File size: 10,666 Bytes
627a725 02c421b 37e649b 02c421b 627a725 ef10542 627a725 02c421b 627a725 f1119ba 7159998 000ce54 bd21bff 54eb137 44320df 24244e9 a056aba 8d3e0da 8123fb8 17978b9 729a932 292db25 4e3ac69 8634807 3fe54a6 b2fc260 1209ad7 dd4e6a5 01a3696 9e6d01b 9d10b98 33a1913 81acc57 9fd4499 9cbcf28 4e3f98d b7791e1 735796f 14ba597 1f87979 49ab648 aeda7bf 22441d6 817ead8 fcbfd37 9d75525 3d1d138 c1023f6 37f0962 ece793a 897acb9 26c1471 6bfda0a 3f04304 37e649b 674be9b 492784e ef10542 c1d6d8b 24fe5d7 627fc75 f598e28 67dd84e efe4bc6 6ea55da 6c39276 7cbafca b148404 fa8a315 1c62f8f 7e1f058 831b9f6 15e6d92 640950d 4411e2c 7c17c2d d17bf39 d3567e7 f88d1bf bc2d03c c4f20c7 5af7c49 92ae4bf 5144a86 89b3f32 8d8f0fd a1d9e1e 944796d 178be6e 7975873 7b4e271 58196a8 79a905a 710d971 3f14f83 4f3f049 8628dd8 98ae0cd 21a6e29 0628692 590dc8a 4b36d0f e8bc03d be776f7 8c0791d 2b89418 d1160fa 24ed5ae 7fe399d cb0afc9 ced1f96 a43be2f e477dfb c12d85c 824e67c 5e1cfbc 8dc7cca 14c1f5e d2ad396 1583db2 f0106d6 0f99178 02c421b 627a725 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** futuremoon/x_dataset_39
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5D2E6ECuZmgc4T93prfTs44nHqWgkXGcQQJPknXWLWEAbCK6
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{futuremoon2025datauniversex_dataset_39,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={futuremoon},
year={2025},
url={https://huggingface.co/datasets/futuremoon/x_dataset_39},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 652446866
- **Date Range:** 2025-05-09T12:02:13Z to 2025-07-05T21:45:10Z
- **Last Updated:** 2025-07-23T16:07:54Z
### Data Distribution
- Tweets with hashtags: 17.66%
- Tweets without hashtags: 82.34%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
1. #riyadh (15372022)
2. #indiapakistanwar (2523620)
3. #indianarmy (1393246)
4. #thaifestivalspecialfm2025xml (1024644)
5. #indiapakistanwar2025 (794951)
6. #operationsindoor (675348)
7. #pakistan (651197)
8. #tiktok (648666)
9. #indiannavy (523712)
10. #indiannavyaction (504968)
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-06-24T05:55:12Z | 4031602 | 8063204 |
| 2025-06-24T15:54:58Z | 4225319 | 12482240 |
| 2025-06-25T00:37:49Z | 5041593 | 18340107 |
| 2025-06-25T04:18:26Z | 5382698 | 24063910 |
| 2025-06-25T09:37:55Z | 4110197 | 26901606 |
| 2025-06-25T12:45:11Z | 4110197 | 31011803 |
| 2025-06-25T23:52:03Z | 7984087 | 42869780 |
| 2025-06-26T05:54:06Z | 7984087 | 50853867 |
| 2025-06-26T10:06:16Z | 3911705 | 50693190 |
| 2025-06-26T12:35:29Z | 3911652 | 54604789 |
| 2025-06-27T01:57:39Z | 3911652 | 58516441 |
| 2025-06-27T10:30:04Z | 9121427 | 72847643 |
| 2025-06-27T12:58:35Z | 9121427 | 81969070 |
| 2025-06-27T18:01:48Z | 9121427 | 91090497 |
| 2025-06-28T02:28:33Z | 9081806 | 100132682 |
| 2025-06-28T13:08:59Z | 7131413 | 105313702 |
| 2025-06-28T23:42:20Z | 7131413 | 112445115 |
| 2025-06-29T09:35:09Z | 4557954 | 114429610 |
| 2025-06-29T13:46:55Z | 4557954 | 118987564 |
| 2025-06-29T16:45:38Z | 3806378 | 122042366 |
| 2025-06-30T01:41:29Z | 3935287 | 126106562 |
| 2025-06-30T09:40:16Z | 5929233 | 134029741 |
| 2025-06-30T11:13:16Z | 5929233 | 139958974 |
| 2025-06-30T13:17:58Z | 5929233 | 145888207 |
| 2025-06-30T23:39:19Z | 5929233 | 151817440 |
| 2025-07-01T11:50:23Z | 5233472 | 156355151 |
| 2025-07-01T15:30:45Z | 5233472 | 161588623 |
| 2025-07-02T00:36:50Z | 5301701 | 166958553 |
| 2025-07-02T12:53:47Z | 5361053 | 172378958 |
| 2025-07-03T00:38:54Z | 5361053 | 177740011 |
| 2025-07-03T04:48:41Z | 8173643 | 188726244 |
| 2025-07-03T10:02:02Z | 3725970 | 188004541 |
| 2025-07-03T14:39:05Z | 3675076 | 191628723 |
| 2025-07-04T02:51:41Z | 5490923 | 198935493 |
| 2025-07-04T09:57:02Z | 5433454 | 204311478 |
