fxmarty commited on
Commit
5727bea
·
1 Parent(s): bcb4aea

Adding regression benchmark for the transformers SHA 41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f

Browse files
Files changed (30) hide show
  1. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/0/hydra_config.yaml +66 -0
  2. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/0/inference_results.csv +2 -0
  3. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/0/main.log +23 -0
  4. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/1/hydra_config.yaml +66 -0
  5. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/1/inference_results.csv +2 -0
  6. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/1/main.log +23 -0
  7. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/2/hydra_config.yaml +66 -0
  8. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/2/inference_results.csv +2 -0
  9. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/2/main.log +23 -0
  10. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/3/hydra_config.yaml +66 -0
  11. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/3/inference_results.csv +2 -0
  12. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/3/main.log +23 -0
  13. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/4/hydra_config.yaml +66 -0
  14. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/4/inference_results.csv +2 -0
  15. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/4/main.log +23 -0
  16. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/5/hydra_config.yaml +66 -0
  17. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/5/inference_results.csv +2 -0
  18. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/5/main.log +23 -0
  19. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/6/hydra_config.yaml +66 -0
  20. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/6/inference_results.csv +2 -0
  21. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/6/main.log +23 -0
  22. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/7/hydra_config.yaml +66 -0
  23. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/7/inference_results.csv +2 -0
  24. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/7/main.log +23 -0
  25. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_bert_inference/0/hydra_config.yaml +66 -0
  26. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_bert_inference/0/inference_results.csv +2 -0
  27. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_bert_inference/0/main.log +20 -0
  28. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_gpt2_inference/0/hydra_config.yaml +66 -0
  29. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_gpt2_inference/0/inference_results.csv +2 -0
  30. raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_gpt2_inference/0/main.log +22 -0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/0/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float16
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 1
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/0/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,16195.125247999998,0.0328,30.5,6.49,30.8
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/0/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:07:20,622][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:07:20,623][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:07:20,908][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:07:20,908][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:07:20,908][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:07:21,161][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:07:21,175][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:07:21,176][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
9
+ [2023-08-11 11:08:27,069][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:08:27,071][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:08:35,134][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:08:36,418][memory_tracker][INFO] - Peak memory usage: 16195.125247999998 MB
13
+ [2023-08-11 11:08:36,418][inference][INFO] - + Forward pass peak memory: 16195.125247999998 (MB)
14
+ [2023-08-11 11:08:36,419][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:08:36,745][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:08:57,022][inference][INFO] - + Forward pass latency: 3.28e-02 (s)
17
+ [2023-08-11 11:08:57,023][inference][INFO] - + Forward pass throughput: 30.50 (samples/s)
18
+ [2023-08-11 11:08:57,023][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:09:04,430][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:09:30,383][inference][INFO] - + Generation pass latency: 6.49e+00 (s)
21
+ [2023-08-11 11:09:30,387][inference][INFO] - + Generation pass throughput: 30.80 (tokens/s)
22
+ [2023-08-11 11:09:30,387][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:09:30,396][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/1/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float32
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 1
