import json import os import datasets # Define the different configurations (languages) _LANGUAGES = ["java", "kt", "py"] class BugLocalizationConfig(datasets.BuilderConfig): """BuilderConfig for BugLocalization dataset""" def __init__(self, **kwargs): """BuilderConfig for BugLocalization. Args: **kwargs: keyword arguments forwarded to super. """ super(BugLocalizationConfig, self).__init__(**kwargs) class BugLocalization(datasets.GeneratorBasedBuilder): """BugLocalization dataset""" BUILDER_CONFIGS = [ BugLocalizationConfig(name=lang, description=f"BugLocalization dataset for {lang}.") for lang in _LANGUAGES ] def _info(self): sample_file = os.path.join(os.path.abspath(os.path.dirname(__file__)), f"{self.config.name}.jsonl") # Infer schema from a sample schema = self._infer_schema(sample_file) return datasets.DatasetInfo( features=datasets.Features(schema), ) def _infer_schema(self, sample_file, num_samples=100): """Infer schema from a sample of JSONL data.""" schema = {} with open(sample_file, encoding="utf-8") as f: for line in f: data = json.loads(line) for key, value in data.items(): if key not in schema: schema[key] = datasets.Value('string') # Assuming all values are strings, tweak as needed return schema def _split_generators(self, dl_manager): # Path where the dataset files are located data_dir = os.path.abspath(os.path.dirname(__file__)) # Define path to each of the JSONL files paths = { "python": os.path.join(data_dir, "python.jsonl"), "java": os.path.join(data_dir, "java.jsonl"), "kt": os.path.join(data_dir, "kotlin.jsonl"), } # Return the split with the appropriate file path return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": paths[self.config.name] }, ) ] def _generate_examples(self, filepath): """Generate examples from a JSONL file.""" with open(filepath, encoding="utf-8") as f: for id_, line in enumerate(f): data = json.loads(line) yield id_, data