Adding regression benchmark for the transformers SHA 55db70c63de2c07b6ffe36f24c0e7df8f967e935
Browse files- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/0/inference_results.csv +1 -1
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/0/main.log +23 -23
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/1/main.log +10 -15
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/2/hydra_config.yaml +66 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/2/inference_results.csv +2 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/2/main.log +23 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/3/hydra_config.yaml +66 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/3/main.log +10 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/4/hydra_config.yaml +66 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/4/inference_results.csv +2 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/4/main.log +23 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/5/hydra_config.yaml +66 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/5/main.log +10 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/6/hydra_config.yaml +66 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/6/main.log +13 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/7/hydra_config.yaml +66 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/7/main.log +10 -0
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_bert_inference/0/inference_results.csv +1 -1
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_bert_inference/0/main.log +20 -20
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_gpt2_inference/0/inference_results.csv +1 -1
- raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_gpt2_inference/0/main.log +22 -22
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/0/inference_results.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
|
2 |
-
0,
|
|
|
1 |
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
|
2 |
+
0,80330.22771199999,0.0318,31.4,6.03,33.2
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/0/main.log
CHANGED
@@ -1,23 +1,23 @@
|
|
1 |
-
[2023-08-10 21:
|
2 |
-
[2023-08-10 21:
|
3 |
-
[2023-08-10 21:
|
4 |
-
[2023-08-10 21:
|
5 |
-
[2023-08-10 21:
|
6 |
-
[2023-08-10 21:
|
7 |
-
[2023-08-10 21:
|
8 |
-
[2023-08-10 21:
|
9 |
-
[2023-08-10 21:
|
10 |
-
[2023-08-10 21:
|
11 |
-
[2023-08-10 21:
|
12 |
-
[2023-08-10 21:
|
13 |
-
[2023-08-10 21:
|
14 |
-
[2023-08-10 21:
|
15 |
-
[2023-08-10 21:
|
16 |
-
[2023-08-10 21:
|
17 |
-
[2023-08-10 21:
|
18 |
-
[2023-08-10 21:
|
19 |
-
[2023-08-10 21:
|
20 |
-
[2023-08-10 21:
|
21 |
-
[2023-08-10 21:
|
22 |
-
[2023-08-10 21:
|
23 |
-
[2023-08-10 21:
|
|
|
1 |
+
[2023-08-10 21:25:46,773][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:25:46,774][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:25:47,065][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:25:47,065][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:25:47,065][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:25:47,490][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:25:47,512][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:25:47,514][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
|
9 |
+
[2023-08-10 21:27:15,232][pytorch][INFO] - + Turning on eval mode
|
10 |
+
[2023-08-10 21:27:15,234][inference][INFO] - Running inference benchmark
|
11 |
+
[2023-08-10 21:27:23,248][inference][INFO] - + Tracking forward pass peak memory
|
12 |
+
[2023-08-10 21:27:24,569][memory_tracker][INFO] - Peak memory usage: 80330.22771199999 MB
|
13 |
+
[2023-08-10 21:27:24,570][inference][INFO] - + Forward pass peak memory: 80330.22771199999 (MB)
|
14 |
+
[2023-08-10 21:27:24,570][inference][INFO] - + Warming up the forward pass
|
15 |
+
[2023-08-10 21:27:24,888][inference][INFO] - + Tracking forward pass latency and throughput
|
16 |
+
[2023-08-10 21:27:45,192][inference][INFO] - + Forward pass latency: 3.18e-02 (s)
|
17 |
+
[2023-08-10 21:27:45,193][inference][INFO] - + Forward pass throughput: 31.40 (samples/s)
|
18 |
+
[2023-08-10 21:27:45,193][inference][INFO] - + Warming up the generation pass