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/1/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,52225.245184,0.0655,15.3,5.72,35.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/1/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:09:30,898][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:09:30,898][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:09:31,079][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:09:31,079][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:09:31,079][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:09:31,310][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:09:31,345][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:09:31,346][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
9
+ [2023-08-11 11:09:48,320][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:09:48,321][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:09:56,313][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:09:56,390][memory_tracker][INFO] - Peak memory usage: 52225.245184 MB
13
+ [2023-08-11 11:09:56,390][inference][INFO] - + Forward pass peak memory: 52225.245184 (MB)
14
+ [2023-08-11 11:09:56,390][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:09:58,507][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:11:04,810][inference][INFO] - + Forward pass latency: 6.55e-02 (s)
17
+ [2023-08-11 11:11:04,811][inference][INFO] - + Forward pass throughput: 15.30 (samples/s)
18
+ [2023-08-11 11:11:04,812][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:11:10,577][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:11:33,455][inference][INFO] - + Generation pass latency: 5.72e+00 (s)
21
+ [2023-08-11 11:11:33,457][inference][INFO] - + Generation pass throughput: 35.00 (tokens/s)
22
+ [2023-08-11 11:11:33,457][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:11:33,464][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/2/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float16
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 2
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/2/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,46114.144256,0.0315,63.5,6.18,64.7
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/2/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:11:33,947][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:11:33,948][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:11:34,136][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:11:34,137][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:11:34,137][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:11:34,362][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:11:34,395][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:11:34,396][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
9
+ [2023-08-11 11:11:45,029][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:11:45,030][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:11:52,988][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:11:53,027][memory_tracker][INFO] - Peak memory usage: 46114.144256 MB
13
+ [2023-08-11 11:11:53,028][inference][INFO] - + Forward pass peak memory: 46114.144256 (MB)
14
+ [2023-08-11 11:11:53,028][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:11:53,512][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:12:24,017][inference][INFO] - + Forward pass latency: 3.15e-02 (s)
17
+ [2023-08-11 11:12:24,018][inference][INFO] - + Forward pass throughput: 63.50 (samples/s)
18
+ [2023-08-11 11:12:24,019][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:12:31,237][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:12:55,978][inference][INFO] - + Generation pass latency: 6.18e+00 (s)
21
+ [2023-08-11 11:12:55,981][inference][INFO] - + Generation pass throughput: 64.70 (tokens/s)
22
+ [2023-08-11 11:12:55,981][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:12:55,987][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/3/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float32
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 2
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/3/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,60511.092736,0.109,18.3,7.04,56.8
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/3/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:12:56,461][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:12:56,462][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:12:56,653][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:12:56,653][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:12:56,653][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:12:56,874][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:12:56,906][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:12:56,907][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
9
+ [2023-08-11 11:13:13,487][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:13:13,489][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:13:21,326][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:13:21,451][memory_tracker][INFO] - Peak memory usage: 60511.092736 MB
13
+ [2023-08-11 11:13:21,451][inference][INFO] - + Forward pass peak memory: 60511.092736 (MB)
14
+ [2023-08-11 11:13:21,451][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:13:25,276][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:14:35,896][inference][INFO] - + Forward pass latency: 1.09e-01 (s)
17
