deleted script
Browse files- dataviewer-test.py +0 -129
dataviewer-test.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Lint as: python3
|
3 |
-
"""test set"""
|
4 |
-
|
5 |
-
|
6 |
-
import csv
|
7 |
-
import os
|
8 |
-
import json
|
9 |
-
|
10 |
-
import datasets
|
11 |
-
from datasets.utils.py_utils import size_str
|
12 |
-
from tqdm import tqdm
|
13 |
-
from datasets.tasks import AutomaticSpeechRecognition
|
14 |
-
|
15 |
-
|
16 |
-
_CITATION = """\
|
17 |
-
@inproceedings{panayotov2015librispeech,
|
18 |
-
title={Librispeech: an ASR corpus based on public domain audio books},
|
19 |
-
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
|
20 |
-
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
|
21 |
-
pages={5206--5210},
|
22 |
-
year={2015},
|
23 |
-
organization={IEEE}
|
24 |
-
}
|
25 |
-
"""
|
26 |
-
|
27 |
-
_DESCRIPTION = """\
|
28 |
-
Lorem ipsum
|
29 |
-
"""
|
30 |
-
|
31 |
-
|
32 |
-
_BASE_URL = "https://huggingface.co/datasets/polinaeterna/test-user"
|
33 |
-
_DATA_URL = "data/test.zip"
|
34 |
-
_PROMPTS_URLS = {"test": "transcript/test.tsv"}
|
35 |
-
|
36 |
-
logger = datasets.logging.get_logger(__name__)
|
37 |
-
|
38 |
-
class TestConfig(datasets.BuilderConfig):
|
39 |
-
"""Lorem impsum."""
|
40 |
-
|
41 |
-
def __init__(self, name, **kwargs):
|
42 |
-
# self.language = kwargs.pop("language", None)
|
43 |
-
# self.release_date = kwargs.pop("release_date", None)
|
44 |
-
# self.num_clips = kwargs.pop("num_clips", None)
|
45 |
-
# self.num_speakers = kwargs.pop("num_speakers", None)
|
46 |
-
# self.validated_hr = kwargs.pop("validated_hr", None)
|
47 |
-
# self.total_hr = kwargs.pop("total_hr", None)
|
48 |
-
# self.size_bytes = kwargs.pop("size_bytes", None)
|
49 |
-
# self.size_human = size_str(self.size_bytes)
|
50 |
-
description = (
|
51 |
-
f"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor "
|
52 |
-
f"incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud "
|
53 |
-
f"exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure "
|
54 |
-
f"dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. "
|
55 |
-
f"Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt "
|
56 |
-
f"mollit anim id est laborum."
|
57 |
-
)
|
58 |
-
super(TestConfig, self).__init__(
|
59 |
-
name=name,
|
60 |
-
description=description,
|
61 |
-
**kwargs,
|
62 |
-
)
|
63 |
-
|
64 |
-
class TestASR(datasets.GeneratorBasedBuilder):
|
65 |
-
"""Lorem ipsum."""
|
66 |
-
|
67 |
-
|
68 |
-
BUILDER_CONFIGS = [
|
69 |
-
TestConfig(
|
70 |
-
name="dataviewer-test",
|
71 |
-
)
|
72 |
-
]
|
73 |
-
|
74 |
-
def _info(self):
|
75 |
-
return datasets.DatasetInfo(
|
76 |
-
description=_DESCRIPTION,
|
77 |
-
features=datasets.Features(
|
78 |
-
{
|
79 |
-
"audio_id": datasets.Value("string"),
|
80 |
-
"audio": datasets.Audio(),
|
81 |
-
"ngram": datasets.Value("string")
|
82 |
-
}
|
83 |
-
),
|
84 |
-
supervised_keys=None,
|
85 |
-
homepage=_BASE_URL,
|
86 |
-
citation=_CITATION,
|
87 |
-
task_templates=[
|
88 |
-
AutomaticSpeechRecognition(transcription_column="ngram")
|
89 |
-
],
|
90 |
-
)
|
91 |
-
|
92 |
-
def _split_generators(self, dl_manager):
|
93 |
-
audio_path = dl_manager.download(_DATA_URL)
|
94 |
-
local_extracted_archive = dl_manager.extract(audio_path) if not dl_manager.is_streaming else None
|
95 |
-
meta_path = dl_manager.download(_PROMPTS_URLS)
|
96 |
-
return [datasets.SplitGenerator(
|
97 |
-
name=datasets.Split.TEST,
|
98 |
-
gen_kwargs={
|
99 |
-
"meta_path": meta_path["test"],
|
100 |
-
"audio_files": dl_manager.iter_archive(audio_path),
|
101 |
-
"local_extracted_archive": local_extracted_archive,
|
102 |
-
}
|
103 |
-
)]
|
104 |
-
|
105 |
-
def _generate_examples(self, meta_path, audio_files, local_extracted_archive):
|
106 |
-
"""Lorem ipsum."""
|
107 |
-
data_fields = list(self._info().features.keys())
|
108 |
-
metadata = {}
|
109 |
-
with open(meta_path, encoding="utf-8") as f:
|
110 |
-
next(f)
|
111 |
-
for row in f:
|
112 |
-
print(row)
|
113 |
-
r = row.split("\t")
|
114 |
-
print(r)
|
115 |
-
audio_id = r[0]
|
116 |
-
ngram = r[1]
|
117 |
-
metadata[audio_id] = {"audio_id": audio_id,
|
118 |
-
"ngram": ngram}
|
119 |
-
|
120 |
-
id_ = 0
|
121 |
-
for path, f in audio_files:
|
122 |
-
print(path, f)
|
123 |
-
_, audio_name = os.path.split(path)
|
124 |
-
if audio_name in metadata:
|
125 |
-
result = dict(metadata[audio_name])
|
126 |
-
path = os.path.join(local_extracted_archive, "test", path) if local_extracted_archive else path
|
127 |
-
result["audio"] = {"path": path, "bytes":f.read()}
|
128 |
-
yield id_, result
|
129 |
-
id_ +=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|