|
19 |
+
[2023-08-10 21:27:51,915][inference][INFO] - + Tracking generation latency and throughput
|
20 |
+
[2023-08-10 21:28:16,026][inference][INFO] - + Generation pass latency: 6.03e+00 (s)
|
21 |
+
[2023-08-10 21:28:16,029][inference][INFO] - + Generation pass throughput: 33.20 (tokens/s)
|
22 |
+
[2023-08-10 21:28:16,029][inference][INFO] - Saving inference results
|
23 |
+
[2023-08-10 21:28:16,037][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/1/main.log
CHANGED
@@ -1,15 +1,10 @@
|
|
1 |
-
[2023-08-10 21:
|
2 |
-
[2023-08-10 21:
|
3 |
-
[2023-08-10 21:
|
4 |
-
[2023-08-10 21:
|
5 |
-
[2023-08-10 21:
|
6 |
-
[2023-08-10 21:
|
7 |
-
[2023-08-10 21:
|
8 |
-
[2023-08-10 21:
|
9 |
-
[2023-08-10 21:
|
10 |
-
[2023-08-10 21:
|
11 |
-
[2023-08-10 21:23:20,736][inference][INFO] - + Tracking forward pass peak memory
|
12 |
-
[2023-08-10 21:23:20,812][memory_tracker][INFO] - Peak memory usage: 30317.346815999997 MB
|
13 |
-
[2023-08-10 21:23:20,812][inference][INFO] - + Forward pass peak memory: 30317.346815999997 (MB)
|
14 |
-
[2023-08-10 21:23:20,813][inference][INFO] - + Warming up the forward pass
|
15 |
-
[2023-08-10 21:23:22,942][inference][INFO] - + Tracking forward pass latency and throughput
|
|
|
1 |
+
[2023-08-10 21:28:16,493][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:28:16,494][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:28:16,695][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:28:16,695][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:28:16,696][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:28:17,024][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:28:17,063][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:28:17,064][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
|
9 |
+
[2023-08-10 21:28:17,294][main][ERROR] - Error during benchmarking: CUDA out of memory. Tried to allocate 172.00 MiB (GPU 0; 79.35 GiB total capacity; 18.39 GiB already allocated; 33.12 MiB free; 18.40 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
10 |
+
[2023-08-10 21:28:17,295][backend][INFO] - Cleaning backend
|
|
|
|
|
|
|
|
|
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/2/hydra_config.yaml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backend:
|
2 |
+
name: pytorch
|
3 |
+
version: 2.0.1+cu117
|
4 |
+
_target_: optimum_benchmark.backends.pytorch.PyTorchBackend
|
5 |
+
inter_op_num_threads: null
|
6 |
+
intra_op_num_threads: null
|
7 |
+
initial_isolation_check: true
|
8 |
+
continous_isolation_check: true
|
9 |
+
delete_cache: false
|
10 |
+
no_weights: false
|
11 |
+
torch_dtype: float16
|
12 |
+
device_map: null
|
13 |
+
load_in_8bit: false
|
14 |
+
load_in_4bit: false
|
15 |
+
bettertransformer: false
|
16 |
+
torch_compile: false
|
17 |
+
torch_compile_config:
|
18 |
+
fullgraph: false
|
19 |
+
dynamic: false
|
20 |
+
backend: inductor
|
21 |
+
mode: null
|
22 |
+
options: null
|
23 |
+
disable: false
|
24 |
+
amp_autocast: false
|
25 |
+
amp_dtype: null
|
26 |
+
disable_grad: true
|
27 |
+
eval_mode: true
|
28 |
+
benchmark:
|
29 |
+
name: inference
|
30 |
+
_target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
|
31 |
+
seed: 42
|
32 |
+
memory: true
|
33 |
+
warmup_runs: 10
|
34 |
+
benchmark_duration: 20
|
35 |
+
input_shapes:
|
36 |
+
batch_size: 2
|
37 |
+
sequence_length: 200
|
38 |
+
num_choices: 4
|
39 |
+
width: 64
|
40 |
+
height: 64
|
41 |
+
num_channels: 3
|
42 |
+
point_batch_size: 3
|
43 |
+
nb_points_per_image: 2
|
44 |
+
feature_size: 80
|
45 |
+
nb_max_frames: 3000
|
46 |
+
audio_sequence_length: 16000
|
47 |
+
new_tokens: 200
|
48 |
+
experiment_name: llama_1gpu_inference
|
49 |
+
model: togethercomputer/LLaMA-2-7B-32K
|
50 |
+
device: cuda
|
51 |
+
task: text-generation
|
52 |
+
hub_kwargs:
|
53 |
+
revision: main
|
54 |
+
cache_dir: null
|
55 |
+
force_download: false
|
56 |
+
local_files_only: false
|
57 |
+
environment:
|
58 |
+
optimum_version: 1.11.0
|
59 |
+
transformers_version: 4.32.0.dev0
|
60 |
+
accelerate_version: 0.21.0
|
61 |
+
diffusers_version: null
|
62 |
+
