File size: 10,579 Bytes
627a725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24df8ae
82d5efa
24df8ae
627a725
 
 
24df8ae
 
627a725
 
 
 
 
24df8ae
 
 
 
82d5efa
24df8ae
d8bf393
881bc8b
933a990
82d5efa
627a725
 
 
 
 
 
 
70aba45
85a0254
da63e91
7644813
c45a82d
aaa8300
1b2fcda
329f3b8
a3872c8
006d422
672c54a
b39507b
9399f3b
e261d4e
2e5efe7
bda0ff1
8c37a59
bf69b48
8148d74
5cf1534
bac0538
032337d
2ed668a
00ca6ab
0564187
51233d8
78e690d
3dd682d
a6ce27a
ff8fdbe
a96cbbb
c92a235
3835c05
ed1f503
34f9c99
a5b63b3
b26ade2
656739a
e07ce6b
fff7735
5c19945
fa48b47
41bfda8
4032806
e12d3e2
533a324
164482a
5a1f17d
a553514
585a37e
0d65855
721d4ad
22c7947
0bbe8f2
750189d
1091fb1
26259da
93bc756
08ed54b
2e51f09
fec16fb
23a1ba3
da69671
9d980a9
4cab2af
4f6b1f5
7916446
1418614
2e3ec53
a7ffe42
7fcf1f4
b7adf2f
3062a9b
d41412e
72395f9
2e374e5
2dd5d9c
83a1d9e
c991039
e9e99f4
0c680c3
d688db1
58f98a6
d45af06
05b520b
433c87c
c8d574a
9d55511
244e606
1cb8ee7
19d639d
1fb782c
bb1a20b
b565cf1
3645832
9fcf6c3
7a6e4df
a7e0ac2
33f1a4e
5a96ea5
54f5abf
933a990
9007ae8
881bc8b
36aa7c4
17e6804
447ed83
4cf71c8
d8bf393
101ce77
82d5efa
24df8ae
627a725
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 X (Twitter) Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>



## Dataset Description

- **Repository:** futuremoon/x_dataset_39
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5D2E6ECuZmgc4T93prfTs44nHqWgkXGcQQJPknXWLWEAbCK6

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single tweet with the following fields:


### Data Fields

- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{futuremoon2025datauniversex_dataset_39,
    title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
    author={futuremoon},
    year={2025},
    url={https://huggingface.co/datasets/futuremoon/x_dataset_39},
}
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 940809207
- **Date Range:** 2024-12-24T02:00:00Z to 2025-03-25T11:35:50Z
- **Last Updated:** 2025-03-26T06:13:46Z

### Data Distribution

- Tweets with hashtags: 100.00%
- Tweets without hashtags: 0.00%

### Top 10 Hashtags

For full statistics, please refer to the `stats.json` file in the repository.

1. #riyadh (4992554)
2. #tiktok (2656183)
3. #zelena (2420196)
4. #boi (2005254)
5. #bbb25 (1448742)
6. #pr (1316507)
7. #ad (921633)
8. #saintlaurentxmilk (838077)
9. #namtanfilm1stfmd1 (754731)
10. #grandefratello (679089)