+ [2023-08-11 11:14:35,897][inference][INFO] - + Forward pass throughput: 18.30 (samples/s)
18
+ [2023-08-11 11:14:35,898][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:14:42,951][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:15:04,060][inference][INFO] - + Generation pass latency: 7.04e+00 (s)
21
+ [2023-08-11 11:15:04,063][inference][INFO] - + Generation pass throughput: 56.80 (tokens/s)
22
+ [2023-08-11 11:15:04,063][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:15:04,070][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/4/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float16
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 4
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/4/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,46732.804096,0.032,125.0,6.26,128.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/4/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:15:04,574][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:15:04,575][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:15:04,764][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:15:04,764][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:15:04,764][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:15:04,985][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:15:05,017][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:15:05,018][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
9
+ [2023-08-11 11:15:15,635][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:15:15,637][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:15:23,443][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:15:23,491][memory_tracker][INFO] - Peak memory usage: 46732.804096 MB
13
+ [2023-08-11 11:15:23,491][inference][INFO] - + Forward pass peak memory: 46732.804096 (MB)
14
+ [2023-08-11 11:15:23,491][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:15:24,237][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:16:11,292][inference][INFO] - + Forward pass latency: 3.20e-02 (s)
17
+ [2023-08-11 11:16:11,294][inference][INFO] - + Forward pass throughput: 125.00 (samples/s)
18
+ [2023-08-11 11:16:11,294][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:16:18,531][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:16:43,569][inference][INFO] - + Generation pass latency: 6.26e+00 (s)
21
+ [2023-08-11 11:16:43,572][inference][INFO] - + Generation pass throughput: 128.00 (tokens/s)
22
+ [2023-08-11 11:16:43,572][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:16:43,588][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/5/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float32
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 4
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/5/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,61213.638655999996,0.187,21.4,7.67,104.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/5/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:16:44,166][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:16:44,167][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:16:44,362][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:16:44,362][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:16:44,362][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:16:44,583][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:16:44,616][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:16:44,617][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
9
+ [2023-08-11 11:17:01,200][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:17:01,201][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:17:08,942][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:17:09,150][memory_tracker][INFO] - Peak memory usage: 61213.638655999996 MB
13
+ [2023-08-11 11:17:09,150][inference][INFO] - + Forward pass peak memory: 61213.638655999996 (MB)
14
+ [2023-08-11 11:17:09,154][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:17:16,083][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:18:31,399][inference][INFO] - + Forward pass latency: 1.87e-01 (s)
17
+ [2023-08-11 11:18:31,401][inference][INFO] - + Forward pass throughput: 21.40 (samples/s)
18
+ [2023-08-11 11:18:31,402][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:18:39,157][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:19:02,161][inference][INFO] - + Generation pass latency: 7.67e+00 (s)
21
+ [2023-08-11 11:19:02,163][inference][INFO] - + Generation pass throughput: 104.00 (tokens/s)
22
+ [2023-08-11 11:19:02,163][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:19:02,187][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/6/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float16
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 16
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/6/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,49230.512127999995,0.0974,164.0,7.21,444.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/6/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:19:02,801][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:19:02,802][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:19:03,173][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:19:03,174][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:19:03,174][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:19:03,399][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:19:03,431][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:19:03,432][pytorch][INFO] - + Loading pretrained model weights in dtype: float16 on device: cuda