python_version: 3.10.12
|
63 |
+
system: Linux
|
64 |
+
cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
|
65 |
+
cpu_count: 96
|
66 |
+
cpu_ram_mb: 1204539.797504
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/2/inference_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
|
2 |
+
0,82039.406592,0.0331,60.4,6.27,63.8
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/2/main.log
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-10 21:28:17,673][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:28:17,674][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:28:17,884][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:28:17,884][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:28:17,885][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:28:18,203][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:28:18,238][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:28:18,239][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
|
9 |
+
[2023-08-10 21:28:28,915][pytorch][INFO] - + Turning on eval mode
|
10 |
+
[2023-08-10 21:28:28,917][inference][INFO] - Running inference benchmark
|
11 |
+
[2023-08-10 21:28:36,839][inference][INFO] - + Tracking forward pass peak memory
|
12 |
+
[2023-08-10 21:28:36,885][memory_tracker][INFO] - Peak memory usage: 82039.406592 MB
|
13 |
+
[2023-08-10 21:28:36,885][inference][INFO] - + Forward pass peak memory: 82039.406592 (MB)
|
14 |
+
[2023-08-10 21:28:36,886][inference][INFO] - + Warming up the forward pass
|
15 |
+
[2023-08-10 21:28:37,754][inference][INFO] - + Tracking forward pass latency and throughput
|
16 |
+
[2023-08-10 21:29:11,298][inference][INFO] - + Forward pass latency: 3.31e-02 (s)
|
17 |
+
[2023-08-10 21:29:11,299][inference][INFO] - + Forward pass throughput: 60.40 (samples/s)
|
18 |
+
[2023-08-10 21:29:11,300][inference][INFO] - + Warming up the generation pass
|
19 |
+
[2023-08-10 21:29:18,363][inference][INFO] - + Tracking generation latency and throughput
|
20 |
+
[2023-08-10 21:29:43,432][inference][INFO] - + Generation pass latency: 6.27e+00 (s)
|
21 |
+
[2023-08-10 21:29:43,434][inference][INFO] - + Generation pass throughput: 63.80 (tokens/s)
|
22 |
+
[2023-08-10 21:29:43,434][inference][INFO] - Saving inference results
|
23 |
+
[2023-08-10 21:29:43,441][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/3/hydra_config.yaml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backend:
|
2 |
+
name: pytorch
|
3 |
+
version: 2.0.1+cu117
|
4 |
+
_target_: optimum_benchmark.backends.pytorch.PyTorchBackend
|
5 |
+
inter_op_num_threads: null
|
6 |
+
intra_op_num_threads: null
|
7 |
+
initial_isolation_check: true
|
8 |
+
continous_isolation_check: true
|
9 |
+
delete_cache: false
|
10 |
+
no_weights: false
|
11 |
+
torch_dtype: float32
|
12 |
+
device_map: null
|
13 |
+
load_in_8bit: false
|
14 |
+
load_in_4bit: false
|
15 |
+
bettertransformer: false
|
16 |
+
torch_compile: false
|
17 |
+
torch_compile_config:
|
18 |
+
fullgraph: false
|
19 |
+
dynamic: false
|
20 |
+
backend: inductor
|
21 |
+
mode: null
|
22 |
+
options: null
|
23 |
+
disable: false
|
24 |
+
amp_autocast: false
|
25 |
+
amp_dtype: null
|
26 |
+
disable_grad: true
|
27 |
+
eval_mode: true
|
28 |
+
benchmark:
|
29 |
+
name: inference
|
30 |
+
_target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
|
31 |
+
seed: 42
|
32 |
+
memory: true
|
33 |
+
warmup_runs: 10
|
34 |
+
benchmark_duration: 20
|
35 |
+
input_shapes:
|
36 |
+
batch_size: 2
|
37 |
+
sequence_length: 200
|
38 |
+
num_choices: 4
|
39 |
+
width: 64
|
40 |
+
height: 64
|
41 |
+
num_channels: 3
|
42 |
+
point_batch_size: 3
|
43 |
+
nb_points_per_image: 2
|
44 |
+
feature_size: 80
|
45 |
+
nb_max_frames: 3000
|
46 |
+
audio_sequence_length: 16000
|
47 |
+
new_tokens: 200
|
48 |
+
experiment_name: llama_1gpu_inference
|
49 |
+
model: togethercomputer/LLaMA-2-7B-32K
|
50 |
+
device: cuda
|
51 |
+
task: text-generation
|
52 |
+
hub_kwargs:
|
53 |
+
revision: main
|
54 |
+
cache_dir: null
|
55 |
+
force_download: false
|
56 |
+
local_files_only: false
|
57 |
+
environment:
|
58 |
+
optimum_version: 1.11.0
|
