", |
|
data_name="voc2012", |
|
task_name="layout", |
|
), |
|
PASCALConfig( |
|
name="voc2012_main", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2012 main dataset", |
|
data_name="voc2012", |
|
task_name="main", |
|
), |
|
PASCALConfig( |
|
name="voc2012_segmentation", |
|
version=datasets.Version("1.0.0", ""), |
|
description="voc2012 segmentation dataset", |
|
data_name="voc2012", |
|
task_name="segmentation", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=_DATASET_FEATURES[self.config.task_name], |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://fuliucansheng.github.io/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS[self.config.data_name]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_files, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": downloaded_files, "split": "val"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_files, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logging.info("generating examples from = %s, split = %s", filepath, split) |
|
data_folder = os.path.join(filepath, os.listdir(filepath)[0]) |
|
anno_infos = get_annotation(data_folder) |
|
class_infos = get_main_classes(data_folder) |
|
data_file = os.path.join( |
|
data_folder, "ImageSets", self.config.task_name.capitalize(), f"{split}.txt" |
|
) |
|
with open(data_file, encoding="utf-8") as f: |
|
for id_, line in enumerate(f): |
|
line = line.strip() |
|
if line.count(" ") > 0: |
|
line = line.split(" ")[0] |
|
anno_info = anno_infos.get(line) |
|
if anno_info is None: |
|
continue |
|
|
|
image = os.path.join(data_folder, "JPEGImages", anno_info["image"]) |
|
if not os.path.exists(image): |
|
continue |
|
|
|
classes = ( |
|
[CLASS_DICT[c] for c in class_infos.get(line.strip())] |
|
if line.strip() in class_infos |
|
else [] |
|
) |
|
|
|
example = { |
|
"id": id_, |
|
"image": Image.open(os.path.abspath(image)), |
|
"height": anno_info["height"], |
|
"width": anno_info["width"], |
|
"classes": classes, |
|
} |
|
|
|
objects_info = anno_info["objects"] |
|
|
|
if self.config.task_name == "action": |
|
example["objects"] = [ |
|
{ |
|
"bboxes": object_info["bbox"], |
|
"classes": object_info["action"], |
|
"difficult": object_info["difficult"], |
|
} |
|
for object_info in objects_info |
|
if "action" in object_info |
|
] |
|
if len(example["objects"]) == 0 and split != "test": |
|
continue |
|
|
|
if self.config.task_name == "layout": |
|
example["objects"] = [ |
|
{"bboxes": object_info["bbox"], "classes": object_info["pose"], "difficult": object_info["difficult"],} |
|
for object_info in objects_info |
|
if "pose" in object_info |
|
] |
|
if len(example["objects"]) == 0 and split != "test": |
|
continue |
|
|
|
if self.config.task_name == "main": |
|
example["objects"] = [ |
|
{"bboxes": object_info["bbox"], "classes": object_info["class"], "difficult": object_info["difficult"],} |
|
for object_info in objects_info |
|
if "class" in object_info |
|
] |
|
if len(example["objects"]) == 0 and split != "test": |
|
continue |
|
|
|
if self.config.task_name == "segmentation": |
|
example["class_gt_image"] = Image.open(os.path.abspath( |
|
os.path.join( |
|
data_folder, |
|
"SegmentationClass", |
|
anno_info["image"].replace(".jpg", ".png"), |
|
) |
|
)) |
|
example["object_gt_image"] = Image.open(os.path.abspath( |
|
os.path.join( |
|
data_folder, |
|
"SegmentationObject", |
|
anno_info["image"].replace(".jpg", ".png"), |
|
) |
|
)) |
|
|
|
yield id_, example |
|
|