parlaspeech-tests / nos-parlaspeech.py
gcjavi's picture
test new folder structure
781121f
raw
history blame
3.36 kB
# coding=utf-8
import pandas as pd
import datasets
from datasets.tasks import AutomaticSpeechRecognition
_CITATION = """\
"""
_DESCRIPTION = """\
"""
_HOMEPAGE = "https://zenodo.org/record/5541827"
_LICENSE = "Creative Commons Attribution 4.0 International"
_INDEX_REPO = "https://huggingface.co/datasets/proxectonos/Nos_Parlaspeech-GL/tree/main/"
#_INDEX_REPO = "https://huggingface.co/datasets/proxectonos/Nos_Parlaspeech-GL/resolve/main/"
_URLS = {
"index": _INDEX_REPO + "data/{config}/{split}/{config}_{split}.tsv",
"audio": "audio/{config}/{split}/{config}_{split}.tar",
#"audio": "audio/{config}/{split}/{config}_{split}.tar?download=1",
}
_SPLITS = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev", datasets.Split.TEST: "test"}
class ParlaSpeech(datasets.GeneratorBasedBuilder):
"""Nos-ParlaSpeech."""
VERSION = datasets.Version("1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="clean", version=VERSION, description="XX hours of clean quality segments."),
datasets.BuilderConfig(name="other", version=VERSION, description="XX hours of other quality segments."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"path": datasets.Value("string"), #path to wav file
"audio": datasets.features.Audio(),
"speaker_id": datasets.Value("int64"),
"sentence": datasets.Value("string"),
"gender": datasets.ClassLabel(names=["F", "M"]),
"duration": datasets.Value("float64"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[
AutomaticSpeechRecognition(transcription_column="sentence")
],
)
def _split_generators(self, dl_manager):
urls = {
split: {key: url.format(config=self.config.name, split=_SPLITS[split]) for key, url in _URLS.items()}
for split in _SPLITS
}
dl_dir = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"index_path": dl_dir[split]["index"],
"audio_files": dl_manager.iter_archive(dl_dir[split]["audio"]),
},
)
for split in _SPLITS
]
def _generate_examples(self, index_path, audio_files):
with open(index_path, encoding="utf-8") as index_file:
index = pd.read_csv(index_file, delimiter="\t", index_col="path").to_dict(orient="index")
# clean: 83568 = 79269 + 2155 + 2144 ; other: 146669 = 142813 + 1957 + 1899
for key, (path, file) in enumerate(audio_files):
if path.endswith(".wav"):
data = index.pop(path)
audio = {"path": path, "bytes": file.read()}
yield key, {"path": path, "audio": audio, **data}
else:
path = path + ".wav"
data = index.pop(path)
audio = {"path": path, "bytes": file.read()}
yield key, {"path": path, "audio": audio, **data}