59 |
+
transformers_version: 4.32.0.dev0
|
60 |
+
accelerate_version: 0.21.0
|
61 |
+
diffusers_version: null
|
62 |
+
python_version: 3.10.12
|
63 |
+
system: Linux
|
64 |
+
cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
|
65 |
+
cpu_count: 96
|
66 |
+
cpu_ram_mb: 1204539.797504
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/3/main.log
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-10 21:29:43,918][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:29:43,920][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:29:44,130][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:29:44,130][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:29:44,130][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:29:44,449][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:29:44,484][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:29:44,485][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
|
9 |
+
[2023-08-10 21:29:44,710][main][ERROR] - Error during benchmarking: CUDA out of memory. Tried to allocate 64.00 MiB (GPU 0; 79.35 GiB total capacity; 18.09 GiB already allocated; 17.12 MiB free; 18.10 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
10 |
+
[2023-08-10 21:29:44,710][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/4/hydra_config.yaml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backend:
|
2 |
+
name: pytorch
|
3 |
+
version: 2.0.1+cu117
|
4 |
+
_target_: optimum_benchmark.backends.pytorch.PyTorchBackend
|
5 |
+
inter_op_num_threads: null
|
6 |
+
intra_op_num_threads: null
|
7 |
+
initial_isolation_check: true
|
8 |
+
continous_isolation_check: true
|
9 |
+
delete_cache: false
|
10 |
+
no_weights: false
|
11 |
+
torch_dtype: float16
|
12 |
+
device_map: null
|
13 |
+
load_in_8bit: false
|
14 |
+
load_in_4bit: false
|
15 |
+
bettertransformer: false
|
16 |
+
torch_compile: false
|
17 |
+
torch_compile_config:
|
18 |
+
fullgraph: false
|
19 |
+
dynamic: false
|
20 |
+
backend: inductor
|
21 |
+
mode: null
|
22 |
+
options: null
|
23 |
+
disable: false
|
24 |
+
amp_autocast: false
|
25 |
+
amp_dtype: null
|
26 |
+
disable_grad: true
|
27 |
+
eval_mode: true
|
28 |
+
benchmark:
|
29 |
+
name: inference
|
30 |
+
_target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
|
31 |
+
seed: 42
|
32 |
+
memory: true
|
33 |
+
warmup_runs: 10
|
34 |
+
benchmark_duration: 20
|
35 |
+
input_shapes:
|
36 |
+
batch_size: 4
|
37 |
+
sequence_length: 200
|
38 |
+
num_choices: 4
|
39 |
+
width: 64
|
40 |
+
height: 64
|
41 |
+
num_channels: 3
|
42 |
+
point_batch_size: 3
|
43 |
+
nb_points_per_image: 2
|
44 |
+
feature_size: 80
|
45 |
+
nb_max_frames: 3000
|
46 |
+
audio_sequence_length: 16000
|
47 |
+
new_tokens: 200
|
48 |
+
experiment_name: llama_1gpu_inference
|
49 |
+
model: togethercomputer/LLaMA-2-7B-32K
|
50 |
+
device: cuda
|
51 |
+
task: text-generation
|
52 |
+
hub_kwargs:
|
53 |
+
revision: main
|
54 |
+
cache_dir: null
|
55 |
+
force_download: false
|
56 |
+
local_files_only: false
|
57 |
+
environment:
|
58 |
+
optimum_version: 1.11.0
|
59 |
+
transformers_version: 4.32.0.dev0
|
60 |
+
accelerate_version: 0.21.0
|
61 |
+
diffusers_version: null
|
62 |
+
python_version: 3.10.12
|
63 |
+
system: Linux
|
64 |
+
cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
|
65 |
+
cpu_count: 96
|
66 |
+
cpu_ram_mb: 1204539.797504
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/4/inference_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
|
2 |
+
0,83182.354432,0.0396,101.0,6.84,117.0
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/4/main.log
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-10 21:29:45,091][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:29:45,092][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:29:45,287][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:29:45,287][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:29:45,288][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:29:45,601][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:29:45,636][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:29:45,637][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
