Datasets:
File size: 4,773 Bytes
0713411 3587674 5b43763 3587674 0713411 d621d88 5b43763 d621d88 5b43763 d621d88 0713411 d621d88 3587674 5b43763 3587674 d621d88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import json
import datasets
_DESCRIPTION = """Translating Python Programming Puzzles (TP3) is a code translation benchmark created from the verification functions from the questions in the original Python Programming Puzzles dataset (Schuster et al., 2021) to create this dataset. These functions are hand-crafted by the authors and are used to check if an answer satisfies the constraints of the puzzle. These puzzles range in difficulty from basic character checking to competitive programming problems. Thus, each verification function is written by an expert python programmer and requires a significant understanding of programming to translate. In total, there are 370 python functions to translate."""
_URL = "https://raw.githubusercontent.com/google-research/babelcode/main/data/hf_datasets/tp3.jsonl"
_LANGUAGES = {
"C++",
"CSharp",
"Dart",
"Go",
"Haskell",
"Java",
"Javascript",
"Julia",
"Kotlin",
"Lua",
"PHP",
"R",
"Rust",
"Scala",
"TypeScript",
}
_CITATION = """\
@article{orlanski2023measuring,
title={Measuring The Impact Of Programming Language Distribution},
author={Orlanski, Gabriel and Xiao, Kefan and Garcia, Xavier and Hui, Jeffrey and Howland, Joshua and Malmaud, Jonathan and Austin, Jacob and Singh, Rishah and Catasta, Michele},
journal={arXiv preprint arXiv:2302.01973},
year={2023}
}
@inproceedings{
schuster2021programming,
title={Programming Puzzles},
author={Tal Schuster and Ashwin Kalyan and Alex Polozov and Adam Tauman Kalai},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
year={2021},
url={https://arxiv.org/abs/2106.05784}
}"""
_HOMEPAGE = "https://github.com/google-research/babelcode"
_LICENSE = "CC-BY-4.0"
_VERSION = "1.0.0"
_QUESTION_INFO_KEYS = {
"entry_fn_name", "entry_cls_name", "test_code", "test_list",
"test_case_ids", "commands", "timeouts", "extension"
}
class TP3(datasets.GeneratorBasedBuilder):
"""TP3"""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="all",
version=datasets.Version(_VERSION),
description=_DESCRIPTION,
),
] + [
datasets.BuilderConfig(
name=lang,
version=datasets.Version(_VERSION),
description=_DESCRIPTION + f" Examples are only in {lang}.",
) for lang in _LANGUAGES
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
list_keys = ['timeouts', 'commands', 'test_case_ids']
question_info_type = {
k: datasets.Value(dtype="string")
for k in _QUESTION_INFO_KEYS
if k not in list_keys
}
question_info_type['test_case_ids'] = datasets.Sequence(
datasets.Value('string'))
question_info_type['commands'] = datasets.Sequence(
datasets.Sequence(datasets.Value('string')))
question_info_type['timeouts'] = datasets.Sequence(datasets.Value('int32'))
features = datasets.Features({
"qid": datasets.Value("string"),
"title": datasets.Value("string"),
"language": datasets.Value("string"),
"text": datasets.Value("string"),
"signature_with_docstring": datasets.Value("string"),
"signature": datasets.Value("string"),
"arguments": datasets.Sequence(datasets.Value("string")),
"source": datasets.Value("string"),
"question_info": datasets.Features(question_info_type)
})
description = _DESCRIPTION
if self.config.name != 'all':
description = _DESCRIPTION + f" Examples are only in {self.config.name}."
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_dir},
),
]
def _generate_examples(self, filepath):
""" Yields the examples from the dataset"""
with open(filepath, encoding='utf-8') as file:
id_ = 0
for l in file:
if not l.strip():
continue
d = json.loads(l)
if self.config.name != 'all' and d['language'] != self.config.name:
continue
question_info = {}
for k in _QUESTION_INFO_KEYS:
question_info[k] = d.pop(k)
question_info['test_list'] = json.dumps(question_info['test_list'])
d['question_info'] = question_info
d['source'] = d.pop('solution_python')
yield id_, d
id_ += 1
|