9
+ [2023-08-11 11:19:14,046][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:19:14,048][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:19:21,757][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:19:21,867][memory_tracker][INFO] - Peak memory usage: 49230.512127999995 MB
13
+ [2023-08-11 11:19:21,867][inference][INFO] - + Forward pass peak memory: 49230.512127999995 (MB)
14
+ [2023-08-11 11:19:21,868][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:19:24,473][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:20:18,593][inference][INFO] - + Forward pass latency: 9.74e-02 (s)
17
+ [2023-08-11 11:20:18,593][inference][INFO] - + Forward pass throughput: 164.00 (samples/s)
18
+ [2023-08-11 11:20:18,594][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:20:25,647][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:20:47,285][inference][INFO] - + Generation pass latency: 7.21e+00 (s)
21
+ [2023-08-11 11:20:47,289][inference][INFO] - + Generation pass throughput: 444.00 (tokens/s)
22
+ [2023-08-11 11:20:47,289][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:20:47,294][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/7/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: float32
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 20
35
+ input_shapes:
36
+ batch_size: 16
37
+ sequence_length: 200
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 200
48
+ experiment_name: llama_1gpu_inference
49
+ model: togethercomputer/LLaMA-2-7B-32K
50
+ device: cuda
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/7/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,65556.840448,0.685,23.4,15.3,209.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/llama_1gpu_inference/7/main.log ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:20:47,963][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:20:47,964][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:20:48,155][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type llama
4
+ [2023-08-11 11:20:48,156][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:20:48,156][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:20:48,379][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:20:48,416][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:20:48,417][pytorch][INFO] - + Loading pretrained model weights in dtype: float32 on device: cuda
9
+ [2023-08-11 11:21:05,840][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:21:05,842][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:21:13,793][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:21:14,497][memory_tracker][INFO] - Peak memory usage: 65556.840448 MB
13
+ [2023-08-11 11:21:14,498][inference][INFO] - + Forward pass peak memory: 65556.840448 (MB)
14
+ [2023-08-11 11:21:14,514][inference][INFO] - + Warming up the forward pass
15
+ [2023-08-11 11:21:39,905][inference][INFO] - + Tracking forward pass latency and throughput
16
+ [2023-08-11 11:22:57,998][inference][INFO] - + Forward pass latency: 6.85e-01 (s)
17
+ [2023-08-11 11:22:58,000][inference][INFO] - + Forward pass throughput: 23.40 (samples/s)
18
+ [2023-08-11 11:22:58,000][inference][INFO] - + Warming up the generation pass
19
+ [2023-08-11 11:23:11,732][inference][INFO] - + Tracking generation latency and throughput
20
+ [2023-08-11 11:23:42,342][inference][INFO] - + Generation pass latency: 1.53e+01 (s)
21
+ [2023-08-11 11:23:42,346][inference][INFO] - + Generation pass throughput: 209.00 (tokens/s)
22
+ [2023-08-11 11:23:42,346][inference][INFO] - Saving inference results
23
+ [2023-08-11 11:23:42,353][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_bert_inference/0/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: null
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 10
35
+ input_shapes:
36
+ batch_size: 1
37
+ sequence_length: 16
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 100
48
+ experiment_name: pytorch_bert_inference
49
+ model: hf-internal-testing/tiny-random-bert
50
+ device: cpu
51
+ task: text-classification
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_bert_inference/0/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s)
2
+ 0,460.079104,0.00352,284.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_bert_inference/0/main.log ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:23:46,958][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:23:46,959][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:23:47,143][pytorch][INFO] - + Infered AutoModel class AutoModelForSequenceClassification for task text-classification and model_type bert
4
+ [2023-08-11 11:23:47,143][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:23:47,143][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:23:47,143][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:23:47,145][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:23:47,145][pytorch][INFO] - + Loading pretrained model weights in dtype: None on device: cpu
9