|
9 |
+
[2023-08-10 21:29:56,097][pytorch][INFO] - + Turning on eval mode
|
10 |
+
[2023-08-10 21:29:56,099][inference][INFO] - Running inference benchmark
|
11 |
+
[2023-08-10 21:30:03,868][inference][INFO] - + Tracking forward pass peak memory
|
12 |
+
[2023-08-10 21:30:03,918][memory_tracker][INFO] - Peak memory usage: 83182.354432 MB
|
13 |
+
[2023-08-10 21:30:03,918][inference][INFO] - + Forward pass peak memory: 83182.354432 (MB)
|
14 |
+
[2023-08-10 21:30:03,919][inference][INFO] - + Warming up the forward pass
|
15 |
+
[2023-08-10 21:30:04,683][inference][INFO] - + Tracking forward pass latency and throughput
|
16 |
+
[2023-08-10 21:30:55,393][inference][INFO] - + Forward pass latency: 3.96e-02 (s)
|
17 |
+
[2023-08-10 21:30:55,395][inference][INFO] - + Forward pass throughput: 101.00 (samples/s)
|
18 |
+
[2023-08-10 21:30:55,395][inference][INFO] - + Warming up the generation pass
|
19 |
+
[2023-08-10 21:31:04,341][inference][INFO] - + Tracking generation latency and throughput
|
20 |
+
[2023-08-10 21:31:24,854][inference][INFO] - + Generation pass latency: 6.84e+00 (s)
|
21 |
+
[2023-08-10 21:31:24,856][inference][INFO] - + Generation pass throughput: 117.00 (tokens/s)
|
22 |
+
[2023-08-10 21:31:24,856][inference][INFO] - Saving inference results
|
23 |
+
[2023-08-10 21:31:24,862][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/5/hydra_config.yaml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backend:
|
2 |
+
name: pytorch
|
3 |
+
version: 2.0.1+cu117
|
4 |
+
_target_: optimum_benchmark.backends.pytorch.PyTorchBackend
|
5 |
+
inter_op_num_threads: null
|
6 |
+
intra_op_num_threads: null
|
7 |
+
initial_isolation_check: true
|
8 |
+
continous_isolation_check: true
|
9 |
+
delete_cache: false
|
10 |
+
no_weights: false
|
11 |
+
torch_dtype: float32
|
12 |
+
device_map: null
|
13 |
+
load_in_8bit: false
|
14 |
+
load_in_4bit: false
|
15 |
+
bettertransformer: false
|
16 |
+
torch_compile: false
|
17 |
+
torch_compile_config:
|
18 |
+
fullgraph: false
|
19 |
+
dynamic: false
|
20 |
+
backend: inductor
|
21 |
+
mode: null
|
22 |
+
options: null
|
23 |
+
disable: false
|
24 |
+
amp_autocast: false
|
25 |
+
amp_dtype: null
|
26 |
+
disable_grad: true
|
27 |
+
eval_mode: true
|
28 |
+
benchmark:
|
29 |
+
name: inference
|
30 |
+
_target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
|
31 |
+
seed: 42
|
32 |
+
memory: true
|
33 |
+
warmup_runs: 10
|
34 |
+
benchmark_duration: 20
|
35 |
+
input_shapes:
|
36 |
+
batch_size: 4
|
37 |
+
sequence_length: 200
|
38 |
+
num_choices: 4
|
39 |
+
width: 64
|
40 |
+
height: 64
|
41 |
+
num_channels: 3
|
42 |
+
point_batch_size: 3
|
43 |
+
nb_points_per_image: 2
|
44 |
+
feature_size: 80
|
45 |
+
nb_max_frames: 3000
|
46 |
+
audio_sequence_length: 16000
|
47 |
+
new_tokens: 200
|
48 |
+
experiment_name: llama_1gpu_inference
|
49 |
+
model: togethercomputer/LLaMA-2-7B-32K
|
50 |
+
device: cuda
|
51 |
+
task: text-generation
|
52 |
+
hub_kwargs:
|
53 |
+
revision: main
|
54 |
+
cache_dir: null
|
55 |
+
force_download: false
|
56 |
+
local_files_only: false
|
57 |
+
environment:
|
58 |
+
optimum_version: 1.11.0
|
59 |
+
transformers_version: 4.32.0.dev0
|
60 |
+
accelerate_version: 0.21.0
|
61 |
+
diffusers_version: null
|
62 |
+
python_version: 3.10.12
|
63 |
+
system: Linux
|
64 |
+
cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
|
65 |
+
cpu_count: 96
|
66 |
+
cpu_ram_mb: 1204539.797504
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/5/main.log
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-10 21:31:25,367][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:31:25,367][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:31:25,553][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:31:25,554][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:31:25,554][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:31:25,870][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:31:25,906][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:31:25,906][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
