Federico Galatolo commited on
Commit
f451243
·
1 Parent(s): 68cf0bf

Initial dataset file

Browse files
Files changed (1) hide show
  1. TeTIm-Eval.py +120 -0
TeTIm-Eval.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import datasets
4
+
5
+ logger = datasets.logging.get_logger(__name__)
6
+
7
+ _CITATION = """\
8
+ TODO
9
+ """
10
+
11
+ _HOMEPAGE = ""
12
+
13
+ _DESCRIPTION = """\
14
+ Text To Image Evaluation (TeTIm-Eval)
15
+ """
16
+
17
+ _URLS = {
18
+ "mini": "https://huggingface.co/datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval-Mini.zip"
19
+ }
20
+
21
+ _CATEGORIES = [
22
+ "digital_art",
23
+ "sketch_art",
24
+ "traditional_art",
25
+ "baroque_painting",
26
+ "high_renaissance_painting",
27
+ "neoclassical_painting",
28
+ "animal_photo",
29
+ "food_photo",
30
+ "landscape_photo",
31
+ "person_photo"
32
+ ]
33
+
34
+
35
+ _FOLDERS = {
36
+ "mini": {
37
+ _CATEGORIES[0]: "TeTIm-Eval-Mini/sampled_art_digital",
38
+ _CATEGORIES[1]: "TeTIm-Eval-Mini/sampled_art_sketch",
39
+ _CATEGORIES[2]: "TeTIm-Eval-Mini/sampled_art_traditional",
40
+ _CATEGORIES[3]: "TeTIm-Eval-Mini/sampled_painting_baroque",
41
+ _CATEGORIES[4]: "TeTIm-Eval-Mini/sampled_painting_high-renaissance",
42
+ _CATEGORIES[5]: "TeTIm-Eval-Mini/sampled_painting_neoclassicism",
43
+ _CATEGORIES[6]: "TeTIm-Eval-Mini/sampled_photo_animal",
44
+ _CATEGORIES[7]: "TeTIm-Eval-Mini/sampled_photo_food",
45
+ _CATEGORIES[8]: "TeTIm-Eval-Mini/sampled_photo_landscape",
46
+ _CATEGORIES[9]: "TeTIm-Eval-Mini/sampled_photo_person",
47
+ }
48
+ }
49
+
50
+ class TeTImConfig(datasets.BuilderConfig):
51
+ def __init__(self, **kwargs):
52
+ super(TeTImConfig, self).__init__(**kwargs)
53
+
54
+
55
+ class TeTIm(datasets.GeneratorBasedBuilder):
56
+ BUILDER_CONFIGS = [
57
+ TeTImConfig(
58
+ name="mini",
59
+ version=datasets.Version("1.0.0", ""),
60
+ description="A random sampling of 300 images (30 for category) from the TeTIm dataset, manually annotated by the same person",
61
+ ),
62
+ ]
63
+
64
+ def _info(self):
65
+ return datasets.DatasetInfo(
66
+ description=_DESCRIPTION,
67
+ features=datasets.Features(
68
+ {
69
+ "id": datasets.Value("int32"),
70
+ "image": datasets.Value("string"),
71
+ "caption": datasets.Value("string"),
72
+ "category": datasets.Value("string"),
73
+ }
74
+ ),
75
+ supervised_keys=None,
76
+ homepage=_HOMEPAGE,
77
+ citation=_CITATION,
78
+ )
79
+
80
+ def _split_generators(self, dl_manager):
81
+ target = os.environ.get(f"TETIMEVAL_{self.config.name}", _URLS[self.config.name])
82
+ downloaded_files = dl_manager.download_and_extract(target)
83
+
84
+ return [
85
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"path": downloaded_files}),
86
+ ]
87
+
88
+
89
+ def _generate_examples(self, path):
90
+ id = 0
91
+ for category, folder in _FOLDERS[self.config.name].items():
92
+ images_folder = os.path.join(path, folder, "images")
93
+ annotations_folder = os.path.join(path, folder, "annotations")
94
+
95
+ for image in os.listdir(images_folder):
96
+ image_id = int(image.split(".")[0])
97
+ annotation_file = os.path.join(annotations_folder, f"{image_id}.json")
98
+ with open(annotation_file) as f:
99
+ annotation = json.load(f)
100
+
101
+ yield id, {
102
+ "id": id,
103
+ "image": os.path.join(images_folder, image),
104
+ "caption": annotation["caption"],
105
+ "category": category
106
+ }
107
+ id += 1
108
+
109
+
110
+ if __name__ == "__main__":
111
+ from datasets import load_dataset
112
+ dataset_config = {
113
+ "LOADING_SCRIPT_FILES": os.path.join(os.getcwd(), "TeTIm-Eval.py"),
114
+ "CONFIG_NAME": "mini",
115
+ }
116
+ ds = load_dataset(
117
+ dataset_config["LOADING_SCRIPT_FILES"],
118
+ dataset_config["CONFIG_NAME"],
119
+ )
120
+ print(ds)