| 2025-07-04T12:49:41Z | 5433454 | 209744932 |
| 2025-07-04T13:44:13Z | 5433454 | 215178386 |
| 2025-07-05T04:54:52Z | 7242401 | 224229734 |
| 2025-07-05T12:07:31Z | 7242401 | 231472135 |
| 2025-07-05T14:57:18Z | 7472170 | 239174074 |
| 2025-07-05T22:09:55Z | 7472170 | 246646244 |
| 2025-07-05T23:43:18Z | 4441014 | 248056102 |
| 2025-07-06T03:28:32Z | 4441014 | 252497116 |
| 2025-07-06T04:53:26Z | 4441014 | 256938130 |
| 2025-07-06T08:28:55Z | 4441014 | 261379144 |
| 2025-07-06T10:26:21Z | 6816226 | 270570582 |
| 2025-07-07T01:06:31Z | 5721629 | 275197614 |
| 2025-07-07T04:57:36Z | 5718577 | 280913139 |
| 2025-07-07T09:51:58Z | 5715944 | 286626450 |
| 2025-07-07T13:21:51Z | 5715944 | 292342394 |
| 2025-07-07T23:17:52Z | 5715944 | 298058338 |
| 2025-07-08T03:53:19Z | 5715944 | 303774282 |
| 2025-07-08T13:54:22Z | 5715944 | 309490226 |
| 2025-07-09T01:18:48Z | 5715944 | 315206170 |
| 2025-07-09T07:59:13Z | 5715944 | 320922114 |
| 2025-07-09T10:30:03Z | 5715944 | 326638058 |
| 2025-07-09T23:01:38Z | 5715944 | 332354002 |
| 2025-07-10T10:56:53Z | 5715944 | 338069946 |
| 2025-07-10T14:57:10Z | 5715944 | 343785890 |
| 2025-07-11T04:25:18Z | 5715944 | 349501834 |
| 2025-07-11T07:48:11Z | 5715944 | 355217778 |
| 2025-07-11T10:15:02Z | 5715944 | 360933722 |
| 2025-07-11T15:53:50Z | 5715944 | 366649666 |
| 2025-07-11T23:14:06Z | 5715944 | 372365610 |
| 2025-07-12T09:20:37Z | 5715944 | 378081554 |
| 2025-07-12T15:02:30Z | 5715944 | 383797498 |
| 2025-07-13T04:19:08Z | 5715944 | 389513442 |
| 2025-07-13T12:27:26Z | 5715944 | 395229386 |
| 2025-07-14T00:42:06Z | 5715944 | 400945330 |
| 2025-07-14T09:38:43Z | 5715944 | 406661274 |
| 2025-07-14T13:46:00Z | 5715944 | 412377218 |
| 2025-07-14T14:39:42Z | 5715944 | 418093162 |
| 2025-07-15T01:48:41Z | 5715944 | 423809106 |
| 2025-07-15T13:17:17Z | 5715944 | 429525050 |
| 2025-07-15T15:23:19Z | 5715944 | 435240994 |
| 2025-07-15T23:14:45Z | 5715944 | 440956938 |
| 2025-07-16T05:21:46Z | 5715944 | 446672882 |
| 2025-07-16T13:45:25Z | 5715944 | 452388826 |
| 2025-07-16T14:06:52Z | 5715944 | 458104770 |
| 2025-07-16T15:59:59Z | 5715944 | 463820714 |
| 2025-07-16T23:39:38Z | 5715944 | 469536658 |
| 2025-07-17T01:03:11Z | 5715944 | 475252602 |
| 2025-07-17T08:04:00Z | 5715944 | 480968546 |
| 2025-07-17T09:31:04Z | 5715944 | 486684490 |
| 2025-07-17T10:40:37Z | 5715944 | 492400434 |
| 2025-07-17T23:59:38Z | 5715944 | 498116378 |
| 2025-07-18T01:15:34Z | 5715944 | 503832322 |
| 2025-07-18T07:29:19Z | 5715944 | 509548266 |
| 2025-07-18T10:12:52Z | 5715944 | 515264210 |
| 2025-07-19T02:40:20Z | 5715944 | 520980154 |
| 2025-07-19T07:08:16Z | 5715944 | 526696098 |
| 2025-07-19T12:27:03Z | 5715944 | 532412042 |
| 2025-07-19T13:01:42Z | 5715944 | 538127986 |
| 2025-07-19T17:41:33Z | 5715944 | 543843930 |
| 2025-07-20T01:22:54Z | 5715944 | 549559874 |
| 2025-07-20T06:24:29Z | 5715944 | 555275818 |
| 2025-07-20T14:14:44Z | 5715944 | 560991762 |
| 2025-07-20T15:55:42Z | 5715944 | 566707706 |
| 2025-07-21T00:51:13Z | 5715944 | 572423650 |
| 2025-07-21T01:56:22Z | 5715944 | 578139594 |
| 2025-07-21T05:08:20Z | 5715944 | 583855538 |
| 2025-07-21T10:09:10Z | 5715944 | 589571482 |
| 2025-07-21T11:47:24Z | 5715944 | 595287426 |
| 2025-07-22T02:16:03Z | 5715944 | 601003370 |
| 2025-07-22T02:27:06Z | 5715944 | 606719314 |
| 2025-07-22T06:04:46Z | 5715944 | 612435258 |
| 2025-07-22T07:11:55Z | 5715944 | 618151202 |
| 2025-07-22T14:47:36Z | 5715944 | 623867146 |
| 2025-07-22T18:10:01Z | 5715944 | 629583090 |
| 2025-07-23T01:02:48Z | 5715944 | 635299034 |
| 2025-07-23T04:49:56Z | 5715944 | 641014978 |
| 2025-07-23T07:33:58Z | 5715944 | 646730922 |
| 2025-07-23T08:59:28Z | 5715944 | 652446866 |
| 2025-07-23T16:07:54Z | 5715944 | 658162810 |
|