|
9 |
+
[2023-08-10 21:31:26,126][main][ERROR] - Error during benchmarking: CUDA out of memory. Tried to allocate 64.00 MiB (GPU 0; 79.35 GiB total capacity; 17.98 GiB already allocated; 7.12 MiB free; 17.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
10 |
+
[2023-08-10 21:31:26,126][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/6/hydra_config.yaml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backend:
|
2 |
+
name: pytorch
|
3 |
+
version: 2.0.1+cu117
|
4 |
+
_target_: optimum_benchmark.backends.pytorch.PyTorchBackend
|
5 |
+
inter_op_num_threads: null
|
6 |
+
intra_op_num_threads: null
|
7 |
+
initial_isolation_check: true
|
8 |
+
continous_isolation_check: true
|
9 |
+
delete_cache: false
|
10 |
+
no_weights: false
|
11 |
+
torch_dtype: float16
|
12 |
+
device_map: null
|
13 |
+
load_in_8bit: false
|
14 |
+
load_in_4bit: false
|
15 |
+
bettertransformer: false
|
16 |
+
torch_compile: false
|
17 |
+
torch_compile_config:
|
18 |
+
fullgraph: false
|
19 |
+
dynamic: false
|
20 |
+
backend: inductor
|
21 |
+
mode: null
|
22 |
+
options: null
|
23 |
+
disable: false
|
24 |
+
amp_autocast: false
|
25 |
+
amp_dtype: null
|
26 |
+
disable_grad: true
|
27 |
+
eval_mode: true
|
28 |
+
benchmark:
|
29 |
+
name: inference
|
30 |
+
_target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
|
31 |
+
seed: 42
|
32 |
+
memory: true
|
33 |
+
warmup_runs: 10
|
34 |
+
benchmark_duration: 20
|
35 |
+
input_shapes:
|
36 |
+
batch_size: 16
|
37 |
+
sequence_length: 200
|
38 |
+
num_choices: 4
|
39 |
+
width: 64
|
40 |
+
height: 64
|
41 |
+
num_channels: 3
|
42 |
+
point_batch_size: 3
|
43 |
+
nb_points_per_image: 2
|
44 |
+
feature_size: 80
|
45 |
+
nb_max_frames: 3000
|
46 |
+
audio_sequence_length: 16000
|
47 |
+
new_tokens: 200
|
48 |
+
experiment_name: llama_1gpu_inference
|
49 |
+
model: togethercomputer/LLaMA-2-7B-32K
|
50 |
+
device: cuda
|
51 |
+
task: text-generation
|
52 |
+
hub_kwargs:
|
53 |
+
revision: main
|
54 |
+
cache_dir: null
|
55 |
+
force_download: false
|
56 |
+
local_files_only: false
|
57 |
+
environment:
|
58 |
+
optimum_version: 1.11.0
|
59 |
+
transformers_version: 4.32.0.dev0
|
60 |
+
accelerate_version: 0.21.0
|
61 |
+
diffusers_version: null
|
62 |
+
python_version: 3.10.12
|
63 |
+
system: Linux
|
64 |
+
cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
|
65 |
+
cpu_count: 96
|
66 |
+
cpu_ram_mb: 1204539.797504
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/6/main.log
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-10 21:31:26,507][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:31:26,509][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:31:26,704][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:31:26,705][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:31:26,705][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:31:27,027][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:31:27,062][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:31:27,063][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
|
9 |
+
[2023-08-10 21:31:37,679][pytorch][INFO] - + Turning on eval mode
|
10 |
+
[2023-08-10 21:31:37,681][inference][INFO] - Running inference benchmark
|
11 |
+
[2023-08-10 21:31:45,516][inference][INFO] - + Tracking forward pass peak memory
|
12 |
+
[2023-08-10 21:31:45,833][main][ERROR] - Error during benchmarking: CUDA out of memory. Tried to allocate 392.00 MiB (GPU 0; 79.35 GiB total capacity; 17.11 GiB already allocated; 101.12 MiB free; 17.90 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
13 |
+
[2023-08-10 21:31:45,833][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/7/hydra_config.yaml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
backend:
|
2 |
+
name: pytorch
|
3 |
+
version: 2.0.1+cu117
|
4 |
+
_target_: optimum_benchmark.backends.pytorch.PyTorchBackend
|
5 |
+
inter_op_num_threads: null
|
6 |
+
intra_op_num_threads: null
|
7 |
+
initial_isolation_check: true
|
8 |
+
continous_isolation_check: true
|
9 |
+
delete_cache: false
|
10 |
+
no_weights: false
|
11 |
+
torch_dtype: float32
|
12 |
+
