File size: 10,666 Bytes
627a725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c421b
37e649b
02c421b
627a725
 
 
ef10542
 
627a725
 
 
 
 
02c421b
 
 
 
 
 
 
 
 
 
627a725
 
 
 
 
 
f1119ba
7159998
000ce54
bd21bff
54eb137
44320df
24244e9
a056aba
8d3e0da
8123fb8
17978b9
729a932
292db25
4e3ac69
8634807
3fe54a6
b2fc260
1209ad7
dd4e6a5
01a3696
9e6d01b
9d10b98
33a1913
81acc57
9fd4499
9cbcf28
4e3f98d
b7791e1
735796f
14ba597
1f87979
49ab648
aeda7bf
22441d6
817ead8
fcbfd37
9d75525
3d1d138
c1023f6
37f0962
ece793a
897acb9
26c1471
6bfda0a
3f04304
37e649b
674be9b
492784e
ef10542
c1d6d8b
24fe5d7
627fc75
f598e28
67dd84e
efe4bc6
6ea55da
6c39276
7cbafca
b148404
fa8a315
1c62f8f
7e1f058
831b9f6
15e6d92
640950d
4411e2c
7c17c2d
d17bf39
d3567e7
f88d1bf
bc2d03c
c4f20c7
5af7c49
92ae4bf
5144a86
89b3f32
8d8f0fd
a1d9e1e
944796d
178be6e
7975873
7b4e271
58196a8
79a905a
710d971
3f14f83
4f3f049
8628dd8
98ae0cd
21a6e29
0628692
590dc8a
4b36d0f
e8bc03d
be776f7
8c0791d
2b89418
d1160fa
24ed5ae
7fe399d
cb0afc9
ced1f96
a43be2f
e477dfb
c12d85c
824e67c
5e1cfbc
8dc7cca
14c1f5e
d2ad396
1583db2
f0106d6
0f99178
02c421b
627a725
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>



## Dataset Description

- **Repository:** futuremoon/x_dataset_39
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5D2E6ECuZmgc4T93prfTs44nHqWgkXGcQQJPknXWLWEAbCK6

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{futuremoon2025datauniversex_dataset_39,
    title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
    author={futuremoon},
    year={2025},
    url={https://huggingface.co/datasets/futuremoon/x_dataset_39},
}
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 652446866
- **Date Range:** 2025-05-09T12:02:13Z to 2025-07-05T21:45:10Z
- **Last Updated:** 2025-07-23T16:07:54Z

### Data Distribution

- Tweets with hashtags: 17.66%
- Tweets without hashtags: 82.34%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

1. #riyadh (15372022)
2. #indiapakistanwar (2523620)
3. #indianarmy (1393246)
4. #thaifestivalspecialfm2025xml (1024644)
5. #indiapakistanwar2025 (794951)
6. #operationsindoor (675348)
7. #pakistan (651197)
8. #tiktok (648666)
9. #indiannavy (523712)
10. #indiannavyaction (504968)


