File size: 9,194 Bytes
627a725 d688db1 627a725 d688db1 627a725 d688db1 0c680c3 72395f9 0c680c3 627a725 70aba45 85a0254 da63e91 7644813 c45a82d aaa8300 1b2fcda 329f3b8 a3872c8 006d422 672c54a b39507b 9399f3b e261d4e 2e5efe7 bda0ff1 8c37a59 bf69b48 8148d74 5cf1534 bac0538 032337d 2ed668a 00ca6ab 0564187 51233d8 78e690d 3dd682d a6ce27a ff8fdbe a96cbbb c92a235 3835c05 ed1f503 34f9c99 a5b63b3 b26ade2 656739a e07ce6b fff7735 5c19945 fa48b47 41bfda8 4032806 e12d3e2 533a324 164482a 5a1f17d a553514 585a37e 0d65855 721d4ad 22c7947 0bbe8f2 750189d 1091fb1 26259da 93bc756 08ed54b 2e51f09 fec16fb 23a1ba3 da69671 9d980a9 4cab2af 4f6b1f5 7916446 1418614 2e3ec53 a7ffe42 7fcf1f4 b7adf2f 3062a9b d41412e 72395f9 2e374e5 2dd5d9c 83a1d9e c991039 e9e99f4 0c680c3 d688db1 627a725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** futuremoon/x_dataset_39
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5D2E6ECuZmgc4T93prfTs44nHqWgkXGcQQJPknXWLWEAbCK6
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{futuremoon2025datauniversex_dataset_39,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={futuremoon},
year={2025},
url={https://huggingface.co/datasets/futuremoon/x_dataset_39},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 690300641
- **Date Range:** 2024-12-24T02:00:00Z to 2025-03-17T01:51:37Z
- **Last Updated:** 2025-03-17T15:32:21Z
### Data Distribution
- Tweets with hashtags: 11.60%
- Tweets without hashtags: 88.40%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
1. #riyadh (3750842)
2. #tiktok (1470203)
3. #zelena (1249248)
4. #boi (841795)
5. #namtanfilm1stfmd1 (754731)
6. #thameposeriesfinalep (598138)
7. #saintlaurentxmilk (594246)
8. #bbb25 (491012)
9. #perfect10linersep16 (464265)
10. #superbowl (429126)
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-23T07:35:53Z | 5986812 | 11973624 |
| 2025-01-24T17:23:26Z | 8263919 | 22514650 |
| 2025-01-25T21:24:04Z | 6934408 | 28119547 |
| 2025-01-29T22:15:37Z | 8182430 | 37549999 |
| 2025-01-29T22:35:01Z | 5273282 | 39914133 |
| 2025-01-29T22:52:36Z | 5880527 | 46401905 |
| 2025-01-29T23:14:57Z | 6178889 | 52879156 |
| 2025-01-30T01:42:46Z | 8549240 | 63798747 |
| 2025-01-30T02:21:01Z | 7893478 | 71036463 |
| 2025-01-30T03:04:54Z | 9689930 | 82522845 |
| 2025-01-30T03:36:27Z | 6473435 | 85779785 |
| 2025-01-30T03:50:51Z | 4584599 | 88475548 |
| 2025-01-30T04:15:17Z | 5608231 | 95107411 |
| 2025-01-30T04:53:51Z | 7677395 | 104853970 |
| 2025-01-30T05:40:14Z | 8855337 | 114887249 |
| 2025-01-30T06:00:03Z | 6888883 | 119809678 |
| 2025-01-30T06:31:20Z | 6236334 | 125393463 |
| 2025-01-30T12:42:30Z | 7228723 | 133614575 |
| 2025-02-01T05:13:25Z | 4482548 | 135350948 |
| 2025-02-01T12:02:02Z | 5664640 | 142197680 |
| 2025-02-01T22:10:36Z | 5388375 | 147309790 |
| 2025-02-03T06:25:01Z | 7417971 | 156757357 |
| 2025-02-05T04:35:11Z | 5735752 | 160810890 |