device_map: null
|
13 |
+
load_in_8bit: false
|
14 |
+
load_in_4bit: false
|
15 |
+
bettertransformer: false
|
16 |
+
torch_compile: false
|
17 |
+
torch_compile_config:
|
18 |
+
fullgraph: false
|
19 |
+
dynamic: false
|
20 |
+
backend: inductor
|
21 |
+
mode: null
|
22 |
+
options: null
|
23 |
+
disable: false
|
24 |
+
amp_autocast: false
|
25 |
+
amp_dtype: null
|
26 |
+
disable_grad: true
|
27 |
+
eval_mode: true
|
28 |
+
benchmark:
|
29 |
+
name: inference
|
30 |
+
_target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
|
31 |
+
seed: 42
|
32 |
+
memory: true
|
33 |
+
warmup_runs: 10
|
34 |
+
benchmark_duration: 20
|
35 |
+
input_shapes:
|
36 |
+
batch_size: 16
|
37 |
+
sequence_length: 200
|
38 |
+
num_choices: 4
|
39 |
+
width: 64
|
40 |
+
height: 64
|
41 |
+
num_channels: 3
|
42 |
+
point_batch_size: 3
|
43 |
+
nb_points_per_image: 2
|
44 |
+
feature_size: 80
|
45 |
+
nb_max_frames: 3000
|
46 |
+
audio_sequence_length: 16000
|
47 |
+
new_tokens: 200
|
48 |
+
experiment_name: llama_1gpu_inference
|
49 |
+
model: togethercomputer/LLaMA-2-7B-32K
|
50 |
+
device: cuda
|
51 |
+
task: text-generation
|
52 |
+
hub_kwargs:
|
53 |
+
revision: main
|
54 |
+
cache_dir: null
|
55 |
+
force_download: false
|
56 |
+
local_files_only: false
|
57 |
+
environment:
|
58 |
+
optimum_version: 1.11.0
|
59 |
+
transformers_version: 4.32.0.dev0
|
60 |
+
accelerate_version: 0.21.0
|
61 |
+
diffusers_version: null
|
62 |
+
python_version: 3.10.12
|
63 |
+
system: Linux
|
64 |
+
cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
|
65 |
+
cpu_count: 96
|
66 |
+
cpu_ram_mb: 1204539.797504
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/llama_1gpu_inference/7/main.log
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-08-10 21:31:46,234][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:31:46,235][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:31:46,542][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
|
4 |
+
[2023-08-10 21:31:46,543][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:31:46,543][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:31:46,863][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:31:46,898][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:31:46,899][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
|
9 |
+
[2023-08-10 21:31:47,007][main][ERROR] - Error during benchmarking: CUDA out of memory. Tried to allocate 500.00 MiB (GPU 0; 79.35 GiB total capacity; 17.11 GiB already allocated; 101.12 MiB free; 17.90 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
10 |
+
[2023-08-10 21:31:47,007][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_bert_inference/0/inference_results.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s)
|
2 |
-
0,
|
|
|
1 |
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s)
|
2 |
+
0,459.374592,0.00379,264.0
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_bert_inference/0/main.log
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
-
[2023-08-10 21:
|
2 |
-
[2023-08-10 21:
|
3 |
-
[2023-08-10 21:
|
4 |
-
[2023-08-10 21:
|
5 |
-
[2023-08-10 21:
|
6 |
-
[2023-08-10 21:
|
7 |
-
[2023-08-10 21:
|
8 |
-
[2023-08-10 21:
|
9 |
-
[2023-08-10 21:
|
10 |
-
[2023-08-10 21:
|
11 |
-
[2023-08-10 21:
|
12 |
-
[2023-08-10 21:
|
13 |
-
[2023-08-10 21:
|
14 |
-
[2023-08-10 21:
|
15 |
-
[2023-08-10 21:
|
16 |
-
[2023-08-10 21:
|
17 |
-
[2023-08-10 21:
|
18 |
-
[2023-08-10 21:
|
19 |
-
[2023-08-10 21:
|
20 |
-
[2023-08-10 21:
|
|
|
1 |
+
[2023-08-10 21:31:51,183][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:31:51,184][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:31:51,374][pytorch][INFO] - + Infered AutoModel class AutoModelForSequenceClassification for task text-classification and model_type bert
|
4 |
+
[2023-08-10 21:31:51,374][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:31:51,374][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:31:51,374][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:31:51,376][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:31:51,377][pytorch][INFO] - + Loading pretrained model weights in dtype: None on device: cpu