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-23T07:35:53Z | 5986812 | 11973624 |
| 2025-01-24T17:23:26Z | 8263919 | 22514650 |
| 2025-01-25T21:24:04Z | 6934408 | 28119547 |
| 2025-01-29T22:15:37Z | 8182430 | 37549999 |
| 2025-01-29T22:35:01Z | 5273282 | 39914133 |
| 2025-01-29T22:52:36Z | 5880527 | 46401905 |
| 2025-01-29T23:14:57Z | 6178889 | 52879156 |
| 2025-01-30T01:42:46Z | 8549240 | 63798747 |
| 2025-01-30T02:21:01Z | 7893478 | 71036463 |
| 2025-01-30T03:04:54Z | 9689930 | 82522845 |
| 2025-01-30T03:36:27Z | 6473435 | 85779785 |
| 2025-01-30T03:50:51Z | 4584599 | 88475548 |
| 2025-01-30T04:15:17Z | 5608231 | 95107411 |
| 2025-01-30T04:53:51Z | 7677395 | 104853970 |
| 2025-01-30T05:40:14Z | 8855337 | 114887249 |
| 2025-01-30T06:00:03Z | 6888883 | 119809678 |
| 2025-01-30T06:31:20Z | 6236334 | 125393463 |
| 2025-01-30T12:42:30Z | 7228723 | 133614575 |
| 2025-02-01T05:13:25Z | 4482548 | 135350948 |
| 2025-02-01T12:02:02Z | 5664640 | 142197680 |
| 2025-02-01T22:10:36Z | 5388375 | 147309790 |
| 2025-02-03T06:25:01Z | 7417971 | 156757357 |
| 2025-02-05T04:35:11Z | 5735752 | 160810890 |
| 2025-02-05T13:28:22Z | 6296407 | 167667952 |
| 2025-02-06T06:47:57Z | 7431766 | 176235077 |
| 2025-02-07T23:11:46Z | 6982158 | 182767627 |
| 2025-02-08T08:30:16Z | 5076074 | 185937617 |
| 2025-02-09T11:58:20Z | 7633538 | 196128619 |
| 2025-02-10T01:37:45Z | 6180090 | 200855261 |
| 2025-02-10T14:53:25Z | 6306612 | 207288395 |
| 2025-02-11T02:26:43Z | 7418084 | 215817951 |
| 2025-02-12T07:26:06Z | 4648263 | 217696393 |
| 2025-02-13T10:54:36Z | 6601618 | 226251366 |
| 2025-02-13T16:05:56Z | 6564615 | 232778978 |
| 2025-02-14T09:33:30Z | 6096613 | 238407589 |
| 2025-02-14T15:16:20Z | 4798178 | 241907332 |
| 2025-02-18T00:51:06Z | 6773375 | 250655904 |
| 2025-02-18T07:50:22Z | 6243448 | 256369425 |
| 2025-02-18T15:39:23Z | 7459393 | 265044763 |
| 2025-02-19T09:15:17Z | 14642615 | 286870600 |
| 2025-02-19T14:31:14Z | 12844134 | 297916253 |
| 2025-02-20T09:43:41Z | 16921761 | 318915641 |
| 2025-02-22T04:39:23Z | 17064134 | 336122148 |
| 2025-02-22T13:51:53Z | 13479208 | 346016430 |
| 2025-02-23T07:03:44Z | 16934377 | 366405976 |
| 2025-02-24T20:19:06Z | 14928193 | 379327985 |
| 2025-02-27T05:34:32Z | 20115072 | 404629936 |
| 2025-02-28T10:11:26Z | 16690326 | 417895516 |
| 2025-03-01T17:37:58Z | 11085857 | 423376904 |
| 2025-03-02T08:42:18Z | 17450064 | 447191175 |
| 2025-03-02T09:59:52Z | 6187006 | 442115123 |
| 2025-03-02T12:53:20Z | 4393428 | 444714973 |
| 2025-03-03T15:34:34Z | 9471203 | 459263951 |
| 2025-03-04T22:56:44Z | 13248994 | 476290736 |
| 2025-03-06T16:33:06Z | 9258335 | 481558412 |
| 2025-03-06T21:07:39Z | 10812374 | 493924825 |