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-06-24T05:55:12Z | 4031602 | 8063204 |
| 2025-06-24T15:54:58Z | 4225319 | 12482240 |
| 2025-06-25T00:37:49Z | 5041593 | 18340107 |
| 2025-06-25T04:18:26Z | 5382698 | 24063910 |
| 2025-06-25T09:37:55Z | 4110197 | 26901606 |
| 2025-06-25T12:45:11Z | 4110197 | 31011803 |
| 2025-06-25T23:52:03Z | 7984087 | 42869780 |
| 2025-06-26T05:54:06Z | 7984087 | 50853867 |
| 2025-06-26T10:06:16Z | 3911705 | 50693190 |
| 2025-06-26T12:35:29Z | 3911652 | 54604789 |
| 2025-06-27T01:57:39Z | 3911652 | 58516441 |
| 2025-06-27T10:30:04Z | 9121427 | 72847643 |
| 2025-06-27T12:58:35Z | 9121427 | 81969070 |
| 2025-06-27T18:01:48Z | 9121427 | 91090497 |
| 2025-06-28T02:28:33Z | 9081806 | 100132682 |
| 2025-06-28T13:08:59Z | 7131413 | 105313702 |
| 2025-06-28T23:42:20Z | 7131413 | 112445115 |
| 2025-06-29T09:35:09Z | 4557954 | 114429610 |
| 2025-06-29T13:46:55Z | 4557954 | 118987564 |
| 2025-06-29T16:45:38Z | 3806378 | 122042366 |
| 2025-06-30T01:41:29Z | 3935287 | 126106562 |
| 2025-06-30T09:40:16Z | 5929233 | 134029741 |
| 2025-06-30T11:13:16Z | 5929233 | 139958974 |
| 2025-06-30T13:17:58Z | 5929233 | 145888207 |
| 2025-06-30T23:39:19Z | 5929233 | 151817440 |
| 2025-07-01T11:50:23Z | 5233472 | 156355151 |
| 2025-07-01T15:30:45Z | 5233472 | 161588623 |
| 2025-07-02T00:36:50Z | 5301701 | 166958553 |
| 2025-07-02T12:53:47Z | 5361053 | 172378958 |
| 2025-07-03T00:38:54Z | 5361053 | 177740011 |
| 2025-07-03T04:48:41Z | 8173643 | 188726244 |
| 2025-07-03T10:02:02Z | 3725970 | 188004541 |
| 2025-07-03T14:39:05Z | 3675076 | 191628723 |
| 2025-07-04T02:51:41Z | 5490923 | 198935493 |
| 2025-07-04T09:57:02Z | 5433454 | 204311478 |
| 2025-07-04T12:49:41Z | 5433454 | 209744932 |
| 2025-07-04T13:44:13Z | 5433454 | 215178386 |
| 2025-07-05T04:54:52Z | 7242401 | 224229734 |
| 2025-07-05T12:07:31Z | 7242401 | 231472135 |
| 2025-07-05T14:57:18Z | 7472170 | 239174074 |
| 2025-07-05T22:09:55Z | 7472170 | 246646244 |
| 2025-07-05T23:43:18Z | 4441014 | 248056102 |
| 2025-07-06T03:28:32Z | 4441014 | 252497116 |
| 2025-07-06T04:53:26Z | 4441014 | 256938130 |
| 2025-07-06T08:28:55Z | 4441014 | 261379144 |
| 2025-07-06T10:26:21Z | 6816226 | 270570582 |
| 2025-07-07T01:06:31Z | 5721629 | 275197614 |
| 2025-07-07T04:57:36Z | 5718577 | 280913139 |
| 2025-07-07T09:51:58Z | 5715944 | 286626450 |
| 2025-07-07T13:21:51Z | 5715944 | 292342394 |
| 2025-07-07T23:17:52Z | 5715944 | 298058338 |
| 2025-07-08T03:53:19Z | 5715944 | 303774282 |
| 2025-07-08T13:54:22Z | 5715944 | 309490226 |
| 2025-07-09T01:18:48Z | 5715944 | 315206170 |
| 2025-07-09T07:59:13Z | 5715944 | 320922114 |
| 2025-07-09T10:30:03Z | 5715944 | 326638058 |
| 2025-07-09T23:01:38Z | 5715944 | 332354002 |
| 2025-07-10T10:56:53Z | 5715944 | 338069946 |
| 2025-07-10T14:57:10Z | 5715944 | 343785890 |
| 2025-07-11T04:25:18Z | 5715944 | 349501834 |
| 2025-07-11T07:48:11Z | 5715944 | 355217778 |
| 2025-07-11T10:15:02Z | 5715944 | 360933722 |
| 2025-07-11T15:53:50Z | 5715944 | 366649666 |
| 2025-07-11T23:14:06Z | 5715944 | 372365610 |
| 2025-07-12T09:20:37Z | 5715944 | 378081554 |
| 2025-07-12T15:02:30Z | 5715944 | 383797498 |
| 2025-07-13T04:19:08Z | 5715944 | 389513442 |
| 2025-07-13T12:27:26Z | 5715944 | 395229386 |
| 2025-07-14T00:42:06Z | 5715944 | 400945330 |
| 2025-07-14T09:38:43Z | 5715944 | 406661274 |
| 2025-07-14T13:46:00Z | 5715944 | 412377218 |
| 2025-07-14T14:39:42Z | 5715944 | 418093162 |
| 2025-07-15T01:48:41Z | 5715944 | 423809106 |
| 2025-07-15T13:17:17Z | 5715944 | 429525050 |
| 2025-07-15T15:23:19Z | 5715944 | 435240994 |
| 2025-07-15T23:14:45Z | 5715944 | 440956938 |
| 2025-07-16T05:21:46Z | 5715944 | 446672882 |
| 2025-07-16T13:45:25Z | 5715944 | 452388826 |
| 2025-07-16T14:06:52Z | 5715944 | 458104770 |
| 2025-07-16T15:59:59Z | 5715944 | 463820714 |
| 2025-07-16T23:39:38Z | 5715944 | 469536658 |
| 2025-07-17T01:03:11Z | 5715944 | 475252602 |
| 2025-07-17T08:04:00Z | 5715944 | 480968546 |
| 2025-07-17T09:31:04Z | 5715944 | 486684490 |
| 2025-07-17T10:40:37Z | 5715944 | 492400434 |
| 2025-07-17T23:59:38Z | 5715944 | 498116378 |
| 2025-07-18T01:15:34Z | 5715944 | 503832322 |
| 2025-07-18T07:29:19Z | 5715944 | 509548266 |
| 2025-07-18T10:12:52Z | 5715944 | 515264210 |
| 2025-07-19T02:40:20Z | 5715944 | 520980154 |
| 2025-07-19T07:08:16Z | 5715944 | 526696098 |
| 2025-07-19T12:27:03Z | 5715944 | 532412042 |
| 2025-07-19T13:01:42Z | 5715944 | 538127986 |
| 2025-07-19T17:41:33Z | 5715944 | 543843930 |
| 2025-07-20T01:22:54Z | 5715944 | 549559874 |
| 2025-07-20T06:24:29Z | 5715944 | 555275818 |
| 2025-07-20T14:14:44Z | 5715944 | 560991762 |
| 2025-07-20T15:55:42Z | 5715944 | 566707706 |
| 2025-07-21T00:51:13Z | 5715944 | 572423650 |
| 2025-07-21T01:56:22Z | 5715944 | 578139594 |
| 2025-07-21T05:08:20Z | 5715944 | 583855538 |
| 2025-07-21T10:09:10Z | 5715944 | 589571482 |
| 2025-07-21T11:47:24Z | 5715944 | 595287426 |
| 2025-07-22T02:16:03Z | 5715944 | 601003370 |
| 2025-07-22T02:27:06Z | 5715944 | 606719314 |
| 2025-07-22T06:04:46Z | 5715944 | 612435258 |
| 2025-07-22T07:11:55Z | 5715944 | 618151202 |
| 2025-07-22T14:47:36Z | 5715944 | 623867146 |
| 2025-07-22T18:10:01Z | 5715944 | 629583090 |
| 2025-07-23T01:02:48Z | 5715944 | 635299034 |
| 2025-07-23T04:49:56Z | 5715944 | 641014978 |
| 2025-07-23T07:33:58Z | 5715944 | 646730922 |
| 2025-07-23T08:59:28Z | 5715944 | 652446866 |
| 2025-07-23T16:07:54Z | 5715944 | 658162810 |