|
9 |
+
[2023-08-10 21:31:51,961][pytorch][INFO] - + Turning on eval mode
|
10 |
+
[2023-08-10 21:31:51,961][inference][INFO] - Running inference benchmark
|
11 |
+
[2023-08-10 21:31:52,083][dummy_input][INFO] - Generating dummy input for: ['input_ids', 'attention_mask', 'token_type_ids']
|
12 |
+
[2023-08-10 21:31:52,084][inference][INFO] - + Tracking forward pass peak memory
|
13 |
+
[2023-08-10 21:31:52,135][inference][INFO] - + Forward pass peak memory: 459.374592 (MB)
|
14 |
+
[2023-08-10 21:31:52,136][dummy_input][INFO] - Generating dummy input for: ['input_ids', 'attention_mask', 'token_type_ids']
|
15 |
+
[2023-08-10 21:31:52,138][inference][INFO] - + Warming up the forward pass
|
16 |
+
[2023-08-10 21:31:52,169][inference][INFO] - + Tracking forward pass latency and throughput
|
17 |
+
[2023-08-10 21:32:02,266][inference][INFO] - + Forward pass latency: 3.79e-03 (s)
|
18 |
+
[2023-08-10 21:32:02,269][inference][INFO] - + Forward pass throughput: 264.00 (samples/s)
|
19 |
+
[2023-08-10 21:32:02,269][inference][INFO] - Saving inference results
|
20 |
+
[2023-08-10 21:32:02,285][backend][INFO] - Cleaning backend
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_gpt2_inference/0/inference_results.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
|
2 |
-
0,
|
|
|
1 |
,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
|
2 |
+
0,463.53203199999996,0.0036,278.0,0.491,204.0
|
raw_results/2023-08-10_20:06:29_55db70c63de2c07b6ffe36f24c0e7df8f967e935/pytorch_gpt2_inference/0/main.log
CHANGED
@@ -1,22 +1,22 @@
|
|
1 |
-
[2023-08-10 21:
|
2 |
-
[2023-08-10 21:
|
3 |
-
[2023-08-10 21:
|
4 |
-
[2023-08-10 21:
|
5 |
-
[2023-08-10 21:
|
6 |
-
[2023-08-10 21:
|
7 |
-
[2023-08-10 21:
|
8 |
-
[2023-08-10 21:
|
9 |
-
[2023-08-10 21:
|
10 |
-
[2023-08-10 21:
|
11 |
-
[2023-08-10 21:
|
12 |
-
[2023-08-10 21:
|
13 |
-
[2023-08-10 21:
|
14 |
-
[2023-08-10 21:
|
15 |
-
[2023-08-10 21:
|
16 |
-
[2023-08-10 21:
|
17 |
-
[2023-08-10 21:
|
18 |
-
[2023-08-10 21:
|
19 |
-
[2023-08-10 21:
|
20 |
-
[2023-08-10 21:
|
21 |
-
[2023-08-10 21:
|
22 |
-
[2023-08-10 21:
|
|
|
1 |
+
[2023-08-10 21:32:06,170][benchmark][INFO] - Configuring inference benchmark
|
2 |
+
[2023-08-10 21:32:06,172][benchmark][INFO] - + Setting seed(42)
|
3 |
+
[2023-08-10 21:32:06,352][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type gpt2
|
4 |
+
[2023-08-10 21:32:06,352][backend][INFO] - Configuring pytorch backend
|
5 |
+
[2023-08-10 21:32:06,352][backend][INFO] - + Checking initial device isolation
|
6 |
+
[2023-08-10 21:32:06,352][backend][INFO] - + Checking contineous device isolation
|
7 |
+
[2023-08-10 21:32:06,354][pytorch][INFO] - + Disabling gradients
|
8 |
+
[2023-08-10 21:32:06,354][pytorch][INFO] - + Loading pretrained model weights in dtype: None on device: cpu
|
9 |
+
[2023-08-10 21:32:06,993][pytorch][INFO] - + Turning on eval mode
|
10 |
+
[2023-08-10 21:32:06,994][inference][INFO] - Running inference benchmark
|
11 |
+
[2023-08-10 21:32:07,195][inference][INFO] - + Tracking forward pass peak memory
|
12 |
+
[2023-08-10 21:32:07,245][inference][INFO] - + Forward pass peak memory: 463.53203199999996 (MB)
|
13 |
+
[2023-08-10 21:32:07,246][inference][INFO] - + Warming up the forward pass
|
14 |
+
[2023-08-10 21:32:07,280][inference][INFO] - + Tracking forward pass latency and throughput
|
15 |
+
[2023-08-10 21:32:17,381][inference][INFO] - + Forward pass latency: 3.60e-03 (s)
|
16 |
+
[2023-08-10 21:32:17,384][inference][INFO] - + Forward pass throughput: 278.00 (samples/s)
|
17 |
+
[2023-08-10 21:32:17,385][inference][INFO] - + Warming up the generation pass
|
18 |
+
[2023-08-10 21:32:17,892][inference][INFO] - + Tracking generation latency and throughput
|
19 |
+
[2023-08-10 21:32:28,205][inference][INFO] - + Generation pass latency: 4.91e-01 (s)
|
20 |
+
[2023-08-10 21:32:28,206][inference][INFO] - + Generation pass throughput: 204.00 (tokens/s)
|
21 |
+
[2023-08-10 21:32:28,206][inference][INFO] - Saving inference results
|
22 |
+
[2023-08-10 21:32:28,221][backend][INFO] - Cleaning backend
|