| 2025-03-07T09:11:14Z | 8646751 | 500405953 |
| 2025-03-07T19:59:55Z | 6808197 | 505375596 |
| 2025-03-09T07:39:31Z | 8094599 | 514756597 |
| 2025-03-09T09:33:10Z | 8266465 | 523194928 |
| 2025-03-10T13:20:08Z | 8268001 | 531464465 |
| 2025-03-10T20:21:18Z | 7781971 | 538760406 |
| 2025-03-11T00:18:09Z | 6496843 | 543972121 |
| 2025-03-11T11:28:17Z | 6722271 | 550919820 |
| 2025-03-11T15:43:00Z | 8321407 | 560840363 |
| 2025-03-11T23:11:21Z | 7121161 | 566761278 |
| 2025-03-12T10:33:27Z | 7267795 | 574175707 |
| 2025-03-12T12:28:32Z | 8177771 | 583263454 |
| 2025-03-13T01:16:29Z | 7052573 | 589190829 |
| 2025-03-13T14:45:23Z | 8177771 | 598493798 |
| 2025-03-13T15:39:52Z | 8782238 | 607880503 |
| 2025-03-14T03:28:34Z | 8992119 | 617082503 |
| 2025-03-14T15:27:55Z | 6768737 | 621627858 |
| 2025-03-14T16:52:41Z | 8003592 | 630866305 |
| 2025-03-15T04:21:18Z | 7959396 | 638781505 |
| 2025-03-15T15:36:04Z | 7741551 | 646305211 |
| 2025-03-15T16:17:25Z | 7501732 | 653567124 |
| 2025-03-16T03:12:57Z | 7280393 | 660626178 |
| 2025-03-16T07:59:05Z | 7583841 | 668513467 |
| 2025-03-16T14:32:02Z | 6899568 | 674728762 |
| 2025-03-17T02:03:06Z | 7498558 | 682826310 |
| 2025-03-17T03:52:20Z | 8090256 | 691508264 |
| 2025-03-17T15:32:21Z | 6882633 | 697183274 |
| 2025-03-18T03:39:17Z | 8537627 | 707375895 |
| 2025-03-18T03:54:26Z | 9551958 | 717942184 |
| 2025-03-18T18:05:43Z | 7381981 | 723154188 |
| 2025-03-18T19:41:49Z | 10861038 | 737494283 |
| 2025-03-19T10:30:14Z | 9401879 | 745437003 |
| 2025-03-19T10:46:56Z | 9177257 | 754389638 |
| 2025-03-20T01:13:56Z | 9843648 | 764899677 |
| 2025-03-20T01:26:10Z | 6530218 | 768116465 |
| 2025-03-20T14:46:55Z | 8838621 | 779263489 |
| 2025-03-20T15:20:08Z | 7868840 | 786162548 |
| 2025-03-21T03:01:13Z | 8962339 | 796218386 |
| 2025-03-21T03:38:03Z | 9574330 | 806404707 |
| 2025-03-21T14:26:42Z | 7271243 | 811372863 |
| 2025-03-21T14:47:46Z | 7175405 | 818452430 |
| 2025-03-22T02:55:54Z | 7697168 | 826671361 |
| 2025-03-22T03:36:05Z | 10861038 | 840696269 |
| 2025-03-22T16:11:23Z | 7441064 | 844717359 |
| 2025-03-22T16:27:04Z | 9177257 | 855630809 |
| 2025-03-23T04:28:49Z | 8835055 | 864123662 |
| 2025-03-23T04:38:58Z | 6530218 | 868349043 |
| 2025-03-23T17:40:34Z | 7442691 | 876704207 |
| 2025-03-23T18:05:42Z | 7868840 | 884999196 |
| 2025-03-24T06:55:30Z | 8679126 | 894488608 |
| 2025-03-24T07:04:26Z | 9574330 | 896279016 |
| 2025-03-24T20:01:32Z | 7846632 | 911077076 |
| 2025-03-24T20:12:26Z | 7175405 | 917581254 |
| 2025-03-25T11:47:07Z | 8354396 | 927114641 |
| 2025-03-25T11:58:22Z | 6283191 | 931326627 |
| 2025-03-26T06:02:44Z | 9491448 | 944026332 |
| 2025-03-26T06:13:45Z | 6274323 | 947083530 |