+ [2023-08-11 11:23:47,741][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:23:47,742][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:23:47,868][dummy_input][INFO] - Generating dummy input for: ['input_ids', 'attention_mask', 'token_type_ids']
12
+ [2023-08-11 11:23:47,870][inference][INFO] - + Tracking forward pass peak memory
13
+ [2023-08-11 11:23:47,919][inference][INFO] - + Forward pass peak memory: 460.079104 (MB)
14
+ [2023-08-11 11:23:47,920][dummy_input][INFO] - Generating dummy input for: ['input_ids', 'attention_mask', 'token_type_ids']
15
+ [2023-08-11 11:23:47,922][inference][INFO] - + Warming up the forward pass
16
+ [2023-08-11 11:23:47,958][inference][INFO] - + Tracking forward pass latency and throughput
17
+ [2023-08-11 11:23:58,072][inference][INFO] - + Forward pass latency: 3.52e-03 (s)
18
+ [2023-08-11 11:23:58,075][inference][INFO] - + Forward pass throughput: 284.00 (samples/s)
19
+ [2023-08-11 11:23:58,075][inference][INFO] - Saving inference results
20
+ [2023-08-11 11:23:58,090][backend][INFO] - Cleaning backend
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_gpt2_inference/0/hydra_config.yaml ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ backend:
2
+ name: pytorch
3
+ version: 2.0.1+cu117
4
+ _target_: optimum_benchmark.backends.pytorch.PyTorchBackend
5
+ inter_op_num_threads: null
6
+ intra_op_num_threads: null
7
+ initial_isolation_check: true
8
+ continous_isolation_check: true
9
+ delete_cache: false
10
+ no_weights: false
11
+ torch_dtype: null
12
+ device_map: null
13
+ load_in_8bit: false
14
+ load_in_4bit: false
15
+ bettertransformer: false
16
+ torch_compile: false
17
+ torch_compile_config:
18
+ fullgraph: false
19
+ dynamic: false
20
+ backend: inductor
21
+ mode: null
22
+ options: null
23
+ disable: false
24
+ amp_autocast: false
25
+ amp_dtype: null
26
+ disable_grad: true
27
+ eval_mode: true
28
+ benchmark:
29
+ name: inference
30
+ _target_: optimum_benchmark.benchmarks.inference.InferenceBenchmark
31
+ seed: 42
32
+ memory: true
33
+ warmup_runs: 10
34
+ benchmark_duration: 10
35
+ input_shapes:
36
+ batch_size: 1
37
+ sequence_length: 16
38
+ num_choices: 4
39
+ width: 64
40
+ height: 64
41
+ num_channels: 3
42
+ point_batch_size: 3
43
+ nb_points_per_image: 2
44
+ feature_size: 80
45
+ nb_max_frames: 3000
46
+ audio_sequence_length: 16000
47
+ new_tokens: 100
48
+ experiment_name: pytorch_gpt2_inference
49
+ model: hf-internal-testing/tiny-random-gpt2
50
+ device: cpu
51
+ task: text-generation
52
+ hub_kwargs:
53
+ revision: main
54
+ cache_dir: null
55
+ force_download: false
56
+ local_files_only: false
57
+ environment:
58
+ optimum_version: 1.11.0
59
+ transformers_version: 4.32.0.dev0
60
+ accelerate_version: 0.21.0
61
+ diffusers_version: null
62
+ python_version: 3.10.12
63
+ system: Linux
64
+ cpu: ' Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz'
65
+ cpu_count: 96
66
+ cpu_ram_mb: 1204539.797504
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_gpt2_inference/0/inference_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,forward.peak_memory(MB),forward.latency(s),forward.throughput(samples/s),generate.latency(s),generate.throughput(tokens/s)
2
+ 0,463.736832,0.00398,251.0,0.505,198.0
raw_results/2023-08-11_10:30:18_41d56ea6dd972a6a7e12c2a2228e491a5ec18a5f/pytorch_gpt2_inference/0/main.log ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-08-11 11:24:01,957][benchmark][INFO] - Configuring inference benchmark
2
+ [2023-08-11 11:24:01,958][benchmark][INFO] - + Setting seed(42)
3
+ [2023-08-11 11:24:02,141][pytorch][INFO] - + Infered AutoModel class AutoModelForCausalLM for task text-generation and model_type gpt2
4
+ [2023-08-11 11:24:02,141][backend][INFO] - Configuring pytorch backend
5
+ [2023-08-11 11:24:02,141][backend][INFO] - + Checking initial device isolation
6
+ [2023-08-11 11:24:02,141][backend][INFO] - + Checking contineous device isolation
7
+ [2023-08-11 11:24:02,142][pytorch][INFO] - + Disabling gradients
8
+ [2023-08-11 11:24:02,143][pytorch][INFO] - + Loading pretrained model weights in dtype: None on device: cpu
9
+ [2023-08-11 11:24:02,774][pytorch][INFO] - + Turning on eval mode
10
+ [2023-08-11 11:24:02,774][inference][INFO] - Running inference benchmark
11
+ [2023-08-11 11:24:02,971][inference][INFO] - + Tracking forward pass peak memory
12
+ [2023-08-11 11:24:03,014][inference][INFO] - + Forward pass peak memory: 463.736832 (MB)
13
+ [2023-08-11 11:24:03,016][inference][INFO] - + Warming up the forward pass
14
+ [2023-08-11 11:24:03,051][inference][INFO] - + Tracking forward pass latency and throughput
15
+ [2023-08-11 11:24:13,146][inference][INFO] - + Forward pass latency: 3.98e-03 (s)
16
+ [2023-08-11 11:24:13,148][inference][INFO] - + Forward pass throughput: 251.00 (samples/s)
17
+ [2023-08-11 11:24:13,149][inference][INFO] - + Warming up the generation pass
18
+ [2023-08-11 11:24:13,723][inference][INFO] - + Tracking generation latency and throughput
19
+ [2023-08-11 11:24:23,819][inference][INFO] - + Generation pass latency: 5.05e-01 (s)
20
+ [2023-08-11 11:24:23,820][inference][INFO] - + Generation pass throughput: 198.00 (tokens/s)
21
+ [2023-08-11 11:24:23,820][inference][INFO] - Saving inference results
22
+ [2023-08-11 11:24:23,834][backend][INFO] - Cleaning backend