| 2025-02-05T13:28:22Z | 6296407 | 167667952 |
| 2025-02-06T06:47:57Z | 7431766 | 176235077 |
| 2025-02-07T23:11:46Z | 6982158 | 182767627 |
| 2025-02-08T08:30:16Z | 5076074 | 185937617 |
| 2025-02-09T11:58:20Z | 7633538 | 196128619 |
| 2025-02-10T01:37:45Z | 6180090 | 200855261 |
| 2025-02-10T14:53:25Z | 6306612 | 207288395 |
| 2025-02-11T02:26:43Z | 7418084 | 215817951 |
| 2025-02-12T07:26:06Z | 4648263 | 217696393 |
| 2025-02-13T10:54:36Z | 6601618 | 226251366 |
| 2025-02-13T16:05:56Z | 6564615 | 232778978 |
| 2025-02-14T09:33:30Z | 6096613 | 238407589 |
| 2025-02-14T15:16:20Z | 4798178 | 241907332 |
| 2025-02-18T00:51:06Z | 6773375 | 250655904 |
| 2025-02-18T07:50:22Z | 6243448 | 256369425 |
| 2025-02-18T15:39:23Z | 7459393 | 265044763 |
| 2025-02-19T09:15:17Z | 14642615 | 286870600 |
| 2025-02-19T14:31:14Z | 12844134 | 297916253 |
| 2025-02-20T09:43:41Z | 16921761 | 318915641 |
| 2025-02-22T04:39:23Z | 17064134 | 336122148 |
| 2025-02-22T13:51:53Z | 13479208 | 346016430 |
| 2025-02-23T07:03:44Z | 16934377 | 366405976 |
| 2025-02-24T20:19:06Z | 14928193 | 379327985 |
| 2025-02-27T05:34:32Z | 20115072 | 404629936 |
| 2025-02-28T10:11:26Z | 16690326 | 417895516 |
| 2025-03-01T17:37:58Z | 11085857 | 423376904 |
| 2025-03-02T08:42:18Z | 17450064 | 447191175 |
| 2025-03-02T09:59:52Z | 6187006 | 442115123 |
| 2025-03-02T12:53:20Z | 4393428 | 444714973 |
| 2025-03-03T15:34:34Z | 9471203 | 459263951 |
| 2025-03-04T22:56:44Z | 13248994 | 476290736 |
| 2025-03-06T16:33:06Z | 9258335 | 481558412 |
| 2025-03-06T21:07:39Z | 10812374 | 493924825 |
| 2025-03-07T09:11:14Z | 8646751 | 500405953 |
| 2025-03-07T19:59:55Z | 6808197 | 505375596 |
| 2025-03-09T07:39:31Z | 8094599 | 514756597 |
| 2025-03-09T09:33:10Z | 8266465 | 523194928 |
| 2025-03-10T13:20:08Z | 8268001 | 531464465 |
| 2025-03-10T20:21:18Z | 7781971 | 538760406 |
| 2025-03-11T00:18:09Z | 6496843 | 543972121 |
| 2025-03-11T11:28:17Z | 6722271 | 550919820 |
| 2025-03-11T15:43:00Z | 8321407 | 560840363 |
| 2025-03-11T23:11:21Z | 7121161 | 566761278 |
| 2025-03-12T10:33:27Z | 7267795 | 574175707 |
| 2025-03-12T12:28:32Z | 8177771 | 583263454 |
| 2025-03-13T01:16:29Z | 7052573 | 589190829 |
| 2025-03-13T14:45:23Z | 8177771 | 598493798 |
| 2025-03-13T15:39:52Z | 8782238 | 607880503 |
| 2025-03-14T03:28:34Z | 8992119 | 617082503 |
| 2025-03-14T15:27:55Z | 6768737 | 621627858 |
| 2025-03-14T16:52:41Z | 8003592 | 630866305 |
| 2025-03-15T04:21:18Z | 7959396 | 638781505 |
| 2025-03-15T15:36:04Z | 7741551 | 646305211 |
| 2025-03-15T16:17:25Z | 7501732 | 653567124 |
| 2025-03-16T03:12:57Z | 7280393 | 660626178 |
| 2025-03-16T07:59:05Z | 7583841 | 668513467 |
| 2025-03-16T14:32:02Z | 6899568 | 674728762 |
| 2025-03-17T02:03:06Z | 7498558 | 682826310 |
| 2025-03-17T03:52:20Z | 8090256 | 691508264 |
| 2025-03-17T15:32:21Z | 6882633 | 697183274 |
|